
Computational Mechanics (2024) 73:705–729
https://doi.org/10.1007/s00466-023-02386-9

ORIG INAL PAPER

A general framework of high-performance machine learning
algorithms: application in structural mechanics

George Markou1 · Nikolaos P. Bakas2,3 · Savvas A. Chatzichristofis4 ·Manolis Papadrakakis5

Received: 19 June 2023 / Accepted: 21 August 2023 / Published online: 9 January 2024
© The Author(s) 2024

Abstract
Data-driven models utilizing powerful artificial intelligence (AI) algorithms have been implemented over the past two decades
in different fields of simulation-based engineering science. Most numerical procedures involve processing data sets developed
from physical or numerical experiments to create closed-form formulae to predict the corresponding systems’ mechanical
response. Efficient AI methodologies that will allow the development and use of accurate predictive models for solving
computational intensive engineering problems remain an open issue. In this researchwork, high-performancemachine learning
(ML) algorithms are proposed for modeling structural mechanics-related problems, which are implemented in parallel and
distributed computing environments to address extremely computationally demanding problems. Four machine learning
algorithms are proposed in this work and their performance is investigated in three different structural engineering problems.
According to the parametric investigation of the prediction accuracy, the extreme gradient boosting with extended hyper-
parameter optimization (XGBoost-HYT-CV) was found to be more efficient regarding the generalization errors deriving a
4.54% residual error for all test cases considered. Furthermore, a comprehensive statistical analysis of the residual errors and
a sensitivity analysis of the predictors concerning the target variable are reported. Overall, the proposed models were found to
outperform the existingMLmethods, where in one case the residual error was decreased by 3-fold. Furthermore, the proposed
algorithms demonstrated the generic characteristic of the proposed ML framework for structural mechanics problems.

Keywords Machine learning · Deep learning artificial neural networks · Parallel training · Finite element method · Structural
mechanics

1 Introduction

Artificial intelligence (AI) techniques have emerged over
the last decades as an effective and efficient tool to predict
analysis outputs for computationally demanding engineering
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problems. Application areas requiring multiple algorithmic
operations (nonlinear dynamics analysis, design optimiza-
tion, structural reliability, stochastic simulations) have ben-
efited from AI computational approaches eliminating the
need for performing full-scale numerical analyses by pro-
viding adequate estimations for the outputs of interest [1–5].
Furthermore, significant work was performed on machine
learning (ML) in computational science and engineering [6–
10], while the use of ML algorithms in handling constitutive
material modeling is also an emerging field [11–15].

Furthermore, work related to the prediction of the fun-
damental period of infilled frame structures can be found
in [16], where an artificial bee colony-based neural network
was proposed. Another research work that studied the devel-
opment of predictive models for computing the fundamental
period of frames is [17], where ML algorithms and nonlin-
ear models were used to investigate the structural problem.
Finally, differentMLmethods are explored in [18], where the
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prediction of cement-based mortar’s compressive strength
was explored.

Nevertheless, despite the fast inference time of a trained
model, theAI training process is a demanding task in terms of
computational resources, which makes necessary the use of
parallel processing. Artificial neural networks (ANNs) con-
sist of interconnected nodes that process information and
transmit them through the nodes in the network. The number
of nodes and the depth of the network determines its ability
to learn complex patterns and relationships. However, train-
ing ANNs can be tedious and time-consuming. The model
must undergo multiple analyses to adjust its weights and
biases to predict outputs for a given set of input parameters
accurately. ANNs may comprise millions of parameters to
train via iterative procedures, such as the stochastic gradient
descent algorithm. The structure of the data these algorithms
yield require special handling in a parallel computing envi-
ronment, mainly when parallel processing is performed with
graphics processing units (GPUs), where the data structures
cannot be accommodated in the GPU’s RAM.

Furthermore, the distributed optimization algorithms
deployed during a deep network training process can be par-
allelized by the following two alternative routes. The first
one is data parallelism [19–22], which foresees the split-
ting of the batch of samples (utilized in each iteration) into
a number of smaller mini-batches, which are processed in
parallel, depending on the number of available resources
(GPUs). Alternatively, the model parallelism [23] may be
used by partitioning the tasks of the deep learning model
on distributed GPUs. Despite the fast-pacing growth of deep
learning and the vast progress in computational resources,
relatively limited engineering applications are reported in the
literature related to parallel processing during training [24–
28]. This illustrates the need to research further the potential
of ML techniques for addressing complicated engineering
problems.

The primary task of the approach that will be used for the
needs of this researchworkwill foresee the generation of data
sets with the use of the 3D detailed modeling of reinforced
concrete (RC) structures as, described in [29, 30] and for
steel structures, as presented in [31]. All finite element anal-
yses are performed using the Reconan FEA [32], a research
software code for performing nonlinear and modal analyses,
to generate the data sets for the needs of this work. The soft-
ware code has been extensively validated through the use of
experimental results found in the literature, where its ability
to predict the nonlinear response of structural members and
structures is demonstrated.

This paper presents a generic, high-performance computa-
tional framework for developing ML models trained on data
sets stemming from structuralmechanics problems. Section2
presents the proposed ML algorithms and a novel procedure
for feature selection. In this section, the ML models’ hyper-

parameter tuning and statistical reliability are discussed.
Furthermore, the vital statistical inference techniques regard-
ing the analysis of errors, the sensitivity of the target variable
concerning features, and the adequacy of the training data
set are presented. In Sect. 3 the training of the proposed deep
neural network in a distributed computing cluster compris-
ing sixty-four Nvidia Tesla V100 40GB GPUs is performed.
The deep-learning results serve as a benchmark for evaluat-
ing existing ML results in the literature. Subsequently, ML
algorithms are applied and compared on a testbed of three
structural engineering data sets associated with RC slender
beams discussed in Sect. 4.1. RC buildings in Sect. 4.2, and
steel structures in Sect. 4.3. Finally, the main numerical find-
ings are outlined in Sect. 5.

2 Machine learning

The use of ML algorithms has increased exponentially in
recent years in a variety of scientific fields, from computer
vision [33, 34], to real estate evaluations [35], including
simulation-based engineering science [36–38]. Their predic-
tive abilities are confirmed in many applications, making
them a very promising tool for solving computationally
demanding problems. Different methods can be found in
the scientific literature and, more recently in industry, where
they are utilized to provide solutions that cannot be obtained
through conventional numerical approaches. Methods like
random forest [39], gradient boosting [40], and ANNs [38]
are some of the widely used ML numerical tools. However,
these models are usually complex enough that they cannot
be efficiently implemented and validated in real-world appli-
cations. In order to address this deficiency, improved ML
techniques have been developed recently [41, 42].

It is important to note at this point that the linear regression
(LR) method [43] is used here as the base comparison ML
tool, while three of the four proposed high-performance ML
models that are implemented in this research work are based
on the following ML algorithms:

1. The polynomial regression (PR) [44, 45], is very use-
ful for automatically extracting closed-form prediction
formulae. PR models describe the relationship between
independent and dependent variables with a polynomial
expression. It provides a more flexible model than LR,
which can be used to fit non-linear data. The polynomial
degree can be increased to capture complex relationships
between the variables. However, this can lead to over-
fitting, where the model fits the noise in the data rather
than the underlying connection.

2. The extreme gradient boosting (XGBoost) [40, 46]
with hyper-parameter tuning (grid search) and cross-
validation. XGBoost is a gradient-boosting library for
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MLproblems such as classifying and regressing. It imple-
ments the gradient boosting framework designed to be
fast and scalable, making it suitable for use with large
data sets and high-dimensional data. XGBoost is used
extensively in industrial applications due to its strong
performance on various data types and its ability to han-
dle missing values and unbalanced classes. In addition,
XGBoost avoids overfitting, which is a common problem
in ML, with built-in feature selection and regularization.

3. The random forest (RF) [39, 47] is a popular ML
algorithm for classification and regression problems. It
creates a large number of decision trees and combines
their outputs to make a prediction. RF is an ensemble
method that combines multiple decision trees to make a
prediction. Each tree is trained on a random sample of the
data, and the final prediction is made by aggregating the
results of all the trees. This approach reduces overfitting
and increases the robustness of the model.

2.1 Polynomial regressions with hyper parameter
tuning (POLYREG-HYT)

Polynomial regression is applied to develop predictive mod-
els in higher-order classes. The model relies on nonlinear
combinations of all independent variables, a procedure per-
formed up to any arbitrarily high degree. The proposed
POLYREG-HYT model automatically selects the nonlinear
features that correspond to theminimumprediction error. The
number of these combinations decrease quickly in terms of
the number of features and polynomial degree. For n num-
ber of features and k polynomial degrees the combination
number c is expressed in terms of n and k by the following
equation:

c =
((

n

k

))
=

(
n + k − 1

k

)
= (n + k − 1)!

k!(n − 1)! , (1)

For n = 10 and k = 5, the possible combinations are
2002, while for n = 20 and k = 10, the number of com-
binations becomes 2 × 107. Henceforth, since data sets are

limited, an appropriate choice among those nonlinear fea-
tures is based according to the degree of impact on enhancing
the algorithmic performance. Thus, for the case of a problem
with s number of samples, the maximum number of features
m < s is taken m = s

10 or m = s
20 , to have enough degrees

of freedom to regress and obtain statistically reliable results.
Therefore, the number of nonlinear features combinations is
given as:

c f =
(
c

m

)
= (c)!

k!(m − k)! , (2)

resulting in more than 2 × 1017 combinations for the case
where n = 10, k = 5, and m = 10, while for the case
of n = 20, k = 10, and m = 10, the total combinations
become excessively high, making its implementation impos-
sible. This is a computationally intensive task, given that a
structural analysis problem has to be solved for each com-
bination. An improved version is proposed to optimize this
procedure, as presented in the following Section.

2.1.1 Feature selection algorithm

ThePOLYREG-HYTfeature selection algorithm is described
in Algorithm 1. The proposed algorithm has as its main task
to create a closed-form prediction formula, which is written
in Julia Language [48] that has been found to be computa-
tionally efficient when handling large numerical problems.
Thereafter, the codewas also developedbyusingPython [49].
Through the link found in [49], all data sets used herein and
the Python algorithm incorporating the proposed ML meth-
ods are provided as open access files and can be directly
downloaded. Instructions on how to install the NBML soft-
ware are also provided. It is important to note that the
proposed algorithm is generic and, at the same time, transpar-
ent to the user, given that it returns an explicit, closed-form
formula based on the computed predictions. Algorithm 1 is
an improvement to the embedded optimization problem of
the polynomial feature selection of existing PR algorithms
[50, 51], as will be shown in the numerical tests section.

123



708 Computational Mechanics (2024) 73:705–729

In Algorithm 1, where p is the total number of polynomial
features,m f represents themaximumnumber of formula fea-
tures. The proposed algorithm aims to identify the indices
[o] = {o1, o2, . . . , o} ⊂ [p] = {1, 2, . . . , p} for minimiz-
ing the regression error ei during the loop over iteration i . It
must be noted here that X is the full input matrix consisting
the values found within the data set, and X′ is the corre-
sponding input matrix with [o] columns only. This algorithm
is a modified version of the one proposed in [50, 51] for a
combinatorial optimization case, using cross-validation and
producing stable yet highly accurate results. Moreover, as
the numerical test section demonstrated, the proposed ML
algorithms achieved minimal errors during the training and
testing stages for developing closed-form formulae for dif-
ferent structural mechanics problems.

At this point, it is important to note that all proposed ML
and AI algorithms are presented in an open-source software,
and through a user’s manual found in nbml [49].

2.2 Hyperparameter tuning of XGBoost random
forests (XGBoost-HYT-CV and RF-HYT)

For improving the XGBoost algorithm [40, 46, 52], hyper-
parameter tuning and cross-validation is proposed. This ML
framework will be referred to as XGBoost-HYT-CV. This
tuning was found to exhibit high accuracy for all data sets
that were investigated and presented in Sects. 4.1, 4.2, and
4.3. The numerical results obtained with deep learning in
Sect. 3 are similar to the ones derived by XGBoost for the
same data set (Sect. 4.1 for slender beams), while XGBoost-
HYT-CV was found to be less computationally demanding.

Specifically, a grid search with cross-validation is pro-
posed in this paper, depending on the data set’s underlying
noise. These optimised recommended training parameters
resulted after an extensive parametric investigation. Accord-
ing to the problem, the number of folds and the training-
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validation split percentage is selected to attain similar behav-
ior of the training and validation sets. The tuning is performed
for the following significant training parameters, affecting
the accuracy and generalization capabilities of the proposed
algorithm:

1. Maximum Number of XGBoost Rounds ∈ [10, 20, . . . ,
1000],

2. Maximum tree depth ∈ [1, 7, 15],
3. Learning Rate Eta ∈ [0.05, 0.2, 0.5],
4. Colsample_bytree ∈ [0.5, 1],
5. Subsample ∈ [0.5, 1].

If the XGBoost-HYT-CV model is trained for 1000 rounds,
then the prediction can be performed for the correspond-
ing rounds ∈ [100, 200, . . . , 900]. Hence, to obtain results
from all combinations of parameters, there is the need to
train 3 (maximum tree depth), times 3 (eta), times 2 (colsam-
ple_bytree), and times 2 (subsample), resulting in 36 training
to obtain 3600 models. However, because each fold com-
prises a different sub-set of the training set, these 36 models
must be trained for each fold ∈ [ f ] = [1, 2, . . . , f ] sepa-
rately, resulting in 36× f training processes. Therefore, using
f = 5 folds, a total of 180 XGBoost-HYT-CV models must
be trained. This training is usually fast and can be performed
on a standard PC,whileXGBoost-HYT-CV is inherently par-
allelizable, making the process computationally affordable.

For the case of the proposed random forests with hyper-
parameter tuning (RF-HYT), and for the same case study
considered previously, it is proposed to use [39, 47, 53–55]:

1. Number of Trees ∈ [10, 50, 100]
2. Subfeatures’ Percentage ∈ [0.25, 0.5, 0.75]
3. Partial Sampling ∈ [0.25, 0.5, 0.75]
4. Maximum Depth ∈ [1, 5, 10]
5. Minimum Leaf Samples ∈ [1, 5, 10]

The number of trees used in the forest is a critical param-
eter that determines the accuracy and stability of the model.
The percentage of subfeatures determines the number of vari-
ables randomly sampled as candidates for each split. Partial
sampling is used to select a subset of the training data to train
each tree, which helps to reduce overfitting. The maximum
depth of the trees sets the limit on how deep each tree can
grow and is used to control the complexity of the model.
Finally, the minimum number of samples, required to be at
a leaf node, determines the size of the terminal nodes in the
trees.

2.3 Cleaning of the data set

Another critical issue that needs to be addressed is the pro-
cess of data set cleaning. This is an important part of any

ML training algorithm, which is performed in this study as
follows:

1. Locate the missing values in the training and testing sets,
and replace them (e.g., with the mean of the particular
feature in the train set).

2. Identical rows in the training set, in terms of features and
target, are identified for retaining only the unique ones.

This feature was included in the proposed algorithm which
can be found in [49], for the preparation of the data sets before
training and testing.

2.3.1 Multicolinearity

Even when the data set satisfies missing values and identi-
cal rows, it is important to check for co-linear features, as
they are redundant and may disorientate the training pro-
cedure and the predictions. This is achieved by: Extracting
multi-colinear columns; Computing the rank k, of the train-
ing matrix; Applying QR-Factorization, and selecting the
first pivoted k columns; and Updating train and test sets with
the new ones with non-colinear columns.

The additional computational demand that is introduced
to the system attributed to the QR-factorization prior to per-
forming training and testing, is trivial when compared to
the thousands of training cycles that are performed during
the model development. Furthermore, the QR-factorization
decreases the required number of training cycles leading to a
reduced overall computational demand for the extraction of
the predictive models.

2.4 Statistical reliability of model selection

A trainedmodelmight exhibit high accuracy, even for a group
of folds. However, there is no guarantee that this accuracy
is not happening by chance. To overcome this potential risk,
the reliability of the optimization process for both XGBoost-
HYT-CV and POLYREG-HYT is examined and improved
when necessary. For this purpose, the training-validation-
test curves are obtained, corresponding to the performance of
each one of themodels, sorted by the validation performance.
Subsequently, the empirical cumulative distribution function
(CDF) for each set (Train-Validation-Test) is derived. If the
CDF is similar to a uniform or normal distribution, then this
is a good indicator that the training process is convergent and
the model’s accuracy is reliable.

2.5 Error analysis

One of the most critical issues, which has not been ade-
quately addressed in previous studies, is the error analysis
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of the results. In this work, the difference between the pre-
diction and target variable for eachmodel is computed for the
Training and Testing Sets, and an error analysis is performed,
comprising the:

1. The residual errors vs. target diagrams, and
2. The probability density functions and cumulative density

functions of the errors,

This numerical procedure will identify specific patterns
occurring in the prediction results that will impair both the
generalization capability and reliability of the model.

2.6 Sensitivity analysis

A sensitivity analysis is needed to evaluate and assess each
feature’s impact within the derived predictive model. There-
fore, as soon as the trained models are constructed, all
features at some specific values are kept constant (i.e., 25%,
Median, and 75% quantiles), allowing the permutation of
only one feature around its given values. These values are set
in training mode, and the corresponding sensitivity curves
for each feature and each of the trained models are obtained.
Thus, the corresponding impact of each one of the features
on the target variable can be identified.

2.7 Impact of data-set volume

Data-centric AI is an emerging trend in the community work-
ingwithMLalgorithms [56]. In this context, iterative training
is performed for all methods and for a partial random sub-
set of the train set, starting from 25% up to 100% of the
observations, with 20 intermediate new training iterations.
By implementing this numerical process, the adequacy of
the data can be assessed by evaluating the shape of the curve
depicting the performance of each individual training. Thus,
if the curve is stabilized, this indicates that the data within the
training set was sufficient. Otherwise, more training samples
are needed to achieve a data set that will ensure the derivation
of an accurate predictive model.

The final fourth proposed high-performance ML algo-
rithm that will be numerically evaluated in this researchwork
is based on a deep learning framework through the use of
ANNs, and is described in the next section. It is important
to note here that the developed Python code has the ability
to be used on Windows and Linux operating systems, where
the analysis can be performed in a parallel and serial manner.
More details can be found in the manual found in [49].

3 Parallel training of deep learning ANNs on
GPUs

PyTorch (high-performance deep learning library [57]) was
used for the needs of this research work due to a straightfor-
ward, yet efficient implementation of an automatic differen-
tiation algorithm [58]. The Horovod library [59], developed
at Uber, was implemented for multi-GPU training. By using
Horovod, one may take a single-GPU training script and effi-
ciently scale it to run across many GPUs in parallel. Through
the use of message passing interface (MPI) commands [60],
each process is initialized and assigned its MPI rank in a
straightforward manner, which is achieved with fewer code
changes compared to other approaches. Horovod scripts can
run on a single GPU, multiple GPUs, or even multiple hosts
without further code changes [49]. Algorithms on various
experimentswere tested for the needs of this researchworkon
theCyclone Supercomputer,1 utilizing PyTorch for computer
vision aswell as regression tasks,2 highlighting the efficiency
of data parallelism, as well as the scaling-up capabilities
compared with standard ML platforms, such as Kaggle and
Google Colab.

3.1 Parallel stochastic gradient descent

In the stochastic gradient descent (SGD) method, a random
data point i is selected at each iteration, and the loss func-
tion for this data point is differentiated. Then the weights for
the entire network are updated. In the mini-batch SGD, i is
the current “batch” of data, a subset of all data set indices.
The parallelization is performed at this point by updating
the weights for all batches in parallel. Hence, in the paral-
lel stochastic gradient descent (P-SGD) algorithm, a random
data point is selected for each GPU, for which the gradi-
ent is computed, and the weights are mixed. The weights
can be mixed by averaging or using other methods, such
as ensembles and AdaSum. Subsequently, the update of the
weights for all GPUs takes place. To perform this operation
in parallel, the utilization of MPI3 tool is required for gath-
ering the results among all GPUs, then reducing, and once
more broadcasting them across all available GPUs. This P-
SGD algorithmic procedure implemented here is described
in Fig. 1.

In general, when using larger batch sizes, the procedure
becomes faster, whereas by adopting smaller batch sizes
the process becomes more accurate but computationally
demanding. In any case, the batch must fit into the relevant
hardware memory, so the utilization of a larger number of
nodes is required when a GPU cannot handle the batch size.

1 https://hpcf.cyi.ac.cy/
2 https://github.com/CaSToRC-CyI/artificial-intelligence-hpc.
3 https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/.
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Fig. 1 The parallel stochastic
gradient descent (P-SGD)
algorithmic procedure

Furthermore, the weights mix causes some accuracy losses
in practice. However, all these aspects regarding the compu-
tational behavior of the P-SGD procedure are occasionally
valid, as the loss function is a highly non-linear function of
the ANN’s weights and depends on the data set’s particular
features. It is, therefore, difficult to predict the performance
of the algorithm in terms of accuracy and computational effi-
ciency. Thus, the training of the network has to be performed
with a variety of architectures. To effectively address this
issue, hyperparameter tuning is adopted in the present work,
leading to extensive network training, which was succes-
sively performed on the Cyclone supercomputer.

3.2 Hyperparameter tuning of deep neural networks

Aiming to investigate the effect of the network’s hyperparam-
eters, the Ray-Tune4 module of the PyTorch framework was
employed. First, a number of ANNs are constructed by vary-
ing the batch size, the drop-out ratio, the number of epochs,
the neurons, and the learning rate. Subsequently, the training
of the networks is conducted by recording the training time
for each batch of the training set. At the same time, the final
loss function and the ratio among the validation and train loss
ratio V-T are computed.

Tuning is also time-consuming, therefore, it was found
useful to identify an optimal drop-out region of ratios [61],
as depicted in Fig. 2, which is observed at the upper and right
section of the diagram. It can be concluded that, for lower
drop-out values, the corresponding values of the loss function
are also lower, while for the reasons explained below, the
drop-out could not be zero.

4 https://pytorch.org/tutorials/beginner/hyperparameter_tuning_tutorial.
html.
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Fig. 2 Ray-tune results

3.3 Combination of MPI and Horovod-based
DANN-MPIH-HYT

During an ANN’s training phase, the loss function is auto-
matically recorded for updating the weights. However, the
mean squared error (MSE) does not offer meaningful infor-
mation in engineering applications, and the mean absolute
percentage error (MAPE) is adopted as a more practical met-
ric. Accordingly, as the optimum ANN architecture is not
known in advance, multiple experiments must be performed,
and recording the MAPE during training in real-time is nec-
essary.However, as the data is split and reside onmanyGPUs,
a gather operator should be implemented on the individual
predictions to obtain an aggregated metric for the data set.
In addition, a variety of metrics can be applied in evaluat-
ing the model’s performance, such as the a20 and a10 index
proposed in [16].

For this reason, a combination of Horovod with MPI is
proposed to perform this numerical procedure computation-
ally. In Fig. 3, three code snippets are depicted describing
the implementation of such an operation. The overall pro-
cess starts with the initialization of vector pred in the code
at the upper right part of Fig. 3, which is used later as a con-
tainer of all results. Next, the code imports the MPI module
at the upper left part from mpi4py and gets the rank of each
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Fig. 3 (DANN-MPIH-HYT): a combination of MPI and Horovod

GPU. Then, as shown in the code at the bottom-left part of
Fig. 3, after each step of the optimizer, a barrier is set to wait
for all GPUs before finishing its task. Then, the response
y_train_pred of each GPU is stored in vector pred_i and,
with the comm.gather command, all results are placed in
pred_i . Finally, an additional barrier is introduced to wait
for all GPUs to finish and gather the results in rank o vec-
tor pred. At this stage, vector pred holds the concatenated
predictions and can be utilized for calculating the MAPE.

The proposed parallel deep learningANNs algorithmwith
hyperparameter tuning, MPI and Horovod will be referred to
as DANN-MPIH-HYT. Given that the data sets of structural
mechanics problems dealing with the shear capacity of struc-
tural members or the fundamental period of structure, their
data set size is relatively small. For this reason, it was decided
to use a data set of 21397 imageswhere each one had a size of
5.76 Mb deriving a data set with a total size of 123 Gb. The
numerical problem foresaw the optimization of 19 million
weights and the analysis was performed on Tesla GPUs.

In Fig. 4, the parallel scalability capabilities of the pro-
posed algorithm DANN-MPIH-HYT is presented through
the relevant speed-up, when used for this image recognition
problem. According to Fig. 4, the number of GPUs utilized
to train the model is ranging from 1-64 and the speed-up is
obtained as the ratio between the time needed to train on one
GPU over the time on 2, 4, 8, 16, 32, 64 GPUs. It can be
seen that an almost linear pattern occurs, highlighting the

Fig. 4 Speed-up from one to sixty-four GPUs, using MPI & Horovod

algorithm’s parallel efficiency in avoiding any overheads in
the communication among the multiple GPUs utilized. Also,
according to the parallel analysis it was found that the total
ML training speed-up achievedwhen 64TeslaGPUs are used
was 28.77.
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4 Numerical tests

In this section, three different structural mechanics problems
are selected to illustrate the numerical performance of the
proposed algorithms, POLYREG-HYT, XGBoost-HYT-CV,
RF-HYT, and DANN-MPIH-HYT. The structural behavior
of the selected test cases has different characteristics in an
effort to examine the reliability and robustness of the pro-
posed ML algorithms. More precisely, one of them refers
to the structural response and limit capacity of reinforced
concrete (RC) structural members, while the other two refer
to the structural behavior of full-scale structures, including
the soil-structure interaction (SSI) phenomenon. The main
objective of the numerical experiments is to demonstrate the
general nature of the proposed algorithms and their ability
to reach an optimum predictive model regardless the nature
and characteristics of the considered data sets. It is impor-
tant to note here that the three data sets used for the needs of
this researchwork are generatedwith Reconan FEA software
code and consist of a relatively large number of data points
when compared to data sets that foresee the use of results
obtained through physical experimental tests.

The use of the specific numerically generated data sets
does not imply that the proposed methods cannot be imple-
mented on other data sets. For instance, an image recognition
data set was used to generate Fig. 4, as discussed above,
which had nothing to do with structural mechanics. Addi-
tionally, a research work that was performed in parallel with
the research presented in this manuscript, foresaw the imple-
mentation of the proposed POLYREG-HYT on a data set
consisting of experimental data of RC column shear capac-
ities. The results were presented at the COMPDYN 2023
conference [62] and showed that the proposedML algorithm
managed to develop a predictive model that outperforms any
design equation and predictive formula found in the inter-
national literature when computing the shear capacity of
RC columns. It is also important to note that the proposed
XGBoost-HYT-CV was used to train and test on the data
set found in [63], where it was found that the proposed ML
algorithm derived the best error metrics currently found in
the international literature. Furthermore, the four proposed
ML methods were parametrically investigated on the data
set published in [31] which deals with curved steel I-beams
and their respective deflection. It was found that the pro-
posed methods managed to improve the predictive accuracy
of the current models proposed in [31]. For brevity purposes
this numerical implementation will not be discussed in this
manuscript.

Therefore, the four proposed ML methods presented
herein are general and can be used for any type of data set that
consists of input features and anoutput parameter.Regardless
of this feature, it was chosen to demonstrate the numerical
performance of the four proposedML algorithms on larger in

size data sets and data sets that refer to full-scale structures,
where the availability of data sets that derive from exper-
imental tests is not a feasible option since it is practically
impossible to either get tens of thousands of experimental
results related to the shear capacity of RC beams or columns,
and where it is also impossible to get data sets on full-scale
structures that were tested in laboratories for a specific load-
ing condition or at a laboratory with a seismic table. The
number of these type of tests across the world is limited thus
cannot be used to form a data set of 500 or 1000 data. There-
fore, experimentally validating 3D detailedmodels and using
them for generating relatively large data sets was found to be
a realistic approach [42, 64–66], thus the respective data sets
derived from these research projects are used herein for the
needs of this manuscript. It is also important to note that the
all data sets were split into 15-85% for testing and training
with the proposed ML algorithms.

4.1 Predicting the shear capacity of RC beams
without stirrups

The first data set consists of data points on the shear capacity
of RC beams without stirrups. This structural problem is still
open, especially when dealing with the currently available
design codes, which cannot provide sufficient accuracy [64].

4.1.1 Existing knowledge

Predicting the shear capacity of slender RC beams with-
out stirrups through models derived from experimental data
remains the primary source of input for the design of RC
structural members. The main drawback of this approach is
the limited number of available experimental data, which
cannot cover the entire spectrum in beam geometries, load
scenarios, boundary conditions, material properties, and
reinforcement ratios, to allow the development of an exten-
sive database. Furthermore, predicting the shear capacity of
deep beams or the effect of fiber-reinforced polymer (FRP)
rebars within the concrete domain make this problem even
more unmanageable due to the arch action that needs to be
accounted for in the first case and the poly-parametric influ-
ence of FRP in the overall structural behavior in the second
case. The existing design codes are either unable or need
improvement when predicting the shear capacity of these
RC members [41, 64].

In the last two decades, researchers began to explore the
use of AI and ML algorithms by investigating the possibility
of developing models through training that would be able to
predict the shear strength of RC beams with and without stir-
rups [67–69]. According to these studies, the main objective
was to develop prediction models by training AI algorithms
based on existing experimental tests in an effort to derive an
improved method for calculating the shear capacity of RC
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beams with and without stirrups. Even though these studies
used different ML algorithms based on ANN with different
input and hidden layer nodes, the restriction of having a lim-
ited number of available experimental database did not allow
the development of a model that could be used for the shear
capacity prediction for any geometry or material characteris-
tic. It is well known that even a large number (1,000-2,000)
of experiments is not adequate for ANN training, especially
when dealing with deep learning. For this reason, one of the
main problems that researchers have to deal with, when using
AI algorithms and training ML models, is the need for more
extensive databases that can be used to develop accurate and
objective prediction models.

For the needs of this paper, AI algorithms and 3D detailed
modeling of RC structures were used. In [64], an extensive
database of RC slender beams without stirrups was devel-
oped, where the training and testing were performed with
different ML algorithms. Based on the proposed AI algo-
rithms, the numerically generated data set is used to train
the models for predicting their shear strength. The Reco-
nan Multirun simulation software was used to generate and
analyze approximately 36,000 slender RC beams without
stirrups, where the obtained results were used for the train-
ing of the predictive models through higher-order regression.
The developed predictive models were validated through the
use of experimental data found in the literature that was also
used to compare the prediction abilities of the design codes
ACI318-14 (2014) [70], and ACI318-19 [71]. The closed-
form solution proposed in [64] is used herein as a baseline
model to highlight the accuracy of the four new proposed AI
models in this study.

4.1.2 Numerical simulation of RC structures

The generation andmodeling of thousands of RC beammod-
els through the use of 3D detailed numerical simulations of
hexahedral finite elements (FEs) for discretizing concrete and
the embedded steel reinforcement is highly challenging and
computationally demanding task. To allow for thousands of
analyses to be performed in a reasonable amount of time,
the adopted simulation approach should be characterized by
three main properties: Modelling objectivity, numerical sta-
bility, and computational efficiency.

The first property is of significant importance since the
adopted numerical modeling method must have the ability to
objectively capture the capacity of RC structural members by
accounting for the most important physical phenomena that
occur during the loading of these structural members (micro-
cracking and macrocracking of concrete, capturing the 3D
stress field within the concrete domain, steel rebar-concrete
interaction, discretizing the exact geometry of the structural
member, steel yielding and steel rupturing). To account for
these properties, the concrete domain was modeled with the

20-noded isoparametric hexahedral finite elements, whereas
the steel reinforcement was modeled with embedded bar ele-
ments. Finally, vertical push-over analyses were performed
by analyzing 3-point bending tests to obtain the shear capac-
ity of each RC beam numerically.

4.1.3 Modeling of concrete and steel rebars

The adopted concrete material model taking into account the
use of the hydrostatic and deviatoric stress components [72],
using two moduli of elasticity (bulk K and shear G) and an
equivalent external stressσid to describe the constitutive rela-
tions is presented in [73]. The normal and octahedral shear
stresses (σ0, τ0) and strains (ε0, γ0) are used to form the
concrete material relationships that use the bulk and shear
moduli (K, G) describing the non-linear stress–strain rela-
tionships (σ0-ε0(h) and τ0-γ0(d)) combined with the use of
the equivalent external stress σid . The constitutive relations
have the following form:

ε0 = ε0(h) + ε0(d) = (σ0 + σid)/(3KS) (3)

γ0 = γ0(d) = τ0/(2GS) (4)

where KS and GS are the secant forms of bulk and shear
moduli, respectively. At the first stages of loading, when the
deviatoric stress is less than 50% of the ultimate strength,
it is assumed that the concrete material will behave elasti-
cally, therefore, the elastic constitutive material matrix of the
uncracked material is used [72]. The constitutive model of
the uncracked concrete is given through the following expres-
sion:

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

2Gt + μ μ μ 0 0 0
μ 2Gt + μ μ 0 0 0
μ μ 2Gt + μ 0 0 0
0 0 0 Gt 0 0
0 0 0 0 Gt 0
0 0 0 0 0 Gt

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

where μ = Kt − 2Gt/3. When the deviatoric stress
exceeds 50% of the ultimate strength, the parameters Kt =
Kt (σ0, τ0, fc) andGt=Gt (σ0,τ0, fc), where fc represents the
uniaxial compressive concrete strength, are updated accord-
ing to the current state of stress accounting for the concrete
material deterioration due to microcracking.

The ultimate strength of concrete is expressed with the
value of the ultimate deviatoric stress by using the expres-
sions of Willam and Warkne [74].

τ0u = 2τ0c(τ 20c − τ 20e) cos θ + τ0c(2τ0e − τ0c) × SQ

4(τ 20c − τ 20e)cos
2θ + (2τ0e − τ0c)

2 , (6)
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Fig. 5 Hexahedral and
embedded rod element meshes
of a simply supported slender
RC beam with a net span of
150cm and a 20×30cm section

where

SQ =
√
4(τ 20c − τ 20e)cos

2θ + 5τ 20e − 4τ 20cτ
2
0e

Furthermore, the steel reinforcement is modeled as embed-
ded beam elements using the Menegotto, and Pinto [75]
material model that accounts for the Bauchinger effect.

4.1.4 Numerical tests

Each slender beam model is simulated with 20-noded
isoparametric hexahedral finite elements, whereas the steel
rebars were modeled using 2-noded rod elements. A typical
model of an RC beam can be seen in Fig5, with the embed-
ded rebar elements and the applied forces at the midspan,
while the concrete cover was equal to 4cm for all the con-
sidered models [64]. A total of 95 different beam geometries
were created, as seen in Table 1, while 35,849 numerical tests
were obtained according to the multirun analysis performed
in [64].

4.1.5 Database assembly

A database of ten independent variables was created, which
are divided in two groups. The first group consists of the
variables corresponding to the geometry and the meshing of
the beams, which is a time-consuming procedure and was
initially created to constitute a basis for the analysis. In par-

Table 1 RC slender beam
geometry [64]

a/a Parameter min max

1 L (cm) 150 870

2 b (cm) 20 60

3 h (cm) 30 135

4 L/h 5.0 11.6

5 h/b 1.0 4.5

Minimum and maximum magni-
tudes of the 95 beam models

ticular, for each beam, L(mm) stands for net span, b(mm) for
width, and d(mm) for effective depth. Additionally, fc, Ec,
ft , β, Es , fy and ρ represent the uniaxial compressive con-
crete strength, concrete’s Young modulus, tensile strength as
a percentage of the compressive strength, the shear remaining
strength at the surface of the cracks, steel’s Young modulus,
yielding stress, and the reinforcement ratio, respectively. The
statistical characteristics of all the independent variables are
presented in Table 2, where the coefficient of variation cv

(standard deviation σ to the mean μ) is shown below:

cv = σ

μ
(7)

The second group of variables was generated utilizing
Eq.8,

X
′
i = (max(Xi ) − min(Xi )) × U(0, 1) + min(Xi ) (8)

where U(0, 1) stands for the uniform distribution in the
domain (0,1), Xi corresponds to the random variable i and
their lower and upper limits are indicated with min and max,
respectively.

4.1.6 Distributed XGBoost-HYT-CV training numerical
performance

The proposed distributed XGBoost-HYT-CV algorithm is
used in this section to train and test the RC slender beam
data set. Figure6 demonstrates the model’s learning curves
without a drop-out and with a 10% drop-out effect. In the
case of no drop-out (Fig. 6 a), a number of significant spikes
of the objective function are observed, even though there is
generally a decreasing tendency ofMAPEwith the number of
epochs. These sudden increases in the objective function can
be interpreted as an effect of averaging the weights, which
is an inevitable source of error in distributed parallel com-
putations. However, smoother learning curves are achieved
with a 10% drop-out (Fig. 6 b), alleviating the phenomenon
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Table 2 Statistical metrics of independent variables

L d b fc Ec ft β Es fy ρ

Average 5380.8 626.8 279.8 37.9 29961.5 0.058 0.034 2.00 × 105 500.1 0.0066

σ 2236.0 254.4 63.7 11.6 2896.4 0.023 0.009 5.77 × 103 57.7 0.0041

Median 5700.0 560.0 250.0 36.9 29951.4 0.057 0.034 2.00 × 105 499.9 0.0055

Minimum 1500.0 260.0 200.0 20.0 25000.0 0.020 0.020 1.90 × 105 400.0 0.0010

Maximum 8700.0 1310.0 600.0 60.0 35000.0 0.100 0.050 2.10 × 105 600.0 0.0200

cv 0.416 0.406 0.228 0.305 0.097 0.404 0.252 0.029 0.115 0.627

Fig. 6 Drop-out effect on the loss function during training in parallel for 100 epochs

of extreme spikes. Furthermore, it is worth noting that the
validation curve for 10% drop-out is lower than the training
curve, indicating the generalizability of the results.

A variety of experiments are performed to attain an opti-
mal drop-out ratio. Figure7 presents results for a drop-out
equal to 0.01. As depicted in Fig. 7 b, it stabilizes around
a constant value when the validation curve becomes higher
than the training curve. This behavior of the loss function sig-
nifies over-training of the network resulting in an over-fitting
of the derived predictive model.

4.1.7 Comparison between the DANN-MPIH-HYT and
XGBoost-HYT-CV

To perform this comparison, an ANN with 10 layers and
1000 neurons per layer is trained, corresponding to more
than 9 million weights that need to be optimized. The best
loss (MAPE) attained with the DANN-MPIH-HYT learning
model was 5.94%. The data set under study comprised values
with an increment of 10 kN and an average of 98.22 kN, thus,
giving an inevitable error of 10/2

98.22 = 5.09% which occurs on
average [49]. Therefore, any improvement of the 5.94% loss
cannot be practically attained. The corresponding MAPE for
the tuned XGBoost-HYT-CV model was 5.825%, verifying
the advanced accuracy of the proposed XGBoost-HYT-CV

compared to the computationally demandingdistributed deep
learning algorithm. It is also important to note here that
according to the best ML algorithm used in [64], the corre-
sponding MAPE was 16.6%, which highlights the optimum
performance and numerical superiority of the proposed ML
algorithms.

4.1.8 POLYREG-HYT for automatic formula development

The predictive models that derive from DANN-MPIH-HYT
andXGBoost-HYT-CV are black-boxes for the user that can-
not be interpreted. On the other hand, closed-form formulae
to be utilized for analysis and design purposes aremuchmore
desirable. The PR algorithm [64] for formula development
extracted an analytical expression for the shear capacity Vc,
comprising ten terms, as given in Eq.9. The corresponding
terms for fc, d, b, L, Es, ρ, and ft are used to calculate the
required predictive formula for Vc.

Vc = 0.168 × d − 0.0196 × ρ × b × d

− 1.53 × 10−10 × L3 + 0.0197 × ρ × fc × L

− 809.8 × ρ2 × d + 1.558 × 10−04 × ρ × Es × d

+ 5.74 × 10−09 × b × L2 − 9.60 × 10−12 × Es × L2
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Fig. 7 Results for low drop-out=0.01 for different epochs

− 6853.2 × ρ2 × fc + 6.78 × 10−03 × ft × fc × d

− 36.172 (9)

It is important to note that even though the training and
testing of this predictive model were performed exclusively
on a data set generated by nonlinear numerical analyses,
the model validation was performed on the out-of-sample,
100 experimental data found in the literature [64]. The fol-
lowing sections will summarize the closed-form formulae
derived using the proposed ML algorithms and those previ-
ously implemented by the authors [64].

4.1.9 Comparison of MLmodels

Table 3 presents all ML models’ performance metrics. It can
be observed that XGBoost-HYT-CV attains the best accu-
racy for all studied metrics in the out-of-sample test set,
followed by random forests with tuning. For the case of the
test data set, the predictive model derived from XGBoost-
HYT-CV decreases the MAMPE compared to the LR by
80.5%, while for the case of the polynomial regression, the
XGBoost-HYT-CV reduces the MAMPE value by a 71.3%.
The RF-HYT algorithm performs better than the LR and the
polynomial regression delivers a 43% larger MAMPE than
the XGBoost-HYT-CV. The performance of XGBoost-HYT-

Fig. 8 Experimental vs predicted characteristic shear capacity VRK
with XGBoost-HYT-CV

CV is also depicted in Fig. 8, while the corresponding error
analysis shown in Fig. 9. Furthermore, the proposedRF-HYT
is found to derive a 9.55%MAPE, and it is easy to observe the
significant improvement in terms of MAPE on the validation
data set when compared to the 16.6% derived from the ran-
dom forests reported in [64]. The same applys for the newly
proposed POLYREG-HYT that was found to outperform the
older polynomial regression used in [64].

Table 3 Comparison of performance metrics for RC beams without stirrups

Method Data set Pearson MAPE % MAMPE % MAE RMSE Alpha beta

Linear regression Train 0.874 30.030 22.065 26.397 34.683 0.764 28.184

Linear regression Test 0.877 30.847 22.362 26.215 34.318 0.757 29.283

POLYREG-HYT Train 0.937 22.721 15.003 17.948 24.922 0.878 14.588

POLYREG-HYT Test 0.937 23.381 15.208 17.829 24.963 0.879 14.840

XGBoost-HYT-CV Train 0.999 2.156 1.511 1.808 2.480 0.996 0.494

XGBoost-HYT-CV Test 0.995 5.825 4.369 5.122 7.445 0.978 2.643

RF-HYT Train 0.988 8.527 6.921 8.280 11.262 0.958 4.980

RF-HYT Test 0.985 9.550 7.665 8.986 12.205 0.952 5.778
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Fig. 9 Residual errors of
XGBoost-HYT-CV model vs
given VRK

Table 4 Computational time for training with the RC beams without
stirrups data set

Method Time (minutes) MAPE (Test)

Linear regression 0.001 30.847%

POLYREG-HYT 17 23.381%

RF-HYT 70 9.550%

XGBoost-HYT-CV 108 5.825%

DANN-MPIH-HYT 278 5.940%

Before investigating the proposed ML algorithms, it must
be noted here that the computational performance was also
evaluated for the four proposed algorithms. The RC slender
beams without stirrups data set was used in this case where
the trainingwasperformedonapersonal computerwith an i7-
10510U CPU (2.30 GHz). The corresponding computational
times for training the predictive models can be seen in Table
4, where XGBoost-HYT-CVwas found to outperform all the
proposed algorithms in terms of accuracy and it is almost 3
times faster compared to the DANN-MPIH-HYT which is
an AI algorithm based on a deep learning artificial network
framework. The training rounds for both models were set to
100. For the case ofRF-HYT, the number of tune roundswere
100, while for the POLYREG-HYT the polynomial degree
was equal to 3 and the number of formula features was also
100.

4.2 Predicting the fundamental period of RC
structures with and without soil-structure
interaction

The use of a data set with fundamental periods of RC framed
structures will be used in this section to test the numerical
performance of the proposed ML algorithms. This data set
consists of results obtained for both fixed and flexible-base
models, as will be explained below.

4.2.1 Existing knowledge

One of the most important dynamic characteristics of struc-
tures is the fundamental period, which is associated with the
dynamic performance of the structures as well as for estimat-
ing the enforced seismic load. Furthermore, during a seismic
excitation, the interaction between the superstructure (build-
ing) and the substructure (soil) can become necessary as it
affects the stress–strain distribution within the superstruc-
ture, altering the initial expected structural performance and
the fundamental period of the structure [76, 77]. In general, it
has been found that SSI can increase the fundamental period
and the overall damping of the system. Thus it is essential to
consider its effect on the structural response and to eliminate
unsafe designs and unexpected damage development [78, 79]
during earthquake excitations.

It is well documented that the current design codes need
to consider the SSI effect on the fundamental period of a
structure, while the effect of the shear walls in the stiffness
distributions is not adequately considered, especially in the
current "Eurocode 8" [80], amongst others, as demonstrated
in [42, 66]. Thus the objective is to create a data set com-
prising all accurate modal analysis results obtained from
various numerical models. To demonstrate the superiority
of the proposed deep learning algorithm, a data set of 790
modal analysis results is used to develop a new, more accu-
rate and robust predictive model. Some of the models are
depicted in Fig. 10, where the SSI effect is considered with a
discretization of the soil domain using hexahedral elements.
In addition, the use of shear walls and different types of soil
domains, and asymmetrically positioned shear walls were
also considered during the validation procedure.

According to the latest research study on developing a
closed-form formula for predicting the fundamental period
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Fig. 10 RC building models
with soil. a 3-storey and b
5-storey with a shear wall in the
middle, c 3-storey shear walls at
the perimeter and d 2-storey and
e 3-storey with a single shear
wall (asymmetric cases). [42]

ofRCstructureswith andwithout SSI [42], a 20-term formula
was proposed according to Eq.10.

T = (0.0292939 × H) − (0.000150825 × ρ × H)

+
(
0.00000582242 × H × B2

)

+
(
0.00000330369 × ρ × H2

)

+ (0.000215881 × H × L)

−
(
1.89375x10−15 × Es

2 × D
)

+ (0.00000323855 × L × H × D)

− (0.00000646154 × ρ × B × H)

− (0.0000000000925478 × H × Es × D)

− (0.0000000000406192 × ρ × Es × D)
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+
(
0.000000194394 × D × ρ2

)

+ (0.0037148 × B)

+ (0.000000358861 × ρ × H × D)

+
(
0.0000000000662381 × Es × D2

)

−
(
0.000000278639 × D3

)

− (0.000000000113737 × L × Es × D)

−
(
0.0000016727 × B3

)

+ (0.0000309934 × L × D) − (0.00178654 × L)

+
(
0.000000645744 × L3

)
+ 0.00239996 (10)

where H the building’s height (m), ρ the percentage shear
walls (%), Es the soils’ modulus of elasticity (kPa), L the
length of the building parallel to the oscillating direction (m),
B is the width of the building perpendicular to the oscillating
direction (m), D is the soil depth (m).

The fundamental periods of the structures were computed
by Reconan FEA software code.

4.2.2 Database assembly

Using 790 variations of the type of structures shown in
Fig. 10, the data set was constructed numerically. The statis-
tical characteristics of the features (Ds : Soil depth, E: Young
Modulus of Soil, H: Height of building, L: building length,
B: out of plane length, ρ: shear wall ratio at ground floor),
and the target (T: fundamental period) variables, are reported
in Table 5.

In the following, the data set was split into the training
(80%) and testing (20%) sets, while a part of the train set
(20%) was kept for validating the deep learning during train-
ing.

4.2.3 Performance of MLmodels

Table 6 presents all ML models’ performance metrics. It
can be observed that the XGBoost-HYT-CV attains the best
accuracy for Pearson, MAMPE, MAE, and RMSE metrics.
On the other hand, RF-HYT with tuning gives higher accu-
racy for MAPE, alpha, and beta metrics and similar accuracy
with XGBoost-HYT-CV for the other metrics. POLYREG-
HYT also attains a high accuracy, having the advantage of
producing a closed-form formula. It is noteworthy to men-
tion here that the MAMPE error of the XGBoost-HYT-CV
on the testing data set was 4.03% compared to the LR and
POLYREG-HYTmethods that resulted in a 13.4% and 7.4%
MAMPE, respectively. The corresponding MAMPE value
achieved by the RF-HYT was 4.3%. The results reported in
Table 6 confirm that the proposed ML algorithms can derive

an accurate predictive model with the XGBoost-HYT-CV
outperforming all other ML algorithms.

To highlight the significant improvement and the numer-
ical superiority of the proposed ML algorithms compared to
those presented in [42], the respective MAPE of the opti-
mum predictive model was equal to 5.68%. XGBoost was
also implemented by Gravett et al., [42], where the corre-
sponding MAPE was equal to 30.6%. This numerical result
performed with the data set considered in [42], revealed that
the XGBoost is the least suitable method, while the pro-
posed XGBoost-HYT-CV, achieves MAMPE 5.06%, which
is significantly smaller than the corresponding 30.6%derived
from the XGBoost as presented in [42], but is also lower than
5.68%,whichwas the lowestMAPEobtained by theMLgen-
erated predictive models in [42]. Furthermore, the proposed
RF-HYT was found to have the minimumMAPE (4.8%) out
of the four predictive models of Table 6 for the considered
test data set. According to the reported MAPE of the ran-
dom forests used by Gravett et al., [42], the corresponding
numerical error was equal to 11.46%. This improvement is
attributed to the hyperparameter tuning that leads to more
accurate predictive models.

4.2.4 Sensitivity analysis

Performing a sensitivity analysis has a twofold purpose. The
first one is to assess the impact of a particular input on the tar-
get variable, and the second is to evaluate the reliability of the
predictive model. The sensitivity analysis curves for ρ, the
significance levels (25% and 75% median), and the best per-
forming models XGBoost-HYT-CV and RF-HYT are given
in Figs 11 and 12, respectively. It can be observed a decreas-
ing pattern followed by a plateau for ρ > 40 for both models
considered. This indicates that the models’ accuracy was not
achieved by chance. Still, they capture the proper relation-
ship between input–output, highlighting the proposed ML
algorithms’ ability to derive high-accurate predictivemodels.
Finally, Fig. 13 Finally illustrates the ability of the XGBoost-
HYT-CV visually in predicting the values found in the test
data set.

4.3 Predicting the fundamental period of steel
structures with and without soil-structure
interaction (SSI)

The next data set that is used to evaluate the ML algorithms
consists of fundamental period results of steel framed struc-
tures, including the SSI effect.

4.3.1 Existing knowledge

Current building design codes use empirical oversimplified
relations to predict the fundamental period of structures [65,
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Table 5 Statistical properties of
characteristic parameters

Metric Ds (m) E (kPa) H (m) L (m) B (m) ρ (%)

Mean 23.518 25 000 15.44 13.201 11.99 22.125

StD 20.24 82 400 9.58 6.86 5.048 32.416

Median 22.5 300 12 12.25 12.25 0

Minimum 0 65 3 3.4 3.4 0

Maximum 60 300 000 30 34.4 34.4 85.294

Table 6 Comparison of performance metrics for fundamental period of RC structures with and without SSI

Method Data set Pearson MAPE % MAMPE % MAE RMSE Alpha Beta

Linear regression Training 0.987 13.827 7.688 0.037 0.049 0.974 0.012

Linear regression Testing 0.986 13.366 7.405 0.037 0.050 0.967 0.017

POLYREG-HYT Training 0.994 7.053 5.172 0.025 0.034 0.988 0.006

POLYREG-HYT Testing 0.993 7.449 5.234 0.026 0.036 1.003 0.0004

XGBoost-HYT-CV Training 0.999 3.550 2.566 0.012 0.018 0.977 0.011

XGBoost-HYT-CV Testing 0.996 5.061 4.032 0.020 0.028 0.974 0.011

RF-HYT Training 0.998 3.354 3.069 0.015 0.021 0.987 0.005

RF-HYT Testings 0.995 4.781 4.362 0.022 0.030 0.987 0.004

81], requiring only the height of the structure and do not
account for the actual 3D geometry or for any SSI effect.
An estimation of the fundamental period of steel structures
according to EC8 EC1998, is given below:

T1 = Ct (H)0.75

where:
Ct = 0.085 for moment-resistant space steel frames
Ct = 0.075 for eccentrically braced steel frames
As well as according to ASCE 7-05 [82]:
T1 = 0.0724 (H)0.8 for steel moment-resisting frames
T1 = 0.0731 (H)0.75 for eccentrically braced steel
frames

Furthermore, Cinitha [83] proposed a formula that takes
into account the geometry of the structure and particularly

the plan area of the building (L × B) as shown below:

T1 = C0 (L × B)0.3289×α , (11)

with
C0 = 0.0247e0.1305×H

α = 0.4473e−0.0441×H

In [66], a total of 576 numerical models using Reconan
FEA code created and analyzed to develop a data set of
1,152 fundamental periods. The data set was used to train
the predictive model through the ML algorithm presented
in Sect. 2.1 and formulate a 40-feature closed-form formula,
which was also validated using out-of-sample data. This data
set is also used in investigating the numerical response of the
proposed in this study XGBoost-HYT-CV parallel training
algorithm. The proposed closed-form formula found in [66]

Fig. 11 Sensitivity curves for ρ

with XGBoost-HYT-CV
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Fig. 12 Sensitivity curves for ρ

with RF-HYT

Fig. 13 Numerical vs predicted fundamental period of RC structures
on the test data set with XGBoost-HYT-CV

is given in Eq.12, which resulted in a 2.7% MAPE.

T = 0.194630 × lH2 + 0.0580556 × CO2 × B

− 9.39027 × I nvCO × I nvB × l B

− 8.49213 × I nvL × CO × H

− 41.8498 × I nvCO × l L × H

− 8.14564 × I nvE × E × H

− 0.800465 × CO × B × H + 114.808

× I nvCO × I nvB × H

+ 46.6778 × I nvCO × I nvB2

+ 0.0631499 × B2 × H

+ 4.20803 × l B × CO × H − 0.144945

× l L × H × L

+ 0.847694 × B × H × I nvL + 9.37930

× I nvL2 × H

− 1.08930 × I nvCO2 × L + 4.04342 × I nvL

− 0.251627 × I nvL × CO × B − 0.00783561

× I nvB × lCO × l E

+ 0.523388 × l L2 × I nvCO + 0.0947335

× I nvH × lH × L

+ 46.8309 × I nvE × H × lDs + 0.00764850

× lH × B

+ 0.000161108 × l L × L × l E − 20.5554

× I nvE × CO × Ds

− 0.00474725 × I nvL2 × I nvDs

+ 2.73101 × I nvL × I nvH × CO

+ 0.403996 × I nvCO × l B × L

− 0.0105914 × l L × L × B

− 0.228100 × l B2 × CO + 0.00265642 × I nvL×H2

− 2.58386 × I nvB × I nvH × CO

+ 5.84142 × I nvCO × H × L

+ 29.5168 × I nvCO × H + 0.849560 × I nvL

× lH × CO

− 2.14776 × I nvB × lH × lCO

+ 1.34222 × l B × lH × I nvH

− 0.00333495 × l E × L × I nvH

− 2.64111 × I nvB2 × I nvH

+ 71.1358 × I nvH × Ds × I nvE

− 17.9194 × I nvE × l E × l L

− 1.16636 (12)

According to the features that were investigated in [66],
the variables that were used to construct the above equation
are the following:

T is the fundamental period (s)
Ds is the depth of soil (m)
E is the soils Young’s Modulus (kPa)
H is the building height (m)
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Table 7 minimum and maximum parameter values for model develop-
ment

Parameter Minimum Maximum

Soil depth [m] 1 37.5

Soil E [kPa] 65 000 700 000

Height [m] 3.5 35

Length (along x-axis) [m] 5 15

Width (along y-axis) [m] 3 6

L is the length of the building parallel to the oscillating
direction (m)
B is the width of the building perpendicular to the oscil-
lating direction (m)
CO is the orientation of the columns (either a 1 or 2)
l Parameter is ln (Parameter + 1) i.e. lDs = ln (Ds

+1)
I nvParamete is 1

Parameter+1 i.e. I nvDs = 1
Ds+1

4.3.2 Database assembly

Figure14 (a) shows the smallest structural model used to cre-
ate a data set of 1,152 fundamentalmode results,whileFig. 14
(b,c) shows a multi-span 2-storey frame with and without the
soil domain that was discretized with 8-noded isoparametric
hexahedral elements. Table 7 shows the minimum and max-
imum values of the variables considered during the training
phase. This pilot project is based on the use of one to 10-
storey buildings with single and multiple spans founded on
soft, medium, and hard (fixed base) soil. Finally, a relevant
mass was assumed to equal the mass of a 150mm thick slab
with a 2.0 kN/m2 live load (residential buildings).

4.3.3 Comparison of MLmodels

Table 8 summarizes the numerical performance of the ML
algorithms from both training and testing data sets. As can

Fig. 14 2-storey steel building.
Triple span in the long direction,
double in the short direction a
fixed base with raft foundation b
flexible base with hexahedral
soil mesh. [66]
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Table 8 Comparison of performance metrics for fundamental period of steel structures with and without soil-structure interaction

Method Data set Pearson MAPE % MAMPE % MAE RMSE alpha beta

Linear regression Train 0.738 64.933 47.315 0.628 0.719 0.544 0.605

Linear regression Test 0.709 69.197 48.735 0.655 0.740 0.520 0.642

POLYREG-HYT Train 0.999 1.478 0.809 0.011 0.028 0.999 0.001

POLYREG-HYT Test 0.998 1.172 0.981 0.019 0.019 0.999 0.003

XGBoost-HYT-CV Train 1.000 0.213 0.121 0.002 0.003 1.000 0.0002

XGBoost-HYT-CV Test 0.998 2.740 2.345 0.032 0.060 0.984 0.014

RF-HYT Train 0.994 9.707 5.369 0.071 0.123 0.952 0.059

RF-HYT Test 0.986 17.422 9.624 0.129 0.183 0.922 0.098

Fig. 15 Cumulative distribution
functions for train, test and
validation sets

be seen, POLYREG-HYT achieves the best error metrics for
this problem, outperforming the previous accuracy reported
in [66] decreasing the MAPE by 57%. XGBoost-HYT-CV
achieves the second best accuracy for all error metrics with
2.7%MAPEvalueswhich is almost 20 times lower compared
to the LR method. When compared with the random forests,
XGBoost-HYT-CV is found to attain a four times lower
MAPE value. For the case of theMAMPE andMAEmetrics,
the difference is similar or larger compared to the correspond-
ingMAPE values. It must be noted that the RF-HYTmethod
was tuned exhaustively for the needs of this problem but
still did not achieve the accuracy of the XGBoost-HYT-CV
method.

4.3.4 Statistical reliability of model selection

In Fig. 15, the cumulative distribution functions (CDFs) are
presented for the models exhibiting higher accuracy than the
median validation one. This figure shows that CDF is located

on the right of the corresponding validation CDF in the entire
test which indicates that the best model was selected fol-
lowing a robust procedure. Furthermore, the trained CDF
indicates higher accuracy when using the training set. How-
ever, this is balanced in the sense of ANNs, as the test set still
exhibits higher accuracy. CDFs are a valuable tool for under-
standing and evaluating the model development procedure.
Therefore, using CDFs after training and testing a predictive
model is highly recommended to achieve a robust empirical
process for evaluating the hyper-parameter tuning.

4.3.5 Impact of data-set volume evaluation

In Fig. 16, the XGBoost-HYT-CV results are presented when
training is performed sequentially keeping the 25%− 100%
of the observations, with 20 intermediate rounds. In addition,
a linear model is fitted within the graph for all and 50% of the
obtained results. The observed flattening of the curve during
the last iterations indicates that there are few or no accuracy
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Fig. 16 Impact of data-set
volume

Fig. 17 Numerical vs predicted fundamental period of steel structures
on the test data set with XGBoost-HYT-CV

enhancements that the model can attain at this stage. It is
noteworthy to notice that the tuning of the optimal param-
eters obtained by the proposed tuning algorithm for all 20
intermediate models of XGBoost-HYT-CV was a compu-
tationally demanding task. However, this process is a good
indicator of the adequacy of the number of samples of the
selected training data set. Figure17 illustrates the numerical
vs predicted fundamental period of steel structures on the
test data set obtained from the XGBoost-HYT-CV. It is easy
to observe the accuracy of the derived predictive model as it
derived from the numerical analysis.

5 Conclusions

Four enhanced ML algorithms are presented in this research
work, illustrating their numerical performance and ability
to extract predictive models. The methods proposed herein
with hyperparameter tuning are namely theMPI &Horovod-

based parallel training DANN-MPIH-HYT, the polynomial
regression POLYREG-HYT, the extreme gradient boosting
XGBoost-HYT-CV and the random forest RF-HYT. The
proposed ML algorithms incorporate the use of a hyper-
parameter tuning algorithm that enhances the predictive
model training procedure, decreases the computational effort
while increasing the accuracy of the obtained predictive
models. Similar improved numerical performances were
observed when implementing the four proposed methods for
the data sets published in [31, 63] further highlighting their
computational response.

As it was described in Sects. 2 and 3, the novelty presented
in this article is found in the new distributed algorithm as
a baseline for the ML models, and the POLYREG-HYT’s
feature selection algorithm which is novel. A holistic frame-
work for analyzing engineering datasets was also presented,
taking into consideration of all the appropriate parts, like
error analysis, sensitivity analysis, and comparison among
the predictive models during training. Furthermore, all the
data sets and algorithms that were developed for the needs
of this research work are provided for free through an open-
source link.

The DANN-MPIH-HYT algorithm managed to achieve
accurate predictive models for the case of RC slender
beams. The proposed method’s parallel scalability was also
demonstrated by using the 64 Tesla GPUs of Cyclone super-
computer, where the speed-up was found to be practically
linear demonstrating the efficiency of the proposed algorith-
mic structure for parallel training. Additionally, the proposed
parallel algorithm achieved a 5.94%MAPEwhen used on the
RC slender data set, which is ideal compared to the computed
inevitable average error derived from the data set’s nature.
This also represents a 3-fold decrease of the corresponding
MAPE 16.6% achieved in previous studies.

The proposed POLYREG-HYT algorithm, with the pro-
posed feature selection algorithm for the case of combina-
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torial optimization, was parametrically investigated and was
found to be able to develop predictive accurate models. Fur-
thermore, the obtained average MAMPE of this algorithm
was found to be 7.14% on average in the parametric inves-
tigation of the four structural-related problems. Last but not
least, this algorithm can produce closed-form expressions for
the required quantities in a computationally efficient manner.

The two additional ML algorithms proposed and para-
metrically investigated using the four test cases considered,
namely theXGBoost-HYT-CV and the RF-HYT,were found
numerically superior, compared to the others, withXGBoost-
HYT-CV being the best in practically all categories related
to error metrics. Although RF-HYT achieved significantly
high accuracy (averageMAMPE7.22%andMAPE10.58%),
the XGBoost-HYT-CV was found to achieve an average
MAMPEvalue of 3.58%and a corresponding averageMAPE
value equal to 4.54% for all test cases considered. This
finding demonstrates the numerical superiority of XGBoost-
HYT-CV (5.825%) which can give, on average, 2.5 times
lower MAPE than RF-HYT and a slightly more accurate
MAPE than the deep learning algorithmDANN-MPIH-HYT
(5.94%). However, after comparing the computational effi-
ciency of the two methods, it was found that when using the
same CPU to train on the RC slender beams without stirrups
data set, XGBoost-HYT-CV was almost 3 times faster than
DANN-MPIH-HYT which is attributed to the large num-
ber of weight factors combinations and training set that is
required when deep learning is engaged.

In order to evaluate the overall numerical response of
the proposed ML algorithms, the derived errors from this
research work were compared to the errors reported when
using the previously publishedML algorithms. According to
the comparison performed onMAPE andMAMPE values, it
was found that the proposedML algorithms outperform their
predecessors in all test cases considered.

Many research and industrial applications of ML algo-
rithms focus on selecting the best possible model for a
particular data set. However, the statistical reliability of
model selection to attain a robust model as well as cleaning
the data set to avoid errors and useless resource allocation
are both essential and should also be investigated. To this
extent, a three-stage automatic process was proposed in this
study to address this significant data set-related issue, while
error analysis revealed substantial patterns for the ML mod-
els contributing to the evaluation of the final model.

Furthermore, the ML black-box model that derives from
algorithms that do not produce a closed-form formula can
be scrutinized with a random perturbation of the features
at various significance levels, using the proposed sensitivity
analysis that was presented as a part of the overall evaluation
of the derived predictive models.

It is important to note here that the proposed ML algo-
rithms do not constitute a fit-all-solution, since the data

sets that were used to investigate their numerical response
referred to structural related problems. Therefore, engineers
are always advised to deploy a set of differentML algorithms
especiallywhendealingwith a newlydevelopeddata set. This
will ensure the development of objective and extendable pre-
dictive models.

Finally, the current demand for data-centric AI is consid-
ered, with an algorithm for evaluating the data set volume’s
impact on each model’s performance. These procedures
are cleaning the data set, QR-factorization to avoid multi-
collinearity, generation of CDFs, error analysis, and impact
of data-set volume, which should be implemented when
training, testing, and validating any predictive model..
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