
11

Cost-based Data Prefetching and Scheduling in Big Data

Platforms over Tiered Storage Systems

HERODOTOS HERODOTOU , Cyprus University of Technology, Cyprus

ELENA KAKOULLI , Neapolis University Pafos, Cyprus and Cyprus University of Technology, Cyprus

The use of storage tiering is becoming popular in data-intensive compute clusters due to the recent advance-
ments in storage technologies. The Hadoop Distributed File System, for example, now supports storing data
in memory, SSDs, and HDDs, while OctopusFS and hatS offer fine-grained storage tiering solutions. However,
current big data platforms (such as Hadoop and Spark) are not exploiting the presence of storage tiers and
the opportunities they present for performance optimizations. Specifically, schedulers and prefetchers will
make decisions only based on data locality information and completely ignore the fact that local data are now

stored on a variety of storage media with different performance characteristics. This article presents Trident,
a scheduling and prefetching framework that is designed to make task assignment, resource scheduling, and
prefetching decisions based on both locality and storage tier information. Trident formulates task scheduling
as a minimum cost maximum matching problem in a bipartite graph and utilizes two novel pruning algorithms
for bounding the size of the graph, while still guaranteeing optimality. In addition, Trident extends YARN’s
resource request model and proposes a new storage-tier-aware resource scheduling algorithm. Finally, Tri-
dent includes a cost-based data prefetching approach that coordinates with the schedulers for optimizing
prefetching operations. Trident is implemented in both Spark and Hadoop and evaluated extensively using a
realistic workload derived from Facebook traces as well as an industry-validated benchmark, demonstrating
significant benefits in terms of application performance and cluster efficiency.

CCS Concepts: • Information systems → Hierarchical storage management ; Distributed storage • The-

ory of computation → Scheduling algorithms;

Additional Key Words and Phrases: Distributed file systems, tiered storage, data prefetching, task scheduling

ACM Reference format:

Herodotos Herodotou and Elena Kakoulli. 2023. Cost-based Data Prefetching and Scheduling in Big Data
Platforms over Tiered Storage Systems. ACM Trans. Datab. Syst. 48, 4, Article 11 (November 2023), 40 pages.
https://doi.org/10.1145/3625389

1

B

a

w

M

a

A

e

a

e

T

©

0

h

 INTRODUCTION

ig data applications, such as web-scale data mining, online analytics, and machine learning,
re now routinely processing large amounts of data in distributed clusters of commodity hard-
are [32]. Distributed processing is managed by big data platforms such as Apache Hadoop
apReduce [8] and Spark [10], while cluster resources are managed by cluster managers such

s YARN [59] and Mesos [36], as shown in Figure 1 . Data are stored on distributed tiered
uthors’ addresses: H. Herodotou, Cyprus University of Technology, 30 Arch. Kyprianos Str., Limassol, Cyprus, 3036;

-mail: herodotos.herodotou@cut.ac.cy; E. Kakoulli, Neapolis University Pafos, Pafos, 2 Danais Avenue, Cyprus, 8042

nd Cyprus University of Technology, 30 Arch. Kyprianos Str., Limassol, Cyprus, 3036; e-mails: e.kakoulli@nup.ac.cy,

lena.kakoulli@cut.ac.cy.

his work is licensed under a Creative Commons Attribution International 4.0 License.

2023 Copyright held by the owner/author(s).

362-5915/2023/11-ART11

ttps://doi.org/10.1145/3625389

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

https://orcid.org/0000-0002-8717-1691
https://orcid.org/0000-0003-1489-807X
https://doi.org/10.1145/3625389
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3625389
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3625389&domain=pdf&date_stamp=2023-11-13

11:2 H. Herodotou and E. Kakoulli

Fig. 1. Ecosystems of big data platforms and contributions.

s

m

p

p

n

p

g

t

u

s

n

b

H

p

t

b

p

r

n

A

o

w

o

i

c

d

r

a

m

p

A

torage/file systems, where different storage media devices, such as non-volatile random-access
emory (NVRAM), solid-state drives (SSDs), and hard disk drives (HDDs), have a variety of ca-

acity and performance capabilities [44]. The Hadoop Distributed File System (HDFS) [50] is
erhaps the most popular distributed file system used with Hadoop and Spark deployments and
ow supports storing data in memory and SSD devices, in addition to HDD devices [29]. Octo-
usFS [40] and hatS [41] extended HDFS to support fine-grained storage tiering with new policies
overning how file blocks are replicated and stored across both the cluster nodes and the storage
iers. In addition, in-memory distributed file systems such as Alluxio [4] and GridGain [24] are
sed for storing or caching HDFS data in cluster memory.
Tiered storage is advantageous for balancing capacity and performance requirements of data

torage and is becoming increasingly important, because the bandwidth of the interconnection
etwork in clusters keeps increasing (and headed toward InfiniBand); hence, the execution time
ottleneck of applications is shifting toward the I/O performance of the storage devices [6 , 46].
owever, current big data platforms are not exploiting the presence of storage tiers and the op-
ortunities they present for optimizing both application performance and cluster utilization. In
his work, we identify two such key opportunities: (1) take advantage of the fact that data may
e stored on different tiers to optimize task and resource scheduling decisions and (2) proactively
refetch data to higher storage tiers to overlap data transfers with computation.
One of the most important components of big data platforms is their scheduler , which is

esponsible for scheduling the application tasks to the available resources located on the cluster
odes, since it directly impacts the processing time of tasks and resources utilization [23 , 51].
 plethora of scheduling algorithms have been proposed in recent years for achieving a variety
f complementary objectives such as better resource utilization [39 , 48 , 57], fairness [38 , 60],
orkload balancing [17 , 58], and data management [1 , 5 , 66]. One of the key strategies toward
ptimizing performance, employed by almost all schedulers regardless of their other objectives,
s to schedule the tasks as close as possible to the data they intent to process (i.e., on the same
luster node). In the past, scheduling such a data-local task meant the task would read its input
ata from a locally attached HDD device. In the era of tiered storage, however, that task might
ead data from a different storage media such as memory or SSD. Hence, the execution times of
 set of data-local tasks can vary significantly depending on the I/O performance of the storage
edia that each task is reading from.
Data prefetching has been used in the past as an effective way to improve data locality by

roactively transferring input data to cluster nodes where non-local tasks would be executed [52 ,
CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

Cost-based Data Prefetching and Scheduling in Big Data Platforms 11:3

6

r

[

b

t

F

p

d

S

r

p

s

a

a

p

t

m

n

p

S

s

o

w

t

a

i

R

m

u
4]. Data prefetching is carried out concurrently with data processing, thereby hiding the latency
esulting from network communication or disk operations and improving application performance
 25]. When tiering is involved, prefetching can also improve the performance of data-local tasks
y proactively loading input data in memory before the task starts execution. Despite its advan-
ages, prefetching poses serious challenges to system designers on where and when to prefetch.
irst, it is challenging to generate accurate prefetching requests for non-local tasks as that requires
redicting where a non-local task will be launched, which is hard to do, as scheduling decisions
epend on the current status of the running applications as well as the available cluster resources.
econd, it is crucial to ensure the timeliness of prefetching, i.e., that the prefetched data blocks are
eady before they are accessed [64]. Otherwise, there is a risk of wasting time and resources by
refetching data that will not be used.
Very few works address (fully or partly) the scheduling and prefetching problems over tiered

torage. In the presence of an in-memory caching tier, some systems like PACMan [7], BigSQL [21],
nd Quartet [19] will simply prioritize scheduling memory-local tasks over data-local tasks (as they
ssume that only two tiers exist). H-Scheduler [46] is the only other storage-aware scheduler im-
lemented for Spark over tiered HDFS. H-Scheduler employs a heuristic algorithm for scheduling
asks to available resources that, unlike our approach, does not guarantee an optimal task assign-
ent. With regards to prefetching, all existing approaches focus only on prefetching input data for
on-local tasks. FlexFetch [64] pre-executes the Hadoop MapReduce scheduler ahead of time to
redict where and when future non-local tasks will need to read input remotely, while HPSO [52],
ADP [13], and CHCDLOS [42] try to predict the most appropriate nodes to which future tasks
hould be assigned by estimating the completion time of tasks. The existing approaches, unlike
urs, do not generalize data prefetching to also optimize data-local tasks and do not coordinate
ith the scheduler to ensure that prefetched data will be accessed by the scheduled tasks.
In this article, we introduce a scheduling and prefetching framework that can exploit the storage

ype information provided by the underlying tiered storage system for making optimal scheduling

nd prefetching decisions in both a locality-aware and a storage-tier-aware manner . The framework
s modularized in three components as visualized in Figure 1 , namely the Trident Task Scheduler ,
esource Scheduler , and Data Prefetcher , which together can significantly boost application perfor-
ance and cluster utilization. More concretely, our contributions are as follows:

(1) We formulate the problem of task scheduling over tiered storage as a minimum cost max-
imum matching problem in a bipartite graph and introduce two pruning algorithms for
reducing the scheduling time by up to an order of magnitude without affecting the opti-
mality of the solution.

(2) We extend YARN’s cluster resource request model with a general notion of locality
preferences to account for storage tiers and propose a new storage-tier-aware resource
scheduling algorithm.

(3) We introduce a new storage-tier-aware data prefetching approach that utilizes cost mod-
eling and coordinates with the task and resource schedulers to ensure the timeliness and
accuracy of the prefetching operations.

(4) We implemented the Trident scheduling and prefetching components in both Apache
Spark and Apache Hadoop, showing the generality and practicality of our approach.

(5) We performed an extensive evaluation using a realistic workload derived from Facebook
traces as well as an industry-validated benchmark, showcasing significant benefit for both
application performance and cluster efficiency.

This article builds upon our previous work [34] that formally defined the problem of task sched-
ling over tiered storage and proposed the storage-tier-aware task scheduling approach presented
ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

11:4 H. Herodotou and E. Kakoulli

Fig. 2. Example of (i) block replication across cluster nodes and storage media in a tiered storage system

and (ii) parallel task execution in a processing platform over tiered storage. Each task T i processes the cor-

responding block B i . Task T 1 is memory-local, T 2 is rack-local, and T 3 is SSD-local.

i

d

t

t

s

r

S

2

D

i

n

u

s

i

t

t
w

d

w

c

w

b

2

A

t

r

A

A

n Section 2 . This article extends to resource scheduling over tiered storage in Section 3 (partly
iscussed in Reference [34]) and adds a new data prefetching component presented in Section 4 ,
hereby presenting a comprehensive solution to exploiting storage tiers in big data platforms.

Outline. The rest of this article is organized as follows. Sections 2 , 3 , and 4 present our solutions
o the task scheduling, resource scheduling, and data prefetching problems over tiered storage, re-
pectively. Section 5 discusses the implementation details for Spark and Hadoop, while Section 6
eviews prior related work. Section 7 describes the evaluation methodology and results, and
ection 8 concludes the article.

 TASK SCHEDULING OVER TIERED STORAGE

istributed file systems, such as HDFS [50] and OctopusFS [40], store data as files that are split
nto large blocks (128 MB by default). The blocks are replicated and distributed across the cluster
odes and stored on locally attached HDDs. When tiering is enabled on HDFS or OctopusFS is
sed, the block replicas can be stored on storage media of different type. For example, Figure 2
hows how three blocks (B 1 –B 3) are stored across four nodes (N 1 –N 4), with some replicas residing
n memory, SSDs, or HDDs. HDFS and OctopusFS are actively maintaining all block locations at
he level of nodes and storage tiers.

Data processing platforms, such as Hadoop and Spark, are responsible for allocating resources
o applications and scheduling tasks for execution. In the example of Figure 2 , assuming task T i

ants to process the corresponding data block B i , the task scheduler was able to achieve two
ata-local tasks (T 1 and T 3) and one rack-local task (T 2). When the storage tiers are considered,
e can further classify the tasks T 1 and T 3 as memory-local and SSD-local, respectively. While

urrent task schedulers only take into account data locality during their decision-making process,
e argue (and show) that considering the storage tiers is crucial for taking full advantage of the
enefits offered by tiered storage.

.1 Problem Definition

 typical compute cluster consists of a set of nodes N = { N 1 , . . . , N r } arranged in a rack network
opology. The cluster offers a set of resources R = { R 1 , . . . , R m

} for executing tasks. A resource
epresents a logical bundle of physical resources (e.g., 〈 1 CPU, 2 GB RAM 〉), such as a Container in
pache YARN, an Executor slot in Spark, or a Resource offer in Apache Mesos, and it is bound to a
CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

Cost-based Data Prefetching and Scheduling in Big Data Platforms 11:5

p

a

N

a

t

l

s

t

r

p

t

t

a

a

d

f

l
i

t

c

c

d

f

E

m

p

c

s

o

S

s

c
articular node. Resources are dynamically created based on the availability of physical resources
nd the requirements of the tasks. For each resource R j , we define its location as L(R j) = N k , where
 k ∈ N . Finally, a set of tasks T = { T 1 , . . . , T n } require resources for executing on the cluster.
In a traditional big data environment (i.e., in the absence of tiered storage), each task contains

 list of preferred node locations based on the locality of the data it will process. For example, if a
ask will process a data block that is replicated on nodes N 1 , N 2 , and N 4 , then its list of preferred
ocations contains these three nodes. However, when the data are stored in a tiered storage system
uch as OctopusFS or tiered HDFS, the storage tier of each block is also available. Hence, we define
he task’s preferred locations P (T i) = [〈 N k , p

i
k
〉] as a list of pairs, where the first entry in a pair

epresents the node N k ∈ N and the second entry p i
k
∈ R represents the storage tier. We define

i
k

as a pre-defined numeric score that represents the cost of reading the data from that storage
ier. Hence, the lower the score the better for performance. Various metrics can be used for setting
he scores but their absolute values are not as important as representing the relative performance
cross the tiers. For example, if the I/O bandwidth of memory, SSD, and HDD media is 3,200, 400,
nd 160 MB/s, respectively, then the scores 1, 8, and 20 would capture the relative cost of reading
ata from those three tiers.
Scheduling a task T i on a resource R j will incur an assignment cost C based on the following cost

unction:

C (T i , R j) =
⎧ ⎪ ⎪ ⎨

⎪ ⎪

⎩

p i
k

if L(R j) = N k in P (T i)
c 1 + p

i
k

if L(R j) in the same rack as some N k in P (T i)
c 2 otherwise (with c 2 � c 1)

. (1)

According to Equation (1), if the location of resource R j is one of the nodes N k in T i ’s preferred
ocations, then the cost will equal the corresponding tier preference score p i

k
. Alternatively, if R j

s on the same rack as one of the nodes N k in T i ’s preferred locations, then the cost will equal
he corresponding preference score p i

k
plus a constant c 1 , which represents the network transfer

ost within a rack. Otherwise, the cost will equal a constant c 2 , representing the network transfer
ost across racks. The inter-rack network cost is often much higher than the intra-rack cost and
warfs the local reading I/O cost; hence, we do not add a preference score to c 2 in our current cost
unction. For modern clusters that use Remote Direct Memory Access (RDMA) over commodity
thernet (RoCEv2) for intra data center communication [26], the preference score c 2 can be set
uch closer to c 1 and the cost function can be adjusted to also add the tier-based preference score

i
k

. In general, the cost function can be easily adjusted to represent the task-to-resource assignment
ost for a particular environment without affecting the task scheduling problem formulation or
olution approach.

Using the above definitions, the task scheduling problem can be formulated as a constrained
ptimization problem:

Minimize

∑

(T i ,R j)∈T ×R

x i, j C (T i , R j) (2)

ubject to x i, j = {0 , 1 } , ∀ (T i , R j) ∈ T × R

∑

R j ∈R

x i, j = 1 , ∀ T i ∈ T

∑

T i ∈T
x i, j = 1 , ∀ R j ∈ R.

The goal is to find all assignments (i.e., 〈 T i , R j 〉 pairs) that will minimize the sum of the corre-
ponding assignment costs. The variable x i, j is 1 if T i is assigned to R j and 0 otherwise. The second
onstraint guarantees that each task will only be assigned to one resource, while the last constraint
ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

11:6 H. Herodotou and E. Kakoulli

Table 1. List of Notations

Notation Explanation

N k ∈ N A node N k from a set of nodes N

T i ∈ T A task T i from a set of tasks T

R j ∈ R A resource R j (container/slot) from a set of resources R
L(R j) Location (i.e., node) of resource R j

P (T i) List with preferred locations (i.e., 〈 N k , p
i
k
〉 pairs) of task T i

p i
k

Storage tier preference score for task T i on node N k

c 1 Network transfer cost within a rack

c 2 Network transfer cost across racks
C (T i , R j) Cost of scheduling task T i on resource R j

d Default replication factor of the underlying file system

g

t

m

s

s

2

T

v

t

h

i
i

e

A

s

e

i

p

t

l

(

i

S

w

v

b

f

o

A

uarantees that each resource will only be assigned to one task. The above formulation requires
hat the number of tasks n equals the number of resources m. If n < m, then the third constraint
ust be relaxed to

∑

T i ∈T x i, j ≤ 1 (i.e., some resources will not be assigned), while if n > m, the
econd constraint must be relaxed to

∑

R j ∈R

x i, j ≤ 1 (i.e., some tasks will not be assigned). Table 1
ummarizes the notation used in this section.

.2 Minimum Cost Maximum Matching Formulation

he task scheduling problem defined above can be encoded as a bipartite graph G = (T , R, E). The
ertex sets T and R correspond to the tasks and resources, respectively, and together form the ver-
ices of graph G. Each edge (T i , R j) in the edge set E connects a vertex T i ∈ T to a vertex R j ∈ R and
as a weight (or cost) as defined in Equation (1). The constrained optimization problem formulated

n Equation (2) is equivalent to finding a maximum matching M = { (T i , R j)} with (T i , R j) ∈ T × R
n the bipartite graph G that minimizes the total cost function,

∑

(T i ,R j)∈M

C (T i , R j). (3)

By definition, a matching is a subset of edges M ⊆ E such that for all vertices v in G, at most one
dge of M is incident on v . Hence, at most one task will be assigned to one resource and vice versa.
 maximum matching is a matching of maximum cardinality, i.e., it contains as many edges as pos-

ible. Since any task can potentially be assigned to any resource, maximum matching will contain
ither all tasks or all resources, depending on which set is smaller. Hence, the constraints listed
n Equation (2) are all satisfied. Consequently, by solving the minimum cost maximum matching
roblem on G, we are guaranteed to assign as many tasks as possible to resources and to attain
he lowest total assignment cost possible.

Figure 3 illustrates an example with three tasks (T 1 –T 3) and four available resources (R 1 –R 4)
ocated on three distinct nodes (N 1 , N 2 , N 4). Each task T i has a list of three preferred locations
i.e., 〈 node, tier 〉 pairs) according to the storage location of the corresponding data block B i shown
n Figure 2 . For ease of reference, each tier preference score is indicated using the constants M ,
, and H , corresponding to the memory, SSD, and HDD tiers of the underlying storage system,
ith M < S < H . Note that the definition of the preference score in Section 2.1 allows for variable
alues in case the cluster contains heterogeneous storage devices (e.g., SSDs with different I/O
andwidth on different nodes). The created bipartite graph with seven vertices (three for tasks and
our for resources) is also visualized in Figure 3 . Each edge corresponds to a potential assignment
f a task to a resource and is annotated with the cost computed using Equation (1). The goal of
CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

Cost-based Data Prefetching and Scheduling in Big Data Platforms 11:7

Fig. 3. Example of three tasks with preferred locations, four available resources with their location, and the

corresponding bipartite graph. M , S , and H represent the tier preference scores (or costs) for memory-, SSD-,

and HDD-local assignments, respectively, while c 1 represents the network transfer cost within the rack. The

yellow highlighted edges represent the optimal task assignments.

t

m

o

a

m

w

b

t
F

w

a

e

w

s

n

a

t

r

a

t

t

w

2

A

w

c

a
ask scheduling in this example is to select the three edges that form a maximum matching and
inimize the total cost. The optimal task assignment (see highlighted edges in Figure 3) consists

f two memory-local tasks (T 1 on R 1 and T 3 on R 3) and one SSD-local task (T 2 on R 4).
Several standard solvers can be used for solving the minimum cost maximum matching problem

nd finding the optimal task assignment, including the Simplex algorithm, the Ford–Fulkerson
ethod, and the Hungarian Algorithm [18]. While the Simplex algorithm is known to perform
ell for small problems, it is not efficient for larger problems, because its pivoting operations
ecome expensive. Its average runtime complexity is O (max (n, m) 3), where n is the number of
asks and m is the number of resources, but has a combinatorial worse case complexity. The Ford–
ulkerson method requires converting the problem into a minimum cost maximum flow problem,
ith complexity O ((n +m)nm) in this setting. We have chosen to use the Hungarian Algorithm ,

s it runs in a strongly polynomial time with low hidden constant factors, which makes it more
fficient in practice. Specifically, its complexity is O (nmx + x 2 lg (x)) , where x = min (n, m). Below,
e introduce two vertex pruning algorithms that reduce the complexity to O (min (n, m) 3), while

till guaranteeing an optimal solution. Approximation algorithms are also available for finding a
ear-optimal solution with a lower complexity [20]. However, the scheduling time of the overall
pproach is so low (as evaluated in Section 7.5) that we opted for finding the optimal solution with
he Hungarian Algorithm.

In many cases, the number of tasks ready for execution does not equal the number of available
esources. For example, a small job executing on a large cluster will have much fewer tasks than
vailable resources, while a large job executing on a small or busy cluster will have much more
asks than available resources. Next, we describe two algorithms for pruning excess resources or
asks that reduce the graph size and lead to a more efficient execution of the Hungarian Algorithm,
ithout affecting the optimality of the solution .

.3 Excess Resource Pruning Algorithm

lgorithm 1 shows the process of computing and pruning the available resources in a cluster, which
ill then be used for building the bipartite graph and making the task assignments. The input

onsists of a list of tasks and a list of resource sets. A resource set represents a bundle of resources
vailable on a node, which can be divided into resources (i.e., containers or slots) for running the
ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

11:8 H. Herodotou and E. Kakoulli

ALGORITHM 1 : Compute and prune available resources

1: procedure ComputeResources (tasks[] , resourceSets[])
2: resources = ∅ � List of available resource slots
3: if totalAvailableSlots (resourceSets) ≥ d × tasks. length then

4: nodesToTasks = ∅ � Map node to local task count
5: for each T i in tasks do

6: for each N k in P (T i) do

7: nodesToTasks . get (N k). increment

8: for each S j in resourceSets do

9: if nodesToTasks . contains (S j . node) then

10: availSlots = computeAvailableSlots (S j)
11: localTasks = nodesToTasks . get (S j . node)
12: maxSlots = min { availSlots , localTasks }
13: add maxSlots entries to resources

14: if resources. length ≥ tasks. length then

15: return resources � Found enough resources

16: for each S j in resourceSets do

17: availSlots = computeAvailableSlots (S j)
18: add availSlots entries to resources

19: return resources � Return all available resource slots

t

s

o

F

l

f

o

c

t

p

i

r

a

(

s

v

t

F

H

p

N

h

s

l

w

r

e

A

asks. The pruning of excess resources is enabled when the total available slots across all resource
ets is d times higher than the number of tasks (line 3), where d is the default replication factor
f the file system. The rationale for this limit will be explained after the algorithm’s description.
irst, the lists with the preferred locations of all tasks are traversed for counting the number of
ocal tasks that can potentially be executed on each node (lines 4–7). The counts are stored in a map
or easy reference. Next, each resource set S j is considered (line 8). If S j can be used to run at least
ne data-local task (line 9), then we need to compute the maximum number of slots (maxSlots) that
an be created from S j for running data-local tasks. maxSlots will equal the minimum of (a) the
otal number of available slots from S j and (b) the number of tasks that contain S j ’s node in their
referred locations list (lines 10–12). Finally, maxSlots entries (i.e., resource slots from S j) are added
n the list of available resources (line 13). After traversing all resource sets, if the list of available
esources has more entries than tasks, then the list is returned and the process completes (lines 14
nd 15). Otherwise, resource slots for all remaining available resources are added in the result list
lines 16–18). This final step (lines 16–18) is also performed when the number of total available
lots is less than d times the number of tasks for returning all available resources. Algorithm 1 is
ery efficient with a linear complexity of O (n +m), where n is the number of tasks and m is the
otal number of available resources.

Suppose 3 tasks are ready for execution and their preferred locations are as shown in Figure 4 .
urther, the cluster consists of 6 nodes (N 1 –N 6), each with enough resources to create 3 slots.
ence, there are a total of 18 available slots and the pruning will take place. First, the number of
ossible data-local tasks will be computed as {N 1 : 2 , N 2 : 2 , N 3 : 2 , N 4 : 3 }. For the resource set of
 1 , even though there are 3 available slots, only 2 will be added in the result list as only 2 can
ost data-local tasks. The same is true for the resource sets of N 2 and N 3 . For N 4 , all 3 available
lots will be added in the result list. Finally, since N 5 and N 6 do not appear in the tasks’ preferred
ocations, no slots will be added in the result list. Overall, only 9 of the 18 possible resource slots
ill be considered for the downstream task assignments. In fact, even if the number of available

esource slots were much higher, 9 is the largest number of slots this process will return for this
xample. In general, n tasks and m resources (with n �m) will lead to a graph with n +m vertices
CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

Cost-based Data Prefetching and Scheduling in Big Data Platforms 11:9

Fig. 4. Example of the excess resource pruning Algorithm 1 with 3 tasks and 18 available resources. Lines

connecting tasks with nodes indicate potential data-local tasks. The darker and yellow-highlighted resources

represent the selected resources; the others are pruned.

a

t

t

t

p

l

b

a

a

m

t

2

A

I

d

g

(

c

i

(

a

t

w

s
nd nm edges without pruning, but only (1 + d)n vertices and d n

2 edges with pruning, showcasing
hat a massive pruning of excess resources is possible for small jobs .

Next, consider a different example where the same three tasks (with the same preferred loca-
ions) are present but only two slots are available on each of the nodes N 1 –N 4 . If pruning were to
ake place (lines 3–15), then all eight slots would be added in the result list, rendering the pruning
rocess pointless. This behavior is expected, since each task will typically have three preferred

ocations (since each file block has three replicas by default) spread across several nodes. Hence,
y enabling pruning only when the number of available slots is greater than d times the tasks, we
void going through a pruning process that will have no to little benefits.

Even though a large number of available resources may be pruned, the optimality of the task

ssignments is still guaranteed , because (a) the excluded resources cannot lead to data-local assign-
ents and (b) the retained resources that can lead to data-local assignments are more than the

asks. Hence, the excluded resources would not have appeared in the final task assignments.

.4 Excess Task Pruning Algorithm

lgorithm 2 shows the process of pruning excess tasks in the presence of few available resources.
n particular, pruning is enabled when the number of tasks ready for execution is higher than

times the total number of available resources (line 2). The rationale is similar to before: Avoid
oing through the process of pruning tasks when pruning is not expected to significantly reduce
if any) the number of tasks. When pruning is enabled, the available resources are traversed for
ollecting the set of distinct nodes (resourceNodes) they are located on (lines 3–5). Next, each task
s added in the result list only if at least one of its preferred locations is contained in resourceNodes

lines 7–9). If the selected tasks are more than the available resources, then the result list is returned
nd the process completes (lines 10 and 11). In the opposite case, or when pruning is not enabled,
he list with all tasks is returned (line 12). Similarly to Algorithm 1 , Algorithm 2 is also very efficient
ith a linear complexity of O (n +m).
Continuing with the example with the three tasks (recall Figure 3), suppose that only one re-

ource slot is available on node N 2 as shown in Figure 5 . In this case, only tasks T 1 and T 3 will
ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

11:10 H. Herodotou and E. Kakoulli

Fig. 5. Example of the excess task pruning Algorithm 2 with three tasks and one available resource. Lines

connecting tasks with nodes indicate potential data-local tasks. The darker and yellow-highlighted tasks (T 1 ,
T 3) represent the selected tasks; the other task (T 2) is pruned.

ALGORITHM 2 : Prune tasks available for execution

1: procedure PruneTasks (tasks[] , resources[])
2: if tasks. length ≥ d × resources. length then

3: resourceNodes = ∅ � Set of nodes with resources
4: for each R j in resources do

5: resourceNodes . add (L(R j))

6: selectedTasks = ∅ � List of selected tasks
7: for each T i in tasks do

8: if resourceNodes . containsAny (P (T i)) then

9: selectedTasks . add (T i)

10: if selectedTasks. length ≥ resources. length then

11: return selectedTasks � Found enough tasks

12: return tasks � Return all tasks

b

b

(

A

3

D

c

a

u

d

N

t

n

3

F

t

t

t

A

e included in the selected tasks list as they record N 2 in their preferred locations; task T 2 will
e excluded. The optimality of the task assignments is safeguarded, because the excluded tasks
which cannot lead to data-local assignments) would have never been selected by the Hungarian
lgorithm, since there are still more (data-local) tasks than available resources.

 RESOURCE SCHEDULING OVER TIERED STORAGE

istributed processing applications running on Hadoop MapReduce or Spark will typically share
luster resources via negotiating resources with a cluster resource management framework such
s Apache Hadoop YARN [59] or Mesos [36]. In this work, we focus on YARN, as it is widely
sed by both MapReduce and Spark applications. YARN follows a master/worker architectural
esign, where a Resource Manager is responsible for allocating resources to applications and
ode Managers running on each cluster node are responsible for managing the user processes on

hose nodes. Allocated resources have the form of Containers , which represent a specification of
ode resources (e.g., CPU cores, memory).

.1 Current Resource Scheduling

igure 6 shows the overall application flow over YARN. When a MapReduce or Spark applica-
ion submits a job for execution 1 ©, an Application Master (AM) is launched 2 © for managing
he job’s lifecycle, negotiating resources from the Resource Manager (RM) , and working with
he Node Managers (NMs) to execute and monitor the tasks. First, the AM creates a set of
CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

Cost-based Data Prefetching and Scheduling in Big Data Platforms 11:11

Fig. 6. Overall application flow over time when cluster resources are managed by Hadoop YARN (for ei-

ther MapReduce or Spark applications). Prefetching flow is also depicted over a tiered-enabled HDFS or

OctopusFS.

r

q

t

s

t

c

l

a

o

o

i

a

s

f

c

fi

n

a

t

3

G

F

f

t

c

esource requests 3 © based on the input data to process and the tasks to execute. A resource re-
uest contains the following [59]:

(1) number of containers;
(2) resources per container (e.g., 1 CPU, 2 GB RAM);
(3) a locality preference (either a host name, a rack name, or ‘ ∗’); and

(4) a priority within the application (e.g., map or reduce).

The AM uses heartbeats (every 1 second by default) to send the requests to the RM and to receive
he allocated containers. The RM also receives periodic heartbeats from NMs containing their re-
ource availability. Upon a node heartbeat, the RM uses a pluggable Resource Scheduler to allocate
he node resources to applications. The order of applications and the amount of resources to allo-
ate to each one depend on the type of scheduler (e.g., First In First Out (FIFO) vs. Fair). Data
ocality is taken into account only when it is time to allocate resources to a particular application
t a specific request priority. At that point, the scheduler tries to allocate data-local containers;
ther wise, rack-local containers; other wise, remote ones. The current schedulers also support the
ption of doing the allocations asynchronously (e.g., every 100 ms) based on all available resources
n the cluster but do so in the same manner as described above.

Upon a heartbeat from an AM, the RM returns the allocated containers 4 ©. The AM will then
ssign tasks to the allocated containers while taking data locality into account following the same
trategy as above: first data-local, then rack-local, then remote. Next, the tasks are sent to the NMs
or execution 5 ©. When the number of tasks to execute is greater than the number of available
ontainers, multiple waves of parallel tasks will get executed. In this case, whenever some tasks
nish execution, the AM is notified 6 ©, and upon the next heartbeat with the RM 7 ©, it will receive
ew resource allocations 8 ©. The AM will then assign tasks to the allocated containers as before
nd send them for execution at the NMs 9 ©. When all tasks finish execution 10 ©, the AM will
erminate ©11 , and the application will be notified about the job completion ©12 .

.2 YARN’s Resource Request Model Extension

iven a list of tasks with preferred locations, the AM will generate the resource requests as follows.
or each distinct node N (or rack R) that appears in the preferred locations, a request will be created
or N (or R), where the number of containers will equal the number of times N (or R) is found in
he preferred locations. Finally, a ‘ ∗’ (i.e., anywhere) request will be created, with the number of
ontainers equal to the number of tasks.
ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

11:12 H. Herodotou and E. Kakoulli

Fig. 7. Example of resource requests created based on preferred locations as well as allocated containers

after executing Algorithm 3 .

r

t

e

(

T

r

b

l

r

c

t

H

t

s

i

r

t

t

p

t

e

f

t

t

3

T

b

A

The current Resource Schedulers are oblivious to the underlying tiered storage, since YARN’s
esource requests do not include any storage tier preferences. To address this issue, we extend
he resource request model to include a new preference map in the resource request, which maps
ach tier preference score (recall Section 2.1) to the number of containers requested for that score
i.e, tier). Consider the example in Figure 7 containing three tasks with preferred locations. Tasks
 1 and T 2 list node N 1 in their preferred locations, which leads to the creation of one resource
equest for two containers on N 1 . The preference map will contain the entries {M : 1 , S : 0 , H : 1 },
ecause N 1 is paired with the score M for T 1 and with H for T 2 . Regarding node N 2 , the preferred
ocations for T 1 and T 3 contain the pairs 〈 N 2 , S〉 and 〈 N 2 , M〉 , respectively. Hence, the resource
equest for N 2 contains two containers, with preference map {M : 1 , S : 1 , H : 0 }. This information
an then be used by the scheduler for making better decisions. For example, instead of allocating
wo containers on N 1 (which would lead to two data-local containers, one memory-local, and one
DD-local), it would be better to allocate one container on N 1 and 1 on N 2 , which would lead to

wo memory-local containers.
When computing the preference map for a rack-local resource request, we only count the lowest

core (i.e., highest tier) for each task that is paired with nodes belonging to that rack. The rationale
s to match the default behavior of the underlying tiered storage systems that direct a rack-local
ead to the highest tier (with the lowest score). In the example in Figure 7 , all nodes belong to
he same rack (r 1) and the lowest scores for T 1 , T 2 , and T 3 are M , S , and M , respectively. Hence,
he preference map contains {M : 2 , S : 1 , H : 0 }. The same process is performed for computing the
reference map for the ‘ ∗’ (i.e., anywhere) request.
It is important to note that the current resource request model forms a “lossy compression of

he application preferences” [59], which makes the communication and storage of requests more
fficient, while allowing applications to express their needs clearly [59]. However, the exact pre-
erred locations of the tasks cannot be mapped from the resource requests back to the individual
asks. Hence, the Trident Resource Scheduler will follow a different scheduling approach rather
han using the Hungarian Algorithm, described next.

.3 Storage-tier-aware Resource Scheduling

he Resource Scheduler is responsible for allocating resources to the various running applications
y effectively making three decisions: (1) for which application to allocate resources next, (2) how
CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

Cost-based Data Prefetching and Scheduling in Big Data Platforms 11:13

m

a

f

m

h

t

c

r

v

b

a

a

T

e

c

i

a

N

i

t

n

f

w

9

e

a

c

A

p

t

c

n

fi

a

a

t

1

n

a

t

i

c

{

c

any resources to allocate to that application, and (3) which available resources (i.e., containers) to
llocate. The first two decisions are subject to various notions or constraints of capacities, queues,
airness, and so on [51]. For example, the Capacity Scheduler will select the first application of the
ost under-served queue and assign to it resources subject to that queue’s limit. Fair Scheduler,

owever, will select the application that is farthest below its fair share and assign resources up
o its share limit. Locality is only taken into consideration during the third decision, when a spe-
ific amount of available resources are allocated to a particular application. Hence, the Trident’s
esource allocation approach, which focuses only on the third decision, can be incorporated into a

ariety of existing schedulers , including FIFO, Capacity, and Fair, for making assignments based on
oth node locality and storage tier preferences.
Algorithm 3 shows Trident’s container allocation process, running in YARN’s Resource Man-

ger. The input is a list of resource requests submitted by an application (with a particular priority)
nd the number of maximum containers to allocate based on queue capacity, fairness, and so on.
he high level idea is to first build a list of potential containers to allocate based on locality pref-
rences and then allocate the containers with the lowest assignment cost. The total number of
ontainers is computed as the minimum of the total number of requested containers and the max-
mum allowed containers (line 3). Next, for each node-local resource request S n i that references
 particular cluster node N k (lines 4 and 5), we compute the number of available containers on
 k based on N k ’s available resources and S n i ’s requested resources per container (line 6) as done

n Apache YARN. The number of containers on N k (numConts) will equal the minimum between
he number of available containers and the number of requested containers in S n i (line 7). Finally,
umConts containers will be added in the list of potential containers (line 8). The assignment cost
or each container is also computed based on the preference map in S n i in procedure AddContainers ,
hich will be described later.
If the number of potential containers so far is less than the number of needed containers (line

), then a similar process is followed for the resource requests with rack locality. Specifically, for
ach rack-local resource request (line 10) and for each node in the corresponding rack (line 11), the
ppropriate number of containers is added in the list of potential containers (lines 12–14). In this
ase, the network cost c 1 is added to the assignment cost of each container (recall Equation (1)).
s soon as the number of needed containers is reached, the double for loop is exited for efficiency
urposes (lines 15 and 16). If the number of collected containers is still below the needed ones,
hen the remaining potential containers from random nodes are added in the list with assignment
ost equal to c 2 (lines 17 and 18).

Due to the aggregate form of the resource requests (recall Section 3.2), it is possible that the
umber of potential containers is higher than the needed containers (totalConts), even after the
rst loop iteration of node-local requests (lines 4–8). In common scenarios where data blocks
re replicated 3 times, this number will typically equal 3 times totalConts . This behavior is desir-
ble for considering all storage tier preferences of the requests. Hence, the last step is to select the
otalConts containers with the smallest assignment cost from the list of potential containers (lines
9 and 20). The sort on line 19 dominates the complexity of Algorithm 3 as O (klд(k)) , where k is the
umber of potential containers, which typically equals 3 times the number of requested containers.
The AddContainers procedure (also shown in Algorithm 3) is responsible for creating and adding

 number of potential containers on a node. The assignment costs for each container depend on the
ier preferences of the particular resource request. The key intuition of the algorithm (lines 22–30)
s to assign the lowest cost first as many times as it is requested. Next, assign the second lowest
ost as many times as requested, and so on. For example, suppose the preference map contains
M : 2 , S : 3 , H : 1 } and three containers are needed. The three corresponding assignment costs to
ontainers will equal M , M , and S .
ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

11:14 H. Herodotou and E. Kakoulli

ALGORITHM 3 : Allocate containers in a storage-tier-aware manner

1: procedure AllocateContainers (requests[] , maxContainers)
2: containers = ∅ � List of potential containers
3: totalConts = min { getTotalContainers (requests), maxContainers }
4: for each node-local request S n

i
in requests do

5: N k = getNode (S n
i

)
6: availConts = computeAvailableContainers (N k , S

n
i

)
7: numConts = min { availConts , S n

i
. numContainers }

8: addContainers (containers , numConts , N k , S
n
i
, 0)

9: if containers. length < totalConts then

10: for each rack-local request S r
i

in requests do

11: for each N k in getNodes (S r i) do

12: availConts = computeAvailableContainers (N k , S
r
i

)
13: numConts = min { availConts , S r

i
. numContainers }

14: addContainers (containers , numConts , N k , S
r
i
, c 1)

15: if containers. length ≥ totalConts then

16: break double for loop

17: if containers. length < totalConts then

18: add remaining containers to containers with cost c 2

19: sort (containers) � Sort containers on assignment cost
20: return containers . take (totalConts)

21: procedure AddContainers (containers , numConts , node , request , rackCost)
22: iter = request . preferenceMap . getSortedIterator ()
23: currCount = 0
24: for i = 0 to numConts do

25: if currCount == 0 then

26: currEntry = iter . next

27: currCost = currEntry . getKey

28: currCount = currEntry . getValue

29: containers . add (Container (node , currCost + rackCost))
30: currCount = currCount − 1

p

r

t

p

o

c

f

t

r

t

p

4

D

d

d

A

Figure 7 shows a complete example with the resource requests generated based on the tasks
referred locations and the current available resources in a cluster with six nodes. The resource
equest on N 1 contains two containers, which can fit in the available resources of N 1 . Hence,
wo potential containers are created, one with cost M and one with cost H (per the request’s
reference map). The request on N 2 also asks for two containers but only one can fit there; thus,
ne container is created with cost M . There are no available resources on N 3 so no containers are
reated there. Finally, even though four containers can fit on N 4 , the corresponding request asks
or only three, which leads to the creation of three potential containers with costs S , S , and H . At
his point, the list of potential containers contains six entries, which are more than the three total
equested containers. Finally, this list is sorted based on increasing assignment cost and the first
hree containers are allocated to the application, leading to the best resource allocation based on
referred (node and storage tier) locality.

 COST-BASED DATA PREFETCHING

ata prefetching involves instructing the underlying storage system to proactively move or copy
ata into memory (or a higher storage tier) so that future application tasks can readily read their
ata from memory and speedup their execution. In this work, we take advantage of existing APIs
CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

Cost-based Data Prefetching and Scheduling in Big Data Platforms 11:15

t

p

D

a

b

©

s

n

i

r

I

r

p

v

t

l

t

s

j

(

s

F

t

t

4

T

a

a

d

t

e

a

i

w

t

d

d

(

b

f

e

n

b

t

n
hat many distributed file systems offer, including HDFS and OctopusFS, which allow users or ap-
lications to cache data into memory [28]. The overall prefetching flow is depicted in Figure 6 .
uring job submission, an application can also submit prefetching requests ©a to the file system,
nd specifically to the NameNode , which is the master node of HDFS (and OctopusFS) and responsi-
le for all metadata operations of the file system. The NameNode will then contact the DataNode(s)

b that host the block replicas and instruct them to cache the requested block(s). When a task is
cheduled for execution, it will read its input data directly from the DataNode. If the input data are
ot stored in the cache, then it will be read from the storage media storing the data ©c ; otherwise,

t will be read from the cache ©d . As observed in Figure 6 , data prefetching is carried out concur-
ently with task execution and other scheduling activities, leading to better resource utilization.
n addition, by fetching input data into memory in advance, the execution time of a job can be
educed effectively.

The key challenge in data prefetching is in deciding which data to prefetch to ensure that the
refetched data will indeed be read by the future application tasks. This decision depends on
arious factors, including the location (both node and tier) of the input data, the current clus-
er resources availability, as well as the decisions of the schedulers. Trident addresses this chal-
enge by employing a three-pronged approach. First, Trident utilizes cost models for simulating
he prefetching operations as well as the parallel execution of tasks on the cluster available re-
ources. These models enable Trident to investigate the impact of prefetching specific data to the
ob execution and are described in Section 4.1 . Second, Trident employs a novel algorithm that
i) identifies several candidate sets of files for prefetching and (ii) utilizes the models to find the
et of files to prefetch that will minimize the execution time of the job (presented in Section 4.2).
inally, all relevant prefetching information is relayed to the task and resource schedulers so that
hey can make informed decisions when scheduling current and future tasks, thereby maximizing
he use of prefetched data. This aspect is discussed in both Sections 4.1 and 4.2 when appropriate.

.1 Modeling of Data Prefetching and Task Execution

he models presented in this section can be used to determine the performance of a job when
 specific set of tasks is planned for execution over a specific set of available cluster resources
nd a specific set of input data is planned to be prefetched. For this purpose, two models are
eveloped: one that simulates the prefetching of input data on the underlying file system and one
hat simulates the parallel execution of tasks on available cluster resources. The models’ novelty,
fficiency, and accuracy come from how they use a mix of simulation and cost-based estimation
t the level of individual input data blocks and tasks.

Algorithm 4 presents the prefetching model. The input to the model is a list of blocks to prefetch
nto memory from specific source storage devices. This model will set the time when each block
ill become available in the cache. Given that prefetching happens using concurrent I/O threads

hat start about the same time, prefetching more than one block per source device will lead to
isk contention. Hence, unlike past modeling works (e.g., References [52 , 64]), our model takes
isk contention into consideration. The first step is to group the blocks based on the source device
line 2). Then, for each device, the blocks to be prefetched are retrieved and sorted on increasing
lock length (lines 3 and 4). Suppose that n blocks (numBlocks on Algorithm 4) will be prefetched
rom a specific device (line 5). At first, the n blocks will share the I/O bandwidth of the device
qually. The block with the smallest length, b 1 , is expected to complete prefetching first. The time
eeded for b 1 ’s prefetching will equal its length divided by its share of the bandwidth, i.e., total
andwidth BW divided by n (line 10). During this time, the other blocks have made equal progress
oward completion. Thus, the block with the second smallest length, b 2 , is expected to complete
ext, but its remaining length to be prefetched (line 9) will only compete with (n − 1) I/O threads
ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

11:16 H. Herodotou and E. Kakoulli

ALGORITHM 4 : Model the prefetching of input data blocks

1: procedure ModelPrefecthing (blocksToPref [])
2: blocksPerDevice = groupBySourceLoc (blocksToPref) � Map device to blocks
3: for each blocksList in blocksPerDevice . values () do

4: sort (blocksList) � Sort on increasing block length

5: numBlocks = blocksList . size ()
6: prevLength = currLength = 0
7: prevCacheTime = currCacheTime = 0
8: for each block in blocksList do � Compute cache time for each block
9: currLength = block. length − prevLength

10: currCacheTime = prevCacheTime +
numBlocks × currLength

BW [block. cacheSourceLoc. type]
11: block. cacheTime = TimeToInitCache + currCacheTime

12: prevLength = block. length

13: prevCacheTime = currCacheTime

14: numBlocks = numBlocks − 1

Fig. 8. Two examples of modeling prefetching (Algorithm 4) and task execution (Algorithms 5) when using

maximum caching degree of parallelism equal to (a) 1 and (b) 2. Each task T i is planned to process the

corresponding block B i . All blocks are stored on HDDs with bandwidth equal to 32 MB/s. Block sizes: B 1 =

128 MB , B 2 = 96 MB , B 3 = 128 MB , B 4 = 96 MB , B 5 = 64 MB .

(

t

c

a

t

r

r

p

m

a

f

s

o

A

line 14). Hence, the total time needed for b 2 ’s prefetching will equal the time to prefetch b 1 plus
he time to prefetch its remaining length (with the bandwidth divided by n − 1). The algorithm
ontinues in a similar fashion for all remaining blocks (lines 8–14) until it sets the cache times for
ll prefetched blocks. Note that in practice, the device bandwidth might not be shared equally all
he time across concurrent readers due to operating system scheduling. However, the data blocks
ead are typically very large (up to 128 MB), smoothing out any variations in I/O times across the
eaders. While linearly dividing the bandwidth among concurrent I/O threads is a reasonable sim-
lifying assumption in our work, this part can be easily extended with a more expressive storage
odel that captures modern devices, such as the Parametric I/O Model [47]. Finally, the model

lso accounts for a constant initialization time (TimeToInitCache) that represents the time needed
or scheduling prefetching requests and depends on the heartbeat intervals used between the file
ystem components (defaults to 1 second).

The bottom half of Figure 8 shows two examples of modeling prefetching. In Figure 8 (a), only
ne block is prefetched per storage device. For instance, suppose block B 3 has length 128 MB
CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

Cost-based Data Prefetching and Scheduling in Big Data Platforms 11:17

a

F

B

t

A

a

T

f

a

b

c

i

w

t

s

p

p

l

t

m

a

5

t

t

c

d

d

t

s

i

e

t

u

i

a

t
i

t

p

f

s

a

a

t

nd the device’s bandwidth is 32 MB/s. Hence, it will take 4 seconds for caching to complete. In
igure 8 (b), two blocks are prefetched from the second storage device; B 2 with length 96 MB and
 3 with length 128 MB. Thus, the effective bandwidth for prefetching B 2 is 16 MB/s, and B 2 will

ake 6 seconds to be prefetched. At the same time, the first 96 MB of B 3 will also be prefetched.
fter that, the remaining 32 MB of B 3 will utilize the full bandwidth and prefetching will complete
fter an additional 1 second.

Algorithm 5 shows the modeling of parallel task execution on the available cluster resources.
he input consists of a set of tasks submitted for execution (each to process an input data block), in-

ormation about the available cluster resources, and a delay time parameter that will be explained
t the end of the section. This method will set the expected start time and end time of each task
ased on the available resources and the storage type to read from. The number of tasks for exe-
ution is often larger than the number of available resource slots, causing the tasks to be executed
n multiple waves. To account for this fact, a min priority queue of slots is created to keep track of
hen each slot is becoming available for hosting the next task for execution (line 2). In addition,

he tasks are also placed in a min priority queue and the priority key is set to the tier preference
core (recall Section 2.1) to simulate the presence of a tier-storage-aware task scheduler. It is im-
ortant to note that a task planned to process a data block that is scheduled for prefetching (but
refetching has not completed yet) will get a tier preference score higher than the slowest tier but

ower than the rack-local cost (for example, a score between the HDD score H and the network
ransfer cost c 1). Once prefetching completes, the preference score will be adjusted to reflect the
emory tier. In this manner, a task scheduler will prioritize scheduling other data-local tasks first

nd leave the tasks with prefetched data to get scheduled later, after prefetching has completed.
For each task (taken in order of the tier preference score) and for each available slot (lines 4 and

), Algorithm 5 will first compute the start time of the task (lines 6–9). The start time depends on
he end time of the previous task executed on the current slot (if any) plus some constant times
hat represent the job initialization time (TimeToInit) and scheduling time (TimeToSchedule). Both
onstants are set based on the heartbeat intervals of the platform’s components and are set by
efault to 2 and 1 seconds, respectively. Next, the algorithm computes the task’s expected I/O
uration (lines 10–13). If the task will start execution after the caching of its block is completed,
hen the task will read the block from memor y; other wise, it will read the block from its base
torage device. For calculating the CPU processing time of a task, a simple linear regression model
s utilized as a function of the input data size, which is built based on a sample of previous task
xecution logs (line 14). More advanced models for estimating the task processing time, such as
he ones proposed in References [14 , 31 , 54], can be easily plugged in. The current slot is then
pdated with the tasks’ end time and placed back in the priority queue of slots to be used in future

terations of the loop (lines 15 and 16). Finally, the end time of the last task to complete is returned
s a proxy to the job execution time.

Figure 8 (a) shows an example of modeling the execution of five tasks (T 1 –T 5) on a node with
hree available slots, while two blocks (B 3 , B 4) are being prefetched. In this example, each task T i

s planned to process the corresponding block B i , and all five blocks are stored on HDDs. Initially,
he tasks T 1 , T 2 , and T 5 are scheduled for execution on the three available slots, because their tier
reference score is lower than the score of T 3 and T 4 (as there are pending prefetching operations
or the latter two tasks). In this manner, the scheduling of T 3 and T 4 is correctly deferred until
lots become available, allowing prefetching to complete. Once T 5 ends and the third slot becomes
vailable, T 3 is scheduled and processes its data from memory. Similarly, T 4 is finally scheduled
fter T 2 completes execution. Algorithm 5 will return the time 10, as that is the end time of the last
ask to complete (T 4).
ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

11:18 H. Herodotou and E. Kakoulli

ALGORITHM 5 : Model parallel execution of tasks on a cluster

1: procedure ModelExecution (tasks[] , clusterInfo , delayTime)
2: slotsQueue = PriorityQueue (clusterInfo. availSlots , 0) � Priority: task end time
3: tasksQueue = PriorityQueue (tasks , 0) � Priority: tier preference score
4: for each task in tasksQueue . poll () do

5: slot = slotsQueue . poll ()
6: if slot. prevTaskEndTime == 0 then

7: task. startTime = delayTime + TimeToInit + TimeToSchedule

8: else

9: task. startTime = slot. prevTaskEndTime + TimeToSchedule

10: if task. startTime > task . block . cacheTime then

11: ioTime = task . block . length / BW [Memory]
12: else

13: ioTime = task . block . length / BW [task . block . baseType]

14: task. endTime = task. startTime + ioTime + c p u T ime (task)
15: slot. prevTaskEndTime = task. endTime

16: slotsQueue . push (slot)

17: return getLastTaskEndTime (tasks) � Return end time of last task

t

s

c

F

w

p

c

m

a

4

I

b

m

i

t

a

t

t

F

w

w

d

c

b

f

s

A

The final parameter in Algorithm 5 is a delay time parameter, which can be added for delaying
he submission of the job, and thus delaying the execution of the first wave of tasks, to give the file
ystem more time to cache the data before the tasks start execution. This new (optional) feature
an be very useful in certain scenarios as it can allow some tasks to process prefetched data in time.
or example, suppose a fourth slot was available in the example of Figure 8 (a). In this case, task T 4

ould get scheduled to start at time 3, before the corresponding block completes prefetching. Thus,
refetching B 4 in memory is wasted. However, if the execution of T 4 is delayed by 1 second, then it
an start as soon as B 4 completes prefetching and read the data from memory. Whether (and how
uch) a delay is beneficial for the overall job execution is explored during the data prefetching

lgorithm presented next.

.2 Data Prefetching Algorithm

n this work, data prefetching is formulated as a cost-based optimization problem: Given a job to

e run on some input data and cluster resources, find the set of input data blocks to prefetch that will

inimize the execution time of the job . The key idea of our approach is to enumerate different sets of
nput data blocks to prefetch and then simulate the execution of tasks without and with prefetching
hose blocks, using the models presented in the previous section. During the enumeration, the
lgorithm keeps track of the prefetching set that led to the lowest job execution time. However,
he total number of possible subsets of input data blocks is exponential and thus very inefficient
o enumerate. Instead, the proposed enumeration process is based on two important observations.
irst, disk contention can significantly prolong the time needed for prefetching data into memory,
hich in turn increases the probability of scheduling tasks before prefetching completes (and thus
asting prefetching). At the same time, it is important to take advantage of the presence of multiple
isks across nodes and prefetch multiple blocks in parallel to maximize the number of tasks that
an process prefetched data. Therefore, the enumeration tries to generate the largest set of data
locks to prefetch, while each time respecting a limit on the maximum number of blocks to prefetch
rom each device, which we call the caching degree of parallelism (DoP) .

Algorithm 6 shows the approach for selecting a set of input data blocks to prefetch, while re-
pecting a specified maximum caching DoP. The input consists of a list of input data to consider,
CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

Cost-based Data Prefetching and Scheduling in Big Data Platforms 11:19

ALGORITHM 6 : Select input data blocks to prefetch that respect a caching degree of parallelism

1: procedure SelectBlocksForPrefetching (inputData[] , clusterInfo , maxCachingDoP)
2: numblocksPerDevice = ∅ � Map storage device to count
3: for each input in inputData do

4: for each block in input. blocks do

5: bestLoc = null

6: bestCacheRemain = 0
7: for each loc in block. locations do

8: cacheRemain = computeCacheRemain (clusterInfo , loc. node)
9: if b e s tLoc == nul l or l oc .type < b e s t Loc .t ype or

(loc .ty p e == b e s tLoc .ty p e and c ac he Re main > b e s tC ache Re main) then

10: bestLoc = loc

11: bestCacheRemain = cacheRemain

12: currCachingDoP = 1 + numblocksPerDevice . get (bestLoc)
13: if currCachingDoP ≤ maxCachingDoP then

14: block. cacheSourceLoc = bestLoc

15: numblocksPerDevice . put (bestLoc , currCachingDoP)
16: blocksToPref . add (block)

17: return blocksToPref

i

r

e

d

l

b

i

n

l

d

o

e

a

b

u

t

a

a

a

s

m

w

e

a

F

s

r

nformation about the available cluster resources, and the maximum caching DoP. This algorithm
eturns the input blocks to prefetch as well as sets the best location for caching each block. For
ach input data file and for each input block, the algorithm finds the best candidate cache location,
efined the location with the lowest storage type and the highest cache remaining space among the
ocations hosting the block replicas (lines 5–11). The rationale for this decision, which is also used
y HDFS and OctopusFS when caching data, is twofold: (1) to maximize the benefits from prefetch-
ng (by caching data located in low tiers) and (2) to balance the use of the cache across the cluster
odes. If the candidate cache location respects the maximum caching DoP, then it is set as a source

ocation for caching the block, while the block is added to the list of blocks to prefetch (lines 12–16).
Algorithm 7 outlines the overall data prefetching algorithm. The input consists of a list of input

ata to process, information about the available cluster resources, and the job configuration. The
utput is a list of the best blocks to prefetch and a potential delay time for optimizing the job
xecution time. The first step is to generate the list of tasks for execution based on the input data
nd the job configuration (line 2). Typically, each task will process one input data block, where each
lock is replicated across multiple nodes and storage tiers. The execution of tasks is then modeled
sing Algorithm 5 without prefetching any data to establish a baseline of execution (line 3). Next,
he algorithm enters a loop, where each time the maximum caching DoP increments by 1 (to try
ll relevant maximum caching DoP starting from 1), until a termination condition is met (lines 5
nd 6). The loop will terminate when either all input blocks are prefetched or when prefetching
ny more blocks will not lead to a reduced job execution time. In each iteration, the algorithm
elects a set of blocks to prefetch that respects the maximum caching DoP using Algorithm 6 ,
odels the prefetching of those blocks using Algorithm 4 , and then models the task execution
ith prefetching using Algorithm 5 (lines 7–9). In addition, if the optional delay time feature is

nabled, then the algorithm computes the execution delay time so that all tasks can start execution
fter prefetching has completed, and then models the task execution with that delay (lines 10–12).
inally, if prefetching with or without delay leads to a lower job execution time, then that particular
et of input blocks to prefetch as well as the computed delay time are maintained (lines 13–16) and
eturned at the end of the algorithm (line 17).
ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

11:20 H. Herodotou and E. Kakoulli

ALGORITHM 7 : Data prefetching algorithm

1: procedure PrefetchData (inputData[] , clusterInfo , conf)
2: tasks = GenerateTasks (inputData , conf)
3: bestJobTime = ModelExecution (tasks , clusterInfo , 0) � Without prefetching

4: bestBlocksToPref = ∅
5: while (checkTerminationCondition () == f als e) do

6: maxCachingDoP = maxCachingDoP + 1
7: blocksToPref = SelectBlocksForPrefetching (inputData , clusterInfo , maxCachingDoP)
8: ModelPrefetching (blocksToPref)
9: jobTimePref = ModelExecution (tasks , clusterInfo , 0) � With prefetching

10: if conf . isDelayTimeEnabled then

11: delayTime = max {0 , task . block . cacheTime − task. startTime | ∀ task ∈ tasks }
12: jobTimePrefDelay = ModelExecution (tasks , clusterInfo , delayTime)

13: if jobTimePref < bestJobTime or jobTimePrefDelay < bestJobTime then

14: bestBlocksToPref = blocksToPref

15: bestJobTime = min (jobTimePref , jobTimePrefDelay)
16: bestCacheDelay = (jobTimePrefDelay < jobTimePref) ? cacheDelay : 0

17: return

〈
bestBlocksToPref , bestCacheDelay

〉

c

(

s

b

fi

c

f

D

fi

e

l

m

d

i

t

S

t

a

c

f

5

T

H

A

Figure 8 shows an example with two iterations of the main loop of Algorithm 7 , when max
aching DoP is set to 1 and 2. In the first case, only one block from each HDD device is prefetched
 B 3 and B 4) and the two corresponding tasks (T 3 and T 4) are able to read the data from memory,
peeding up their execution, as well as the overall execution of the job. In the second case, four
locks are prefetched (B 2 –B 5), two per disk. Since there are only three slots available to run the
ve tasks, two tasks (namely T 2 and T 3) will start execution before the corresponding prefetching
ompletes and thus not benefit from it. The other two tasks (T 4 and T 5) will process prefetched data
rom memory, but the overall job execution suffers. Prefetching the fifth block when max caching
oP is set to 3 will also be wasteful and will not improve the job execution (not shown in the
gure). Note that without prefetching, all five tasks read the data from the HDDs and the total job
xecution time is 13 seconds. Hence, in this example, prefetching blocks B 3 and B 4 will lead to the
owest job execution time of 10 seconds.

Overall, the Trident Data Prefetcher is used to decide which input data blocks to prefetch into
emory for optimizing job execution time. Once the prefetching requests are submitted, the un-

erlying storage system keeps track of both pending and completed prefetch operations. This
nformation is exposed to higher-level platforms, including the Trident Task Scheduler, which will
ake it into consideration during scheduling, by adjusting the tier preference scores as discussed in
ection 4.1 . The Trident Resource Scheduler is also informed through the preference map of the ex-
ended resource request model presented in Section 3.2 . Therefore, instead of trying to predict how
 scheduler will behave for making prefetching decisions (like previous works), our approach uses
ost modeling for identifying the best input data blocks to prefetch and then uses the schedulers
or making appropriate scheduling decisions.

 TRIDENT IMPLEMENTATION

his section provides the implementation details of how Trident was implemented in both Apache
adoop and Spark, while emphasizing a few noteworthy points.
CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

Cost-based Data Prefetching and Scheduling in Big Data Platforms 11:21

5

A

a

a

m

a

Y

S

t

m

t

a

b

A

c

o

a

t

D

j

m

w

i

a

p

5

A

v

a

t

u

t

a

i

a

s

a

t

m

a

v

c

(
.1 Trident Implementation in Hadoop

s discussed in Section 3 , scheduling based on locality preferences in Hadoop actually takes place
t two distinct locations: (1) the RM for allocating containers to applications, and (2) the AM for
ssigning tasks to the allocated containers. Consequently, the Trident Resource Scheduler is imple-
ented as a pluggable component overriding the scheduling interface provided by Hadoop YARN

nd is running in the RM for making storage-tier-aware allocation decisions using Algorithm 3 .
ARN’s resource request model is also extended to include the preference map, as presented in
ection 3.2 .

Once the MapReduce AM receives a set of allocated containers, it needs to assign tasks to
hem. The Trident Task Scheduler replaces the default task scheduler in the AM for making opti-
al storage-tier-aware assignments. In particular, Trident builds a bipartite graph containing map

asks (the only type of tasks with locality preferences in MapReduce) and the allocated containers
long with the assignment costs, as described in Section 2.2 . In the case of MapReduce, the num-
er of allocated containers will always be less than or equal to the number of tasks. Hence, only
lgorithm 2 is implemented in MapReduce for pruning excess tasks when the containers are allo-

ated. Next, Trident employs the Hungarian Algorithm for finding the optimal task assignments
n the allocated containers. Regarding reduce tasks (which do not have locality preferences), they
re randomly assigned to their allocated containers in the same manner performed by the default
ask scheduler.

Finally, the data prefetching algorithm discussed in Section 4.2 is implemented by the Trident

ata Prefetcher , which runs in the MapReduce Client and is invoked as soon as a MapReduce
ob is ready to be submitted for execution, for deciding which input data blocks to prefetch into

emory. Two more changes were required for applying the Trident methodology. First, Hadoop
as modified to propagate the storage tier information from the input file readers to the schedulers,

n the same way node locations are propagated. Second, HDFS and OctopusFS were modified to
lso expose the locations of the pending cache requests, in addition to the locations storing the
hysical block replicas. Overall, we added 3,425 lines of Java code to Hadoop.

.2 Trident Implementation in Spark

 Spark application executes as a set of independent Executor processes coordinated by the Dri-

er process. Initially, the Driver connects to a cluster manager (either Spark’s Standalone Man-
ger [10], Hadoop YARN [59], or Mesos [36]) and receives resource allocations on cluster nodes
hat are used for running the Executors. The Driver is responsible for the application’s task sched-
ling and placement logic, while the Executors are responsible for running the tasks and storing
he tasks’ output data over the entire duration of the application.

Internally, an application is divided into jobs , where each job is a directed acyclic graph of stages ,
nd each stage consists of a set of parallel tasks . Whenever a stage S is ready for execution (i.e.,
ts input data are available), the Spark Task Scheduler is responsible for assigning S’s tasks to the
vailable resources (or slots) of the Executors. The default scheduling algorithm is as follows. Given
ome available slots on Executor E running on some node N , look for a task that needs to process
 data partition cached on E, thus creating a process-local assignment. Otherwise, look for a task
hat needs to process a data block stored on N , thus creating a data-local assignment. Otherwise,
ake a random assignment if the task has no locality preferences, or a rack-local assignment, or
 remote assignment, in that order.

The Trident Task Scheduler is proposed to replace the current task scheduler in the Spark Dri-
er to take advantage of the storage tier information of the processed data. The input to Trident
onsists of (i) a list of tasks belonging to the same stage along with their preferred locations, and
ii) the list of Executors, each with its available resource set. Given this input, Trident utilizes the
ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

11:22 H. Herodotou and E. Kakoulli

p

a

m

t

n

E

E

t

a

e

s

t

c

t

6

M

p

t

s

p

a

I

r

j

t

m

a

m

f

d

n

i

t

p

p

u

C

a

d

s

l

h

c

A

runing Algorithms 1 and 2 to select which resources and tasks to use, builds the bipartite graph
s described in Section 2.2 , and uses the Hungarian Algorithm for making the optimal task assign-
ents. Similarly to Hadoop, Spark was modified to propagate the storage tier information from

he input file readers to the task scheduler. Overall, we added 944 lines of Scala code to Spark.
The Spark execution model creates two additional noteworthy scheduling scenarios that are

aturally handled by our graph encoding. First, the preferred location of a task T can be an Executor
containing a cached data partition created during a previous stage execution. Assigning task T to
achieves the best locality possible as it leads to a process-local execution. In this case, we set the

ier preference score to zero, thereby guiding Trident in favoring process-local assignments over
ll other. Second, tasks that will read input from multiple locations during a shuffle (e.g., tasks
xecuting a reduceByKey) have no locality preference. Since the current task scheduler schedules
uch tasks before making any rack-local (or lower) assignments, we set their assignment cost
o a number lower than the network cost c 1 to ensure that Trident has the same behavior. In
onclusion, our graph-based formulation can easily generalize to a variety of locality preferences for

ask assignment .

 RELATED WORK

ultiple scheduling algorithms have been proposed in the past and are presented in various com-
rehensive surveys [23 , 51]. In this section, we discuss the most relevant ones. Hadoop offers
hree schedulers out-of-the-box: (1) FIFO, which assigns tasks to resources in order of job submis-
ion [45]; (2) Capacity, which allocates resources to jobs under constraints of allocated capacities
er job queue [49]; and (3) Fair, which assigns resources to jobs such that they get, on average,
n equal share of resources over time [27]. Similarly, Spark supports FIFO and Fair scheduling.
n terms of data locality, the three schedulers behave in a similar manner: given some available
esources on a node, they will try to assign (in order) data-local, then rack-local, then remote tasks.

Several studies focus on improving data locality rates. Delay Scheduling [65] will have the next
ob wait for a small amount of time if it cannot launch a data-local task, in at attempt to increase
he job’s data locality. Delay scheduling is actually offered as a configurable option in all afore-
entioned schedulers. Wang et al. [62] focus on striking the right balance between data locality

nd load balancing using stochastic network theory to simultaneously maximize throughput and
inimize delay. Scarlett [5] and DARE [1] employ a proactive and reactive approach, respectively,

or changing the number of data replicas based on access frequencies in an attempt to improve
ata locality. Unlike Trident, none of the above approaches support tiered storage.
A set of approaches tackle the issue of task scheduling over heterogeneous clusters that contain

odes with different CPU, memory, and I/O capabilities. One common theme involved is estimat-
ng the task execution times to correctly identify slow tasks (on less capable nodes) and re-execute
hem. LATE [66] adopts a static method to compute the progress of tasks, SAMR [14] calculates
rogress of tasks dynamically using historical information, and ESAMR [54] extends SAMR to em-
loy k-means clustering for generating more accurate estimations. Tarazu [3] and PIKACHU [22]
se dynamic load rebalancing to schedule tasks after identifying the fast and slow nodes at runtime.
3 [55] is an adaptive replica selection mechanism implemented for Cloud data stores that utilizes
 replica ranking function to prefer faster servers and compensate for slower service times to re-
uce tail latency. More recently, RUPAM [63] employed a heuristic for heterogeneity-aware task
cheduling, which considers both task-level and hardware characteristics while preserving data
ocality. While the aforementioned approaches work over heterogeneous clusters, they ignore the
eterogeneity resulting from different locally-attached storage devices.
The increasing memory sizes is motivating the use of distributed memory caching systems in

luster computing. PACMan [7], Big SQL [21], and AutoCache [30] utilize memory caching policies
CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

Cost-based Data Prefetching and Scheduling in Big Data Platforms 11:23

f

s

m

b

o

e

f

s

t

g

l

T

b

w

t

a

e

t

i

s

t

a

E

c

T

a

l

i

f

t

i

e

f

i

d

p

a

s

7

I

p

c

or storing data in cluster memory for speeding up job execution. In terms of task scheduling, they
imply prioritize assigning memory-local tasks over data-local tasks. Quartet [19] also utilizes
emory caching and focuses on data reuse across jobs. The Quartet scheduler follows a rule-

ased approach: schedule a task T on node N if (i) T is memory-local on N or (ii) T is node-local
n N but not memory-local anywhere else. Otherwise, fall back to default scheduling with delay
nabled. For comparison purposes, we implemented Quartet and extended its approach to search
or SSD-local tasks first before HDD-local tasks, whenever it was searching for data-local tasks.

H-Scheduler [46] is the only other storage-aware task scheduler designed to work over a tiered
torage system such as HDFS (with tiering enabled). The key idea of H-Scheduler is to classify the
asks by both data locality and storage types and redefine their scheduling priorities. Specifically,
iven available resources on some cluster node, schedule tasks based on the following priorities:
ocal memory > local SSD > local HDD > remote HDD > remote SSD > remote memory [46].
he main issue with H-Scheduler and Quartet is that their heuristic methodology implements a
est-effort approach that (in many cases) leads to sub-optimal or even poor task assignments, as
e will see in Section 7 . However, the principled scheduling approach of Trident guarantees that

he optimal task assignments (as formalized in Section 2.1) will always be achieved.
While our work focuses on distributed replication-based file systems, other studies have

ddressed data placement for erasure-coded systems. In particular, one study [43] introduces
ncoding-aware replication in clustered file systems, which optimizes the placement of replicas
o minimize cross-rack downloads during the encoding operation, as well as to preserve availabil-
ty without data relocation after the encoding operation. WPS [61] is a workload-aware placement
cheme designed for erasure-coded in-memory stores. This scheme takes into account the charac-
eristics of the workload, such as access patterns and data popularity, to optimize data placement
nd migration, with the goal of improving load balancing in the presence of workload skew. Last,
C-Store [2] incorporates dynamic strategies for data access and movement based on workload ac-
ess patterns within erasure-coded storage systems, with the goal of reducing data retrieval times.
hese studies highlight the significance of data placement policies tailored for erasure-coded data
nd are orthogonal to our proposed task and resource scheduling approaches.

Data prefetching mechanisms have been proposed to improve data locality and accelerate non-
ocal tasks. FlexFetch [64] pre-executes the MapReduce scheduler ahead of time to predict the start-
ng time and the node location for future non-local tasks, and then allocates network resources
or prefetching data to those nodes. HPSO [52 , 53] predicts the remaining execution time of map
asks on Hadoop, which is then used to estimate which resource slot will become idle, and preloads
nput data to memory on those nodes. Similarly, CHCDLOS [42] estimates map task remaining ex-
cution time and then uses predefined rules for prefetching data to target compute nodes ahead of
uture task executions. Finally, SADP [12 , 13] retrieves scheduling information from the comput-
ng layer and then uses this information to estimate task completion time and to prefetch and evict
ata to/from memory. All aforementioned approaches focus explicitly on making predictions for
refetching data that will benefit future non-local task executions. Our approach, however, gener-
lizes data prefetching to optimize both data-local and non-local tasks, and coordinates with the
chedulers to ensure that prefetched data will be accessed by the scheduled tasks.

 EXPERIMENTAL EVALUATION

n this section, we evaluate the effectiveness and efficiency of the Trident schedulers and data
refetcher in exploiting tiered storage for improving application performance and cluster effi-
iency. Our evaluation methodology is as follows:

(1) We study the effect of Trident when scheduling a real-world MapReduce workload from
Facebook (Section 7.1).
ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

11:24 H. Herodotou and E. Kakoulli

L

6

2

o

w

t

s

n

U

r

H

t

s

f

t

t

R

a

D

(

s

a

c

a

a

r

7

T

p

u

s

p

o

o

o

o

q

A

(2) We investigate the impact of input data size and application characteristics on sched-
uling using an industry-validated benchmark on both Hadoop (Section 7.2) and Spark
(Section 7.3).

(3) We study the impact of data prefetching using both the real-world MapReduce workload
from Facebook and the industry-validated benchmark (Section 7.4).

(4) We evaluate the scheduling and prefetching overheads induced by Trident (Section 7.5).

Experimental Setup. The evaluation is performed on an 11-node cluster running CentOS
inux 7.2 with 1 Master and 10 Workers. The Master node has a 64-bit, 8-core, 3.2 GHz CPU,
4 GB RAM, and a 2.1 TB RAID 5 storage configuration. Each Worker node has a 64-bit, 8-core,
.4 GHz CPU, 24 GB RAM, one 120 GB SATA SSD, and three 500 GB SAS HDDs. We implemented
ur approach in Apache Hadoop v2.7.7 and Apache Spark v2.4.6. For the underlying file systems
e used HDFS v2.7.7 (without enabling tiering) as a baseline and OctopusFS [40], a tiered file sys-

em that extends and is backwards compatible to HDFS. OctopusFS was configured to use three
torage tiers with 4 GB of memory, 64 GB of SSD, and 3 × 320 GB of HDD space on each Worker
ode. The default replication factor is 3 and the default block size is 128 MB for both file systems.
nless otherwise stated, OctopusFS utilizes its default data placement policy, which creates one

eplica on each of the three storage tiers. The storage tier preference score for memory, SSD, and
DD is set to 1, 8, and 20, respectively, as the measured bandwidth of the three storage media in

he cluster is 3,200, 400, and 160 MB/s, respectively. The network transfer cost within a rack (c 1) is
et to 40 and across racks (c 2) to 100.

Schedulers. In addition to our Trident Scheduler , we implemented two more task schedulers
rom recent literature, namely H-Scheduler [46] and Quartet [19] (as described in Section 6), within
he MapReduce Application Master and the Spark Driver. When running the Hadoop experiments,
he Trident Scheduler consists of its two components, the Trident Task Scheduler and the Trident
esource Scheduler, while H-Scheduler and Quartet were paired with YARN’s Capacity Scheduler,
s was done in Reference [19]. For comparison purposes, we also tested both Hadoop’s and Spark’s
efault task schedulers, which do not take storage tier into consideration.
Performance Metrics. The following three performance metrics are used for the evaluation:

1) the data locality of tasks, i.e., the percentage of memory-, SSD-, HDD-, and rack-local tasks
cheduled in each scenario; (2) the reduction in completion time of jobs compared to the baseline;
nd (3) the improvement in cluster efficiency , defined as finishing the job(s) by using less resources
ompared to the baseline [7 , 33]. Specifically, the improvement in cluster efficiency is computed
s the percentage difference between the sums of the individual runtime durations of all tasks in
 job (or a set of jobs) across two compared scenarios. All results shown are averaged over three
epetitions.

.1 Evaluation of Storage-tier-aware Scheduling with Facebook Workload

his part of the evaluation is based only on a MapReduce workload as it is derived from real-world
roduction traces from a 600-node Hadoop cluster deployed at Facebook [16]. With the traces, we
sed the SWIM tool [56] to generate and replay a realistic and representative workload that pre-
erves the original workload characteristics, including the distribution of input sizes and skewed
opularity of data [7]. The workload comprises 1,000 jobs scheduled for execution sporadically
ver 6 hours and processing 92 GB of input data. Hence, the workload exhibits variability in terms
f cluster resource usage over time. When the workload starts execution, 380 files already exist
n the file system with a total size of 32 GB. The popularity of these files is skewed, as typically
bserved in data-intensive workloads [7 , 15], with a small fraction of the files accessed very fre-
uently, while the rest are accessed less frequently. In particular, these 380 files are accessed by
CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

Cost-based Data Prefetching and Scheduling in Big Data Platforms 11:25

Table 2. Facebook Job Size Distributions Binned by Data Sizes

Bin Data Size % of Jobs % of Resources % of I/O

A 0–128 MB 74.4% 25.0% 3.2%

B 128–512 MB 16.2% 12.2% 16.1%

C 0.5–1 GB 4.0% 7.3% 12.0%

D 1–2 GB 3.0% 13.4% 19.3%

E 2–5 GB 1.6% 20.8% 21.9%

F 5–10 GB 0.8% 21.4% 27.5%

Fig. 9. Data locality rates for all schedulers over the two file systems (HDFS and OctopusFS), broken down

into the six Facebook workload bins (A–F).

6

3

w

t

a

p

a

o

c

a

d

o

r

s

Q

F

a

t

T

r

c

t
60 jobs, with 76.8% of the files accessed once and 4.5% accessed more than 5 times. The remaining
40 jobs are accessing 63 input files generated by other prior jobs that executed on the cluster,
ith a lower popularity skew: 52.4% of the files are accessed once while 25.4% are accessed more

han 5 times. The remaining 947 files generated by the workload have a size of 47 GB and are not
ccessed by the workload. When using OctopusFS, we enabled its Least Recently Used eviction
olicy [33] so that later jobs in the workload can take advantage of the memory tier (since the
ggregate capacity of the memory tier is 40 GB).

To differentiate the effect of scheduling on different jobs, we split them into six bins based
n their input data size. Table 2 shows the distribution of jobs by count, cluster resources they
onsume, and amount of I/O they generate. As noted in previous studies [7 , 15], the jobs exhibit
 heavy-tailed distribution of input sizes. Even though small jobs that process < 128 MB of data
ominate the workload (74.4%), they only account for 25% of the resources consumed and perform
nly 3.2% of the overall I/O. However, jobs processing over 1 GB of data account for over 54% of
esources and over 68% of I/O. More in-depth workload statistics can be found in Reference [33].

We executed the workload on Hadoop over HDFS (without tiering) using the Default and Trident
chedulers as well as on Hadoop over OctopusFS using all four schedulers (Default, H-Scheduler,
uartet, and Trident). Data prefetching is disabled and will be investigated later in Section 7.4 .
igure 9 shows the data locality rates for all schedulers over the two file systems, broken down
ccording to the job bins. With HDFS and the Default Scheduler, there is a clear increasing trend in
he percentage of data-local tasks (note that all data are stored on HDDs) as the job size increases.
he achieved data locality is low at 30–40% for small jobs (Bins A and B) for a combination of
easons: (i) the cluster is busy, (ii) these jobs have only a few tasks to run, and (iii) the scheduler
onsiders one node at a time for task assignments. In particular, when a new job is submitted in
he cluster, there are on average 3.4 jobs and 8.2 tasks already running and processing (i.e., reading
ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

11:26 H. Herodotou and E. Kakoulli

a

2

f

d

h

r

(

d

s

j

a

F

3

t

l

a

t

c

p

f

i

t

a

E

b

t

i

a

s

c

a

t

p

t

g

s

a

m

m

(

t

w

a

i

A

nd writing) 1.5 GB of data, while in the worst case, there are 17 jobs and 50 tasks processing
1.0 GB of data. Hence, it is unlikely that any given node will be contained in the tasks’ pre-
erred locations. With increasing job sizes (and number of tasks), there are more opportunities for
ata-local scheduling and the data locality percentage increases up to 81%. The Trident Scheduler,
owever, considers all available resources together when building the bipartite graph of tasks and
esources, and hence, it is able to achieve almost 100% of data locality for all job sizes .

With OctopusFS, the trend of data-local tasks for the Default Scheduler is the same as with HDFS
see Figure 9). As the Default Scheduler ignores the storage tier, those data-local tasks are (roughly)
ivided equally into memory-, SSD-, and HDD-local tasks. The H-Scheduler and Quartet have
imilar or slightly higher overall data-locality rates compared to the Default Scheduler. For small
obs, since there are little opportunities for data-local tasks (for the same three reasons explained
bove), there is also little chance for doing any meaningful storage-tier-aware task assignments.
or bigger jobs, both schedulers are able to make more memory-local assignments, reaching
0-40% of the total tasks and around 50% of the data-local tasks, because the likelihood of finding a
ask that can be memory-local on a particular node is increased with more tasks. In addition, SSD-
ocal tasks are typically more compared to HDD-local tasks. With OctopusFS, not only is Trident
ble to reach almost 100% of data locality for all job sizes, it also obtains over 83% of memory-local
asks. In fact, in four of the six bins, Trident is able to achieve over 99% of memory-local tasks , show-
asing Trident’s ability to find optimal tasks assignments in terms of both locality and storage tier
references in a busy cluster.
Figure 10 (a) shows the percentage reduction in job completion time compared to using the De-

ault Scheduler over HDFS for each bin (recall Table 2). Using the Trident Scheduler over HDFS
mproves the overall data-local rates as explained above, which in turn reduces job completion
ime modestly, up to 13% for large jobs (Bins F). Much better benefits are observed when data
re stored in OctopusFS as data are residing in multiple storage tiers, including memory and SSD.
ven though the Default Scheduler over OctopusFS does not take into account storage tiers, it still
enefits from randomly assigning memory- and SSD-local tasks, and hence, it is able to achieve up
o 20% reduction in completion time for large jobs. The storage-tier-aware schedulers are able to
ncrease the benefits further, depending on the job size. Small jobs (Bins A and B) experience only
 small improvement (< 8%) in completion time for all schedulers. This is not surprising, since time
pent on I/O is only a small fraction compared to CPU and network overheads. The gains in job
ompletion time increase as the input size increases, while different trends across the schedulers
re also observed. In particular, H-Scheduler is able to provide an additional 2%–8% gains over
he Default Scheduler, resulting in up to 28% gains for large jobs (Bin F). Quartet offers similar
erformance, with only 3% higher gains for jobs belonging in bins C and E. Finally, Trident is able
o consistently provide the highest reduction in completion time across all job bins , with 14%–37%
ains for large jobs, almost double compared to the Default Scheduler over OctopusFS, due to the
ignificantly higher memory locality rates it is able to achieve as observed in Figure 9 .

With each memory- and SSD-local access, the cluster efficiency improves as there is more I/O
nd network bandwidth available for others tasks and jobs. Figure 10 (b) shows how this improve-
ent relates to the different job bins. Larger jobs have a higher contribution in efficiency improve-
ent compared to smaller jobs, since they are responsible for performing a larger amount of I/O

recall Table 2). Across different schedulers, the trends for efficiency improvement are similar to the
rends for completion time reduction shown in Figure 10 (a) and discussed above: Benefits improve
ith larger jobs and Trident always offers the highest gains. Hence, improvements in efficiency

re often accompanied by lower job completion times, doubling the benefits . For example, Trident

s able to reduce completion time of large jobs by 37%, while consuming 50% less resources .
CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

Cost-based Data Prefetching and Scheduling in Big Data Platforms 11:27

Fig. 10. (a) Percentage reduction in completion time and (b) percentage improvement in cluster efficiency

for the Facebook workload compared to Default Scheduler over HDFS.

t

i

b

t

a

t

t

o

e

a

n

i

l

a

i

s

t

a

Even though Trident achieves on average 91% memory-local tasks for the large jobs compared
o 35% of the other two storage-tier-aware schedulers, it only yields about 10% additional reduction
n completion time and 16% additional improvement in cluster efficiency over them. The reasons
ehind this discrepancy are as follows. Job completion time depends on the execution time of all
he map tasks, the shuffle stage (which in Hadoop happens as part of the reduce task execution),
nd the reduce task processing. Increased memory locality will primarily reduce the input I/O
ime of the map tasks, while it will not impact the CPU processing time of the map and reduce
asks. An interesting observation (not shown in the figures) is that the average execution time
f reduce tasks in Hadoop also decreases by up to 37% for large jobs due to the improved cluster
fficiency, even though their scheduling is not affected by Trident. The high memory-locality rates
chieved by Trident reduce local disk I/O and network congestion, which in turn reduce the time
eeded for data shuffling between map and reduce tasks. Overall, even though the improvements

n completion time and cluster efficiency are not proportional to the improvement in memory
ocality, Trident is still able to offer the highest improvements compared to the other state-of-the-art

pproaches .
Key takeaways. Storage-tier-aware scheduling with Trident leads to almost 100% data local-

ty rates and very high memory-locality rates (> 83%) across all job sizes, while the second best
cheduler is able to achieve only up to 86% data-locality and 39% memory-locality rates. In addi-
ion, Trident consistently provides the highest benefits in terms of application completion time
nd cluster efficiency across all scenarios studied.
ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

11:28 H. Herodotou and E. Kakoulli

Table 3. HiBench Applications with Primary Characteristics

That Dominate Their Execution Time

Category Application CPU I/O Network

Micro TeraSort � �
WordCount �

OLAP Aggregation �
Join �

ML Bayes � �
K-means � �

Web Search PageRank � �
NutchIndex �

Fig. 11. Data locality rates for all schedulers over the two file systems (HDFS and OctopusFS) for the HiBench

MapReduce workload for data scales small , large , and huge .

7

T

c

t

w

g

(

d

fi

1

I

e

t

F

r

f

S

C

A

.2 Evaluation of Storage-tier-aware Scheduling in Hadoop with HiBench

o further investigate the impact of task scheduling on a variety of workloads exhibiting different
haracteristics, we used the popular HiBench benchmark v7.1 [37], which provides implementa-
ions for various applications on both Hadoop MapReduce and Spark. In total, eight applications
ere used spanning four categories: micro benchmarks (TeraSort, WordCount), OLAP queries (Ag-
regation, Join), machine learning (Bayesian Classification, k-means Clustering), and web search
PageRank, NutchIndex) [35]. Table 3 lists the applications along with the physical resource(s) that
ominate their execution time. In addition, all workloads were executed using three data scale pro-

les defined by the benchmark, namely small , large , and huge , which resulted in about 200 MB,
.5 GB, and 10 GB of input data per application, respectively.

Since the individual workload characteristics (i.e., whether the application is CPU-bound or
/O-bound or network-bound) do not affect data locality rates, we present the aggregate rates for
ach scale profile in Figure 11 . The individual data locality rates per application are very similar to
he aggregated ones. The overall trend of data locality rates is similar to the one observed for the
acebook workload: larger jobs exhibit more data-local tasks. However, in these experiments, the
ates are much higher, since the cluster is lightly loaded, and thus there are more opportunities
or data-local scheduling (note that HiBench runs one application at a time). Hence, the Default
cheduler is able to achieve 66%–89% of data locality instead of 31%–81% in the case of Facebook.
ompared to the Default Scheduler, the H-Scheduler and Quartet offer no to little improvement
CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

Cost-based Data Prefetching and Scheduling in Big Data Platforms 11:29

Fig. 12. (a) Percentage reduction in completion time and (b) percentage improvement in cluster efficiency

compared to Default Scheduler over HDFS for the HiBench MapReduce applications running with the large

data scale.

i

r

c

l

b

a

n

l

a

o

a

u

i

s

g

o

i

S

s

c
s

fi

n
n terms of memory-locality for small and large jobs. The two schedulers are able to achieve good
esults only when scheduling huge jobs, for which there are a lot of available resources in the
luster, resulting in about 62% memory-local tasks, followed by 19% SSD-local tasks, and 10% HDD-
ocal tasks. Having a lot of available resources in a cluster can improve data locality for huge jobs,
ecause it increases the likelihood of scheduling several data-local (and in the case of H-Scheduler
nd Quartet, memory-local) tasks on the available resources of any cluster node. This does not
ecessarily apply to the smaller jobs, because the likelihood of finding a task that can be memory-

ocal on a particular node is reduced. Finally, the Trident Scheduler over OctopusFS is able to

chieve 100% data locality with over 96% memory-locality across all three data scales due to the
ptimality guarantees of the minimum cost maximum matching formulation, demonstrating once
gain its superior scheduling abilities irrespective of workload size or characteristics.

Figure 12 (a) shows the percentage reduction in completion time (compared to the Default Sched-
ler over HDFS) of the eight HiBench applications run using the large data scale. As expected, I/O

ntensive applications (i.e., TeraSort, Aggregation, k-means) display the highest benefits across all
chedulers, since scheduling more memory-local tasks has a direct impact in reducing both the
enerated I/O and by extension the overall job execution time. Simply using the Default Scheduler
ver OctopusFS results in 23%–31% higher performance for these applications, while H-Scheduler
ncreases the benefits to 25%–35%. Interestingly, Quartet offers almost no benefits over the Default
cheduler, mainly because it falls back to delay scheduling when it cannot make any data-local as-
ignments [19]; a strategy that does not increase data locality rates in this setting, and thus, only
auses overhead. Finally, Trident is able to significantly boost performance up to 44% (i.e., almost 2 ×
peedup) due to its 100% memory-locality rates.

The CPU-intensive jobs (i.e., WordCount, Join, Bayes, PageRank) exhibit more modest bene-
ts, since the I/O gains from improved scheduling are overshadowed by the high CPU processing
eeds. The benefits from Trident over OctopusFS range between 23% and 29%, while they are
ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

11:30 H. Herodotou and E. Kakoulli

Fig. 13. (a) Data locality rates for all schedulers, (b) percentage reduction in completion time, and (c) per-

centage improvement in cluster efficiency compared to Default Scheduler over HDFS when allocating 5 GB

vs. 40 GB for the OctopusFS’s memory tier for the huge HiBench workload.

m

t

s

t

a

d

t

r

t

b

s

a

i

(

4

o

fi

b

o

a

f

i

t

w

t

t

o

a

p

l

A

uch lower for the other three schedulers at 8%–23%. Finally, Trident is the only scheduler able
o offer any meaningful benefits (28% compared to \ raise.17ex ∼6% for the other schedulers) to the
huffle-intensive NutchIndex job, because running 100% data-local tasks frees up the network for
he demanding shuffle process.

Figure 12 (b) shows the corresponding improvement in cluster efficiency for the large HiBench
pplications. The efficiency results have the same trends with the reductions in completion times
iscussed above, but interestingly the magnitude of the gain is higher. The reason is twofold. First,
he jobs are executed as a set of parallel tasks. Even if a large fraction of the tasks consume less
esources via avoiding disk I/O, the remaining tasks may delay the overall job completion. Second,
he job completion time also accounts for CPU processing as well as the output data generation,
oth of which are independent of the input I/O [33].
The results for the small and huge data scale are similar in trend and omitted due to space con-

traints. The main difference is the magnitude in gains, which is typically lower for the small scale
nd higher for the huge scale (compared to the large scale) for all schedulers. The highest reduction
n completion time was recorded for the huge Aggregation job using the Trident Scheduler at 57%
i.e., 2 . 3 × speedup).

In the above experiments, the memory tier of OctopusFS is configured to use 40 GB (i.e.,
 GB per node), which is sufficient for storing 1 replica of the input dataset of each application
f the huge HiBench workload. To evaluate the impact of the memory configuration on the bene-
ts provided by Trident, we repeated the experiment with the huge HiBench MapReduce workload
ut constrained the capacity of the memory tier to 5 GB (i.e., 512 MB per node). With this setup,
nly about half of the input data can have a replica in the memory tier. Figure 13 (a) compares the
ggregate data locality rates achieved by all schedulers over OctopusFS for the two memory sizes
or the huge HiBench workload. When the memory is constrained to 5 GB, the Trident Scheduler
s able to achieve almost 50% memory locality, because it is able to optimally schedule the tasks
hat are planning to process a block with a replica in memory. Another 48% of tasks are SSD-local,
hile the remaining tasks are split between HDD-local and rack-local assignments. The other two

ier-aware schedulers achieve around 36% of memory locality, which is close to half compared to
he 63% of memory locality achieved when all input data reside in memory. The same trend is
bserved for the Default Scheduler, whose memory locality reduces from 28% to 15%. Hence, the

chieved memory locality rate is proportional to the number of input blocks that reside in memory .
Figure 13 (b) and (c) respectively show the average percentage reduction in completion time and

ercentage improvement in cluster efficiency compared to the baseline for the huge HiBench work-
oad for the two memory settings. As expected, the benefits achieved by all schedulers is lower for
CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

Cost-based Data Prefetching and Scheduling in Big Data Platforms 11:31

Fig. 14. Data locality rates for all schedulers over the two file systems (HDFS and OctopusFS) for the HiBench

Spark workload for data scales small , large , and huge .

b

t

c

b

(

c

h

fi

i

7

T

H

S

w

w

F

a

F

o

r

h

s

t

w

h

s

o

p

f

oth metrics due to the reduced memory locality rates, but not by the same amount. In particular,
he reduction in completion time of H-Scheduler and Quartet is reduced to half in the memory-
onstraint scenario, whereas for Trident it decreases from 47% to 33%. When no more tasks can
e scheduled in a memory-local way, Trident shifts the assignment of tasks in an SSD-local way
more than the other schedulers), leading to good benefits for both application performance and
luster efficiency.

Key takeaways. These performance results clearly demonstrate that Trident can achieve very
igh memory-locality rates (> 95%) irrespective of application size or characteristics. The bene-
ts in terms of completion time and cluster efficiency are typically higher for I/O- and network-

ntensive applications as well as for larger jobs.

.3 Evaluation of Storage-tier-aware Scheduling in Spark with HiBench

he evaluation with the HiBench workloads was repeated on Spark in the same manner as on
adoop (described in Section 7.2), with the exception of NutchIndex, which is not implemented for
park. We used Spark’s Standalone Cluster Manager for allocating resources across applications,
hich is widely used in practice [19]. Each application received one Executor process on each
orker node, while the Driver process was executed on the Master node.
The overall data locality rates for all schedulers for the HiBench Spark workload are shown in

igure 14 . The first key observation is that, unlike Hadoop, the Spark Default Scheduler is able to
chieve over 94% data locality across all data scales. There are two reasons explaining this behavior.
irst, each application has available resources on all nodes, and hence, can selectively choose which
nes to use for the task assignments (especially for smaller jobs), unlike MapReduce that gets
esources on some nodes based on containers allocated from YARN. Second, the Default Scheduler
as a built-in load balancing feature that iterates the available resources on each node one Executor
lot at a time, which increases the opportunities for data-local assignments (or memory-local in
he case of H-Scheduler and Quartet). These features are shared by the H-Scheduler and Quartet as
ell and are thus are able to achieve high memory locality rates of over 71% and 84% for large and
uge applications, respectively. Trident, however, is able to achieve 100% memory locality for both
mall and large applications, as well as 96% memory locality for huge applications, significantly

utperforming all other schedulers . Finally, note that process-local tasks are all assigned in a separate
rocess, before the other tasks are assigned; hence, the percentage of process-local tasks is the same
or all schedulers over both file systems.
ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

11:32 H. Herodotou and E. Kakoulli

Fig. 15. Percentage reduction in completion time compared to Default Scheduler over HDFS for the HiBench

Spark applications running with (a) the large and (b) the huge data scale.

t

p

t

o

(

w

t

fi

fi

n

f

t

a

h

u

r

t

7

I

s

d

d

A

In terms of reduction in completion time, the overall trends are similar as in the case of running
he applications on Hadoop, and are shown in Figure 15 for the large and huge data scales. In
articular, the H-Scheduler and Quartet are able to offer good performance improvements over
he Default Scheduler, because they are able to exploit the storage tier information, but are still
utperformed by Trident in all cases. The magnitude of gains for the large iterative applications
i.e., Bayes, k-means, and PageRank) are lower for Spark compared to Hadoop, because Spark
ill cache the output data from the first iteration in memory and then use process-local tasks for

he following iterations. Hence, the gains from memory-local task assignments only impact the
rst iteration. Even then, in the case of huge Bayes and k-means, Trident is able to speedup their
rst iteration by 4 ×, leading to an overall application speedup of over 2 ×. Spark’s PageRank does
ot enjoy such benefits, because its first iteration is very CPU intensive, thus limiting the I/O gains
rom memory-locality. Another interesting observation is that, unlike with Hadoop, Quartet is able
o outperform H-Scheduler in Spark by 4% on average in most cases, because its delay scheduling
pproach is actually able to improve memory-locality rates by 2%–5%. Finally, in the case of the
uge workload, Trident is able to significantly improve performance for most applications, reaching

p to 66% reduction in completion time, i.e., 3 × speedup .
Key takeaways. The benefits in terms of improved locality, reduction in completion time, and

eduction in cluster efficiency provided by Trident to Spark workloads and clusters are very similar
o the ones provided for Hadoop.

.4 Impact of Data Prefetching over Tiered Storage

n this section, we investigate the impact of data prefetching in addition to scheduling over tiered
torage. We experiment with two flavors of the Trident Data Prefetcher, one that does not allow any
elays in the execution of tasks (denoted as Trident-D) and one that does (denoted as Trident+D), as
iscussed in Section 4.2 . For comparison purposes, we implemented a prefetcher (called PrefetchAll)
CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

Cost-based Data Prefetching and Scheduling in Big Data Platforms 11:33

Fig. 16. Percentage of block accesses from memory and HDDs for the various scheduling (S) and prefetching

(P) combinations for the Facebook workload (Bins A–F) and the HiBench MapReduce workload (HI) with

the huge data scale. The bars appearing over 100% represent the percentage of blocks that were prefetched

but not accessed from memory (i.e., wasted).

t

a

s

c

b

l

w

H

w

s

w

s

j

r

1

n

p

d

a

u

b

s

o

a

p
hat will issue prefetching requests for all data needed by each job upon its submission. Finally, we
lso implemented an Oracle prefetcher for prefetching the data needed before each job submission,
o that one input block replica is always available in memory when needed. The Oracle prefetcher
annot exist in practice but we implemented one to establish an upper bound on the potential
enefits provided by any prefetcher.
For these experiments, we used both the Facebook workload and the HiBench MapReduce work-

oad with the huge data scale. The input data are initially stored using three replicas on HDDs,
hile prefetching requests cache one replica into memory. We repeated the experiments using
DFS and OctopusFS as the underlying storage system but the results were very similar. Thus,
e only show the results for OctopusFS. Finally, to demonstrate the impact (and necessity) of a

torage-tier-aware scheduler when prefetching is enabled, we also run the PrefetchAll prefetcher
ith the Default Scheduler. In all other cases, we use the Trident Scheduler.
Figure 16 shows the percentage of input blocks accessed from memory and HDDs for each

cheduler-prefetcher combination. For the Facebook workload, we break down the results to the six
ob sizes for Bins A–F (recall Table 2), while for the HiBench workload we present the aggregated
esults from the eight applications (see Table 3). Since the Trident Scheduler is able to achieve near
00% data-locality in all scenarios, and to keep the figure readable, we do not differentiate between
ode-local and rack-local block accesses. The figure also shows the percentage of blocks that were
refetched but not read from memory by the tasks, i.e., prefetching was wasted . This figure enables
irect comparisons across multiple dimensions, showcasing the impact of scheduler, prefetcher,
nd their combination on both memory locality and wasted prefetch operations.

Our first observation from Figure 16 confirms that prefetching data without a proper task sched-
ler in place will result in many wasted prefetching requests. For example, in the case of small Face-
ook jobs (Bin A), prefetching all input data and using the Default Scheduler, which does not take
torage tiers into account, leads to 50% of memory accesses, thereby wasting the prefetching of the
ther 50% . However, using the Trident Scheduler leads to 100% of memory accesses when prefetching

ll data , revealing that prefetching completes before the tasks begin execution (due to the small in-
ut size). As the job size increases, prefetching all input data leads to I/O contention when caching
ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

11:34 H. Herodotou and E. Kakoulli

Table 4. A Comparison of Trident Data Prefetcher with Enabled Delay (Trident+D) against Trident Data

Prefetcher without Delay (Trident-D) for the Facebook Workload

Bin % of Jobs Mean Max % Improvement % Reduction % Reduction % Improvement

with delay delay in memory in mean job in 99% tail job in cluster

delay (sec) (sec) locality latency latency efficiency

A 0.27 0.62 0.90 0.00 –0.20 –0.14 –0.59
B 9.26 2.98 4.48 16.11 1.64 8.83 3.71
C 20.00 3.53 6.17 27.59 2.77 9.11 4.44
D 26.67 3.83 6.10 41.99 3.71 12.98 8.54
E 12.50 3.50 3.50 13.01 2.73 7.32 0.79
F 0.00 0.00 0.00 0.00 0.22 0.36 0.76

d

f

i

p

s

p

T

t

b

j

W

a

T

w

2

c

o

s

j

m

T

t

b

l

o

w

p

n

d

m

l

s

t

A

ata from the HDDs into memory. This causes delays in prefetching and many tasks are scheduled
or execution before prefetching completes. As a result, the percentage of wasted block prefetches
ncreases with job size when the PrefetchAll is used. For the larger jobs (Bins E–F), over 84% of
refetches are wasted with either scheduler. Therefore, prefetching all input data is not a viable
trategy for improving cluster performance.

In the case of small jobs, the Trident Data Prefetcher (with and without delay) correctly
refetched all data and achieved 100% memory accesses. However, as the job size increases, the
rident Data Prefetcher becomes increasingly selective and only prefetches a small portion of

he overall data; the portion that avoids disk contention and ensures that the prefetched data will
e read by the tasks. As a result, the percentageof memory accesses decreases with increasing
ob size but only a very small fraction, if any, of the prefetch requests are wasted (less than 4%).

hen the delay feature is enabled, the Trident+D Prefetcher is able to achieve higher percent-
ges of memory accesses for the mid-sized jobs (Bin B-E) compared to Trident-D, as also shown in
able 4 . For instance, 27 . 6% of the jobs belonging to Bin D are delayed on average by 3.8 seconds
ith a max delay of 6.1 seconds. As a result, the percentage of memory accesses increases from

2% with Trident-D to 64% with Trident+D, leading to an overall 12% decrease in the average job
ompletion time (including the delay). For smaller jobs, Trident+D will delay a smaller percentage
f jobs for a smaller duration, because prefetching completes quickly, making delays unneces-
ary. For larger jobs, Trident+D will also delay a small percentage of jobs, because delaying the
ob to wait for prefetching to complete will typically eliminate the benefits of reading data from

emory. In fact, for Bin F, Trident+D will choose not to delay any job and behaves identically to
rident-D. In addition to reducing the mean job completion time, Trident+D is also able to reduce

he 99% tail job completion time by up to 13% for mid-sized jobs (Bin D) compared to Trident-D
ecause of the large percentage of jobs (27 . 6%) that are able to benefit from prefetching with de-
ay. Finally, as expected, the Oracle Prefetcher leads to very high memory access percentages of
ver 96% for the Facebook workload and 87% for the HiBench workload, with small corresponding
aste.
Figure 17 (a) and (b) show the percentage reduction in completion time and percentage im-

rovement in cluster efficiency, respectively, for the various scheduling and prefetching combi-
ations compared to the Default Scheduler without prefetching over OctopusFS. Prefetching all
ata when using the Default Scheduler yields almost no benefits with regards to application perfor-
ance (despite the increased memory access rates), while it will hurt cluster efficiency due to the

arge amount of wasted prefetches. Prefetching all data when using the Trident Scheduler leads to
ome modest reduction in completion time (4–11 %) due to the increased memory-local tasks, but
hese benefits come in the expense of reduced cluster efficiency due to the wasted prefetches. The
CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

Cost-based Data Prefetching and Scheduling in Big Data Platforms 11:35

Fig. 17. (a) Percent reduction in completion time and (b) percentage improvement in cluster efficiency for the

various scheduling (S) and prefetching (P) combinations compared to Default Scheduler without prefetching

over HDFS for the Facebook workload (Bins A–F) and the HiBench MapReduce workload (HI).

T

h

e

i

c

R

w

t

a

i

o

t

m

a

a

m

rident Data Prefetcher, with its good memory access rates and minimal waste, always leads to
igher reductions in completion times (up to 17%), while at the same time achieving high cluster
fficiency gains (up to 31%). Trident+D, with its targeted use of delaying some task executions, it
s able to provide some additional benefits compared to Trident-D, up to 3 . 7% reduction in mean
ompletion time and 8 . 5% improvement in cluster efficiency.

Finally, we compare the scenario of the Oracle Prefetcher against the Trident Data Prefetcher.
ecall that in the former case, jobs begin execution with their input data already cached in memory,
hile in the later case, no data are initially in memory. Hence, the Oracle case represents the

heoretically best benefits achievable by any prefetcher. For large jobs, it is not possible to prefetch
ll data in memory while the job is running and achieve good memory access rates. Hence, there
s some observed difference between the Oracle and the Trident experiments, up to 8% in terms
f job completion time. For smaller jobs, however, the achieved benefits of Trident are very close to

he ones of the Oracle Prefetcher (less than 3% difference), showcasing the near-optimal decisions
ade by the Trident Data Prefetcher.
Key takeaways. From the results, it becomes clear that the Trident Data Prefetcher, with the

lgorithms and modeling presented in Section 4 , is able to navigate the various tradeoffs effectively
nd balance the amount of data to prefetch as well as specify an appropriate delay (if any), to
aximize the benefits from prefetching data over tiered storage.
ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

11:36 H. Herodotou and E. Kakoulli

Fig. 18. Trident’s scheduling time in Spark Driver when the two pruning algorithms are (a) disabled or (b)

enabled.

7

W

n

F

e

3

w

a

l

W

t

p

1

s

5

a

e

i

A

e

a

s

M

k

T

t

i

t

(

p

A

.5 Evaluation of Trident’s Overheads

e begin the investigation of overheads by evaluating Trident’s scheduling time as we vary the
umber of tasks n ready for execution and the number of cluster nodes r with available resources.
or this purpose, we instantiate a Spark Manager and register r virtual nodes, each with one Ex-
cutor. Next, we submit a Spark application with one stage of n tasks. Each task has a list of
 preferred locations (i.e., 〈 node, tier 〉 pairs) in random nodes and tiers across the cluster. Finally,
e measure the actual time needed by Trident to make all possible task assignments. This time

lso includes updating all relevant internal data structures maintained by the Spark Driver.
Figure 18 shows the scheduling times as we vary both n and r between 8 and 1,024 (note the

ogarithmic scale of both axes), when our two pruning algorithms are either disabled or enabled.
ith pruning, as long as one of the two dimensions (i.e., tasks or nodes) is small, the scheduling

ime is very low and grows linearly. For example, with up to 64 tasks, the scheduling time with
runing is below 2 ms regardless the cluster size, whereas it can reach 20 ms without pruning for
,024 nodes (i.e., there is an order of magnitude reduction). Similarly, large jobs (n ≥ 256) get
cheduled quickly in under 3ms in small clusters (r ≤ 32), whereas scheduling time can reach
4ms without pruning. The scheduling time increases non-linearly only when both dimensions
re high, since pruning cannot help and the main algorithm’s complexity is O (min (n, r) 3). How-
ver, even in the extreme case of scheduling 1,024 tasks on a 1,024-node cluster, the scheduling time
s only 240 ms. More importantly, this overhead is incurred by the Spark Driver (or the MapReduce
pplication Master in Hadoop) and not the cluster, and is minuscule compared to both the total

xecution time of such a large job and the potential performance gains from Trident’s scheduling
bilities.

We repeated this experiment in Hadoop and the scheduling times in MapReduce AM are very
imilar to the ones observed for Spark. However, Trident’s scheduling times in YARN’s Resource
anager are much lower, as they are governed by Algorithm 3 with complexity O (klд(k)) , where
is the number of requested containers. Specifically, in the case of 1,024 tasks × 1,024 nodes,

rident’s scheduling time is 61 ms as opposed to 60 ms for FIFO and 162 ms for Capacity (extra
ime due to updating queue statistics after each assignment), highlighting the negligible overheads
nduced by our scheduling approach.

Finally, we evaluated the time needed for the Trident Data Prefetcher to select which blocks
o prefetch, per Algorithm 7 . For this purpose, we varied the number of nodes in the cluster
 4 − 1 , 024), the number of input data blocks (4 − 1 , 024), as well as the number of storage devices
er node (3 − 12), since our prefetching modeling works at the level of individual storage devices
CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

Cost-based Data Prefetching and Scheduling in Big Data Platforms 11:37

(

t

d

2

m

j

8

T

p

s

a

I

t

p

t

n

p

t

h

i

w

t

a

a

m

n

l

r

u

i

s

f

s

t

t

a

t

s

w

a

e

i

r

w
recall Algorithm 4). In the majority of the tested scenarios, the prefetching algorithm run in less
hat 2 ms, while in the worst case scenario of 1,024 input data blocks × 1024 nodes × 12 storage
evices per node, it run in 20 ms, showcasing the high efficiency of the Trident Data Prefetcher.
Key takeaways. The very low overheads observed for task scheduling (average: 13.6 ms; max:

40 ms), resource scheduling (average: 9.5 ms; max: 61 ms), and data prefetching (average: 3.2 ms;
ax: 20 ms) reveal the practicality of the Trident methodology, even when scheduling very large

obs to very large clusters.

 CONCLUSION AND FU T URE WORK

he advent of tiered storage systems has introduced a new dimension in the scheduling and
refetching problems in cluster computing. Specifically, it is important for task schedulers, re-
ource schedulers, and data prefetchers to consider both the locality and the storage tier of the
ccessed data when making decisions, to improve application performance and cluster utilization.
n this article, we propose Trident, a comprehensive approach with three key components: (i) a
ask scheduler that casts the task scheduling problem into a minimum cost maximum matching
roblem in a bipartite graph and uses two pruning algorithms that enable Trident to efficiently find
he optimal solution; (ii) a resource scheduler that makes decisions based on a newly introduced
otion of preferences in cluster resource requests that can account for storage tiers; and (iii) a data
refetcher that employs a cost modeling optimization approach for deciding which data and when
o prefetch, and coordinates with the schedulers for maximizing the impact of prefetching. We
ave implemented Trident in both Hadoop and Spark, showcasing the generality of the approach

n scheduling tasks for two very different platforms. The experimental evaluation with real-world
orkloads and industry-validated benchmarks demonstrated that Trident, compared to state-of-

he-art schedulers, can maximize the benefits induced by tiered storage and significantly reduce
pplication execution time.

In this work, the cluster is considered to have homogeneous nodes in terms of CPU capabilities
nd memory sizes. Adding support for clusters with heterogeneous nodes requires adjusting the
odels used by the proposed data prefetching methodology (i.e., Algorithms 4 and 5), while we do
ot expect any significant changes for the proposed task and resource scheduling approaches. We

eave this investigation as future work. Another potential enhancement to the proposed task and
esource scheduling approaches is to incorporate additional task characteristics to improve sched-
ling decisions, such as the task’s data input size or estimated runtime. The cost function presented

n Equation (1) can be enhanced or replaced to account for such characteristics in addition to the
torage tier preference score, to prioritize the assignment of some tasks over others. Going a step
urther, a learning mechanism can be incorporated into Trident for learning the various preference
cores based on real-time observations of data accesses, alleviating the need for an administrator
o set the scores manually. By analyzing the patterns and characteristics of data accesses, the sys-
em can measure the costs associated with accessing data from local caches, different storage tiers,
s well as other cluster nodes, and set up the scores accordingly.

Regarding the data prefetching models, there is the possibility of making inaccurate time es-
imations in certain scenarios or conditions due to the interaction with other components of the
ystem such as operating system buffers or I/O schedulers. An interesting idea for future work
ould be to monitor the time taken for prefetching data during job execution and compare it

gainst the time estimated by the model to identify any cases where the model makes incorrect
stimates and correct them. Finally, our experimental evaluation on prefetching has revealed some
nteresting tradeoffs between prefetching all (or more) data and achieving higher memory locality
ates versus improving application performance and cluster utilization. The wasted prefetching
ould be reduced or justified if the prefetched data were to be used by future applications. This
ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

11:38 H. Herodotou and E. Kakoulli

o

i

w

d

i

s

b

o

i

p

d

R

[

[

[

[

[

[

[

[

[

A

bservation gives rises to interesting future research directions for predicting the future use of
nput data before prefetching and/or implementing our proposed methodology in higher-level
orkflow management systems such as Apache Oozie [9] and Azkaban [11].
The aforementioned workflow management systems typically express analytical workloads as

irected acyclic graphs of jobs. In such workloads, the output data from one job becomes the
nput to the following job(s), and hence, smart (intermediate) data placement combined with task
cheduling can have great benefits to the overall workload performance. For example, a Trident-
ased workload scheduler can place the intermediate data in local memory or SSDs to speed up the
verall processing. In addition, it can use its own knowledge and understanding of the workload to
ncrease or decrease the replication factor per tier in the file system to improve locality rates and
erformance. Overall, the co-optimization of data placement and task scheduling is an intriguing
irection for future research.

EFERENCES

[1] Cristina L. Abad, Yi Lu, and Roy H. Campbell. 2011. DARE: Adaptive data replication for efficient cluster scheduling.

In Proceedings of the 2011 IEEE International Conference on Cluster Computing (CLUSTER) . IEEE, 159–168.

[2] Michael Abebe, Khuzaima Daudjee, Brad Glasbergen, and Yuanfeng Tian. 2018. EC-store: Bridging the gap between

storage and latency in distributed erasure coded systems. In Proceedings of the 38th International Conference on Dis-

tributed Computing Systems (ICDCS’18) . IEEE, 255–266. https://doi.org/10.1109/ICDCS.2018.00034

[3] Faraz Ahmad, Srimat T. Chakradhar, Anand Raghunathan, and T. N. Vijaykumar. 2012. Tarazu: Optimizing MapRe-

duce on heterogeneous clusters. ACM SIGARCH Comput. Arch. News 40, 1 (2012), 61–74.

[4] Alluxio 2023. Alluxio: Data Orchestration for the Cloud . Retrieved September 18, 2023 from http://w w w.alluxio.org/

[5] Ganesh Ananthanarayanan, Sameer Agarwal, Srikanth Kandula, Albert Greenberg, Ion Stoica, Duke Harlan, and

Ed Harris. 2011. Scarlett: Coping with skewed popularity content in MapReduce clusters. In Proceedings of the 6th

European Conference on Computer Systems (EuroSys’11) . ACM, 287–300.

[6] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. 2011. Disk-locality in datacenter computing

considered irrelevant. In Proceedings of the 13th Workshop on Hot Topics in Operating Systems (HotOS’11) . USENIX,

12–17.

[7] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew Warfield, Dhruba Borthakur, Srikanth Kandula, Scott Shenker, and

Ion Stoica. 2012. PACMan: Coordinated memory caching for parallel jobs. In Proceedings of the 9th USENIX Symposium

on Networked Systems Design and Implementation (NSDI’12) . USENIX, 267–280.

[8] Apache Hadoop 2023. Apache Hadoop. Retrieved September 18, 2023 from https://hadoop.apache.org

[9] Apache Oozie 2023. Apache Oozie Workflow Scheduler for Hadoop. Retrieved September 18, 2023 from https://oozie.

apache.org/

10] Apache Spark 2023. Apache Spark. Retrieved September 18, 2023 from https://spark.apache.org

11] Azkaban 2023. Azkaban: Open-source Workflow Manager. Retrieved September 18, 2023 from https://azkaban.github.

io/

12] Chien-Hung Chen, Ting-Yuan Hsia, Yennun Huang, and Sy-Yen Kuo. 2017. Scheduling-aware data prefetching for

data processing services in cloud. In Proceedings of the 31st International Conference on Advanced Information Net-

working and Applications (AINA’17) . IEEE, 835–842.

13] Chien-Hung Chen, Ting-Yuan Hsia, Yennun Huang, and Sy-Yen Kuo. 2019. Data prefetching and eviction mechanisms

of in-memory storage systems based on scheduling for big data processing. IEEE Trans. Parallel Distrib. Syst. 30,

8 (2019), 1738–1752.

14] Quan Chen, D. Zhang, M. Guo, Q. Deng, and S. Guo. 2010. SAMR: A self-adaptive mapreduce scheduling algorithm

in heterogeneous environment. In Proceedings of the 10th IEEE International Conference on Computer and Information

Technology (ICCIT’10) . IEEE, 2736–2743.

15] Yanpei Chen, Sara Alspaugh, and Randy Katz. 2012. Interactive analytical processing in big data systems: A cross-

industry study of mapreduce workloads. Proc. VLDB 5, 12 (2012), 1802–1813.

16] Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy Katz. 2011. The case for evaluating MapReduce perfor-

mance using workload suites. In Proceedings of the IEEE International Symposium on Modeling, Analysis & Simulation

of Computer and Telecommunication Systems (MASCOTS’11) . IEEE, 390–399.

17] Dazhao Cheng, Jia Rao, Yanfei Guo, and Xiaobo Zhou. 2014. Improving MapReduce performance in heterogeneous

environments with adaptive task tuning. In Proceedings of the 15th IEEE International Conference on Cluster Computing

(CLUSTER’14) . ACM, 97–108.

18] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms . MIT

Press.
CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

https://doi.org/10.1109/ICDCS.2018.00034
http://www.alluxio.org/
https://hadoop.apache.org
https://oozie.apache.org/
https://oozie.apache.org/
https://spark.apache.org
https://azkaban.github.io/
https://azkaban.github.io/

Cost-based Data Prefetching and Scheduling in Big Data Platforms 11:39

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

19] Francis Deslauriers, Peter McCormick, George Amvrosiadis, Ashvin Goel, and Angela Demke Brown. 2016. Quartet:

Harmonizing task scheduling and caching for cluster computing. In Proceedings of the 8th USENIX Workshop on Hot

Topics in Storage and File Systems (HotStorage’16) . USENIX, 1–5.

20] Ran Duan and Seth Pettie. 2014. Linear-time approximation for maximum weight matching. J. ACM 61, 1 (2014), 1–23.

21] Avrilia Floratou, Nimrod Megiddo, Navneet Potti, Fatma Özcan, Uday Kale, and Jan Schmitz-Hermes. 2016. Adaptive

caching in big SQL using the HDFS cache. In Proceedings of the 7th ACM Symposium on Cloud Computing (SoCC’16) .

ACM, 321–333.

22] Rohan Gandhi, Di Xie, and Y. Charlie Hu. 2013. PIKACHU: How to rebalance load in optimizing MapReduce on

heterogeneous clusters. In Proceedings of the USENIX Annual Technical Conference (ATC’13) . USENIX, 61–66.

23] Kannan Govindarajan, Supun Kamburugamuve, Pulasthi Wickramasinghe, Vibhatha Abeykoon, and Geoffrey Fox.

2017. Task scheduling in big data-review, research challenges, and prospects. In Proceedings of the 9th International

Conference on Advanced Computing (ICoAC’17) . IEEE, 165–173.

24] GridGain 2023. GridGain In-Memory Data Platform for High-Performance Applications . Retrieved September 18, 2023

from http://w w w.gridgain.com/

25] Tao Gu, Chuang Zuo, Qun Liao, Yulu Yang, and Tao Li. 2013. Improving MapReduce performance by data prefetching

in heterogeneous or shared environments. Int. J. Grid Distrib. Comput. 6, 5 (2013), 71–82.

26] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. 2016. RDMA

over commodity ethernet at scale. In Proceedings of the ACM SIGCOMM Conference (SIGCOMM’16) . ACM, New York,

NY, 202–215. https://doi.org/10.1145/2934872.2934908

27] Hadoop: Fair Scheduler 2023. Hadoop: Fair Scheduler. Retrieved September 18, 2023 from https://hadoop.apache.org/

docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html

28] HDFS 2023. Centralized Cache Management in HDFS. Retrieved from https://hadoop.apache.org/docs/stable/hadoop-

project-dist/hadoop-hdfs/CentralizedCacheManagement.html

29] HDFS 2023. HDFS Archival Storage, SSD & Memory. Retrieved September 18, 2023 from https://hadoop.apache.org/

docs/current/hadoop-project-dist/hadoop-hdfs/ArchivalStorage.html

30] Herodotos Herodotou. 2019. AutoCache: Employing machine learning to automate caching in distributed file systems.

In Proceedings of the IEEE 35th International Conference on Data Engineering Workshops (ICDEW’19) . IEEE, 133–139.

31] Herodotos Herodotou and Shivnath Babu. 2011. Profiling, what-if analysis, and cost-based optimization of MapRe-

duce programs. Proc. VLDB 4, 11 (Aug. 2011), 1111–1122.

32] Herodotos Herodotou, Yuxing Chen, and Jiaheng Lu. 2020. A survey on automatic parameter tuning for big data

processing systems. ACM Comput. Surv. 53, 2 (2020), 1–37.

33] Herodotos Herodotou and Elena Kakoulli. 2019. Automating distributed tiered storage management in cluster com-

puting. Proc. VLDB 13, 1 (2019), 43–56.

34] Herodotos Herodotou and Elena Kakoulli. 2021. Trident: Task scheduling over tiered storage systems in big data

platforms. Proc. VLDB Endow. 14, 9 (2021), 1570–1582.

35] HiBench 2023. HiBench Suite. Retrieved September 18, 2023 from https://github.com/intel-hadoop/HiBench

36] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott Shenker,

and Ion Stoica. 2011. Mesos: A platform for fine-grained resource sharing in the data center. In Proceedings of the 8th

USENIX Symposium on Networked Systems Design and Implementation (NSDI’11) . USENIX, 295–308.

37] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. 2011. The HiBench benchmark suite: Charac-

terization of the MapReduce-based data analysis. In New Frontiers in Information and Software as Services . Springer,

209–228.

38] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and Andrew Goldberg. 2009. Quincy:

Fair scheduling for distributed computing clusters. In Proceedings of the 22nd ACM Symposium on Operating Systems

Principles (SOSP’09) . ACM, 261–276.

39] Jingjie Jiang, Shiyao Ma, Bo Li, and Baochun Li. 2016. Symbiosis: Network-aware task scheduling in data-parallel

frameworks. In Proceedings of the 35th IEEE International Conference on Computer Communications (INFOCOM’16) .

IEEE, 1–9.

40] Elena Kakoulli and Herodotos Herodotou. 2017. OctopusFS: A distributed file system with tiered storage management.

In Proceedings of the ACM International Conference on Management of Data (SIGMOD’17) . ACM, 65–78.

41] K. R. Krish, Ali Anwar, and Ali R. Butt. 2014. hatS: A heterogeneity-aware tiered storage for hadoop. In Proceedings

of the 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid’14) . IEEE, 502–511.

42] Chunlin Li, Jing Zhang, Yi Chen, and Youlong Luo. 2019. Data prefetching and file synchronizing for performance

optimization in hadoop-based hybrid cloud. J. Syst. Softw. 151, 5 (2019), 133–149.

43] Runhui Li, Yuchong Hu, and Patrick P. C. Lee. 2017. Enabling efficient and reliable transition from replica-

tion to erasure coding for clustered file systems. IEEE Trans. Parallel Distrib. Syst. 28, 9 (2017), 2500–2513.

https://doi.org/10.1109/TPDS.2017.2678505
ACM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

http://www.gridgain.com/
https://doi.org/10.1145/2934872.2934908
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/CentralizedCacheManagement.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/CentralizedCacheManagement.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/ArchivalStorage.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/ArchivalStorage.html
https://github.com/intel-hadoop/HiBench
https://doi.org/10.1109/TPDS.2017.2678505

11:40 H. Herodotou and E. Kakoulli

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

R

A

44] Sparsh Mittal and Jeffrey S. Vetter. 2015. A survey of software techniques for using non-volatile memories for storage

and main memory systems. IEEE Trans. Parallel Distrib. Syst. 27, 5 (2015), 1537–1550.

45] Seyed Reza Pakize. 2014. A comprehensive view of hadoop mapreduce scheduling algorithms. Int. J. Comput. Netw.

Commun. Secur. 2, 9 (2014), 308–317.

46] Fengfeng Pan, Jin Xiong, Yijie Shen, Tianshi Wang, and Dejun Jiang. 2018. H-scheduler: Storage-aware task schedul-

ing for heterogeneous-storage spark clusters. In Proceedings of the 24th IEEE International Conference on Parallel and

Distributed Systems (ICPADS’18) . IEEE, 1–9.

47] Tarikul Islam Papon and Manos Athanassoulis. 2021. A parametric I/O model for modern storage devices. In Proceed-

ings of the 17th International Workshop on Data Management on New Hardware (DAMON’21) . ACM, New York, NY.

https://doi.org/10.1145/3465998.3466003

48] Mario Pastorelli, Damiano Carra, Matteo Dell’Amico, and Pietro Michiardi. 2015. HFSP: Bringing size-based sched-

uling to hadoop. IEEE Trans. Cloud Comput. 5, 1 (2015), 43–56.

49] Aparna Raj, Kamaldeep Kaur, Uddipan Dutta, V. Venkat Sandeep, and Shrisha Rao. 2012. Enhancement of hadoop

clusters with virtualization using the capacity scheduler. In Proceedings of the Third International Conference on Ser-

vices in Emerging Markets . IEEE, 50–57.

50] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010. The hadoop distributed file system.

In Proceedings of the 26th International Conference on Massive Storage Systems and Technology (MSST’10) . IEEE, 1–10.

51] Mbarka Soualhia, Foutse Khomh, and Sofiène Tahar. 2017. Task scheduling in big data platforms: A systematic liter-

ature review. J. Syst. Softw. 134, 8 (2017), 170–189.

52] Mingming Sun, Hang Zhuang, Changlong Li, Kun Lu, and Xuehai Zhou. 2016. Scheduling algorithm based on

prefetching in MapReduce clusters. Appl. Soft Comput. 38, 82 (2016), 1109–1118.

53] Mingming Sun, Hang Zhuang, Xuehai Zhou, Kun Lu, and Changlong Li. 2014. HPSO: Prefetching based scheduling to

improve data locality for MapReduce clusters. In International Conference on Algorithms and Architectures for Parallel

Processing . Springer, 82–95.

54] Xiaoyu Sun, C. He, and Ying Lu. 2012. ESAMR: An enhanced self-adaptive MapReduce scheduling algorithm. In

Proceedings of the 18th IEEE International Conference on Parallel and Distributed Systems (ICPADS’12) . IEEE, 148–155.

55] Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. 2015. C3: Cutting tail latency in cloud data stores

via adaptive replica selection. In Proceedings of the 12th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI’15) . USENIX Association, Oakland, CA, 513–527.

56] SWIM 2016. SWIM: Statistical Workload Injector for MapReduce . Retrieved September 18, 2023 from https://github.

com/SWIMProjectUCB/SWIM/wiki

57] Jian Tan, Xiaoqiao Meng, and Li Zhang. 2013. Coupling task progress for MapReduce resource-aware scheduling. In

Proceedings of the 32nd IEEE International Conference on Computer Communications (INFOCOM’13) . IEEE, 1618–1626.

58] Zhuo Tang, Min Liu, Almoalmi Ammar, Kenli Li, and Keqin Li. 2016. An optimized mapreduce workflow scheduling

algorithm for heterogeneous computing. J. Supercomput. 72, 6 (2016), 2059–2079.

59] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar, Robert Evans, et al.

2013. Apache hadoop YARN: Yet another resource negotiator. In Proceedings of the 4th ACM Symposium on Cloud

Computing (SoCC’13) . ACM, 1–16.

60] Jiayin Wang, Yi Yao, Ying Mao, Bo Sheng, and Ningfang Mi. 2014. Fresh: Fair and efficient slot configuration

and scheduling for hadoop clusters. In Proceedings of the 7th IEEE International Conference on Cloud Computing

(CLOUD’14) . IEEE, 761–768.

61] Shuang Wang, Jianzhong Huang, Xiao Qin, Qiang Cao, and Changsheng Xie. 2017. WPS: A workload-aware place-

ment scheme for erasure-coded in-memory stores. In Proceedings of the 2017 International Conference on Networking,

Architecture, and Storage (NAS’17) . IEEE, 1–10. https://doi.org/10.1109/NAS.2017.8026881

62] Weina Wang, Kai Zhu, Lei Ying, Jian Tan, and Li Zhang. 2014. Map task scheduling in mapreduce with data locality:

Throughput and heavy-traffic optimality. IEEE/ACM Trans. Netw. 24, 1 (2014), 190–203.

63] Luna Xu, A. Butt, Seung-Hwan Lim, and R. Kannan. 2018. A heterogeneity-aware task scheduler for spark. In Pro-

ceedings of the IEEE International Conference on Cluster Computing (CLUSTER’18) . IEEE, 245–256.

64] Ze Yu, Min Li, Xin Yang, Han Zhao, and Xiaolin Li. 2015. Taming non-local stragglers using efficient prefetching in

MapReduce. In Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’15) . IEEE, 52–61.

65] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott Shenker, and Ion Stoica. 2010. Delay

scheduling: A simple technique for achieving locality and fairness in cluster scheduling. In Proceedings of the 5th

European Conference on Computer Systems (EuroSys’10) . ACM, 265–278.

66] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy H. Katz, and Ion Stoica. 2008. Improving MapReduce

performance in heterogeneous environments. In Proceedings of the 8th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’08) . USENIX, 29–42.
eceived 1 August 2022; revised 26 June 2023; accepted 14 September 2023

CM Transactions on Database Systems, Vol. 48, No. 4, Article 11. Publication date: November 2023.

https://doi.org/10.1145/3465998.3466003
https://github.com/SWIMProjectUCB/SWIM/wiki
https://github.com/SWIMProjectUCB/SWIM/wiki
https://doi.org/10.1109/NAS.2017.8026881

	1 INTRODUCTION
	2 TASK SCHEDULING OVER TIERED STORAGE
	2.1 Problem Definition
	2.2 Minimum Cost Maximum Matching Formulation
	2.3 Excess Resource Pruning Algorithm
	2.4 Excess Task Pruning Algorithm

	3 RESOURCE SCHEDULING OVER TIERED STORAGE
	3.1 Current Resource Scheduling
	3.2 YARN’s Resource Request Model Extension
	3.3 Storage-tier-aware Resource Scheduling

	4 COST-BASED DATA PREFETCHING
	4.1 Modeling of Data Prefetching and Task Execution
	4.2 Data Prefetching Algorithm

	5 TRIDENT IMPLEMENTATION
	5.1 Trident Implementation in Hadoop
	5.2 Trident Implementation in Spark

	6 RELATED WORK
	7 EXPERIMENTAL EVALUATION
	7.1 Evaluation of Storage-tier-aware Scheduling with Facebook Workload
	7.2 Evaluation of Storage-tier-aware Scheduling in Hadoop with HiBench
	7.3 Evaluation of Storage-tier-aware Scheduling in Spark with HiBench
	7.4 Impact of Data Prefetching over Tiered Storage
	7.5 Evaluation of Trident’s Overheads

	8 CONCLUSION AND FUTURE WORK
	REFERENCESendgraf

