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Abstract

This paper focusses on the ongoing discussion of developing a single relationship that can ac-
curately predict the shear capacity of slender, reinforced concrete (RC) beams without stirrups. 
To date, the main approach used to predict the shear capacity of RC beams, has been based on 
the derivation of a formula from experimental data. In this study, the approach uses the devel-
opment of RC FEM models without stirrups, where the beam width is larger or equal to the 
section height and tested under three-point bending. The models were created and analysed by 
using Reconan FEA software, where the obtained results from the nonlinear analyses were used 
to construct a large database of 10,000 beams with varying material and geometric properties. 
Artificial Intelligence (AI) training was performed by using machine learning algorithms on 
the numerically generated database to develop predictive models and to develop an improved 
formula for predicting the shear capacity of RC beams without stirrups. The proposed predic-
tive formula was validated against an available ACI database of RC beams that were assembled 
by using experimentally tested, physical beams without stirrups. The predictive formula was 
also compared with the design code formulae proposed by ACI 318-19 and Eurocode 2. Ac-
cording to the numerical findings of this research work, the proposed formula outperformed 
both design formulae demonstrating significant potential in replacing the current design ap-
proach.
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1 INTRODUCTION

Shear failure of Reinforced Concrete (RC) beams takes place due to insufficient shear re-
sistance in the web of the beams. It is important to sufficiently understand the shear capacity of 
beams in civil engineering applications to avoid catastrophic, brittle failures that occur suddenly, 
with little to no warning. 

The behaviour of RC in shear has been a topic of discussion for numerous years, but the 
challenge of accurately predicting the shear capacity of RC beams remains an unresolved prob-
lem. The main approach so far has been to derive formulae using physical experiments and 
extrapolating the relevant values. This method is unfavourable, as a major disadvantage is in-
sufficient available experimental data. It is impractical and infeasible to conduct enough phys-
ical experiments to cover all possible beam geometries, concrete and steel reinforcement 
properties, load cases and boundary conditions. The existing formulae are based on a limited 
number of physical experiments and do not consider other cases, such as the use of deep beams 
experiencing arc action, or different material types of reinforcement rebars. Therefore, the use 
of the current design formulae is in need of improvement and expansion.

With the rise of Artificial Intelligence (AI) and Machine Learning (ML) in the past 20 years, 
researchers and engineers have explored the use of ML algorithms on experimental data sets to 
predict the shear capacity of beams more accurately. To an extent, this method improved the 
predictive abilities for certain geometries of RC beams, but the restriction of available experi-
mental data sets still limits the prediction capabilities. These studies were also numerically con-
strained and the accuracy of predicting the shear capacity of beams is unsatisfactory.

In this research paper, the approach originally introduced by Bakas et al. [1] is ex-tended. 
Instead of using the results obtained from limited experimental data sets, this newly developed 
procedure focusses on generating a large numerical database by using Finite Element Method 
(FEM) software and then using these models to train ML algorithms in order to predict the shear 
capacity of slender RC beams with no shear reinforcement. The proposed new formula will 
therefore solely be based on 3D nonlinear Finite Element Analysis (FEA). It is important to 
note that no physical experiments were used to generate or train the developed formulae. The 
physical experiments were used for validation purposes only. 

This paper aims to more accurately predict the shear capacity of RC beams without stirrups
that have smaller geometries, when compared to existing design formulae.

2 NUMERICAL INVESTIGATION

A numerical procedure was developed for a database of twenty different geometrical RC 
beams. The characteristics for each of these beams were then increased by a random generation 
of 500 material property combinations to produce a database containing 10,000 unique beams.
The 3D approach presented in [2-4], was used in the modeling and nonlinear analysis of the 
beams.

2.1 Development of Numerical Campaign

The simply supported, slender, RC beams that were generated for the purpose of this re-
search project used 20-noded isoparametric hexahedral finite elements to model the concrete 
and the steel plates that act at the supports, as well as 2-noded rod elements for the steel rein-
forcement bars.

Fig. 1 depicts how the typical generated model looked like. The simply supported, slender 
RC beam had the smallest mesh of all the constructed beams and spans 1,500 mm. The beam 
has a 300x150 mm rectangular cross-section that was discretized by using hexahedral elements 
that are 150x150x75 mm in the x, y and z directions, respectively. 
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A total of 76 hexahedral elements were used of which 4 were for the steel base plates at the 
supports, 48 for the concrete hexahedral elements and 24 for the steel reinforcement bars. In 
Fig. 2 the tensile longitudinal reinforcement bars at the bottom of the beam are embedded rod 
elements and the applied force at midspan is also visible.

Figure 1. Hexahedral element mesh of a simply supported slender RC beam that has a net span of 1,500 mm and 
a 300x150 mm cross section.

Figure 2. Embedded rod element mesh of a simply supported RC beam that has a net span of 1,500 mm and a 
300x150 mm cross section with loads shown.

The largest mesh that was developed for this research project consisted of 450 hexahedral 
elements, where 10 elements were used for the steel support plates, 400 for the hexahedral 
elements and 40 for the steel rebars. The beam has a geometry of 750x350 mm and spans 2,700 
mm. The concrete cover for all the beams depended on the height of the section. Beams with a 
height smaller or equal to 250 mm had a concrete cover of 20 mm and beams with a height 
larger than 250 mm were modelled to have a concrete cover of 30 mm.

Parameter Minimum Maxi-
mum 

L (mm) 1,500 2,700
b (mm) 300 750
h (mm) 150 350
L/h 6 10.8
h/b 0.33 0.83

Table 1: Minimum and maximum beam geometries used in generating the 20 new models.

Twenty new beam geometries were constructed to generate the database. Only beam geom-
etries where the width is greater or equal to the height were constructed. Table 1 shows a 
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summary of the constructed models. The first model was generated with the minimum span, 
height and width values from Table 1 as can be seen in Fig. 1 and the subsequent models were 
generated by modifying the first model to get the needed geometries and spans. The span values 
start at a minimum of 1,500 mm and increase with 300 mm up until 2700 mm. Span over section 
height (L/h) and the section height over the width (h/b) is also given in Table 1 with minimum 
and maximum values of 6 and 0.33 as well as 10.8 and 0.83, respectively.

2.2 Analysing Multiple Finite Element Beams

To generate a database with sufficient input files, a certain level of automation is needed. 
Without automation, the required time to generate and analyse the input data would be a major 
disadvantage. The manual effort required to create the data would reduce the possible scope 
and negatively impact the resulting benefit of the research project. It was thus important to use 
automation code for data creation and entry. To minimise the time spent on producing and 
analysing the various FE models it was advantageous to use the previously developed automa-
tion tools from [1], Reconan Multirun v1.00.

A random generation of material properties combinations, consisting of fc (kPa), Ec (kPa), ft,
β, Es (kPa), fy (kPa) and As (m2), was performed and used to generate the corresponding input 
file for each individual model. Each model’s parameter input file included the node ID that had
to be monitored, the direction in which the deflection was monitored, maximum deformation, 
the beam span as well as the section geometry with section height and section width. In all the 
generated models the node that was identified for monitoring was chosen as the nodal point at 
the centre of the total span, at the bottom of the beam’s height and in the middle of the width.

The Reconan Multirun software was developed to modify each of the 20 model meshes that 
were generated to have the required material property assumptions and reinforcement ratios as 
described herein. The Reconan FEA [5], which was also algorithmically modified to read and 
analyse these FE input files to return the maximum capacity of the beam as well as the maxi-
mum deflection. It must be noted that, Reconan Multirun can also read the generated output 
files with the purpose of continuing the analyses if it was interrupted. This is a useful feature as 
unplanned power failures or system interruptions, such as operating system up-dates, would 
otherwise result in substantial delays and rework.

For each of the 20 models constructed as described in section 2.1, 500 different material 
properties and reinforcement ratio combinations were used, thus resulting in 10,000 analysis 
results that were used in training the AI algorithm.

The personal computer (PC) used for this research project had a 12-core i7-8700K CPU @ 
3.70 GHz and 64.0 GB RAM and had the capability to run 10 Multirun analyses at the same 
time. As the model meshes became larger, with a larger span and geometry, the computational 
time to run the analyses increased. The entire analyses of all 10,000 models completed in 
roughly 36 hours, highlighting the computational efficiency of Reconan FEA [5] in performing 
nonlinear analysis using 3D detail models.

3 DEVELOPMENT OF THE PROPOSED FORMULA

For the second phase, the data was prepared by selecting, pre-processing and transforming 
the data to apply ML algorithms. The AI training proceeded by extracting the material features 
and predicting the shear strength of the beams. ML algorithms learn from data, so it was crucial 
that the right, quality data is fed into the system. The results achieved by the ML algorithms are 
directly related to the quality and volume of data used during the training stage.

Data selection for this project entailed generating a database that consisted of ten independ-
ent variables, which were split into two groups. The first group involved the variables that were 
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used during the meshing of the models. These variables included the net span, L (mm), effective 
depth, d (mm) and width, b (mm). The second group of variables were strength-and material 
related properties and consisted of: uniaxial compressive strength of a cylindrical specimen (fc
in MPa), concrete tensile strength ratio (ft), steel yielding stress (fy in MPa), Young’s modulus 
of steel (Es in MPa), Young’s modulus of concrete (Ec in MPa), remaining shear capacity 
strength factor (β) and the tensile longitudinal reinforcement ratio (ρ). 

The above-mentioned independent variables are presented in Table 2 with the statistical 
characteristics and minimum and maximum values of the database.

L d b fc ft fy Es Ec β ρ
X̄ 2100 242 537.5 41 0.061 500.8 200045.8 30024.9 0.034 0.0110
σ 424.3 59.5 170.2 11.3 0.023 58.5 5602.2 2952.9 0.008 0.0053
Median 2100 230 500 40.9 0.061 499.2 200070.1 30072.1 0.034 0.0111
Minimum 1500 130 300 20.1 0.02 401.2 190000 25000 0.02 0.0016
Maximum 2700 320 750 59.9 0.1 598.5 210000 35000 0.05 0.0199
cv 0.202 0.246 0.317 0.277 0.377 0.1117 0.028 0.098 0.247 0.479

Table 2: Statistical values of independent variables.

3.1 Model Training

The training process of any ML algorithm model can be split into 3 major phases: Pre-pro-
cessing, Feature Selection and Extraction and Prediction. 

Pre-processing of the assembled dataset was conducted by normalising the data by dividing 
each variable in the set by the standard deviation. The normalisation of the dataset was required 
because the features of the set have different ranges and consists of some outliers. The ranges 
were however not distorted, and the values of the different variables were changed to fit to a 
shared scale. Normalisation reduces duplicates in the database and increases the validation ac-
curacy of the model. It also allows the optimization of the ML model to be more robust, as the 
convergence rate of the gradient descent is reduced. 

Feature (or variable) selection then uses a process of dimensionality reduction to decrease 
the initial set of normalised data to more manageable groups. It greatly improves the ML algo-
rithm’s performance and reduces the computational power needed to perform the training. Fol-
lowing on from the feature selection is feature extraction. When a number of features in a 
dataset become similar or too large, the ML model can suffer from overfitting where the model 
fits the data too well and is no longer able to fit additional data or predict future observations 
in a consistent way. Feature extraction is the method for combining certain variables into fea-
tures, reducing the number of values in the dataset without losing an accurate representation of 
the original data. The relevance and optimisation of the ML model is also considered during 
feature selection and extraction.

The algorithm chosen for the prediction phase of the ML and AI process is the NLR (non-
linear regression) model. Regression models are used to predict unknown values which are 
gathered from continuous (regression) variables and the NLR model is consequently beneficial 
to the research project and produces a closed-form solution. The prediction developed by the 
NLR model is presented as a formula in section 3.2 of this manuscript.

It is important to note that 85% of the generated database was used to train the algorithm, 
and the remaining 15% used for testing purposes. The test data proved that the prediction model 
that was created is accurate. The robustness of the model will be discussed in the next section. 
In addition, a set of physical RC beams was used for validation purposes, after the testing was 
performed. This step, which is considered to be the most important, was performed so as to 
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check whether the proposed formula is able to predict the shear capacity of real beams that were 
experientially tested.

3.2 Proposed Predictive Equation

The formula developed during this research project, used to predict the ultimate characteris-
tic shear strength Vc, utilized the NLR ML algorithm and was mainly dependent on L, d, b, fc
and ρ. Formulae using 10, 100 and 500 terms were generated and investigated for robustness 
and accuracy. The higher order NLR that was implemented in this research project consists of 
a combination of variables that were created up to 3rd order. The methodology uses the RF-
algorithm (random forests) and the analyses was run on the Julia programming language as 
written by Dimopoulos and Bakas [6].

During the comparison of the three initially developed formulae, the mean absolute error 
(MAE) of the ten-term formula was 5.1% higher than the 100 and 500 term formulae, and the 
MAE for the 100 and 500 term formulae was the same and equal to 6.89%. 

The proposed formula to calculate Vc, was obtained as output from the ML algorithm. The 
formula with ten-terms and the variables L, d, b, fc, ft, ρ, β, Es and corresponding weights are
given in Eq. 1. The 10, 100 and 500 term formulae have been validated against the experimental 
data to determine the most accurate formula. 

(1)

4 VALIDATION OF PROPOSED EQUATION THROUGH EXPERIMENTAL
DATA

The validation of the predictive model was conducted using 36 experimentally tested beams 
that were taken from the ACI database [7] of shear tests on slender reinforced concrete beams 
without stirrups. The 36 beams were specifically selected to fall within the range of the 20 
different beam geometries that were developed for the needs of this research project. The ma-
terial properties were also within the boundaries of the generated database of the 10,000 models. 
Any experimental results from the ACI database that had incomplete data, were removed and 
not included in the validation beams.

It is necessary to mention that the ACI experimental database did not include values for ft
and β. To include these parameters, the average value of ft of the training set was taken. β was 
chosen as a random percentage of less than 5%. This selection was made to optimise the results 
from the predictive model and to enhance the performance and accuracy. It is also important to 
note that all the validation beams were out-of-sample cases, given that the values of material 
properties and geometrical features differed in comparison to the values adopted for the gener-
ation of the 10,000 numerical results.

An additional observation related to the validation data is that, from the 36 beams in the ACI 
database [7] of experimentally tested beams, there were instances where beams with exactly 
the same beam geometry, reinforcement ratio and material properties resulted in different ulti-
mate shear capacities. This finding highlights the level of uncertainty when discussing the phys-
ically tested beams and confirms that experimental results typically include noise because of 
uncontrolled factors during the testing phase. 

It is noteworthy that the predictive model was successfully constructed without the use of 
any physical experimental data. By removing the dependency on physical beam data, it was 
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(2)

(3)

possible to work with a much larger data set and avoid the inconsistencies inherent in physically 
collected data. The predictive formula, and the resulting accuracy, is purely based on the results 
obtained from the FEA. The experimental data used in this section was for validation purposes 
only.

Two industry-standard formulae were compared with the new proposed model, namely the 
ACI 318-19 [8] and Eurocode 2 [9]. The data in the experimental data set, with 36 RC beams 
without stirrups, were used to calculate a predicted shear capacity strength using the industry-
standard formulae. The same data were used with the new model and the results were compared 
against the standard design formulae. 

The ACI formula is expressed in imperial units so the data were first converted to the correct 
metric unit before calculations were made. Eq. 2 is the newly developed ACI 318-19 predictive 
formula that was published in 2019 and it is more similar to the design code suggested by Eu-
rocode 2 [9]. In the case of this research project, no axial force was present, and Nu is irrelevant 
(Nu = 0). In the ACI formula, the beam geometry and concrete strength plays an important role. 
The reinforcement ratio (ρ) also has an impact on the shear capacity of the RC beam. The for-
mula in Eurocode 2 (Eq. 3), dependents on the reinforcement ratio, strength of concrete and the 
beam geometry.

Both formulae were developed based on the results obtained from physically constructing 
and testing several beams, therefore, they are both semiempirical. The obtained results are 
graphically displayed in Fig. 3 to 5. In each figure, the physically tested, experimental results 
are displayed on the horizontal x-axis and the shear capacity at which the beams were predicted 
to fail, using different formulae and models, is displayed on the vertical y-axis.

Figure 3. Experimental Shear Strength vs ACI 318-19 Prediction.

The influence of the longitudinal reinforcement ratio, ρ, impacts the outcome of the shear 
capacity, providing the ACI 318-19 formula with some accuracy. However, the ACI formula 
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tends to over-predict the ultimate shear capacity of the beams, meaning that a much higher shear 
strength was calculated than the actual shear strength that the beam could resist.

The accuracy of the Eurocode 2 prediction of the ultimate shear strength of RC beams with-
out stirrups is higher than the ACI formula, with a MAE of 1.1298, thus tt is considered more 
accurate than the 2019 version of the ACI code when implemented on the validation set of 
beams. From Fig. 4 it is seen that for experimental values of Vc less than 50 kN, the prediction 
calculates a much larger value and is less accurate, whereas values of Vc larger than 50 kN are 
close to the predicted values.

Fig. 5 compares the experimental shear strength of the RC beams with the new, improved 
predictive ten-term formula developed by using NLR. When compared to Figs 3 and 4, and 
looking at the newly calculated MAE, the new ten-term formula is found to be more accurate 
and best predicts the shear capacity of the beams which fail at a higher ultimate force.

Figure 4. Experimental Shear Strength vs EC 2 Prediction.

Figure 5: Experimental Shear Strength vs NLR prediction formula with ten-terms.

For the new formula the overall distribution of the datapoints is closer to the x = y line, when 
compared to the ACI 318 and Eurocode 2 predictions. The proposed predictive formula results 
look visually similar to those presented in Figs 3 and 4, however, there is a closer and more 
accurate prediction when looking at ultimate forces smaller than 50 kN.
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The forces larger and equal to 50 kN appear slightly less accurate when compared to the 
Eurocode formula predictions in Fig. 4. The proposed formula yields a more conservative nu-
merical response to the problem by predicting forces smaller than the actual force at which the 
RC experimental beams fail.

The new 10-, 100- and 500-term formulae were compared by looking at their respective 
MAEs. The new 10-term formula was the most accurate by far, with a MAE of only 0.4703. 
Thereafter the 100-term formula with a MAE of 0.6408 and the 500-term formula follows 
closely with a MAE value of 0.6616. The MAEs of the different predictive models are shown 
in Table 3, with the lowest error resulting from the new 10-term NLR predictive model gener-
ated in this study.

Interestingly, although the model was trained on a dataset with different beams’ width-height 
ratios, it exhibited high accuracy, compared to the Eurocode and ACI building codes. All three 
of the new NLR formulae composed in this study yield more accurate results than the existing 
industry-standard design formulae when used to predict the shear capacity of the 36 validation 
RC beams. The ten-term formula provides the best fit and has the lowest error. Although over-
fitting is present with both the 100- and 500-term formulae they also provide a lower MAE 
when compared to the existing industry-standard formulae.

Predictive Model MAE (%) Accuracy 
10-term NLR 47.03 Best 
100-term NLR 64.08 
500-term NLR 66.16 
Eurocode 2 112.98 
ACI318-19 145.51 Worst

Table 3: MAE of predictive models.

5 CONCLUSIONS 

Non-linear regression algorithms were used to train and test a database that consisted of 
10,000 shear strength results. Removing the requirement for physical beam data enabled the 
creation of a much larger data set, which made it possible to use Machine Learning techniques. 
The shear strength results from the physical experimental data were only used to validate the 
results obtained from the combination of the FEA and ML algorithms.

The proposed predictive formula with 10-terms for computing the shear capacity of slender 
RC beams without stirrups presented in this research project outperformed the existing availa-
ble design code formulae (ACI 318-19 and Eurocode 2). The new formula was shown to be 
more accurate and better predicted the shear capacity of RC slender beams without shear rein-
forcement. FEA used in conjunction with advanced ML was shown to provide a reliable ap-
proach in developing a predictive formula for estimating the capacity of RC beams without 
stirrups.

The proposed predictive formula can be further improved by extending the current generated 
database with a larger variety of beam geometries, spans, and material properties that fall out-
side of the current range. Further research can be done on different design codes, such as the 
Canadian code, and formulae used around the world to compare the accuracy of currently used 
design formulae.

Furthermore, it is recommended to build on this research by looking at slender beams with 
shear reinforcement, beams with compressive longitudinal reinforcement bars, deep beams, 
slabs and RC beams with fibre reinforced polymer rebar as well as RC beams with fibres. Ad-
ditionally, columns, shear walls and joints should be investigated under monotonic and cyclic 
loading conditions.
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