Mechanism of the Reductive Activation of O₂ to O₂²⁻ from a Vanadium(IV) Species and Its Potential Use in Fuel Cells

Anastasios D. Keramidas,^{*} Michael Papanikolaou, Sofia Hadjithoma Odysseas Keramidas, Chryssoula Drouza, Aggelos Amoiridis, Alexandros Themistokleous, Sofia C. Hayes, Panagiotis Lianos, Athanassios C. Tsipis, Themistoklis A. Kabanos

Department of Chemistry, University of Cyprus, Nicosia 2109, Cyprus. E-mail:<u>akeramid@ucy.ac.cy</u>

The two electron reductive activation of O_2 to $O_2^{2^2}$ is of particular interest to scientific community mainly due to the use of peroxides as green oxidants and in powerful fuel-cells. Among the metal-ions which activate O₂, vanadium is of particular interest because of its numerous oxidative catalytic properties. Reaction of either V^{IV}OSO₄·3.5H₂O or V^{IV}OCl₂ with N-(8quinolyl)pyridine-2-carboxamide (Hpbg) in CH₃OH solution under atmospheric O₂, at room temperature, resulted in the quick formation of $[V^{\vee}O(k^2-O_2)(pbq)(H_2O)](1)$. Compound 1 constitutes a rare example of formation of a (peroxo)oxidovanadium(V) complex from molecular O_2 and an oxidovanadium(IV) complex. The reaction of formation of compound 1 vs. time was monitored by ⁵¹V and ¹H NMR, UV-vis, cw-X-EPR, Resonance Raman spectroscopies and cyclic voltammetry revealing the formation of a stable radical intermediate $[V^{\vee}O(k^2-O_2)(pbq)(H_2O)]^{++}$. Dynamic experiments in combination with computational calculations were used to elucidate the $\{Zn|V^{\parallel},V^{\parallel}||cis-[V^{\vee}O_{2}(bpg)],\}$ mechanism the The galvanic cell of reaction. $[V^{\vee}O(O_2)(bpq)(H_2O)], [V^{\vee}O(bpq)(H_2O)_2]^+ |O_2|C(s)\}$ was manufactured, demonstrating that this technology can be used in $Zn|H_2O_2$ fuel cells generating H_2O_2 in situ from atmospheric O_2 .