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Abstract. The fundamental period of a structure is an important intrinsic dynamic property
of the structural system response. Current design codes use simplified empirical formulae to
estimate the fundamental period, that generally do not account for the influence of plan ge-
ometry, cross-sectional properties of the specific structural elements, nor the properties of the
soil the structures are founded on, and thus the effects of soil-structure interaction (SSI) are not
accounted for.
This research work investigates the fundamental period of unbraced steel framed structures of
various geometric configurations, and multiple different steel column members, as well as the
SSI effect. A new algorithm is also developed for the automated construction and analysis of
finite element models. The proposed automated procedure is used to create a dataset that is
used to train and test the predictive formulae for computing the fundamental period of steel
structures with and without accounting for the SSI effect. The proposed 40-feature formula was
found to derive an optimum coefficient of determination (R2) with a value of 99.976% and an
error that is less than 2%.
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1 INTRODUCTION

The fundamental period of a structure is a dynamic property of the structural system [1] that
is used to estimate seismic loads when designing earthquake-resistant structures. Therefore,
having an objective, reliable, and efficient method that will allow Civil Engineers to evaluate
the fundamental period of structures is of great importance. Currently, the proposed formulae
found within international design codes, usually consider the height of the structure as the only
parameter that determines the fundamental period of building-like structures [2, 3]. The best
alternative to the design code formulae thus far is the use of the finite element method (FEM)
and modal analysis. Nevertheless, this procedure is time-consuming when the objective is to
compute the fundamental period of the under-study building. For this reason, the development
of a formula that will be able to predict the fundamental period of buildings [2, 3], and in this
case, steel framed structures, is necessary. According to [2], a new approach was presented in
the development of fundamental period formulae, which foresaw the use of artificial intelligence
(AI) and machine learning (ML) to train, test and validate with datasets that are generated
through finite element analysis [13]. This approach, as it was also initially discussed in [4],
and thereafter utilized to develop the first fundamental formula for steel framed structures [3],
it is used herein for the development of a new improved predictive model that also accounts for
the stiffness of the structural columns. It is important to note here that this approach was used
to develop predictive models for other Civil Engineering related problems and can be found in
[4, 8, 2, 5, 6, 7].

2 DATASET DEVELOPMENT

To develop the dataset that was used to derive the proposed formulae, multiple modal anal-
yses were performed by using Reconan FEA [13]. The finite element (FE) software Femap
was used to construct the initial models as shown in Figure 1*. For each initial model, there
exists six (6) ”sub-models” of a varying number of storeys. By using the automated procedure
that is going to be presented below, a total of 10,368 fundamental period results were generated
by using a standard computer. This highlights the importance of using automated processes in
developing datasets for training with ML algorithms.

3x3x6 3x2x6 * 2x2x6 3x1x6 * 2x1x6 * 1x1x6

Figure 1: Frames with 6-storeys and different plan views.

*Some models could be modified by changing the orientation of the columns by 90o in order to deliver a
second set of results.
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2.1 Steel frames and modal analysis

Modal analysis was performed on various finite element models, in order to obtain the fun-
damental frequencies of the understudy frames. The largest period that is numerically obtained
through the FEA is known as the fundamental period of oscillation and will henceforth be re-
ferred to as ’the analysis result(s)’. As it was shown in Figure 1, the models are composed of a
raft foundation, columns, beams, and rigid diagonal members that represent the diaphragmatic
behaviour of the slab. The foundations were modeled as a concrete raft slab with Er = 30 GPa;
νr = 0.2; fcu = 30 MPa and mass density = 25 kN/m3.

The columns and beams of the steel frames were modeled by assuming a steel material with
Ecol = 200 GPa ρcol = 7850 kg/m3, νcol = 0.3 and fy = 355 MPa. For simplicity purposes, the
beams were assumed to use one section which was that of the IPE200. It is also important to
note here that a total of 64 different column cross-sections were used during the generation of
the dataset.

The soil domain was modelled to a depth of 5m with the first two layers having a thickness of
0.3 m, the third layer a thickness of 0.6 m, the fourth 0.8 m the fifth and sixth 1.5 m (see Figure
4). This discretization approach ensured the decrease of the number of hexahedral elements
needed without any accuracy loss during the modal analysis [9] Three different Young moduli
were used as the properties of the soil (Es = 65 MPa,300 MPa, and 700 MPa), and the Poisson
ratio was νs = 0.2, with a uniaxial compressive strength equal to fcu = 30 MPa.

Figures 2-4 show the different domains of the model that include the raft slab, the steel frame
and the soil domain. It is noteworthy to state at this point that the raft slab and soil domains were
discretized with the 8-noded isoparametric FE, while the frame was discretized through the use
of the Natural Beam Column Flexibility Based (NBCFB) element [10]. It is also evident that
the use of different dimensionality FEs requires special handling for connecting the columns
with the raft slab. This is done by applying the HYMOD approach (Hybrid Modeling), as it is
described in [10].

Figure 2: Foundation of a
9mx9m 3x3 bay structure.

Figure 3: 1x1x1 frame with
rigid diagonal members

(orange).

Figure 4: Soil domain -
perspective

Table 1 shows the upper and lower bounds for the different simulation parameters.
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Input Parameter Lower Bound Upper Bound Input Units
H 3.5 21 m
B 3 9 m
L 3 9 m
E 65 700 MPa
Icol 126x103 861x106 mm4

Acol 856 25200 mm2

Table 1: Upper and lower bounds for simulation parameters.

2.2 Column stiffness

To account for the column size as an input during the training and testing procedure through
the use of the developed dataset, the stiffness had to be introduced as an input variable. This
led to the development of three specific input variables: ξ,Ψ, and Φ, which will be described in
this section.

Assume the behaviour of the oscillating column members to be the same as that of a beam
element with similar orientation as shown in Figures 5 and 6. Let M1 and M2 be the fixed end
moments at either end of a finite beam element subject to displacements and rotations at its
ends, and where ∆ = δ2 − δ1 - be the distance between the two displaced ends. The value of
M1 can be calculated as:

M1 =
6EI∆

dL2
− 4EIθ1

dL
− 2EIθ2

dL
(1)

Figure 5: Displacement, and dynamic
loading of the finite beam element.

Figure 6: Fixed end moments of a beam subject
to displacement and rotation at both ends.

It follows that the shear force at either end will be equal to the moment at the other end
divided by the length of the beam element expressed as: V1 =

M2

dL
and V2 =

M1

dL
. Assuming that

the oscillating beam element depicted in Figures 5 and 6 is at a point of maximum displacement
and that at such a displacement t = 0 or 2π.

dδ

dt
= 0

δ(l, t) = X0(l)cos(wnt) (2)
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It follows that the acceleration is:

a =
∂2δ(l, t)

∂t2
= −X0w

2
ncos(wnt) (3)

Where X0 is the function describing the maximum displacement. This function describes the
maximum displacement of the beam element at a point l along the beam. Then by the beam
equation it follows that the deflection, rotation, moments, and shear forces can be calculated as:

δ(l) = δ(l, 0) = X0cos(wn) (4)

θ(l) =
∂δ(l)

∂l
=

∂X0(l)

∂l
cos(wn) (5)

M(l)

EI
=

∂θ(l)

∂l
=

∂2X0(l)

∂2
cos(wn) (6)

V (l)

EI
=

∂M(l)

∂l
=

∂3X0(l)

∂l3
cos(wn) (7)

Furthermore let the mass at an end of such a beam element be equal to half the mass of the
element so that:

m =
1

2
ρA∂l (8)

Fnet(l, t) = ma = −1

2
ρAX0(l)w

2
ncos(wnt)∂l (9)

Let the work done by the external inertial forces due to the induced curvature in the y direc-
tion be equal to Fnet times the displacement at the finite beam element. Let the external inertial
forces be situated at the ends so that the work done by the external inertial forces is equal to:

Fnet(l1)X0(l1) + Fnet(l2)X0(l2) (10)

ma∑
y

= −ρA∂l

2
w2

ncos(wnt)
(
X0(l1)

2 +X0(l2)
2
)

(11)

Let the work done by the internal forces (V1 and V2) in the direction y due to the induced
curvature be:

kx∑
y

= V2X0(l2)− V1X0(l1)
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kx∑
y

= cos(wnt)

(
M1

dl
X0(l2)−

M2

dl
X0(l1)

)
(12)

kx∑
y

=
cos(wnt)

dl

([
6EI∆

dL2
− 4EIθ1

dL
− 2EIθ2

dL

]
X0(l2)−

[
6EI∆

dL2
− 4EIθ2

dL
− 2EIθ1

dL

]
X0(l1)

)
(13)

as dl → 0:

l2 = l1 + ∂l

X0(l2) = X0(l1) + ∂δ

θ2 = θ1 + ∂θ

So that equation 13 becomes:(
dl

cos(wnt)

) kx∑
y

=

[
6EI∆

dL2
− 4EIθ1

dL
− 2EIθ2

dL

]
X0(l1) +

[
6EI∆

dL2
− 4EIθ1

dL
− 2EIθ2

dL

]
∂δ

−
[
6EI∆

dL2
− 4EIθ2

dL
− 2EIθ1

dL

]
X0(l1) (14)

kx∑
y

=
cos(wnt)

dl

([
2EIθ2
dL

− 2EIθ1
dL

]
X0(l1) +

[
6EI(∂δ)

dL2
− 4EIθ1

dL
− 2EIθ2

dL

]
∂δ

)
(15)

kx∑
y

=
cos(wnt)

dl

([
2EI∂θ

dL

]
X0(l1) +

[
6EI(∂δ)

dL2
− 6EIθ1

dL
− 2EI∂θ

dL

]
∂δ

)
(16)

By substituting various representative displacement functions for X0(l), iterative functions con-
taining new specific inputs and the fundamental period as an iterative variable were developed.
The specific inputs were identified and gathered for use during the nonlinear regression process.
These specific inputs are:
ξ (xi) – The primary specific input variable:

ξ =
3EcolIcol
H3h× 103

(
h

[
(10H2 − 2ZH − Z2)(ln|h− Z|)

10H2 − 3Z2
− ln(h)

]
+ 2H

)
(17)

Where:

Z =
3

√√√√–20H3

2
+

√(
20H3

2

)2

+

(
10H2

3

)3

− 3

√√√√20H3

2
+

√(
20H3

2

)2

+

(
10H2

3

)3

(18)

Ψ (Psi) – The secondary specific input:

Ψ = (ln|h3 − 10H2h+ 20H3|) + 2ln(h) (19)
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Φ (Phi) – The tertiary specific input:

ρcolAcol × 103

120EcolIcolH
(−h5 + 10h3H2 − 20h2H3) (20)

Where:
H – the height of the building in metres. (See Table 1)
h – the inter-storey dimension in metres. Measured between storey levels. (h=3.5m)
Icol – the moment of inertia of the steel column sections about the axis perpendicular to the
direction of motion in mm4. (See Table 1)
Acol – the cross sectional area of the steel column sections in m2. (See Table 1)
Ecol – the elastic modulus of the steel column sections in GPa. (Ecol = 200GPa)
ρcol – the density of the steel column sections in kg/m3. (ρcol = 7850kg/m3)

Kcol – Additional input - the beam stiffness of the column sections in the direction of motion:

Kcol =
EcolIcol

H
(21)

2.3 Geometry and soil structure interaction

In order to account for the SSI phenomenon, both the equivalent soil stiffness (Es) and the
unit-less normalized raft-soil stiffness (Krs) [11] were investigated.

Krs – the unitless normalised raft-soil stiffness [11]:

Krs = 5.57

(
Er

Es

)(
1− ν2

s

1− ν2
r

)(
B

L

)0.5(
tr
L

)3

(22)

Where:

Er =
12Ec

t3r
(23)

Es – the equivalent soil stiffness in MPa. (See Table 1)
Ec – the elastic modulus of the concrete raft foundation in kPa. (Ec = 30MPa)
B – the width of the structure parallel to the direction of motion in metres. Measured between
column centres. (See Table 1)
L – the width of the structure perpendicular to the direction of motion in metres. Measured
between column centres. (See Table 1)
tr – thickness of the raft foundation in metres. (tr = 0.3m)
vs and vr – the Poisson’s ratio of the soil and raft respectively. (vs = 0.3 and vr = 0.2)
Tα and Tβ – Additional inputs - modified variations of the fundamental period formula for
dynamic systems:

Tα =

√
ρcolH

Kcol

(24)

Tβ = 2π

√
ρcolH

Kcol × 103
(25)

7



D. Calitz, G. Markou, N. Bakas, and M. Papadrakakis

3 MACHINE LEARNING

A dataset containing the analysis results and various input parameters (see Table 2) for the
10,368 models was developed. The dataset was then subject to an algorithmic analysis proce-
dure in order to produce the predictive formulae.
Given the nature of the adopted ML algorithm, it is found to perform optimally when the input
values are within the boundaries of the spectrum it was trained for (see Table 1). However,
values well out of this spectrum could yield drastic results, thus the proposed formulae should
only be used for values within the spectrum it is trained for, as shown in Table 1). The ML
algorithm that was used for the needs of this research work can be seen below.

Simulation parameters H,B,L,Es, Icol, and Acol

Dependent input variables ξ,Ψ,Φ, Kcol, KrsTα, Tβ

Table 2: Input parameters used as independent variables by the machine learning algorithm.

Higher Order Regression Algorithm [2][4][12]:
Input: [X] (matrix of independent variables - See Table 2), {Y } (vector of dependent variable),

and N (number of nonlinear features to be kept in the model).
Output: Closed form predictive formula.
1. Create all nonlinear features* ([a.n])
2. for i from 1 to N do:
3. for j from 1 to [a.n]
4. Add j th feature to the model
5. Calculate the MAPEj

†

6. End
7. In the model, keep the jth feature which yields the minimum prediction error
8. End
Return: Predictive model (closed form formula)

3.1 Automation of the model generation procedure and analysis

Various scripts were developed as part of this research work in order to automate and enhance
the model generation procedure, automate the model analysis input process, and automate the
data-result extraction process. All developed algorithms were tested and verified through bench-
mark problems.
The first algorithm See Appendix A which provides the code that is written in Visual Basic and
makes use of the Femap API *. It takes a base-model and parameter list as input and modifies
various element properties within the base-model to match the parameter list. It then exports
the modified file as an analysis-ready file in a text format. For the needs of this research work,
adopting this approach allowed each base-model to be transformed into multiple unique models
ready for automated analysis.
The second script (See Appendix B) developed herein, takes the list of the automatically gener-
ated input files and runs the analysis process through the use of Reconan FEA (2020) [13]. Fur-
thermore, it parses the files generated by each analysis run and stores the required output values

*with all inter-item multiplication combinations, up to the third degree.
†Mean Absolute Percentage Error (MAPE)
*Femap is the Finite Element Modeling software used.
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in a comprehensive data set that also contains the information of the input variable parameters
for each model. The development of these automated algorithms allowed for the analysis of
more than 10,000 numerical models through the use of a standard computer in a matter of days.
This is ideal when working with any ML algorithm that requires a large dataset.

4 PROPOSED FORMULAE

This section will present the proposed formulae as they are derived through the training and
testing of the ML algorithm that was presented in Section 3. The coefficient of determination
and the Mean Absolute Percentage Error (MAPE) that were numerically obtained through the
training and test datasets will be discussed below.

4.1 10-Feature formula R2 – 99.833%

The 10-feature formula, which can be seen in Equation 26, exhibits a coefficient R2 of
99.833% on the test dataset. The MAPE for this model was equal to 3.209%. When com-
pared to the other formulae, the 10-feature formula tends to slightly overestimate the value of
the fundamental period, which led to resulting the highest error as is going to be shown below.
Figures 7 and 8 show the correlation between the predicted and numerical values for the training
(Figure 7) and test data (Figure 8).

T10 = +1.10932(Φξ)0.5Ψ−1Tβ + 7.01915× 10−5(Φξ)0.5H2 + 1.13990× 104ξ−0.5Ψ−1

− 1.12553ξ−0.5LB − 1.07498× 10−9ξ−0.5IcolEs + 6.19508× 10−2TβLB

− 2.01361× 10−4LBH + 3.51950× 10−8ΦIcolH − 3.44050Tα

− 3.51514× 10−7TαEsKrs − 7.30737× 10−3 (26)

Figure 7: Performance of the 10-feature
formula on the training data.

Figure 8: Performance of the 10-feature
formula on the test data.

4.2 15-Feature formula R2 – 99.945%

In an attempt to further investigate the development of a more accurate model, the number
of features of the predictive formula was increased. The 15-feature formula is shown through
Equation 27, where it can be seen that it exhibits a, R2 coefficient of 99.945% and a MAPE
value of 2.926%. Figures 9 and 10 show the graphical representation between the predicted and

9



D. Calitz, G. Markou, N. Bakas, and M. Papadrakakis

numerically obtained values. It is easy to observe that the values are found on a straight line
for both the training (Figure 9) and test data (Figure 10). This indicates an improved predictive
capability given that the number of equation features was increased.

T15 = +1.61920× 10−1(Φξ)0.5Ψ−1Tα + 4.73325× 10−5(Φξ)0.5H2 + 1.16994× 104ξ−0.5Ψ−1

− 3.55651× 10−3(Φξ)0.5TβL− 1.91979× 101Tβ − 9.72228× 10−1ξ−0.5LB

− 9.87587× 10−10ξ−0.5IcolEs − 6.24396× 10−3ξ0.5ΨΦ+ 1.02424× 10−1Ψ−0.5LTα

− 5.60425× 10−6TβEsKrs + 5.82434× 10−3LBTα − 1.50127× 10−4LBH

+ 8.89981× 10−2BTα − 4.15783× 10−3B2Tα + 2.57546× 10−8ΦIcolH

+ 4.68534× 10−3 (27)

Figure 9: Performance of the 15-feature
formula on the training data.

Figure 10: Performance of the 15-feature
formula on the test data.

4.3 20-Feature formula R2 – 99.957%

The 20-feature formula (see Equation 28) exhibited an R2 of 99.957% and a respective
MAPE value of 2.558%. Figures 11 and 12 show the numerically obtained results from the pro-
posed formula for both the training (Figure 11) and test data (Figure 12). The MAPE decreased
by 15.6%, according to the numerical results that were obtained from the testing dataset.

T20 = +8.31846× 10−1(Φξ)0.5Ψ−1Tβ − 3.94210× 10−6(Φξ)0.5H2 − 3.95863× 10−1Φ0.5B

− 8.27183× 10−3(Φξ)0.5TβL+ 1.20957× 104ξ−0.5Ψ−1 − 8.13929× 10−1ξ−0.5LB

− 6.53561× 10−10ξ−0.5IcolEs − 2.04532× 10−2ξ0.5ΨΦ+ 2.44129× 10−5ξ2Φ3

+ 3.75710× 10−10ξ−0.5IcolKrs + 1.40357× 10−1Ψ−0.5LTα + 2.00712× 10−2TβLB

− 2.03899× 101Tβ − 5.65784× 10−6TβEsKrs + 8.35009× 10−5LBH

+ 3.10127× 10−8LΦIcol + 1.11280× 10−1BTα − 4.20939× 10−3B2Tα

− 1.66545× 10−8ΦIcolH − 3.00367× 10−5 − 1.78431× 10−2 (28)

4.4 30-Feature formula R2 – 99.969%

The number of features was then doubled compared to the 15-feature formula and the re-
training led to a new predictive formula, shown in Equation 29. The 30-feature formula derived
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Figure 11: Performance of the 20-feature
formula on the training data.

Figure 12: Performance of the 20-feature
formula on the test data.

an R2 coefficient of 99.969% and a corresponding MAPE value of 2.412%. Figures 13 and
14 show the correlation between the predicted and numerically computed values for both the
training and test data, respectively. The MAPE improved by 17.6% compared to the 15-feature
formula, thus it was decided to increase the number of features one final time.

T30 = −3.98533× 10−2(Φξ)0.5Ψ−1Tα + 4.05686× 10−5(Φξ)0.5H2 + 9.29522× 103ξ−0.5Ψ−1

− 2.75683× 10−3(Φξ)0.5TβL− 1.45399× 101Tβ − 6.73233× 10−10ξ−0.5IcolEs

− 1.42192× 10−1ξ−0.5LB − 2.28822× 10−2ξ0.5ΨΦ+ 2.06584× 10−2ξ0.5BΦ

+ 3.69051× 10−10ξ−0.5IcolKrs + 4.79394× 10−5ξ2Φ3 + 1.29294× 10−1ξ−2Icol

+ 3.52721× 10−3ξBΦ2 − 6.25620× 10−3ξΨ−1ΦTα + 5.17736× 10−1ξ−0.5L2

− 1.41444ξ−1LΦ−1 + 1.31352Ψ−0.5TβL− 3.51887× 10−4ΨBH + 1.70309× 103Ψ−2Φ

− 1.52247× 10−4ΨLH + 1.43678Ψ−1TβB + 4.44329× 10−1TβB

− 2.63405× 10−2TβB
2 + 2.09772× 10−4LBTα + 3.18239× 10−4LBH

− 5.70132× 10−3L2Tα + 2.60988× 10−4B2H + 5.23462× 10−9ΦIcolH

+ 4.23547× 10−8HEsKrs − 7.06876× 10−7TαEsKrs − 2.55387× 10−2 (29)

Figure 13: Performance of the 30-feature
formula on the training data.

Figure 14: Performance of the 30-feature
formula on the test data.
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4.5 40-Feature formula R2 – 99.976%

The 40-feature formula that is shown in Equation 30, derived an R2 coefficient equal to
99.976% and the lowest MAPE that had a value of 1.969%. Figures 15 and 16 depict the graph-
ical correlation between the predicted and numerically obtained values for both the training
(Figure 15) and test data (Figure 16), respectively. It is evident that the proposed 40-feature
formula derives outperforms the other models, decreasing the 15-feature formula’s MAPE by
almost 33%. It is important to note here that the proposed formulae are suitable to be used
after programming them in an Excel sheet or a user-friendly application that will allow the user
to input the parameters of their building and soil, and compute the fundamental period by just
clicking on a calculate button.

T40 = +4.10179(Φξ)0.5Ψ−1Tβ − 5.13549× 10−5(Φξ)0.5H2 + 1.68757× 10−2Φ0.5B

− 2.72183× 102Φ0.5Ψ−1 − 4.61855× 10−2(Φξ)0.5T 2
β + 4.46782Φ0.5ξ−0.5L

− 1.65486× 10−8(Φξ)0.5TβKcol + 4.67885× 103ξ−0.5Ψ−1 − 2.19230× 10−4ξΨΦTα

+ 2.27157× 10−1ξ−0.5LB + 6.41720× 10−4ξ−1EsKrs − 8.44523× 10−8ξΦ2Kcol

+ 3.59580× 10−10ξ−0.5IcolKrs − 5.88334× 10−8ξ−0.5BIcol − 3.52377ξ−1BΦ−1

+ 6.50545× 10−6ξ−0.5EsKrs + 7.34562× 10−4ξΨΦ2 + 6.39769× 10−15ξ−0.5I2col
− 1.54766× 10−5ξ−1BIcol + 3.89106× 10−1Ψ−0.5LTα + 3.74808× 10−4Ψ2H

+ 6.22854× 10−10Ψ−0.5IcolH − 3.83306× 10−3TβLB − 4.83023Tβ

+ 1.05512× 10−5LBH + 4.53940× 10−6LΦKcol + 1.75930× 10−11LIcolH

− 5.57552× 10−10LIcolTα − 6.25482× 10−3L2Tα − 1.45786× 10−2LH

+ 9.77408× 10−4L2H + 9.05671× 10−2BTα − 5.11814× 10−3B2Tα

+ 6.38713× 10−12BIcolH − 3.39867× 10−3BH + 2.34654× 10−4B2H

− 6.58079× 10−9ΦIcolH + 2.58301× 10−8ΦEsKcol − 1.53957× 10−7HEsKrs

− 1.89967× 10−7TαEsKrs + 8.62800× 10−2 (30)

Figure 15: Performance of the 40-feature
formula on the training data.

Figure 16: Performance of the 40-feature
formula on the test data.

The MAPE and R2 values for each formula were calculated on the test dataset and presented
in a summarised manner in Table 3. As can be seen, the MAPE decreases as the number
of features increases, a phenomenon that is not always present when performing this type of
analysis. This phenomenon is controlled by the characteristics and type of the dataset, whereas
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the ML algorithm used to derive the relationship between the input and output values also
determines the overall numerical response of the different predictive models.

MAPE R2

T10 3.21% 99.83%
T15 2.93% 99.95%
T20 2.56% 99.96%
T30 2.41% 99.97%
T40 1.97% 99.98%

Table 3: Performance summary of the proposed formulae on the test dataset (MAPE, and R2

values)

5 CONCLUSION AND RECOMMENDATIONS

This research work presented a newly developed automated algorithm that is responsible
to handle a base input file, generating new input files, and then analyzing them through the
use of Reconan FEA (2020). The ability to automatically generate multiple input files and
analyze them allowed for the generation of a dataset that consisted of 10,368 data points. This
was performed through the use of a standard PC demonstrating the efficiency of the proposed
algorithm.

Furthermore, 5 new formulae for predicting the fundamental period of steel framed struc-
tures with or without the SSI effect, were proposed through the use of an advanced nonlinear
regression algorithm. The new formulae are capable of accounting for various aspects of the
structural system, including the soil elasticity, structural geometry, as well as the cross-sectional
properties of the column members of the structures. The proposed predictive formulae are to
be used only for buildings that have geometries within the geometrical limits of the building
models used to train and test the predictive models.

Future research work foresees the increase of the dataset through the use of the proposed au-
tomated algorithms and high-performance computers in developing a dataset that will consist of
more than one million data points. This will allow future engineers to compute the fundamental
period of steel structures through the use of ML-generated models.
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APPENDIX A - Automated Visual Basic algorithm for model generation

Sub Generate()
Dim App As Object
Set App = GetObject(, "femap.model")
Dim Pr As Object
Set Pr = App.feProp
Row = 2
ID = Worksheets(1).Cells(Row, 1).Value
SName = Worksheets(1).Cells(Row, 2).Value
FName = Worksheets(1).Cells(Row, 7).Value
h = Worksheets(1).Cells(Row, 3).Value
b = Worksheets(1).Cells(Row, 4).Value
tf = Worksheets(1).Cells(Row, 5).Value
tw = Worksheets(1).Cells(Row, 6).Value
Sum = 0
While ID $>$ 0

Pr.Get (3)
Pr.matlID = 1
Pr.Type = 5
Pr.flagI(1) = 9
Pr.flagI(3) = 101
Pr.pval(40) = h
Pr.pval(41) = b
Pr.pval(42) = b
Pr.pval(43) = tf
Pr.pval(44) = tf
Pr.pval(45) = tw
Pr.Title = SName
Dim Dr(6) As Double
Dr(0) = Pr.pval(40)
Dr(1) = Pr.pval(41)
Dr(2) = Pr.pval(42)
Dr(3) = Pr.pval(43)
Dr(4) = Pr.pval(44)
Dr(5) = Pr.pval(45)
rc = Pr.ComputeStdShape(9, Dr, 0, 2, False, True, True)
Pr.pval(46) = 400
Pr.pval(47) = 2
Pr.pval(48) = 0
Pr.pval(49) = 0
Pr.pval(50) = 0
Pr.pval(51) = 0
Pr.pval(52) = 200000000
Pr.pval(53) = 0.3
Pr.pval(54) = 0
Pr.pval(55) = 355500
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Pr.pval(56):Pr.pval(67) = 0
Pr.pval(68) = 5
Pr.pval(69) = 0
Pr.pval(70) = 0.3
Pr.pval(71) = 1
Pr.pval(72) = 2
Pr.pval(73) = 1
Pr.Put (3)
rc = App.feFileWriteNeutral2(0, FName, False, True, False, True,

True, False, False, False, True, True,8, 9, 0)
Row = Row + 1
ID = Worksheets(1).Cells(Row, 1).Value
SName = Worksheets(1).Cells(Row, 2).Value
FName = Worksheets(1).Cells(Row, 7).Value
h = Worksheets(1).Cells(Row, 3).Value
b = Worksheets(1).Cells(Row, 4).Value
tf = Worksheets(1).Cells(Row, 5).Value
tw = Worksheets(1).Cells(Row, 6).Value
Sum = Sum + 1

Wend
rc = App.feAppMessage(0, "Import Done of " Sum " Section(s)")
App.feFileClose (False)

End Sub
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APPENDIX B - Python Script for the Automation of the Analysis and Data Collection
Procedure

Description: Takes an ”INPUT” array containing all input files appended with ”\n”, and
checks if the corresponding ”OUTPUT” file exists in the corresponding array. If it doesn’t
exist, it runs the FEA software Reconan FEA (2020), creating the file upon completion of the
analysis. Once all ”OUTPUT” files exist, it creates a ”RESULTS.xlsx” - excel workbook and
records the specific parts of interest from the ”OUTPUT” files in the database. INPUT files
were named to be unique, by containing the variable information as part of their names, which
aids in later filling of the database with more information.

from subprocess import Popen, PIPE
import os, xlsxwriter
rowstart, RESULTS, exename = 3, ’RESULTS.xlsx’,’\\\\ReconanFEA.exe’
#Gets current working folder location as a string object with:
direct = (os.path.dirname(__file__))
mypath = direct.replace(’/’,’\\\\’)
exe_path = f"{mypath}{exename}"
#ARRAY/LIST INPUT AND CRITERIA OUTPUT
INPUT = [’INPUT001.neu\n’,’INPUT001.neu\n’,etc.]
OUTPUT = [’OUTPUT001.dat’ ,’OUTPUT001.dat’ ,etc.]
i=0
while i <len(INPUT):

if os.path.exists(OUTPUT[i]) == False:
CHNG = CHNG+1
print("Using/Running:",INPUT[i],len(INPUT)-i,"left")
process = Popen([exe_path], stdin=PIPE, stdout=PIPE, text=True)
try:
print(process.communicate(input=INPUT[i]))[0]

except:
continue

else:
print(OUTPUT[i]," exists")
i=i+1

#WRITES CERTAIN LINES FROM CREATED {OUTPUT} FILES TO SINGLE[***NEW***]
#EXCEL DOC
WB = xlsxwriter.Workbook(RESULTS)
WS = WB.add_worksheet()
#WRITES HEADINGS IN COUNTABLE ROW = ROWSTART (I.E. N = N-1)
WS.write(rowstart-1,1,"Sections")
for col in range (2,11):

WS.write(rowstart-1,col,col-1)
#DATAFILL
for ROW in range(rowstart,len(INPUT)+rowstart):

N = ROW-rowstart
WS.write(ROW,1,INPUT[N])
dat = open(OUTPUT[N])
content = dat.readlines()
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for line in range (10,20):
Txt=content[line]
val = Txt[len(Txt)-8:len(Txt)]
WS.write(ROW,line-8,val)

dat.close()
WB.close()
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