
Received 17 December 2023, accepted 2 January 2024, date of publication 10 January 2024, date of current version 29 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3352438

A Practical Approach for Resource-Constrained
Project Scheduling
KONSTANTINOS MANOUSAKIS 1,2, (Senior Member, IEEE),
GIANNIS SAVVA 1,2, (Member, IEEE), NICOS PAPADOURI 1,2,
MICHALIS MAVROVOUNIOTIS 3, ATHANASIOS CHRISTOFIDES4,
NEDI KOLOKOTRONI4, AND GEORGIOS ELLINAS 1,2, (Senior Member, IEEE)
1Department of Electrical and Computer Engineering, University of Cyprus, 1678 Nicosia, Cyprus
2KIOS Research and Innovation Center of Excellence, University of Cyprus, 1678 Nicosia, Cyprus
3Eratosthenes Centre of Excellence, 3012 Limassol, Cyprus
4Cyta, Strovolos, 1396 Nicosia, Cyprus

Corresponding author: Konstantinos Manousakis (manousakis.konstantinos@ucy.ac.cy)

This work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739551
(KIOS CoE - TEAMING) and from the Republic of Cyprus through the Deputy Ministry of Research, Innovation and Digital Policy. This
work was also supported under the Cyta-KIOS Collaboration Framework.

ABSTRACT This work considers project scheduling and planning for the decision support of organizations,
that continuously require the implementation of many projects for their successful operation. The efficient
scheduling and planning of these projects is essential for the timely completion of all projects, utilizing the
appropriate resources. To this end, this work presents a novel integer linear program (ILP) formulation, that
takes into account the project requirements, the involved teams, their interdependencies, as well as other
constraints, so as to provide an optimal scheduling plan. Moreover, additional constraints are considered
to address practical challenges such as complexity and uncertainties. Finally, techniques are introduced
in this work to address scalability issues, as well as dynamic changes that may occur when the obtained
schedule is currently being implemented. All aforementioned techniques present a number of advantages for
an organization, as they reduce considerably the person-hours required by the management team to perform
the scheduling, they produce scheduling plans that span large planning horizons, and they decrease the project
completion times, thus reducing the cost that the organization incurs for implementing the projects. Realistic
scenarios are considered, where real data on projects and teams are taken into account. From the results
obtained, it is evident that the proposed ILP can obtain the optimal solution in terms of minimizing the
duration for the completion of all projects, while the proposed practical (heuristic) approaches, can obtain
solutions close to the optimal in terms of planning horizon and objective score with significant reduction
in computation time, from hours to seconds/minutes. Moreover, it is shown that the scheduling plan can be
adapted in the event of miscalculations related to the effort required for implementing the projects or new
projects can be added within the existing scheduling plan.

INDEX TERMS Project scheduling and planning, decision support systems, integer linear programming.

I. INTRODUCTION
Organizations often struggle to deliver projects on time,
within budget, utilizing the right teams of personnel, and with
the required quality. The number one cause for this problem
is related to the complexity of effective project management

The associate editor coordinating the review of this manuscript and

approving it for publication was Vijay Mago .

and, in particular, sub-optimal project scheduling and poor
team staffing. Creating a schedule for a set of projects
is an essential activity in organizations, that is important
for their efficient operation. When scheduling a plan for
the organization’s projects, the allocation of resources to
project tasks, as well as issues related to time, skills, project
complexity, and budget, amongst others, must be addressed.
Several organizations are creating their project scheduling

12976

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-5344-9667
https://orcid.org/0000-0001-5566-1656
https://orcid.org/0000-0001-6896-6168
https://orcid.org/0000-0002-5281-4175
https://orcid.org/0000-0002-3319-7677
https://orcid.org/0000-0002-9741-3463

K. Manousakis et al.: Practical Approach for Resource-Constrained Project Scheduling

in an ad-hoc manner, a process which requires a significant
number of person-hours from the management team. Further,
with such a process, and due to the problem’s complexity,
the resulting scheduling plan will most likely be far from
optimal, with detrimental results for the organization, as it
will have higher project completion times and thus higher
cost for the implementation of the projects. In addition,
the planning horizon with the manual process can only be
limited to a small time span and hence, a number of projects
remain unplanned creating issues (and possible complaints)
to their stakeholders. Therefore, optimal or near-optimal
techniques are required for the problem of project scheduling.
The advantages of such techniques include a reduction
of the effort/cost required by the management team to
perform the scheduling, the planning of schedules for projects
spanning very large planning horizons, and the reduction of
the projects’ completion times, that translates directly to the
reduction of the organization’s cost for implementing the
projects, as well as the increase of the number of projects that
can be implemented within a specified planning horizon.

Research on project scheduling problems has received
considerable attention over the years, mainly due to the
practical interest of several organizations and the increased
complexity of these problems, that now have to account for
a large number of company-specific constraints and a diverse
pool of employees with different expertise and skill sets [1],
[2], [3], [4].

There are several problem variants, objectives, and
methods that have been considered over the years for
the project scheduling problem, which is mainly known
as resource-constrained project scheduling (RCPS). The
problem variants deal with different specifications that
arise on the application under study and require different
constraints to be implemented. In addition, several objectives
are considered in the literature to solve the RCPS problem
related to completion times and the cost of the projects [5].
In terms of constraints, as discussed later in Sections III
and IV, there are a host of constraints that must be satisfied,
stemming from the general scheduling problem, as well as
custom requirements specified by the organization in regards
to staffing, idle times, etc.

In general, the goal of this work is to create and apply inno-
vative intelligent algorithms for making informed decisions
on project scheduling and task planning, considering current
project requirements in order to achieve on-time project
delivery. Providing the earliest possible completion times to
scheduled projects, allows the organization to increase its
revenue stream, as well as to implement additional projects,
thus facilitating even higher earnings for the organization.

Specifically, this work aims to address the projects’
scheduling problem of any organization, by developing
innovative techniques for the scheduling and planning of
projects to: (a) enable efficient (optimal) project and task
scheduling with regards to the user’s requirements, the
involved teams, their interdependencies, as well as other
parameters; (b) enable the addition of new projects to the

scheduling plan without affecting the previous plan; (c)
reschedule previous projects that could not be implemented
on time due to unpredictable factors, so as to deal with
uncertainties; and (d) provide the capability to divide the
problem into groups of projects and solve the problem
sequentially, so as to significantly reduce the running time.

Overall, the contribution of the work can be summarized
as follows:

• Implementation of a novel integer linear program (ILP)
formulation to solve a real-world scheduling problem,
where numerous constraints are imposed. An optimal
solution is provided for this problem, which includes
objective terms considering both project-, as well as
person-based metrics.

• An incremental method for solving the scheduling
problem is also proposed, where previous solutions can
be incorporated (i.e., previous scheduling plans, projects
under implementation, etc.) into a new scheduling plan
without any effect on the current schedule. The proposed
incremental approach, in combination with the designed
model, also allows for manual changes to the schedule
that could potentially violate several previously-defined
rules. Such manual changes could be posed by the
organization during the practical implementation of the
plan, mainly to meet unforeseen needs.

• A sequential method is further proposed for scalability
purposes, allowing the implementation of practical
problemswith a larger number of projects, and increased
interdependencies. The sequential approach works as
a hybrid ILP-based heuristic approach, where a set of
projects are divided into smaller groups to solve the
problem sequentially. This is done in an effort to reduce
the overall computational complexity of the problem,
while providing an efficient scheduling solution for each
sub-group.

• An extensive simulation campaign is performed, utiliz-
ing real-world data, in order to validate the applicability
and feasibility of all developed techniques.

The rest of the paper is organized as follows. Related work
on project scheduling is presented in Section II, followed by
the problem description in Section III. Then, the proposed
ILP formulation is presented in Section IV. Section V
describes the proposed incremental and sequential methods
that deal with the solution of the real-world problem, while
performance evaluation results and discussion are included
in Section VI. Finally, Section VII offers some concluding
remarks, as well as future research directions.

II. RELATED WORK
Comprehensive surveys of constraint-based scheduling are
provided in [1], [3], and [6], while more recent advances
on the topic regarding different requirements, methodologies
and objectives are presented in [4] and [5]. The basic
resource-constrained project scheduling problem (RCPSP) is
comprised of a single project, consisting of a set of tasks, that

VOLUME 12, 2024 12977

K. Manousakis et al.: Practical Approach for Resource-Constrained Project Scheduling

must be scheduled to the available resources for execution.
There are three main extensions of the classical RCPSP:
(a) multi-project RCPSP in which more than one projects
are to be scheduled independently of each other concerning
their tasks [5], (b) multi-skill RCPSP in which resources
are typically employees that have different skills suitable
to execute particular tasks [7], and (c) multi-mode RCPSP
in which some tasks can be associated with more than one
resources [8]. The reader should note that themodel presented
in this work is in essence a combination of the first two
extensions. A feasible solution to the RCPSP is defined by
assigning starting times to each task in each project in order
to minimize the projec’s completion time, while at the same
time satisfying the project, tasks, and resource constraints [9].
In general, the RCPSP can be classified into several

categories based on the criteria under study. These criteria
can be the (i) variant/model of the problem, (ii) the objective
function, and (iii) the method used to solve the problem. Each
variant of the problem is defined by the different requirements
that must be taken into account depending on the specific
application and, for each variant, a set of constraints
have to be satisfied in order to implement the specific
requirement. For example, when scheduling workflows in
a multi-processor embedded system, the objective is to
keep the schedule length of workflows as short as possible,
while satisfying a number of constraints such as energy
consumption, deadlines, and data dependencies [10]. In gen-
eral, various constraints that are taken into consideration
in each variant of the problem include the following: no
task can be left unassigned, the employees assigned to
a particular task must satisfy the skills required by the
task, and the employees must not exceed their maximum
dedication time [11]. In addition, other variations of the
problem may require that each task cannot be interrupted
until it is finished (non-preemptive scheduling) [12], or some
tasks may be interrupted (preemptive scheduling) without
any restriction [13], or at most one interruption may be
allowed [14], or multiple interruptions may be allowed taking
into account the additional time required to resume the
task [15]. In this work, the requirement is that each task
cannot be interrupted until it is finished and furthermore the
idle time between the tasks of the same project is minimized.

Regarding variations related to resource constraints, some
models classify employees into different skills and skill
levels (e.g., beginner, junior, senior, expert), requiring a
particular employee skill level or more than one skills for
each task [16], [17]. Other models characterize employees
with a productivity attribute that corresponds to the speed
with which they complete their assigned tasks [18], [19].
In this case, constraints can also be applied on which tasks
must be assigned to an employee whose productivity level
is high enough to complete the corresponding tasks within
a predefined deadline. Further, other constraints can also
be added to the model, including a period of availability
(planned unavailability) for each employee [20]. Finally,

in other models, the projects are defined as work packages,
instead of tasks, with no interdependencies between them,
and the employees are grouped in teams according to their
skill set [21]. It should be noted that in this work, in regards
to the resource-constrained variations, our model considers a
set of teams that have different skills to perform a task, allows
for planned unavailability for each employee (defined for
specific periods), and also allows for task interdependencies
and (partial or full) task overlap. Depending on the problem
variant, other constraints may also require that tasks cannot
finish after the established deadline [22], [23], some tasks
must be assigned to at least one employee that possesses the
skill level required by the task [17], there is a limit on the
resources that can be assigned to the tasks [24], no employee
can be assigned simultaneously to more than one tasks at
any given time [25], and so on. Furthermore, in [26] the
projects to be scheduled are given a weight of importance
providing priority to the projects with higher weight. All
these constraints are also taken into account by our model
considering also the fact that the tasks are implemented as
close to the deadline as possible (i.e., it is not desirable to
implement a project prior to or after its deadline).

Moreover, due to uncertainties related to the task duration,
the model used in [8] considers a varying, instead of a
constant, effort for an employee assigned to a particular task,
while the models in [27] consider the scheduling problem
with requests that vary over time. In addition, authors
in [28] propose a real-time reactive scheduling approach
to minimize the project completion times in order to deal
with uncertainties and task disruptions. On the contrary,
authors in [29] focus on the proactive resource-constrained
project scheduling problem in which each activity can be
split at discrete time instants, under the constraints of a
maximum number of activity splitting and a minimum period
of continuous execution, demonstrating that activity splitting
improves robustness. In this work, in the event of changes
in the scheduling plan, the affected tasks can be rescheduled
without however affecting the overall scheduling plan.

In regards to the objectives of the RCPSP, one of the
main objectives in the literature [5] is to minimize the total
time (makespan) for the completion of all projects and/or
to minimize the cost associated with the completion of
all projects. Another objective is to minimize the project
implementation delay compared to the project due date. The
difference between the start and end dates of the project
implementation is also a known objective, called ‘‘flow
time objective’’. In addition, an objective related to project
implementation is project splitting (idle time between tasks),
which is required to be minimized so as to minimize the
project overhead. Based on the goals of an organization,
other objectives can also include: (a) the minimization of
the overtime level (e.g., when the employees exceed their
maximum designated work time), and (b) the minimization
of the amount of time that a team can remain inactive
as a consequence of the sequence in which projects/tasks

12978 VOLUME 12, 2024

K. Manousakis et al.: Practical Approach for Resource-Constrained Project Scheduling

are implemented. There are models that consider one, two,
or more objectives to minimize (i.e., single-, multi- or many-
objective, respectively) [30]. Recently, other models aim to
optimize the robustness of the schedule, that is, to minimize
the difference in the completion times when new tasks are
added to the project or when some tasks require additional
time compared to what was originally planned [29]. In fact,
each objective of the problem is also closely related to
the problem variant and specific constraints are required to
define each one of the objectives. For example, five different
objectives are considered in our model, related to the project
completion times, the deadlines, and the teams working on
each project, and each one requires a set of constraints to be
implemented.

Apart from the variants proposed and the objective
functions considered, several algorithms and techniques
have also been developed to solve the scheduling problem,
ranging from exact (optimal) solutions using ILPs [8],
[12] to sub-optimal solutions utilizing heuristic algorithms
(heuristics, metaheuristics, and optimization/heuristic hybrid
approaches) [5], [12]. This is the case, since the problem is
difficult to solve (proven to be NP-hard [31]), thus heuristic
algorithms are required to solve real-world instances that
are required by the organizations. Metaheuristic algorithms
such as ant-colony optimization (ACO), particle swarm
optimization (PSO), and genetic algorithms (GAs) have also
been used to address the complexity of the problem [14],
[29], [30], [32], [33], [34], [35], [36]. For instance, the
authors in [30] and [32] solve the software project scheduling
problem using an ACO metaheuristic, obtaining better
results in terms of running time or problem objective for
some instances compared to other algorithms using other
methods such as genetic algorithms. In [14], the authors
solve the resource-constrained project scheduling problem,
in which one interruption per task is allowed, using the
PSO metaheuristic algorithm. In a similar vein, in [29],
the authors provide a solution to the same problem (when
now the tasks are allowed to be interrupted at discrete
times) using a GA, while in [33] the same problem is
addressed using a quantum-inspired GA that differs from
the classical GA in the way the initial and the updated
populations are implemented. In [34] authors investigate
the resource-constrained project scheduling problem with
resource transfer times under uncertain environment using
GA. Hybrid approaches [37] combine the power of different
kind of algorithms (ILPs, metaheuristics, heuristics) to solve
large scale problems. For example in [37], authors use a
combination of tabu search and simulated annealing to solve
the RCPS problem. In addition, the authors in [35] and [36]
solve variations of the RCPS problem using a combination
of several heuristic and metaheuristic algorithms to address
large scale instances. Finally, machine learning techniques
(e.g., such as reinforcement learning) can be employed
to solve scheduling problems in dynamic environments
where agents cooperate to achieve group missions [38].

In our work, an ILP with typical and novel constraints
(Section IV) is formulated to optimally solve the problem
under consideration. In addition, two techniques called
‘‘incremental’’ and ‘‘sequential’’ (hybrid approach - ILP-
based heuristic) are proposed to solve the challenges of a
real-world practical problem (e.g., take into account previous
solutions, solve problems with many projects, large size
groups, and a large number of interdependencies).

The reader should note that the solution developed in
this work differs from other state-of-the-art solutions, as it
is a uniquely considered variant of the RCSPS problem,
with a combination of objectives and constraints that cannot
be found in the literature, and with a set of techniques
for utilizing the proposed solution in real-world problems.
Thus, it is not practical to perform a quantitative comparison
between the developed approach and approaches in the state
of the art. Nevertheless, a qualitative comparison is performed
below and Table 1 below presents a number of established
RCPSP approaches presented in the literature and how they
compare with the proposed solution.

More specifically, in terms of the objective functions found
in the literature, the most common is to minimize the project
completion time, while in some works a relative weight factor
for each project is also considered. Other approaches consider
the project deadlines as optimization objective and one
approach considers the earliest release of resources (ERR)
which means that more resources are assigned to earlier
time-slots so as to implement a task. Our approach considers
all the above objectives and also two additional ones that are
not found in the literature that consider minimizing both the
idle time between tasks, and the time duration of each project.

In terms of the features found in the literature, besides
the mandatory ones to implement a scheduling plan, all the
works presented in Table 1 consider the precedence feature
which defines the ordering to implement each task and
the unavailability which specifies the available resources at
each time-slot. Additionally, some works consider only one
project while other consider many projects. In some cases, the
non-preemptive constraint is relaxed. Another feature that is
present in our work, is the consideration of previous project
scheduling (PPS) solutions, where PPS can be added to a new
scheduling plan, and can be found in works that consider
robust optimization. Two other characteristics that are not
found in the literature is the overlapping constraint that allows
some tasks to overlap at a certain percentage and the idle slot
constraint that do not allow to teams that worked at a project
to work at the first time slot after the project completion.
This is mainly used in practical problems, since organizations
require the teams that have worked on a project which was
just completed, to address any possible requirement that may
arise.

It should also be noted that there are several commercial
project management tools (e.g., Oracle’s Primavera [39] and
Microsoft’s MS-Project [40]), that can be used for project
management, taking as input the scheduling plan. In addition,

VOLUME 12, 2024 12979

K. Manousakis et al.: Practical Approach for Resource-Constrained Project Scheduling

TABLE 1. Qualitative comparison with state-of-the-art approaches.

there are also commercial software tools available for project
scheduling (e.g., MJC2 [41] and MangoGem [42]). These
tools, however, offer solutions for specific applications and
cannot be used by an organization without customization.

Table 1 demonstrates that the proposed technique out-
performs other state-of-the-art approaches as it accounts
for more objectives and additional features, making it
more flexible and better applicable to practical scenarios.
In addition, the proposed scheme is dynamic and can be easily
adjusted to address any additional requirements; new projects
can be embedded to previous solutions and old solutions can
remain either unchanged or can be changed according to
the new requirements. Moreover, solution optimality can be
traded with computational complexity, i.e., fast solutions can
be obtained that are nevertheless sub-optimal. Subsequently,
each solution obtained can be evaluated and compared to the
optimal solution.

Clearly, there are a number of challenges in solving the
problem considered in this work, with the main being the
large number of requirements and team interdependencies
that must be considered (translating in a large number of
constraints) when devising the ILP formulation, as well as
the design of practical techniques that can provide ‘‘good’’
solutions (in terms of objective score and planning horizon)
in short time in order to address real-world requirements
imposed by the organizations. All these issues are addressed
in the sections that follow below.

III. PROBLEM DESCRIPTION
In general, the project scheduling approach involves the
following steps: (i) each project is categorized based on
its importance and it is divided into several tasks; (ii) the
teams/skills that are required to implement each project
are identified; and (iii) project scheduling and planning
is performed based on the aforementioned data, as well
as additional parameters such as project cost, project time
bounds, specific order of project completion, interdependen-
cies between projects/tasks, etc. However, these steps are
usually performed manually by several organizations, which
in turn leads to poor scheduling performance.

The main goal of this work is to develop an automated
solution to the scheduling problem through the usage of

an intelligent approach that obtains optimal (or close to
optimal) solutions in a time- and cost-efficient manner. In this
case, it is important to consider the problem’s requirements
that are tightly coupled to any organization’s processes,
needs, and interdependencies. In the following, the system’s
requirements as well as the problem inputs and objective are
described.

A. SYSTEM REQUIREMENTS
The rules (requirements) that describe the scheduling prob-
lem under consideration are the following:

• Each project is divided into tasks;
• Each task can be implemented by only one team based
on the skills of the personnel comprising the team;

• A certain amount of time is required for the implemen-
tation of each task;

• No task can be left unassigned;
• Each task cannot be implemented with gaps in time (i.e.,
when a task commences, it cannot be interrupted);

• Some tasks have specific ordering – a ‘‘high’’ ordering
(i.e., high priority) task must be implemented first and
then the rest (with a ‘‘lower’’ ordering). Task ordering
is used as team ordering as well, since each task can be
implemented by only one team;

• A specific number of people is associated to each team;
• The efficient time for the person within a team working
on a task is et% of their time;

• Each team cannot work on more than Pmax projects at
the same time;

• For tasks with specific ordering, a certain percentage of
overlapping is allowed;

• After the implementation of a project, the teams that
worked on that project cannot work on another project
for a specified amount of time (e.g., the next time slot)
due to any maintenance requirements that may arise for
the project that was just completed;

• A number of persons that belong to a team may not be
available to work at specific time slots;

• Each project has a weight (score) based on its impor-
tance;

• A previous project scheduling solution can be given as
an input to be incorporated within the current scheduling

12980 VOLUME 12, 2024

K. Manousakis et al.: Practical Approach for Resource-Constrained Project Scheduling

problem. The state of active projects (i.e., projects under
implementation) is given as input to the problem by
specifying the percentage of completion of each task.
Active tasks that are not completed must commence at
the start of the next scheduling period;

• A project with a specific deadline must be implemented
as specified by the deadline (whenever possible), or as
close to the deadline as possible;

• The final schedule must fit within the actual planning
horizon start/end dates.

B. PROBLEM OBJECTIVE
The objective of the current work is to provide a project
scheduling solution, that minimizes the project completion
times, taking into account the score of each project (projects
with higher score are implemented with higher priority),
while following all rules outlined above. Further, the pro-
posed solution aims to meet all deadlines (if possible), as well
as minimize the offset of any project implementation (i.e.,
minimize the time required to finish a project as specified
by the deadline), if any of the deadlines cannot be met.
Finally, the objective aims to minimize the number of time
slots required to implement each task and at the same time to
maximize the number of persons of each team to be involved
at the implementation of the task as soon as possible.

C. PROBLEM INPUTS
The basic inputs to the proposed algorithm, that are
required to define the problem, include: (i) the teams with
the number of employees comprising each team, (ii) the
interdependencies between teams, (iii) the priority of the
teams, (iv) the list of projects, (v) the importance of each
project (i.e., its score), based on several criteria defined by the
organization, (vi) the task breakdown for each project (with
one team working on each task), (vii) the full time equivalent
(FTE) that is required by a team to work on a project (with
the corresponding time units, e.g., weeks, months), (viii)
the unavailability of team members for specific dates, (ix)
the required deadlines for some of the projects, and (x) an
overlapping parameter, that refers to a task’s percentage that
is allowed to be completed prior to start overlapping with
other interdependent tasks.

D. AN ILLUSTRATIVE EXAMPLE
Prior to describing the project scheduling formulation, a toy
example is provided below to illustrate what constitutes
the best scheduling solution. Specifically, in the example
provided below, 4 projects are considered, each comprised
of 2 − 4 tasks. As shown in Table 2, to schedule project p1,
two tasks must be performed that require 2, and 4 person-
weeks by teams f1, and f2, respectively. Further, the number
of persons in each team is shown in Table 3, along with the
team priority. Regarding team priority, if for example teams
f2 and f3 must both work on project p3, team f3 must finish
an amount of its task (based on the overlapping percentage)
in order for f2 to start working on its own task.

TABLE 2. Example with 4 projects to be scheduled.

TABLE 3. Teams working on the 4-project scenario of Table 2.

One possible solution is depicted in Fig. 1, where
the projects are scheduled one by one, starting with the
project with the highest score (higher importance). This
solution satisfies all the rules (requirements) presented in
Section III-A. W1 − W14 are the weeks that are required to
implement all the projects. The number under each week
declares the number of people from each team that have to
work that week in each of the projects. It is assumed that
each team can work to at most 2 projects during each specific
week. As can be seen from Fig. 1, the priorities among the
teams are satisfied. Additionally, in this example, project
p1 cannot be implemented earlier (start at weekW6 instead of
W7) since at week W6, team f2 is required to work at project
p3 (finished at week W5) due to maintenance requirements.
Finally, according to the objective, the number of persons
from each team that are working for the implementation of
each task are involved as soon as possible (i.e., more people
are assigned to earlier time-slots). For example, the allocation
of team f2 to project p3 is 4−4−1 on weeksW3 −W4 −W5,
respectively, and not 3 − 3 − 3 or 1 − 4 − 4.

FIGURE 1. Toy example with the 4 projects not optimally scheduled.

While the solution presented in Fig. 1 satisfies all problem
constraints, it is not optimal. Another solution to this problem
that constitutes the optimal one (based on the objective
presented in Section III-B) is depicted in Fig. 2, where all
the rules of the problem are again satisfied. As can be seen,
even for this small problem, the required scheduling weeks
are decreased from 14 to 9. In this example, teams f2 and

VOLUME 12, 2024 12981

K. Manousakis et al.: Practical Approach for Resource-Constrained Project Scheduling

f3 are working concurrently on project p4 during week W4,
since team f3 already implemented 75% of its work on the
project (assuming an overlapping percentage equal to 25%).
Therefore, efficient scheduling techniques are required to
address the problem, which is the goal of sections that follow.

FIGURE 2. Toy example with 4 projects scheduled optimally.

IV. PROJECT SCHEDULING FORMULATION
This section describes the proposed ILP formulation for the
efficient scheduling and planning of a set of projects.

A. ILP FORMULATION
The parameters and variables of the ILP formulation as well
as other symbols utilized in this work are included in Table 4.
ILP Objective:
Minimize: w1 ·

∑
p/∈Pd

cp ·Sep+w2 ·
∑
p∈P

∑
w∈W

ypw+w3 ·
∑
p∈Pd

Ap+

+w4 ·
∑

f ∈TM

∑
t∈T

∑
w∈W

w · zftw + w5 ·
∑
p∈P

∑
t∈Tp

(Sept −
∑
w∈W

vtw · w)

The objective aims at minimizing the project completion
times taking into account the score of each project (without
a given deadline) as defined by the first term of the
objective,

∑
p/∈Pd

cpSep . The second term,
∑
p∈P

∑
w∈W ypw, aims

at minimizing the idle time between the implementation of
different tasks of the same project and the third term

∑
p∈Pd

Ap

aims to achieve all the given deadlines, (i.e., minimize the
time-slots required to schedule a project prior to or after its
given deadline). Further, the fourth term

∑
f ∈TM

∑
t∈T

∑
w∈W

w · zftw

aims to assign more persons at the initial time-slots during
the implementation of each task. Finally, the fifth terms,∑
p∈P

∑
t∈Tp

(Sept −
∑
w∈W

vtw · w), minimize the required time-slots

to implement each task. It is noted that weights wi are used to
define the relevance importance of each term in the objective.
Subject to the following constraints:

Every task must be allocated to a team and must be
implemented for a certain number of time slots:

∑
f ∈TM

∑
w∈W

zftw = PSt , ∀t ∈ T (1)

TABLE 4. Variables and Constraints of the ILP formulation.

12982 VOLUME 12, 2024

K. Manousakis et al.: Practical Approach for Resource-Constrained Project Scheduling

Maximum number of persons that can work per time slot for
each team:∑

t∈T

zftw ≤ TMf − TUfw, ∀f ∈ TM , w ∈ W (2)

Tasks cannot be allocated to teams that do not have the
required skills: ∑

f ∈TM
s.t. Tft=1

∑
w∈W

zftw = 0, ∀t ∈ T (3)

If a task is assigned to a time slot then a team must be active:∑
f ∈TM

zftw ≤ B · xtw, ∀t ∈ T , w ∈ W (4)

xtw ≤

∑
f ∈TM

zftw, ∀t ∈ T , w ∈ W (5)

If a task is assigned to a time slot then the project must be
active:

xtw ≤ upw, ∀t ∈ Tp, p ∈ P, w ∈ W (6)

If a project is active then at least one task must be active:

upw ≤

∑
t∈Tp

xtw, ∀p ∈ P, w ∈ W (7)

Idle time between the tasks of a project:

upw − up(w−1) ≤ ypw, ∀p ∈ P, w ∈ W (8)

Case w = 1, then up(w−1) = 0
Tasks must be implemented without gaps:

xtw − xt(w−1) ≤ vtw, ∀t ∈ T , w ∈ W (9)

Case w = 1, then xp(w−1) = 0∑
w∈W

vtw ≤ 1, ∀t ∈ T (10)

Ending time-slot of a task:

w · xtw ≤ Sept , ∀t ∈ Tp, p ∈ P, w ∈ W (11)

Upper bound for task ending time:

Sept ≤

∑
w∈W

(vtw · w+ xtw) − 1, ∀t ∈ Tp, p ∈ P (12)

Task ordering:

Sept < Sept ′ , ∀p ∈ P, t, t ′ ∈ TOp, s.t. TDpt < TDpt ′ (13)

Ending time slot of a project:

Sep ≥ Sept , ∀t ∈ Tp, p ∈ P (14)

Sep ≤ Sept + (1 − bt) · B, ∀t ∈ Tp, p ∈ P (15)∑
t∈Tp

bt = 1, ∀p ∈ P (16)

Time slots at which each task completion percentage is
greater than α:

qtw ≥ α − B · (1 − rtw) , ∀t ∈ Tp, p ∈ P, w ∈ W (17)

α ≥ qtw + 1 − B · rtw, ∀t ∈ Tp, p ∈ P, w ∈ W (18)

Completion percentage of a task:

qtw =

∑
f ∈TM

zftw
PSt

+ qt(w−1), ∀t ∈ Tp, p ∈ P, w ∈ W

(19)

Case w = 1, then qt(w−1) = 0
Allocation of a task to allowed time slots (based on
completion percentage):

xtw ≤ rt ′w, ∀p ∈ P, t, t ′ ∈ TOp,

s.t. TDpt ′ < TDpt ,w ∈ W (20)

Calculate if team f works on task t at time slot w:

B · oftw ≤ zftw + B− 1, ∀f ∈ TM , t ∈ T , w ∈ W (21)

B · oftw ≥ zftw, ∀f ∈ TM , t ∈ T , w ∈ W (22)

A teammust work at most onPmax projects during a time slot:∑
t∈T

oftw ≤ Pmax , ∀f ∈ TM , w ∈ W (23)

Calculate when the ending time is reached for each project:

Sep + B · Gpw ≥ w ∀w ∈ W , p ∈ P (24)

Sep + B · Gpw ≤ −0.001 + w+ B ∀w ∈ W , p ∈ P (25)

Find the next time slot after each project is completed:

Fpw ≥ Gpw − Gp(w−1) ∀p ∈ P, w ∈ W (26)

Case w = 1, then Gp(w−1) = 0
Teams that worked on a project cannot work on any other task
at the first time slot after a project has been completed:

TMf · Fpw + zftw ≤ TMf − TUfw,

∀t ∈ T , w ∈ W , p ∈ P, f ∈ TM , s.t. TMPpf ̸= 0

(27)

Calculate any offset in the project completion time based on
its deadline:

Ap ≥ Sep − Ep, ∀p ∈ Pd (28)

Ap ≥ Ep − Sep, ∀p ∈ Pd (29)

Specifically, Constraint (1) ensures that the person-slots
required to implement a task are assigned to specific time
slots, while Constraint (2) is used to ensure that the number
of persons from a team assigned to a time slot cannot exceed
the total number of persons of that team or the available
number of persons of that team at the specific time slot w.
Constraint (3) defines the specific teams that can implement
specific tasks and Constraint (4) ensures that each task
must be allocated to specific time slots. Constraints (5) –

VOLUME 12, 2024 12983

K. Manousakis et al.: Practical Approach for Resource-Constrained Project Scheduling

(7) correlate different variables in regards to active teams,
projects, and tasks. More specifically, Constraints (5) and (6)
ensure that a team and a project are active, respectively, in the
case that a task is assigned to a time slot, while Constraint (7)
ensures that in the case that a project is active, then at least
one task of this project must be active as well. Constraint (8)
is used to define the number of idle time slots between
tasks of the same project (as previously mentioned, this
number is minimized in the objective function). Specifically,
this constraint (inspired by constraints in [43]) counts the
transitions of a project p from inactive state (value of ypw
equal to zero) to active condition (value of ypw equal to one)
at time slot w. Constraints (9) – (10) are used to prevent gaps
in the implementation of a task [the logic of Constraint (9) is
similar to Constraint (8)]. Further, Constraints (11) and (12)
are used to define the ending time of each task and to calculate
the upper bound for each task’s ending time, respectively.

In addition, Constraint (13) defines a project’s task
ordering, where necessary. Constraints (14) - (16) define
the ending time of each project, and Constraints (17) - (20)
ensure that a task can only be assigned to specific time slots,
based on the completion percentage of other tasks within the
same project. Specifically, Constraints (17) and (18) calculate
the time slots at which each task’s completion percentage
is greater than α, Constraint (19) calculates the completion
percentage of a task i, and Constraint (20) ensures that the
allocation of task j that is interdependent with task i, can be
only assigned to the time slots after the completion of α of
task i. Constraints (21) - (22) specifywhether team f works on
task t at time slotw, and Constraint (23) defines themaximum
number of projects that a team can work on concurrently.
Constraints (24) - (27) are used to specify that the teams that
worked on a project cannot work on any other task on the
first time slot (i.e., the first week in this implementation) after
a project is completed. More specifically, Constraints (24)
and (25) calculate the ending time of each project, and
Constraints (26) and (27) calculate the next time slot (e.g.,
week) after the ending time of a project, and ensure that all
persons of a team that worked on that project are available,
and cannot work on any other project on that specific time
slot, respectively. Finally, Constraints (28) - (29) are used to
calculate any offset (before or after) in the project’s ending
time, based on its deadline.

B. NUMBER OF VARIABLES AND CONSTRAINTS
The number of constraints and variables of the problem is
mainly affected by four parameters: number of projects (|P|),
number of tasks (|T |), number of teams (|TM |), and number
of time slots (|W |). Other parameters (e.g., interdependencies
between tasks) can also have an impact on the number of
constraints created. Table 5 presents the number of variables
and constraints required in the ILP formulation.

As expected, as the problem size increases, the number
of variables and constraints increases, which will have an
effect on the execution times and the memory usage. Table 6

TABLE 5. Variables and constraints of the ILP formulation.

illustrates the number of variables and constraints based on
4 input parameters for 5 specific instances. For example,
for a problem of 60 projects and 127 tasks, with 14 teams
and 220 weeks as a scheduling horizon, the total number
of variables is equal to 947, 254 (up from approximately
90, 000 for 20 projects), while the total number of constraints
(upper bound) is on the order of 5.5 million (up from
approximately 300, 000 for 20 projects).

TABLE 6. Scenarios for variables and constraints.

In terms of the memory required, as the number of
variables and constraints increase, the ILP solvers require
more memory to solve the problems. However, solvers like
Gurobi [44] can handle the problems with sizes depicted in
Table 6 efficiently in terms of memory usage (the problem
can be solved in a PC even for the larger instances).
Clearly, based on the discussion above, scalability becomes
a crucial issue when the number of projects and planning
horizon scale to large numbers [since in general RCPS
problems (the problem studied in this work falls under
that category) are NP-complete [1]]; thus, more practical
techniques are required to address the scalability issue. This
is precisely the focus of the section that follows, which
considers ILP-based heuristics in order to accommodate the
execution of larger instances of the problem in ‘‘reasonable’’
time scales (i.e., within a few minutes) as can be seen in
Section VI-F.

V. TECHNIQUES TO ADDRESS PRACTICAL
IMPLEMENTATION ISSUES
This section describes the two proposed methods for
dealing with the solution of the ILP in real-world practical
scenarios. More specifically, this section deals with the
incorporation of previous solutions (previous scheduling
plans, active projects) into a new planning period, as well
as a decomposition technique in which a set of projects
are divided into smaller groups to solve the problem
sequentially, aiming to reduce computational complexity and
scale the problem in terms of the number of projects, group
sizes, etc.

12984 VOLUME 12, 2024

K. Manousakis et al.: Practical Approach for Resource-Constrained Project Scheduling

A. BUILDING ON PREVIOUS SOLUTIONS
Project scheduling for any organization usually builds on
previous scheduling solutions, since new projects are often
requested to be scheduled in the middle of the scheduling
plan that is currently being implemented. To address the
problem of building a new scheduling plan on previous
scheduling solutions, the projects under consideration fall
into three different categories: (i) scheduled projects, (ii)
new projects, and (iii) active projects. Scheduled projects
are the projects of the previous solution that are scheduled
at specific time slots with specific resources, but are not
yet active, and can be further distinguished in projects that
must remain unchanged in the new scheduling plan, and
projects that are required to be rescheduled (i.e., the resources
allocated for these projects are freed and these projects must
be scheduled in the new plan). In addition to these projects,
new projects that must be scheduled taking into account the
previous solution are also considered. Finally, to keep up
with the needs of any organization, if any project is currently
implemented by the organization (either as part of the
previous scheduling solution or provided as a new project),
it is considered as an active project, and must be scheduled
at the starting time slot of the planning period. It is noted
that all scheduled and active projects undergo a proposed
incremental approach as is described below, while any new
projects are scheduled according to the already presented
formulation.

1) INCREMENTAL APPROACH: SCHEDULED PROJECTS
The concept of the proposed incremental approach is to
build on a previous solution (scheduled projects) and create
a new plan. To achieve that, the incremental approach uses
the concept of team unavailability. Specifically, based on the
previous solution, the teams (and the number of persons in
each team) that have already been assigned to tasks and slots
(during the previous scheduling process) are considered as
unavailable during the new scheduling period, so as to find
the new scheduling plan (i.e., allocation of the unscheduled
projects). This is achieved through Constraint (2) and
Constraint (27) using parameter TUfw that accounts for the
team unavailability of the new scheduling plan. Also, since
a team is not allowed to work on more than Pmax projects
concurrently during a time slot, parameter Zfw is utilized
based on the number of tasks and projects that the team
is working at each time slot in the previous solution, and
Constraint (23) is modified as follows:∑

t∈T

oftw ≤ Pmax − Zfw, ∀f ∈ TM , w ∈ W (30)

Moreover, to satisfy the rule which specifies that when a
project p finishes at time slot w − 1, all teams involved in
that project must not work at time slot w, a preprocessing
step is also performed. Specifically, Zfw is equal to Pmax in
Constraint (30), to ensure that no other task can be performed
during that time slot.

In addition, it is important to account for the dynamic and
unexpected changes that may occur in a real environment
and are not known a-priori. Under these conditions, an orga-
nization is very likely to proceed with manual changes and
modifications to the scheduled plan provided by the ILP.
These modifications may include allocations of teams and
tasks that can violate some constraints of the formulation (i.e.,
higher number of employees working on a team for specific
time slots, teams working on more than Pmax projects,
etc.). In general, this functionality is very important towards
utilizing this approach in practical scenarios. To address this
issue, the incremental approach in combination with some
processing steps are used to ensure that in case any manual
modifications are performed by the organization, any violated
rules are allowed just for that previous solution. This is
achieved through setting parameters TUfw and Zfw to their
maximum values for these cases.

Figure 3 presents a toy example illustrating the projects
planned for team f1, that consists of 2 persons. In this
scheduling example, projects p1, p2, and p3 are part of
the scheduling plan, whereas projects p4 and p5 are added
manually by the organization. As shown in Fig. 3, to account
for this scheduling plan, variables TUf1w and Zf1w are equal
to the number of assigned persons of team f1 and number
of projects where team f1 works at time slot w, respectively.
Now, at time slot W5, project p4, that was added manually,
violates several constraints (i.e., the number of persons
working and the number of simultaneous projects are greater
than 2). Nevertheless, by assigning parameters TUfw and Zfw
to their maximum allowed values, the ILP allows this instance
(i.e., all constraints are satisfied for that time slot), while at the
same time it will not allocate any other (additional) resources
of that team at that time slot. This is also the case at time
slot W8, where more persons than allowed are working at
the same time. Also, it is important to note that to account
for the time slot after the project ends (in which the teams
working at each project must not be allocated to any other
project), Zf1w is equal to its maximum value during time
slots W6 andW9.

FIGURE 3. Toy example with 5 projects that includes manual changes and
modifications to the scheduled plan.

Overall, following the aforementioned approach, the
algorithm can consider any previous solution when planning
a new set of projects.

VOLUME 12, 2024 12985

K. Manousakis et al.: Practical Approach for Resource-Constrained Project Scheduling

2) INCREMENTAL APPROACH: ACTIVE PROJECTS
As previously mentioned, active projects are projects that
have started to be implemented by the organization and,
therefore, these projects must not be interrupted. A project
is characterized as active, if at least one task of this project is
active. For this reason, when considering a new scheduling
plan, the ongoing tasks of these projects (TA) have to be
scheduled by the first time slot of the new planning period,
a condition that is ensured by the active project assignments
constraint [i.e., Constraint (31)]

xtw = 1, ∀t ∈ TA, w = 1 (31)

Also, it is noted that the number of time slots during which
a person is required to work in order to implement the active
tasks depends on the percentage of completion of the tasks
(i.e., att for task t), that is provided as input to the algorithm.
Specifically, Eq. (32) is used to calculate the new remaining
time slots (PS ′

t) required as

PS ′
t =

⌈ (100 − att)
100

⌉
· PSt (32)

with PSt being the number of time slots required when 0%
of the task has been completed (provided as input to the
algorithm).

B. SEQUENTIAL APPROACH - GROUP OF PROJECTS
Considering that in an organization some scheduling plans
may have to be planned on-the-fly in order to support deci-
sions or to implement ‘‘what-if’’ scenarios, the scheduling
technique must be able to provide a solution in a relatively
short period of time. Also, in these cases, obtaining the
optimum solution may not be the main objective of the
algorithm; rather a (sub-optimal) solution is sought that
tries to balance solution quality and running time. Hence,
to address the increase of computational complexity when
the problem scales to a large number of projects and
tasks, the projects can be separated into groups, based on
each project’s characteristics, priority score, etc. Clearly,
in such a case there is a trade-off between optimality and
computational complexity. In general, this will be decided by
the organization, based on the groups in which the problem
is divided to. Moreover, it is important to note that (by
default) in an organization several projects can be categorized
in groups of projects, depending on the importance of
implementing each project.

To achieve that, the concept of the incremental approach
using the team unavailability constraint can be used as an
intermediate step to solve large problems in a sequential
manner. For instance, consider the case where some projects
must be implemented with high priority, without considering
any other projects (with low priority) within their implemen-
tation. In that case, the projects that have to be scheduled
are separated into groups based on their priority score and
initially the first (high priority) group is scheduled. Then, this
solution is considered as the previous solution and the second
group of (low priority) projects is now solved by the ILP,

considering the solution of the first group as the unavailability
of the teams. This process is repeated for all groups until the
final scheduling plan is obtained, that consist of all planned
projects.

VI. PERFORMANCE EVALUATION
For solving the ILP-based formulations, the Gurobi library
is used [44] on a PC with Core i5 − 8400 CPU @2.80
GHz and 16 GB RAM. It is important to note that the
related input in this section is based on realistic data
provided by a large organization. The results presented below
are performed based on these data to provide a proof of
concept and also provide some illustrative examples for
the better understanding of the features taken into account
of our approach. The related input is presented in the
corresponding Tables of the current section. The same results
were also observedwhen performing simulations with similar
characteristics. The scheduling technique developed takes
the required inputs and provides an optimized assignment
and schedule for a period of time ahead. Specifically, the
inputs to proposed ILP are as follows: (i) all projects to be
scheduled including the required deadline for each project,
(ii) the current status of projects in progress, (iii) the teams’
capacities, (iv) personnel skills, (v) tasks/projects at hand,
(vi) interdependencies between teams, (vii) work efficiency
percentage parameter (the percentage of time for a staff
member dedicated to a project), (viii) overlapping parameter
α (i.e., the completion percentage of a task prior to start
overlapping with other interdependent tasks), (ix) start and
end dates of the schedule to be created, as well as (x) time
limit parameter (optional - i.e., the maximum time that the
solver can run in order to find a solution to the problem (per
group)); if the solver cannot find an optimal solution within
this time, then the best solution found by that time is returned.

A. SIMPLE SCHEDULING SCENARIOS
Given the problem’s inputs as previously described, the
ILP provides a schedule as the output, specifying the time
slots for the implementation of all projects, as well as the
team that is responsible for the implementation of each
task. Figure 4 shows a simple example for scheduling the
7 projects presented in Table 7 comprising of 14 tasks, when
the available teams of the organization are the ones shown
in Table 8. For example, as shown in Table 7, to schedule
project p1, three tasks must be performed that require 10,
4, and 7 person-weeks by teams f1, f2, and f3, respectively.
Further, the number of persons in each team is shown in
Table 8, along with the team priority. Regarding team priority,
if for example teams f1 and f2 must both work on a project,
team f2 must finish at most α of its task in order for f1 to start
working on its own designated task. Also, team f6 (that does
not have a priority value) can be implemented without any
task interdependencies.

As illustrated in Fig. 4, a total of 35 weeks are required to
schedule all projects, while the ILP required 320 seconds to
solve the problem. The reader should note that the presented

12986 VOLUME 12, 2024

K. Manousakis et al.: Practical Approach for Resource-Constrained Project Scheduling

TABLE 7. Scenario with 7 projects to be scheduled.

TABLE 8. Teams working on the 7-project scenario of Table 7.

FIGURE 4. Scheduling plan of 7 projects comprising of 14 tasks.

schedule follows all the organization’s rules, as presented in
Section III. Further, it is noted that these 6 teams and these
7 projects along with the scheduling solution provided in
Fig. 4, serve as a basis for the rest of the planning scenarios
presented in this section.

In addition, Fig. 5 presents the results for the same
scheduling scenario, but for the case where team f1 is
unavailable at time slots 7−8 (illustrated as gray empty cells
in the scheduling solution). Due to this unavailability period,
it is shown that in the final schedule the required number of
weeks to implement all projects now increases from 35 to 37,
with the ILP now requiring 190 seconds to solve the problem.
The reader should note that the solution does not just shift
the tasks/projects after the team unavailability period for the
projects p1 and p2 that team f1 must work on after weeks
W7 and W8, as such an approach would create gaps between
the tasks of these projects. Rather, since it is also considered
in the ILP’s objective, it provides a solution in which tasks
are scheduled in such a way that gaps between tasks are
minimized.

B. BUILDING ON PREVIOUS SCHEDULING SOLUTIONS
As previously mentioned, the proposed approach also works
for dynamic practical scenarios, since it can take the proposed

FIGURE 5. Scheduling plan of 7 projects, with team f1 unavailable during
weeks 7 − 8.

schedule as input and incorporate additional projects to the
already planned schedule. In addition, some already planned
projects can be rescheduled. To evaluate this functionality, the
following scenario with 9 projects is applied: assume that in
the scheduling solution of Fig. 4, two weeks have passed and
the organization has followed the implementation according
to plan. Now, the first 7 projects of the previous scenario
must remain unchanged, and 2 additional projects must be
scheduled, that are shown in Table 9.

TABLE 9. Two additional projects to be scheduled in the 7-project
scenario.

The new scheduling plan is shown in Fig. 6. It is noted that
as 2 weeks have passed from the previous scheduling plan,
week W1 of the solution presented in Fig. 6 corresponds to
week W3 of the scheduling plan presented in Fig. 4. In this
scenario, the ILP required 13 seconds to provide a solution,
with the new scheduling plan requiring a total of 42 weeks.

C. MANUAL SCHEDULING CHANGES
Considering again the scheduling plan of Fig. 4, in this
scenario the organization decides to reschedule manually two
of the projects, as seen in Fig. 7.

This change provides a scheduling plan that now violates
the constraints of the formulation, since more employees
than the team’s available persons are required to work on a
task during weeks 3 − 5 [Constraint (2) violation], as shown
in Fig. 7. In addition, during week 4, team f5 works on
three different projects [Constraint (23) violation]. Taking
into account the modified schedule, the two new projects
presented in Table 9 must be scheduled. Figure 8 illustrates
the scheduling plan when using the proposed incremental
approach so as to bypass the constraint violations. The ILP
solved the problem in 13 seconds, and a total of 44 weeks are
now required for the scheduling plan.

D. PROJECT STATUS
To account for the projects currently implemented (i.e., active
projects) during a new scheduling process, the initial set of

VOLUME 12, 2024 12987

K. Manousakis et al.: Practical Approach for Resource-Constrained Project Scheduling

FIGURE 6. Scheduling plan of 9 projects, building on the 7-project scenario.

FIGURE 7. Manual change of the scheduling plan for the 7-project
scenario.

7 projects presented in Table 7 is used, but in this scenario
the organization sets the status of project p4 as active and
also signifies that 20% of the task performed by team f4 has
been already completed. As can be seen in the new scheduling
plan obtained (Fig. 9), since project p4 is considered active,
it is planned to start on the first week of the scheduling plan.
To solve the problem and obtain the optimal solution, the ILP
required 125 seconds.

E. PROJECT STATUS CONSIDERING DEADLINES
Finally, to account for deadlines in a scheduling plan, the
projects presented in Table 7 must be scheduled while in this
scenario the organization has set a deadline (week W8) for
project p7. Also, project p4 is again considered as active with
20% of the task performed by team f4 already implemented,
while the organization has also provided a deadline for this
project (week W29). The results for this scenario can be seen
in Fig. 10, where project p7 finishes at week W8 instead of
week W5. Also, compared to Fig. 9, project p4 finishes at
week W29 instead of week W23. These results are a direct
consequence of Constraints (28) - (29), since the objective
of the ILP is not just to minimize the ending week of the
scheduling plan, but to schedule the projects as close to their
deadlines as possible. Clearly, this approach will also have
an effect on the other projects that must be scheduled, as can
be seen by comparing project p3 in Figs. 9 and 10. The ILP
required 85 seconds to address this scenario.

F. EXECUTION TIME - GROUPS
This section presents the performance of the technique that
splits the projects into groups (i.e., sequential approach) to
evaluate the trade-off between optimality and computational
complexity. Three different scenarios are considered, with 10,
20, and 30 projects. Table 10 summarizes the inputs provided
for these simulations regarding also the number of tasks,
overall number of FTEs required (when the FTEs of each task
are summed), and the number of different teams required to
implement the projects.

TABLE 10. Summarized inputs for 10, 20, and 30 projects.

As for these scenarios there are not any factors affecting
the objective, such as active projects, team unavailabilities,
or deadlines, the quality of the solution (in terms of
scheduling) will be evaluated based on the ending time
and score of each project (i.e.,

∑
p cp · Sep , denoted as

the scheduling score). Further, the running time of the
algorithm is considered as a performance metric, as well as
the planning horizon [last time slot (i.e., week) to schedule
all projects]. Therefore, only the first and second terms of
the objective are taken into account (i.e., the other terms
are not considered) when comparing the group approach
with the ILP. Specifically, using the first term, the aim
is to minimize the score and the planning horizon of the
scheduling solution, while using the second term (with its
weight set to dominate over the first term), any solution aims
to schedule the projects without gaps between the tasks of
each project. The optimal solution (in terms of score) is the
output of the algorithm when considering only one group
(i.e., the problem is solved while considering all projects
at the same time). The results shown in Table 11 below
present how different group decompositions perform in terms
of the objective function and the required execution time.
It is noted that these results are performed based on one

12988 VOLUME 12, 2024

K. Manousakis et al.: Practical Approach for Resource-Constrained Project Scheduling

FIGURE 8. Manual change of the scheduling plan with 2 additional projects (7-project scenario).

FIGURE 9. Scheduling plan considering project p4 as active (7-project
scenario).

FIGURE 10. Scheduling projects with deadlines for projects p4 and p7
(7-project scenario).

instance of realistic data of the organization. The same results
were also observedwhen performing simulations with similar
characteristics and group decompositions.

From the results, it is clear that there is a trade-off between
the running time and the optimality of the solution. For
example, in the case of 10 projects the planning horizon is
6 weeks with a score of 1581 and it requires 10 sec to obtain
the optimal solution. On the other hand, considering 2 groups
for the same problem, the planning horizon is now equal to
9 weeks with a score of 2020. This solution can be achieved
in only 3.97 seconds.

For the case of 20 groups, and when using only one
group, the execution time is equal to 495 sec with a score
4324 and planning horizon equal to 13 weeks. On the
other hand, considering 2 groups for the same problem, the
execution time is reduced to 15.67 sec, while the planning
horizon remains the same and the score increases to 5063.
In addition, considering 3 groups, the execution time is

further decreased but the score and the planning horizon are
increased. A similar trend is followed when considering the
case of 30 projects for 1, 2, and 3 groups, as can be seen in
Table 11, where the execution time is reduced from 22.298 to
35 and to 12 sec, respectively. The planning horizon and the
score however, with 2 and 3 groups are increased.

Clearly, when considering several groups, much lower
running times can be achieved at the expense of sub-optimal
solutions. Therefore, the organization can choose between
running time and optimality, based on the available time to
produce a scheduling plan. In either case, an estimation on
the scheduling plan can be produced in small time scales
when considering the concept of groups. It is also clear
that the running time of the algorithm in order to find the
optimal solution (considering only one group) is increased
exponentially as the input size increases.

TABLE 11. Performance metrics: Groups of projects vs optimal solution.

VII. CONCLUSION
Project scheduling techniques are developed in this work
to achieve on-time project delivery. An ILP is initially
developed to provide an optimal solution for the problem,
as well as other techniques to address scalability issues,
incorporate any dynamic changes, and provide flexibility
when performing project scheduling. Performance results
utilizing real-world data demonstrate the feasibility of the
proposed techniques and their capabilities to address a
number of different scenarios in terms of input size, project
requirements, and respond to any unforeseen changes and
uncertainties by rescheduling projects without affecting
projects under implementation.

VOLUME 12, 2024 12989

K. Manousakis et al.: Practical Approach for Resource-Constrained Project Scheduling

Clearly, based on the aforementioned results, the utilization
of the developed ILP formulations can provide significant
gains in terms of operational expenditures (OPEX) and
revenue stream that an organization incurs by potentially
utilizing less personnel for specific tasks/projects, by not
allocating personnel for computing these solutions in a non-
automated manner, as well as by achieving earlier project
completion times.

Future work considers the development of heuristic and
metaheuristic algorithms to address scalability considera-
tions, that will be compared to the optimal solution obtained
by the ILP. In addition, the model will be updated to consider
finer personnel characteristics (i.e., scheduling at the skills
rather than at the teams level).

ACKNOWLEDGMENT
(Konstantinos Manousakis and Giannis Savva are co-first
authors.) The authors would like to thank Philippos Isaia
from the KIOSResearch and Innovation Center of Excellence
and Christos Siskos and Savvas Charalambides from Cyta
for their assistance towards the testing of the proposed
techniques. The work of Michalis Mavrovouniotis was done
while he was at the KIOS Research and Innovation Center of
Excellence, University of Cyprus.

REFERENCES
[1] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch, ‘‘Resource-

constrained project scheduling: Notation, classification, models, and
methods,’’ Eur. J. Oper. Res., vol. 112, no. 1, pp. 3–41, Jan. 1999.

[2] M. Á. Vega-Velázquez, A. García-Nájera, and H. Cervantes, ‘‘A survey on
the software project scheduling problem,’’ Int. J. Prod. Econ., vol. 202,
pp. 145–161, Aug. 2018.

[3] S. Hartmann and D. Briskorn, ‘‘A survey of variants and extensions of
the resource-constrained project scheduling problem,’’ Eur. J. Oper. Res.,
vol. 207, no. 1, pp. 1–14, Nov. 2010.

[4] S. Hartmann and D. Briskorn, ‘‘An updated survey of variants and
extensions of the resource-constrained project scheduling problem,’’ Eur.
J. Oper. Res., vol. 297, no. 1, pp. 1–14, Feb. 2022.

[5] M. G. Sánchez, E. Lalla-Ruiz, A. F. Gil, C. Castro, and S. Voß, ‘‘Resource-
constrained multi-project scheduling problem: A survey,’’ Eur. J. Oper.
Res., vol. 309, no. 3, pp. 958–976, Sep. 2023.

[6] A. Allahverdi, C. T. Ng, T. C. E. Cheng, and M. Y. Kovalyov, ‘‘A survey of
scheduling problemswith setup times or costs,’’Eur. J. Oper. Res., vol. 187,
no. 3, pp. 985–1032, Jun. 2008.

[7] Y. Tian, T. Xiong, Z. Liu, Y. Mei, and L. Wan, ‘‘Multi-objective multi-
skill resource-constrained project scheduling problem with skill switches:
Model and evolutionary approaches,’’ Comput. Ind. Eng., vol. 167,
May 2022, Art. no. 107897.

[8] H. D. Ardakani and A. Dehghani, ‘‘Multi-objective optimization of
multi-mode resource-constrained project selection and scheduling problem
considering resource leveling and time-varying resource usage,’’ Int. J.
Supply Oper. Manage., vol. 9, no. 1, pp. 34–55, Feb. 2022.

[9] R. van Eynde and M. Vanhoucke, ‘‘Resource-constrained multi-project
scheduling: Benchmark datasets and decoupled scheduling,’’ J. Schedul-
ing, vol. 23, no. 3, pp. 301–325, Jun. 2020.

[10] J. Chen, P. Han, Y. Zhang, T. You, and P. Zheng, ‘‘Scheduling energy
consumption-constrained workflows in heterogeneous multi-processor
embedded systems,’’ J. Syst. Archit., vol. 142, Sep. 2023, Art. no. 102938.

[11] E. Alba and J. Franciscochicano, ‘‘Software project management with
GAs,’’ Inf. Sci., vol. 177, no. 11, pp. 2380–2401, Jun. 2007.

[12] S. Ben Issa, R. A. Patterson, and Y. Tu, ‘‘Solving resource-constrained
multi-project environment under different activity assumptions,’’ Int.
J. Prod. Econ., vol. 232, Feb. 2021, Art. no. 107936.

[13] A. Moukrim, A. Quilliot, and H. Toussaint, ‘‘An effective branch-and-
price algorithm for the preemptive resource constrained project scheduling
problem based on minimal interval order enumeration,’’ Eur. J. Oper. Res.,
vol. 244, no. 2, pp. 360–368, Jul. 2015.

[14] Y. Shou, Y. Li, and C. Lai, ‘‘Hybrid particle swarm optimization for
preemptive resource-constrained project scheduling,’’ Neurocomputing,
vol. 148, pp. 122–128, Jan. 2015.

[15] M. Vanhoucke and J. Coelho, ‘‘Resource-constrained project scheduling
with activity splitting and setup times,’’ Comput. Oper. Res., vol. 109,
pp. 230–249, Sep. 2019.

[16] L. Cui, X. Liu, S. Lu, and Z. Jia, ‘‘A variable neighborhood search approach
for the resource-constrained multi-project collaborative scheduling prob-
lem,’’ Appl. Soft Comput., vol. 107, Aug. 2021, Art. no. 107480.

[17] J. Lin, L. Zhu, and K. Gao, ‘‘A genetic programming hyper-heuristic
approach for the multi-skill resource constrained project scheduling
problem,’’ Expert Syst. Appl., vol. 140, Feb. 2020, Art. no. 112915.

[18] N. Nigar, M. K. Shahzad, S. Islam, S. Kumar, and A. Jaleel, ‘‘Mod-
eling human resource experience evolution for multiobjective project
scheduling in large scale software projects,’’ IEEE Access, vol. 10,
pp. 44677–44690, 2022.

[19] A. Ngo-The and G. Ruhe, ‘‘Optimized resource allocation for software
release planning,’’ IEEE Trans. Softw. Eng., vol. 35, no. 1, pp. 109–123,
Jan. 2009.

[20] X. Wang, Q. Chen, N. Mao, X. Chen, and Z. Li, ‘‘Proactive approach
for stochastic RCMPSP based on multi-priority rule combinations,’’ Int.
J. Prod. Res., vol. 53, no. 4, pp. 1098–1110, Feb. 2015.

[21] A. V. Rezende, L. Silva, A. Britto, and R. Amaral, ‘‘Software
project scheduling problem in the context of search-based software
engineering: A systematic review,’’ J. Syst. Softw., vol. 155, pp. 43–56,
Sep. 2019.

[22] H. Moradi and S. Shadrokh, ‘‘A robust scheduling for the multi-mode
project scheduling problem with a given deadline under uncertainty of
activity duration,’’ Int. J. Prod. Res., vol. 57, no. 10, pp. 3138–3167,
May 2019.

[23] F. Kong and D. Dou, ‘‘Resource-constrained project scheduling problem
under multiple time constraints,’’ J. Construct. Eng. Manage., vol. 147,
no. 2, Feb. 2021, Art. no. 04020170.

[24] F. Li, Z. Xu, and H. Li, ‘‘A multi-agent based cooperative approach to
decentralized multi-project scheduling and resource allocation,’’ Comput.
Ind. Eng., vol. 151, Jan. 2021, Art. no. 106961.

[25] J. A. S. Araujo, H. G. Santos, B. Gendron, S. D. Jena, S. S. Brito, and
D. S. Souza, ‘‘Strong bounds for resource constrained project scheduling:
Preprocessing and cutting planes,’’Comput. Oper. Res., vol. 113, Jan. 2020,
Art. no. 104782.

[26] E. N. Afruzi, A. Aghaie, and A. A. Najafi, ‘‘Robust optimization for
the resource-constrained multi-project scheduling problem with uncertain
activity durations,’’ Scientia Iranica, vol. 27, no. 1, pp. 361–376,
Feb. 2020.

[27] F. Zaman, S. Elsayed, R. Sarker, D. Essam, and C. A. C. Coello,
‘‘An evolutionary approach for resource constrained project scheduling
with uncertain changes,’’ Comput. Oper. Res., vol. 125, Jan. 2021,
Art. no. 105104.

[28] M. H. F. Rahman, R. K. Chakrabortty, and M. J. Ryan, ‘‘Managing
uncertainty and disruptions in resource constrained project schedul-
ing problems: A real-time reactive approach,’’ IEEE Access, vol. 9,
pp. 45562–45586, 2021.

[29] Z. Ma, Z. He, N. Wang, Z. Yang, and E. Demeulemeester, ‘‘A genetic
algorithm for the proactive resource-constrained project scheduling
problem with activity splitting,’’ IEEE Trans. Eng. Manag., vol. 66, no. 3,
pp. 459–474, Aug. 2019.

[30] J. Xiao,M.-L. Gao, andM.-M. Huang, ‘‘Empirical study of multi-objective
ant colony optimization to software project scheduling problems,’’ in Proc.
Annu. Conf. Genetic Evol. Comput., Jul. 2015, pp. 759–766.

[31] J. K. Lenstra and A. H. G. R. Kan, ‘‘Complexity of scheduling under
precedence constraints,’’ Operations Res., vol. 26, no. 1, pp. 22–35,
Feb. 1978.

[32] B. Crawford, R. Soto, F. Johnson, E.Monfroy, and F. Paredes, ‘‘Amax–min
ant system algorithm to solve the software project scheduling problem,’’
Expert Syst. Appl., vol. 41, no. 15, pp. 6634–6645, Nov. 2014.

[33] H.M. H. Saad, R. K. Chakrabortty, S. Elsayed, andM. J. Ryan, ‘‘Quantum-
inspired genetic algorithm for resource-constrained project-scheduling,’’
IEEE Access, vol. 9, pp. 38488–38502, 2021.

[34] Z. Ma, W. Zheng, Z. He, N. Wang, and X. Hu, ‘‘A genetic algorithm for
proactive project scheduling with resource transfer times,’’ Comput. Ind.
Eng., vol. 174, Dec. 2022, Art. no. 108754.

[35] Y. Liu, R. Li, and H. Liu, ‘‘Heuristic optimization for robust resource-
constrained flexible project scheduling problem,’’ IEEE Access, vol. 8,
pp. 142269–142281, 2020.

12990 VOLUME 12, 2024

K. Manousakis et al.: Practical Approach for Resource-Constrained Project Scheduling

[36] F. Mahmud, F. Zaman, A. Ahrari, R. Sarker, and D. Essam, ‘‘Genetic
algorithm for singular resource constrained project scheduling problems,’’
IEEE Access, vol. 9, pp. 131767–131779, 2021.

[37] Y. He, Z. He, and N. Wang, ‘‘Tabu search and simulated annealing for
resource-constrained multi-project scheduling to minimize maximal cash
flow gap,’’ J. Ind. Manage. Optim., vol. 17, no. 5, p. 2451, 2021.

[38] J. Chen, T. Li, Y. Zhang, T. You, Y. Lu, P. Tiwari, and N. Kumar,
‘‘Global-and-local attention-based reinforcement learning for cooperative
behaviour control of multiple UAVs,’’ IEEE Trans. Veh. Technol., early
access, 2024, doi: 10.1109/TVT.2023.3327571.

[39] PrimaVera: The Standard for Planning and Scheduling. Accessed: Sep. 4,
2023. [Online]. Available: https://www.oracle.com/industries/construction-
engineering/primavera-p6/

[40] Microsoft Project. Accessed: Sep. 4, 2023. [Online]. Available:
https://www.microsoft.com/en-us/microsoft-365/project/project-
management-software

[41] MJC2: Employee Scheduling Software. Accessed: Sep. 4, 2023. [Online].
Available: https://www.mjc2.com/

[42] MangoGem APS Optimizer. Accessed: Sep. 4, 2023. [Online]. Available:
https://www.mangogem.com/

[43] K. Manousakis and G. Ellinas, ‘‘Crosstalk-aware routing spectrum
assignment and WSS placement in flexible grid optical networks,’’
J. Lightw. Technol., vol. 35, no. 9, pp. 1477–1489, Mar. 13, 2017.

[44] Gurobi Optimizer Reference Manual. Accessed: Sep. 4, 2023. [Online].
Available: https://www.gurobi.com

KONSTANTINOS MANOUSAKIS (Senior Mem-
ber, IEEE) received the Diploma,M.Sc., and Ph.D.
degrees in computer engineering and informatics
from the University of Patras, Greece, in 2004,
2007, and 2011, respectively. He is currently a
Research Fellow with the KIOS Research and
Innovation Center of Excellence, University of
Cyprus. His research work has been published in
more than 65 top-tier journals and telecommuni-
cations conferences. His research interests include

optimization algorithms, heuristics and metaheuristics, resource allocation,
protection and restoration techniques, and techno-economic aspects of
communication networks.

GIANNIS SAVVA (Member, IEEE) received the
B.Sc. and Ph.D. degrees in electrical engineering
from the Department of Electrical and Com-
puter Engineering, University of Cyprus, Nicosia,
Cyprus, in 2017 and 2022, respectively. He is
currently a Research Associate with the KIOS
Research and Innovation Center of Excellence,
University of Cyprus. His research interests
include telecommunications, optimization algo-
rithms, heuristic and metaheuristic approaches,

resource allocation techniques, security and protection, network planning,
network coding, and physical layer security in optical networks.

NICOS PAPADOURI received the B.Sc. degree
in computer science with a minor in biomedi-
cal engineering from the University of Cyprus,
in 2020. His undergraduate thesis project focused
on developing an Android application to provide
cognitive assistance for elderly users. Currently,
he is a Software Engineer with the KIOS Research
and Innovation Center of Excellence, specializing
in web and mobile application development and
leveraging technologies, such as angular, react

native, and android development using Java and Django. With a passion for
enhancing user experiences, he strives to bridge the gap between technology
and user needs.

MICHALIS MAVROVOUNIOTIS received the
B.Sc. degree in computer science from the Univer-
sity of Leicester, U.K., in 2008, the M.Sc. degree
in natural computation from the University of
Birmingham, U.K., in 2009, and the Ph.D. degree
in computer science from the University of Leices-
ter, in 2013. He is currently a Researcher with
the Eratosthenes Centre of Excellence, Limassol,
Cyprus. He has more than 55 refered publications.
His research interests include evolutionary compu-

tation, swarm intelligence, memetic computing, combinatorial optimization
problems, artificial intelligence in dynamic and uncertain environments, and
relevant real-world applications. He is the Chair of the IEEE Task Force
on Evolutionary Computation in Dynamic and Uncertain Environments,
under the Evolutionary Computation Technical Committee of the IEEE
Computational Intelligence Society.

ATHANASIOS CHRISTOFIDES received the
Diploma degree in electrical engineering from
the National Technical University of Athens,
Greece, the M.Sc. degree in electrical engineer-
ing from The University of Texas at Austin,
the Diploma (master’s) degree in management
from the Mediterranean Institute of Management,
Cyprus. Furthermore, he was a Ph.D. candidate
with the Department of Electrical and Computer
Engineering, University of Cyprus, from 2006 to

2014. From 2006 to 2014, he was a member of the KIOS Research and
Innovation Center, carrying out research on the application of complex
networks theory in transparent mesh optical networks. He has been with
Cyta, the incumbent telecommunications operator in Cyprus, for the last
26 years, serving in various positions in networks, strategy, and IT. During
the last eight years, he has been amember of the IT Planning andArchitecture
Team, Cyta.

NEDI KOLOKOTRONI received the B.Sc. degree
in computer science from Iowa State University,
in 1986, and the M.B.A. degree from the Univer-
sity of New Haven, in 2000. She has been with
Cyta, the telecom incumbent operator in Cyprus,
for the last 33 years, where she is currently the
Head of the IT Business and Operations Support
Systems (BSS/OSS). She also served as the Head
of the IT Planning and Architecture, for the
previous eight years.

GEORGIOS ELLINAS (Senior Member, IEEE)
received the B.S., M.Sc., M.Phil., and Ph.D.
degrees in electrical engineering from Columbia
University. He was the Past Chair of the Depart-
ment of Electrical and Computer Engineering,
from 2014 to 2020. He is currently a Professor
with the Department of Electrical and Computer
Engineering and a Founding Member of the KIOS
Research and Innovation Center of Excellence,
University of Cyprus. Previously, he served as an

Associate Professor of electrical engineering with The City College of New
York, the Senior Network Architect with Tellium Inc., and a Research
Scientist with Bell Communications Research (Bellcore). His research
interests include telecommunication networks, intelligent transportation
systems, the IoT, and unmanned aerial systems.

VOLUME 12, 2024 12991

http://dx.doi.org/10.1109/TVT.2023.3327571

