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ABSTRACT

Deep Learning has brought about a revolution in the capabilities of Artificial Intelligence sys-

tems in the last decade. The foundational operating principle of Deep Learning algorithms that

differentiates them from previous approaches is the focus on learning strong representations

of the modeled data.

The networks learn to extract these representations in a way that retains the salient information,

while removing anything that is not useful for making correct inference.Unfortunately, deep

networks suffer from vulnerability to adversarial attacks.That is, appropriately algorithmically

crafted counter-examples, which are very easy for average humans to discern, completely foul

state-of-the-art deep networks into misclassification. This problem implies that the representa-

tions deep networks learn to discern are actually brittle and contain information which is not

salient enough to allow for strong generalization capacity under adverse conditions.

Recently, deep networks with Stochastic local winner-takes-all (LWTA) units have been

proposed as a potent means of learning to extract data representations with one order of

magnitude better generalization capacity in hard adversarial attack settings. This work builds

upon this success, aiming to deal with the problem of learning diversified representations

which is long-established.

For this purpose, we combine information-theoretic arguments with stochastic competition-

based activations, that is Stochastic LWTA units. Under this framework, we leave the con-

ventional deep architectures behind that are over-used in Representation Learning and based

on non-linear activations and we replace these activations with sets of stochastically and

locally competing linear units. In this setting, each network layer yields sparse outputs, deter-

mined by the outcome of the competition between units that are organized into blocks of

competitors. We adopt stochastic arguments for the competition mechanism, which perform

posterior sampling to determine the winner of each block.

We further endow the considered networks with the ability to infer the sub-part of the network

that is essential for modeling the data at hand; we impose appropriate stick-breaking priors to

this end. In order to make rich the information of the emerging representations, we resort to

the context of information theory, and more specifically to the Information Competing Process

(ICP). Then, under the stochastic Variational Bayes framework for inference, we have tied

all the components together. We perform an experimental investigation with detail for our



approximation by using benchmark datasets on image classification.

As we show in our experiments, the resulting networks yield significant discriminative rep-

resentation learning abilities. Additionally, the introduced paradigm allows for a principled

investigation mechanism of the emerging intermediate network representations.

Keywords: Machine Learning, Bayesian Inference, Variational Bayes,Sampling methods,Information

Theory,Variational Information Bottleneck,Local Winners Takes All,Representation Learning.
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Chapter 1

Introduction

The English mathematician Alan Turing in 1936 introduced the Turing machine, a compu-

tational model that pushed the development of computing to new heights. Turing published

a study in 1950 with the title”Computational Machinery and Intelligence,” which is often

mentioned as the cornerstone of modern artificial intelligence, more specifically the ability of

a machine to display human potential such as reasoning, creativity, and learning.

Artificial Intelligence (AI) started the upward course, in the 1960s around the idea that we

can decode and clarify smart human behaviors as a pattern of logical rules expressed by

algorithms that machines could follow in order to present that behavior. The information given

to the machine has been converted into symbols that the computer could handle by using a

sequence of rules. This approximation has led to the design of knowledge systems that extract

knowledge to solve problems.

Since 2000 AI has gradually peaked and came up from the ability of machines to learn from

huge amounts of data. The algorithms behind these systems work through the correlation

of the data being analyzed, thus giving the opportunity to the mechanisms to perform basic

computer functions.

According to the human ability to learn, philosophers ask the question: ”What is the way to

evaluate inductive reasoning that leads to learning in terms of its correctness?”. Accordingly,

psychologists ask: ”How the brain manages to store the results of the learning process and

perceive patterns?” In the field of AI they simply ask: ”How does a machine manage to create

new models and learning patterns from specific examples and how accurate are these models

in their application?”Using the aforementioned as a foundation ,could be given the following

definition for Machine Learning, which is a key part of AI: Machine Learning is the ability of

21



a computing system to create models or patterns from a data set in order to predict the next

movement. Machine learning in our era is one of the most evolving fields of science inspired

by neuroscience and neurology and using tools from applied mathematics has succeeded in

a very short time to achieve miracles in the field of science and AI. The essence of machine

learning is summarized in the use of algorithms with general-purpose to identify patterns in

the data in order to make decisions as accurately as possible. Machine learning in simple

words is the application of Artificial Intelligence that gives to computers the ability to predict

the outcomes automatically without the intervention of humans and is used in many aspects

of our everyday life like marketing and sailing, health care,financial services, social media

services, etc. Depending on the desired outcome, the algorithms are divided into the following

categories.

Supervised learning is the process where a practitioner constructs a function that maps the

inputs whose label is known to outputs of which the label is also known, with main purpose

to generalize the process to inputs with unknown output. It is known as supervised learning

due to the fact that the algorithm learning process from the training data set can be considered

as a teacher supervising the learning process. Knows the correct answers, makes repeated

predictions about training data and intervenes when there is a real need. The algorithm

stops when it starts converging on a certain number and achieves an acceptable level of

performance.The approach is used in problems such as Classification which is a method

that maps the data to a specific category, in simple words classification tries to predict a

discrete class label output for an example also can have discrete or real-valued input variables.

Regression which is the problem that predicts a continuous quantity output for an example,

however, is the task that approximating a function f from input variables X to a continuous

output variable y. Interpretation examines the model’s parameters and figure out at a general

way how the model works.

Unsupervised learning where the algorithm creates a model with specific inputs without

knowing the outputs.Unsupervised learning is when the input data (X) is known but there are

no corresponding output variables. The ultimate goal of unsupervised learning is to model the

distribution of data for the purpose to learn as much as is possible about the data. These are

called unsupervised learning due to the fact that unlike supervised learning above there is no

teacher and there are no correct answers. Algorithms are left to their own devices to discover

and present the interesting data structure. The approach is used in Association Analysis the

method that tries to discover the relationship between variables in large databases. It is aimed

to recognize strong rules discovered in databases.Clustering what exactly does that method is
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the natural grouping of data. In contrast to supervised learning, clustering algorithms only

interpret the input data and find natural groups or clusters in feature space.

Semi-supervised learning when facing problems with very large datasets where only some of

the data is labeled are called semi-supervised learning problems. These problems are between

both unsupervised and supervised learning. An expressive example is when a photo archive

where only some of the images are labeled, and the majority are unlabeled.Numerous real

world machine learning problems fall into this category. This is due to the fact that it can be

time-consuming to label data. Therefore the data which is with out label is easy and cheap to

collect it. The structure of the inputs can be discovered and learned by unsupervised learning

methods and also with the supervised learning which is used in order to to make predictions

for the data with out label. That data are feeded back into the supervised learning algorithm as

training data, and the model are used to generalize the unseen data.

Reinforcement learning It is the field that trying learning the optimal behavior in an un-

known environment. This behavior is learned through interactions with the environment and

observations.This is very close to children’s behavior who try to explore the world around

them and learn from their mistakes and their actions. In the absence of the supervisor,the

learner should automatically discover the sequence of actions that maximize effectiveness.

This process is like a trial and error search. The quality of the actions is measured by the

immediate performance they return and also the delayed reward they may receive. As it can

learn actions in an unknown environment that guide the algorithm to success without the

assistance of a specific observe.

1.1 Statistical Inference

Statistical inference is a huge area that includes many statistical methods from analyzing

data to drawing conclusions or inferences in business and research problems. It is a vitally

important field in terms of applications in data science. Based on random sampling, statistical

inference is the technique of making decisions about the parameters of a population. It enables

us to estimate the relationship between independent and dependent variables. The main idea

of statistical inference is to assess the uncertainty or variation from sample to sample. It

gives us the ability to deliver a range of values for the true value of the population. Statistical

inference is the procedure through which inferences are derived concerning a population and

are based on characteristics evaluated from a sample of data drawn from that population. In
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statistical inference, statements are made not merely about the particular subjects observed

in research but also, more importantly, about the larger population of subjects from which

the study participants were drawn. First of all it is of vital importance to discuss about

the two main philosophies of statistical inferences which is the Bayesian inference and the

Frequentist inference. In this thesis, we will focus on the Bayesian inference because have

been observed better results from the time which achieve to set the right prior distribution over

the hyperparameters of the model. Let mention below some of the main properties of each

other.

1.1.1 Frequentist

The frequentist dominated statistical practice during the 20th century by using only conditional

distributions of data given some specific hypotheses. It continues to be the most popular

method used in scientific literature to this day — concepts such as confidence intervals and

p-values belong to the frequentist paradigm. The substantial idea of frequentist statistics

is regarding repeatability and gathering more data. In simple words, the interpretation of

frequentist is the recurring and multi-occurring frequency of its occurrence. For instance,

the probability of a coin to be head is 0.5 if we were to flip the coin numerous times. The

frequentist approximation considered that any uncertainty in probabilistic estimates is due to

the sampling error between the sample and the population so having large samples or samples

that are closer to the actual population in frequentist approximations is a perfect scenario.

Specifically, the frequentist approach does not depend on a prior distribution which there is a

case to have a different form from one investigator to another due to its subjectivity which is

the main argument that frequentists used against Bayesians. What exactly frequentist do is try

to point estimate the parameters of the model.

1.1.2 Bayesian inference

Bayesian approach is just the procedure of inferring properties about a probability distribution

or population from data using the Bayes theorem. The Bayesian approach models uncertainty

by imposing a probability distribution over parameters so in that case, the performance of

our model is dependent to a high degree on the prior and likelihood of observed data. There

is a chance of high computationally intensive due to the integration of a large number of

parameters.
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However, in this era of big data and powerful computers, Bayesian methods[4] have undergone

a tremendous renaissance in fields like machine learning. Below is a detailed analysis of the

context of Bayesian inference. Bayesian inference can be considered as a way to get the right

predictions from your data and it is particularly useful when you do not have as much data as

you would like. Below is the definition of Bayes theorem which lay the foundation and the

cornerstone in order to move smoothly from the mathematical formulation of Bayes theorem

to the context of statistical inference.

P(A|B) = P(A)
P(B|A)

P(B)
, (1.1)

where A and B are events and P(B) 6= 0

• P(A|B) is a conditional probability: the likelihood of A occurring given that B is true.

• P(A|B) is also a conditional probability: the likelihood of event B occurring given that

A is true.

• P(A),P(B) the probabilities of observations which is independently of each other and

is known as the marginal probability.

For the inversion procedure, all is needed is to guess the prior distribution P(A) in order to

estimate the posterior. Prior distribution is chosen by intuition about the likeness of underlying

regularities with a known family of distributions. Once a reasonable choice of the prior is

available, advantages associated with using the Bayesian approach emerge and will be made

clear in the next sections.

Assuming that a hypothesis about the prior distribution is a set, possible routes on how to

calculate the posterior distribution will be discussed.We will be discussed in detail how we can

calculate the posterior distribution. Applying Bayes rule and considering the new information

as y, the posterior of the model is given by:

P(mi|y) =
P(y|mi)P(y)

P(mi)
(1.2)

P(y) = ∑P(y|mi)P(mi), (1.3)
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The first term in the numerator is the likelihood of our model which tell us how our data

interacts with our parameters of a specific model and is very important quantity in Bayesian

inference.

P(y|mi) =
∫

P(y|θ ,mi)P(θ |mi)dθ , (1.4)

The second term P(mi) is known as a prior and captures everything we know about the

parameters of the model. The term in denominator P(y) is a normalizing constant, also known

as the marginal likelihood of the model specified by hyper-parameters θ , because it computes

accurately the likelihood of observing the given data set given the modelling assumptions

encapsulated in θ , which refers to the marginalization over the whole of parametric space in

order to make predictions or to compare different kind of models.

Marginal likelihood has the form of intractable integration, which is very difficult to solve

it analytically. Few years ago the problem of integration has been faced by constraining the

models with simpler likelihood functions with specific formulas for prior distributions, which

are known as conjugate priors with combination of likelihood function generated a tractable

integral.

1.2 Sampling Methods for Bayesian Inference

The specialized computational tools enable the bayesian data analysis methods to be more

flexible and more efficcient, apart from the simple models, explicit solutions for quantities

relevant to Bayesian inference are not available. This limitation has motivated the specialists

to develop numerous different approximation methods to overcome this obstacle. Due to the

fact that the memory and capacity of computers have undergone an impressive advancement

in recent years, the research community has taken advantage of this stuff and it used sampling

techniques such as rejection sampling ,importance sampling and Monte Carlo, and more

specific Markov Chain Monte Carlo which it was one of the most influential algorithms of

the 20th century. It is widely used and has its roots in physics[5], and to the end of 1980,

they started to have a significant impact in the field of statistics. These fundamental parts of

sampling have been illustrated in detail by Bishop and Nabney in 2008. Sampling methods

have historically been the main way of performing approximate inference. [1].

26



E[ f ] =
∫

f (z)p(z)dz (1.5)

This method allowed us to approximate the expectation by a finite sum

f̂ =
1
L ∑ f (z(l)) (1.6)

1.2.1 Rejection Sampling

In order to implement rejection sampling[6] is needed to sample from the distribution p(z) that

is not one of the simplest and standard distributions examined, so the immediately sampling

from p(z) is complicated. Moreover let consider, as is often, that we can evaluate p(z) easily

for any value of z, up to some normalizing constant Z, so that

p(z) =
1

Zp
p̄(z) (1.7)

where Zp is not known and p(z) can easily be estimated. In order to implement rejection

sampling, we need a proposal distribution, from which we can draw samples easily from

simpler distribution q(z). The constant k are introducing whose value is selected in order to

verify the kq̇(z)≥ p̄(z) ∀z. This kq(z) function is well known as comparison function. Every

step of the rejection sampler include generating two random numbers. First of all, we generate

z0 from the distribution q(z).. Secondly, by using the uniform distribution over [0,kq̇(z0)] we

generate a number u0. This doublet of random numbers has a uniform distribution under the

curve of the function kq̇(z). Finally, if u0 ≥ p(z0) then the sample is rejected, otherwise u0 is

holded.

1.2.2 Importance Sampling

By relying on the use of a proposal distribution q(z) which it is easier to draw samples,

importance sampling make an approaching framework for approximating expectations directly

but does not supply a system for drawing samples from distribution p(z). The expectation can

be expressed in the form of a finite sum as below. 1.8[1]:

E[ f ] =
∫

f (z)p(z)dz =
∫

f (z)
p(z)
q(z)

q(z)dz w ∑
p(z(l))
q(z(l))

f (z(l)) (1.8)
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Figure 1.1: Samples are drawn from q(z) and rejected if they drop in the grey field between the

the scaled distribution kq(z) and unnormalized distribution p̄(z). The results are distributed

according to p(z), which is the normalized version of p̄(z).[1]

rl =
p(z(l))
q(z(l))

are called as importance weights, and they improve the bias introduced by sampling

from the wrong distribution. Notice that, in contrast rejection sampling all of the samples

generated are maintained.

1.2.3 Markov chains Monte-Carlo

As we mentioned above MCMC[7] is a sampling method that gives you the opportunity to find

the posterior distributions of our parameters of the model. Especially, this type of algorithm

generates Monte Carlo simulations in a way that based on the Markov property, then accepts

these simulations at a certain rate to get the posterior distribution[8]. As with importance and

rejection sampling,again sample have been sampled from a proposal distribution. MCMC

method retained a record of the current state z(t), and the proposal distribution q(z|z(τ)) de-

pends on this current state, so the sequence of samples z1,z2,z3... can be illustrated as a Markov

chain. The proposal distribution is selected to be simple that it is easier to draw samples from

it. At each loop of the algorithm, produced a candidate sample z which is selected accordingly

to a criterion from the proposal distribution. In simple words Metropolis algorithm, supposed

the property of symmetry for the proposal distribution, which is q(zA|zB) = q(zB|zA)for all

values of zA and zB. The sample then accepted with probability.

A(z?,zτ) = min(1,
z?

zτ
) (1.9)
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if A(z?,zτ) ⊂ u,u ∈ (0,1)then accepting the sample otherwise discard it. Notice that if the

step from z(τ) to z? might lead to the increase in the value of p(z), then the candidate point

is certain to be kept. If the candidate sample is accepted, then z(τ+1) = z?, in other case the

candidate point z is rejected, z(τ + 1) is set to z(τ) and another candidate sample is drawn

from the distribution q(z|z(τ+1)) and we repeat this procedure. The Metropolis algorithm[9]

when a candidate sample is rejected, the prior sample is involved instead in the final list of

samples, causing a numerous copies of samples.

Despite all the advantages, the sampling methods have many drawbacks such as they are

computationally intensive, you can use it only for small-scale problems, you are not sure about

the independently of our sample and last but not least it was very slow so that disadvantages

allowed the deterministic techniques to arise a new kind of method which is known as varia-

tional inference or variational Bayes which is making approximate inference for parameters

in complex statistical models. Monte Carlo[10] provide a numerical approximation to the

posterior using a set of samples. Variational approximation supply a locally optimal analytical

and accurate solution to an approximation of the posterior.In the next chapter we will discuss

with more detailed this method.

1.3 Variational Approximation

Variational inference has been proposed by M.Jordan in 1999 [11] is a popular method for

approximate Bayesian inference which relies on the assumptions about the posterior over latent

space. Variational Bayes (VB) is an optimization algorithm that is used for main reason to

approximate Bayesian inference and is much more efficient than the typical sampling methods.

VB can also be used in the frequentist framework in order to estimate the maximum likelihood

when there are missing data. In the literature, you can find also the names Variational Bayes

and Variational Inference are often used exchangeably. In simple words, variational inference

converts the inference problem into an optimization problem. The name was taken from the

variational distribution which is used for modeling the hidden variables and is one of the most

popular deterministic approximate inference technique. The variational inference has the

potential to confront problems with a large amount of data and high dimensionality instantly

in order to provide an analytical approximation to the posterior probability of the hidden

variables.

Approximate posterior with q(?) and find it with an optimization approach, so suppose there

29



are lot of distributions out there in the world and there is a set of nice distributions, my goal is

to find the mean and the covariance of my posterior. Firstly, tried to find the q? which is the

better distribution in the set of nice distributions which aforementioned. To achieve this it is

needed to define a measure to tell us who is the closest distribution to the exactly posterior. At

this point, the mean of Kullback–Leibler divergence emerges

q? = argmin f (q(·), p(·|y)) (1.10)

Figure 1.2: Illustration of how the variational approximation works with q?
θ

, p(θ |y) symbolize

the variational distribution and exactly posterior respectively

and f is Kullback-Leibler divergence KL(q||p) which is a kind of a distance between the

exactly posterior and the approximate posterior, in simple words is a way to estimate the

difference between two distributions.

KL(q(·)||p(·)) =
∫

q(θ) log
q(θ)

p(θ |y)
dθ =

∫
q(θ) log

q(θ)p(y)
p(θ ,y)

dθ

= log p(y)−
∫

q(θ) log
p(θ ,y)
q(θ)

dθ (1.11)

The general purpose is to minimize the KL divergence over q, as observed the first term does

not contain q so the derivative will throw this term out because it affects nothing. The second

term contains only things that we know p(θ ,y) that just the prior times the likelihood those

that exactly the inputs that we put to this problem the second term is known as a evidence

lower bound or ELBO [12] and this is must be optimized.
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log p(x)>
∫∫

q(z)q(θ) log
p(x|z,θ)p(z)p(θ)

q(z)q(θ)
dzdθ

=
∫∫

q(z)q(θ) log p(x|z,θ)dzdθ

+
∫∫

q(z)q(θ) log
p(z)
q(z)

dzdθ

+
∫∫

q(z)q(θ) log
p(θ)
q(θ)

dzdθ

= Eq(z)q(θ)[log p(x|z,θ)]

+
∫

q(z) log
p(z)
q(z)

dz+
∫

q(θ) log
p(θ)
q(θ)

dθ

= Eq(z)q(θ)[log p(x|z,θ)]−DKL[q(z) ‖ p(z)]−DKL[q(θ) ‖ p(θ)]

= L (q)

(1.12)

characterizing KL divergence

if q? and p are high, we are happy

if q? is high but p is not, we pay a price

if q? is low, we do not care

if KL = 0 then distribution are identical

Due to the fact that KL has the main property of a distance which is KL≥ 0 =⇒ log p(y)≥
ELBO.The really important point here is that minimizing the KL is exactly equivalent to

finding theq? to be the maximizer of the ELBO.

q? = argmax f (q(·), p(·|y)) (1.13)

Which is exactly the same problem.

1.3.1 Mean-Field Variational Inference

The model’s complexity regulates the optimization complexity. The difficulty to optimize

a complex model is bigger than a simple model. Below will be discussed the mean-field

Variational Inference which makes the assumption of independence between latent variables

and focuses on the mean-field variational family[13], where each one of the latent variables

is independent and are governed by a distinct factor in the variational density. A reliable
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predictive model to be expressive enough needs to include numerous of latent variables.

The previous formulation for the parametric form of the approximate distribution is better

written as q(Z|φ) where Z = [z1,z2, ..,zn]. This imposes a difficulty on the training due to

the dependence of the variables.This can be simplified with the mean-field approximation

where has this specific property of latent variable in-dependency .A generic member of the

mean-field variational family is

q(Z|ϕi) = ∏q(ζi|ϕ) (1.14)

However, introducing independency between the latent variables leads to a family of approx-

imate distributions that are less expressive and will not include the posterior. Mean-Field

Variational Bayes and the simple Variational Bayes limit their use to mainly conjugate models.

Non-conjugate models can be trained with ad-hoc models of variational inference algorithms

such as approximations. This includes models like Bayesian logistic regression,discrete

choice models ,Bayesian generalized linear models, Bayesian item response models and

non-conjugate topic models[14].

Figure 1.3: Illustration of the mean-field approximation to a two-dimensional Gaussian

posterior[2]

Although we focus on drawing mean-field inference, researchers have dealt with more difficult

families, a great way to enrich these families is to create dependencies between model

variables.[15];[16], this is known as structured variational inference. A different way to expand

these families is to consider mixtures of variational densities, additional latent variables within

the variational family [1]. The two aforementioned methods equally improve the trueness of

the approach but there is a trade-off. Structured and mixture-based variational families come

with more difficulty to solve the variational optimization problems. In the next sections we

will discuss techniques that enrich the Variational Bayes algorithm to train more expressive

models.
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1.3.2 Stochastic Variational Inference

Stochastic variational inference[17] is a way to approximate the posterior distributions which

arise by sizeable datasets rapidly using stochastic optimization. Stochastic optimization is

indispensable for the Stochastic variational inference in order to find the global variational pa-

rameters.Stochastic optimization[18][19] algorithms are using noisy estimates of the gradient

with smaller step sizes at each time due to the fact that the estimation of gradients with Noise

is very often cheaper to compute than the true gradient, and these kinds of estimations are able

to assist algorithms to escape from local optima of complicated objective functions and take

us to the context of fitting the global optima.

Assume f (λ ) as objective function and B(λ ) as a random function that has a gradient equal to

expectation so that Eq[B(λ )] = ∇λ f (λ )

The stochastic gradient algorithm, which belongs to the category of stochastic optimization

algorithms optimize f (λ ) by iteratively following B(λ ).

λ
(t) = λ

(t−1)+ρtbt(λ
(t−1)) (1.15)

where bt is an independent draw from the noisy gradient B. If the sequence of step sizes ρt

satisfies:

∑ρt = ∞ ∑ρ
2
t < ∞ (1.16)

then λ (t) will converge to the optimal λ ? if f is convex. The aim of stochastic variational

inference is to regularize and fit the global parameter λ that maximizes the evidence lower

bound. We express L in terms of of the local and global variational parameters, we assume

that the function φ(λ ) return a local optimum of the local parameters

∇(λ ,φ(λ )) = 0 (1.17)

determine the locally maximized ELBO to be the objective function when λ remain constant

and the local variational parameters φ are define to be a local optimum φ(λ )

L(λ ), L(λ ,φ(λ )) (1.18)

The ELBO L(λ ) are optimized by stochastic variational inference by subsampling the data in

order to create estimations of the natural gradient that have noise. We deconstruct L(λ ) into a
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sum of local terms and a global term[20].

L(λ ) = Eq[log p(β )]−Eq[logq(β )]+
N

∑
n=1

max(Eq[log p(xn,zn|β )])−Eq[logq(zn)] (1.19)

We assume a variable that its index is chosen randomly from the uniform distribution,I ∼
Uni f (1, ...,N). Determine LI(λ ) as a random function of the variational parameters,

LI(λ ) = Eq[log p(β )]−Eq[logq(β )]+Nmax(Eq[log p(xI,zI|β )])−Eq[logq(zI)] (1.20)

The the objective of L(λ ) is exactly the same to E[LI(λ )]. However, the natural gradient of LI

with respect to each parameter λ is unbiased but a noisy estimate of the natural gradient of the

objective function. The process of estimate the natural gradient call LI and then sampling a

data point will provide us with the ability to estimate noisy gradients easiest for stochastic

optimization. Now we are estimating the noisy slope

∇Li = Eq[ηg(x
(N)
i ,z(N)

i ,α)]−λ (1.21)

{x(N)
i ,z(N)

i } are the dataset and ηg(x
(N)
i ,z(N)

i ) is a function of random variables and observa-

tions. Lastly, we are using the aforementioned noisy natural gradients in an algorithm created

by Robbins-Monroto in order to optimize the ELBO. We determine the intermediate global

parameter λ̂t to be the estimation of λ

λ̂ , α +NEφi(λ )[(t(xi,zi),1)] (1.22)

We are using the noisy gradient with step size ρt at each iteration to update the global

variational parameter. Below is the update:

λ
(t) = λ

(t−1)+ρt(λ̂t−λ
(t−1)) (1.23)

1.3.3 Automatic Variational Inference

In previous works, they used to use a variational inference algorithm which is needed the

painstaking work of implementing a custom optimization approach. Variational family which
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Figure 1.4: The algorithm of Stochastic Variational Inference

is appropriate for the model requires computing cost in order to compute objective function

and compute the derivatives. ADVI overcomes this problem by generating automatically

variational algorithms.

The main idea of ADVI is to achieve the automatic transformation of the problem into a

space that is feasible to solve the variational optimization problem. This common space

solves variational inference for all models in a large class. We will discuss specifically the

procedure[21].

In the first step we will examine how to achieve to use a single variational family for all

models.It transforms p(x,θ) to p(x,ζ ), where the mapping from θ to ζ is built into the joint

distribution. This method eliminate all the limitations on the latent variables θ . ADVI then

specify the variational problem on the transformed variables in order to minimize this amount

KL(q(ζ )|p(ζ |x)) this transformation enable all the latent variables to defined on the same

space.

Secondly reforms the gradient of the variational objective function as an expectation over q.

Expressing the gradient as an expectation enable us to use the method of Monte in order to

approximating it.

Thirdly, enables us to reparameterizes the gradient in terms of a Gaussian. In order to

achieve this use another transformation in the variational family. This transformation this

time enables ADVI to compute efficiently Monte Carlo approximations with samples from

Gaussian. Finally, optimize the variational distribution, ADVI use noisy gradients.
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1.3.4 Black-Box Variational Inference

This approximation method have been proposed by Rajeshr[22],with general purpose to over-

come some limitations that emerges from the typical method o variational inference. Black

Box Variational Inference is a new version of variational inference that dramatically decrease

the analytic burden. The main idea behind method is the stochastic optimization of the ELBO

by sampling from the variational posterior in order to calculate the noisy gradient. Key to

its success is the variance reductions without models to reduce the variation of the noisy

gradients. Black Box Variational Inference performs efficient for new models, while its needed

negligible work from the practitians. Then, in order to optimize the variational parameter,

we are using these stochastic gradients in a stochastic optimization algorithm. We shall see

here that central to this idea are stochastic gradient estimators of the ELBO. Here we use

the black-box variational inference (BBVI) as an umbrella term to refer to the techniques

which rely on this idea. The goal in BBVI is to obtain Monte Carlo estimates of the gradient

of the ELBO and to use it in order to achieve stochastic optimization to fit the variational

parameters.

Let consider the ELBO:

∇φ L(φ) = Eq(z;φ)[ f (z)] (1.24)

where

f (z) = ∇φ logq(z;φ)[log p(x,z)− log p(z;φ)] (1.25)

The estimator include a control variate which is a random variable, reduce its variance and

maintaining its expectation. A common choice for control variates is the weighted score

function. Under the above formulation, the ELBO gradient becomes.

∇φ L(φ) =
N

∑
n=1

Eq(z;φ)[ fn(z)−ϖnhn(z)] (1.26)

where we define
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hn(z) = ∇φ logq(zn;φ)ϖn =
Cov( fn(z),hn(z))

Var(hn(z))
(1.27)

N is the number of samples.

1.4 Reparameterization Trick

The Auto-Encoding Variational Bayes proposed by [23] presents an innovative, differentiable,

unbiased, and scalable estimator for the objective function in variational inference. The

main idea of this estimator is the reparameterization trick. How they approximate posterior

distributions which is used in KL divergence.When a neural network are trained, then inevitably

are needed to execute the back propagation method across a stochastic node in the network,

because the ELBO which is the objective function. Unfortunately, the back propagation is very

difficult to execute across a stochastic node, because we cannot take the derivative of a random

variable. Therefore, are used what is called the reparameterization trick in order to restructure

the problem. It is worth to emphasize that the reparameterization trick can be implemented

to different kinds of distributions and functions, and it is used in a lot of frameworks besides

VAEs.

As we previously mentioned we are trying to find the better approximation of the posterior

distribution, p(z|x). We consider the q? which is the optimal approximation of p(z|x), we min-

imizing q? by a loss function using gradient descent in other words, by using backpropagation

to teach a neural network to represent q?. The problem that arise from this is that we cannot

compute the derivative of one particular term in our loss function.The loss function can be

written as follows

li(θ ,φ) =−Ez∼q(z|xi)[log pφ (xi|z)]+KL(q(z|xi||p(z)) (1.28)

The term in the loss function is stochastic with respect to random variable z. The back

propagation algorithm has a problem due to its difficulty to differentiate the random variable

through the node. Take a glance to the left side of the diagram in the Figure below, where the

stochastic node is acting as a bottleneck, preventing us from back propagating the derivatives

from f to φ and x. The reparameterization trick tries to restructure the neural network in order

to convey information from f to φ and x, as shown on the right side of the Figure 1.5 and allow

the back propagation.
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Figure 1.5: Reparameterization Trick

The reparameterization trick converts the random variable z into the following expression

z∼ N(µ,σ2)−→ z = µ +σ � ε where ε ∈ N(0,1) (1.29)

The reparameterized version of z especially, µ is deterministic so the derivative of z is feasible.

The standard deviation is stochastic but without a problem because it is no longer along the

critical path in our backpropagation chain.

The method of reparametrization trick generating non-uniform random numbers by converting

some base distribution, p(ε), to a desired distribution, p(z;θ)

p(ε)−→ g(ε;θ)−→ p(z;θ) (1.30)

1.4.1 Gumbel-Softmax Trick

Reparametrization trick is a key idea which helped us to overcome problems that were previ-

ously considered very difficult.Unfortunately when we are dealing with discrete data this trick

fails.The Gumbel-softmax trick[24] which essentially is the outcome of the parameterization

of categorical distribution which is given with respect to the Gumbel distribution and the corre-

sponding function is discontinuous, it can be made continuous using a continuous approxima-

tion dependent on a temperature parameter, which in the case of zero-temperature degenerates

into non-continuous, original expression.Below we discuss the aforementioned components.

The random variable G follow a standard Gumbel distribution if G =− log(− log(U)) with

U ∼Uni(0,1). Assumed X as a discrete random variable with P(X = k) ∝ αk and let {Gk}k≤K

be a sequence of standard Gumbel random variables.

X = argmax
k

(logαk +Gk) . (1.31)
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In a simple words, a perspiration to sampling from a discrete distribution is to draw Gumbel

noise by just transforming uniform samples and add it to logαkl which has to be known up to

a normalizing constant and take the value k that produces the maximum.

1.4.2 Stochastic Processes

Firstly, the word stochastic comes from the Greek word ’stóhos’ which means aim, guess.When

the meaning of uncertainty and randomness came to the fore, it was needed to arise a field of

science that defines and describes the meaning of uncertainty. When uncertainty was presented

in our models the meaning of stochastic modeling have been flourished. In a simple words, it

is a model for a process that include randomness. In the real world, uncertainty is observed

in all the aspects of our life, so a stochastic model could represent anything. The antonym

of stochastic is the deterministic model which predicts only a single outcome from a given

set of circumstances. In contrast with a stochastic model which predicts a set of possible

outcomes weighted by their probabilities. Deterministic models on every occasion have a set

of unchangeable equations that describe the system exactly without changing the result at a

time instead of stochastic modeling which generates different results at each time. Modeling

a phenomenon as deterministic or stochastic it is purely the observer’s choice. The choice

depends on the purpose of the observer; the criterion for judging the choice is usefulness.

Definition:Stochastic process is a family of random variables Xθ , where the parameter θ is

drawn from an index set θ . For example, let’s say the index set is “time”.For a continuous

process, the random variables are denoted by Xt , and for a discrete process they are denoted

by Xn. “Time” is one of the most common index sets another is vectors, represented by Xu,v,

where u,v is the position.

Stochastic processes are discrete by the random variables X by their index set T, the range of

possible values, and by the dependence relations among the random variables X. Gaussian

Process, Dirichlet process, etc is some of the most widely used categories of stochastic

processes. The use of these processes as models will explain in detail below.

1.5 Bayesian non parametric methods

A nonparametric Bayesian model is a model that the parameter space has infinite dimensions,

in order to determine a nonparametric Bayesian model, is necessary to define first the prior
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probability distribution on the space. A distribution on an infinite-dimensional space T is

a stochastic process with paths in T. Such distributions are very difficult to define it than

distributions on Rd , but we have the ability to draw on a large arsenal of tools from stochastic

process theory and applied probability. Non parametric Bayesian methods have seen rapid

growth over the past 25 years. It is essentially to assume theoretically ,flexible models that are

not limited to finite parameterizations. Bayesian non parametric models in a simple words

are Bayesian models defined on infinite dimensional parameter space. The parameter space

depends from the given problem in each case.

For instance in a regression task the parameter space is determined by continuous functions

also in a density estimation problem the space can contains all the densities. Bayesian non

parametric models handle just a finite subset of parameter dimensions in order to explain a

finite sample of observations, with the set of dimensions selected depending on the sample,

such that complexity of the model to be effective. In the below sections, we will mention

and analyze some of the most important categories of the Bayesian non-parametric methods

such as Gaussian process[25], Dirichlet process[26], its hierarchical extension, and lastly the

Beta process. Bayesian nonparametric models have been applied to a numerous of machine

learning problems such as image segmentation,classification, clustering, regression, latent

variable modeling,sequential modeling, source separation and grammar induction.

1.5.1 Gaussian Process

Stochastic modelling is an interesting and challenging area of probability and statistics which

in 1996 Rasmussen inspired by Neal’s [27] in order to create a bridge between stochastic

modelling and machine learning. The word “Gaussian” of its name symbolize that GP uses

Gaussian distribution (or normal distribution) to characterize the random process. In order

to characterize a single random variable with a Gaussian distribution, a mean value and a

variance value are all we need. Therefore, to define a random process that comprises an infinite

number of random variables is needed to upgrade the Gaussian distribution to a Gaussian

random process. The word “Process” which is the second part of its name refers to the fact

that GP is a random process. In simple words, a random process is a function f(·) that have

the ability at any location x, f(x) will be random variable also in different locations xi and

x j, the random variables f (xi) and f (x j) are correlated. Thirdly correlation strength between

f (xi) and f (x j) depends on the distance between xi and x j. In general, as x j moves away from

xi, their correlation strength decays. The main advantage is that we can interpret a random
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process as an infinite collection of correlated random variables. Thus, introduced Gaussian

process models which is a stochastic process with general purpose to bring together the two

communities by construct GP’s from neural networks with an infinite number of hidden units

and there is an direct way of placing a prior over the underlying function f.

Let f = ( f (x1), ..., f (xn)) be an n-dimensional vector of function values evaluated at n points

xi ∈ X and f is a random variable.

Definition: p(f) is a Gaussian process if for any finite subset x1, ...,xn ⊂ X , the marginal

distribution over that finite subset p(f) has a multivariate Gaussian distribution.

Gaussian processes (GPs) can be characterized by two parameters a mean function, µ(x), and

a covariance function, or kernel, K(x,x0)[28][29].

where

f ∼ G P(µ(x),k f (x,x
′
))µ(x) = E[ f (x)] (1.32)

k f (x,x
′
) = E[( f (x)−µ(x))( f (x

′
)−µ(x

′
))] (1.33)

The Gaussian process has as output a normal distribution, which can be expressed in terms

of mean which represent the most likely output and variance which illustrate the measure of

the confidence of our model. Gaussian process have this powerful capacity to catch most of

relations between inputs and outputs by using an infinite number of parameters and letting the

complexity to determine through the means of Bayesian inference. In a simple words Gaussian

process defines a distribution over functions p(f) which can be used to compute the posterior

distribution in order to confront problems like Bayesian regression or classification[30].

Given the data D = X ,y and hyper-parameters θ(e.g.,θ = (λ ,σ2, f ,σ2)), the log marginal

likelihood[31] is

log p(y|x,θ) = −1
2

yT K−1y− 1
2

log |k|− n
2

log2π (1.34)

The marginal log likelihood can be considered as a complexity penalty measure and is

the combination of a data fit term. In the first term we have how well the current kernel

parametrization explains the dependent variable the second term is a measure of complexity

penalization and the finally the third term is a normalization constant.

The marginal likelihood is usually maximized through an optimization tool such as imple-

mented in Carl Rasmussens MATLAB function minimize. These procedures using the partial

derivatives with respect to θ :

41



∂

∂θi
log p(y|X,θ) =

1
2

yT K−1 ∂K
∂θ j

K−1y− 1
2

tr(K−1
∂K
∂θ j

) (1.35)

Figure 1.6: A GP fitting the observed data. The black curve represent the GP mean.Standard

deviations are illustrated as gray hue. The GP samples are depicted with different kind of

colors. Note that even when the mean return to zero far from observations, the samples still

fluctuate.

Undoubtedly, the biggest disadvantage of Gaussian process it is the disability to scale up well.

Through the inferring of posterior is required to inverting the matrix [K(Xt ,Xt)+σ2I] which is

computationally costly and intractable because inference scales cubic-ally and depends from

the number of observations due to this fact increasing the speed of inference for Gaussian

process regression is an issue of ongoing research. This means that in practice it is very

difficult to work with more than a few thousand points. For this reason have been proposed

sparse GP techniques[32] that can be used to greatly reduce computation time or to bound

the computational cost of the matrix inversion by projecting into a predefined finite basis of

functions drawn from the eigen-spectrum of the kernel [33]. In conclusion, the results show

that Gaussian process regression is specifically beneficial when the underlying function is

unknown.General purpose to bring together the two communities by construct GP’s from
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neural networks with an infinite number of hidden units.

1.5.2 Dirichlet Process

As we previously mentioned in the Gaussian process also Dirichlet Process (DP)[34] is a

distribution over distributions. The Dirichlet process belong to the category of the stochastic

processing with the characteristic that all samples if we sum it give us probability one.

Stochastic processes are distributions over function spaces, with sample paths being random

functions drawn from the distribution. DP gives us the ability to take advantage of its

properties, which allow them to be interpreted as distributions over some probability space

Θ it is a distribution over probability measures. Thus samples from a DP can be considered

as random distributions. For distribution over probability measures to be a DP, its marginal

distributions have to take on a specific form which we shall give below. This theory is built

up at the measure theory and Dirichlet distributions, thus prerequisite knowledge is needed.

Before we define it mathematically, we will try to give the intuition of the DP as an infinite-

dimensional generalization of Dirichlet distributions. Assume a Bayesian mixture model

consisting of K components:

π|α ∼ Dir(
α

K
, ...,

α

K
) θ

?
K|H ∼ H zi|π ∼Mult(π) xi|z,θ ?

K ∼ F(θ ?
zi
) (1.36)

where α is the pseudocount hyperparameter of the Dirichlet prior,π is the mixing proportion, H

is the prior distribution over component parameters θ ?
k , and F(θ ) is the component distribution

parametrized by θ . There is a special way to parametrize Dirichlet prior over π and is obvious

when the K increasing. We assume that the distribution G is distributed according to a DP, its

marginal distributions have to be Dirichlet distributed [35]. Especially, let H be a distribution

over θ and α be a positive real number. The vector (G(A1), ...,G(Ar)) is random due G is

random and A1,...,Ar is finite partition of θ , G is Dirichlet process with concentration parameter

α , and base distribution H written G ∼ DP(α , H), if:

(G(A1), ...,G(Ar))∼ Dir(αH(A1), ...,αH(Ar)) (1.37)

for every finite partition A1, ...,Ar of Θ. The parameters α and H have a significant role in

the determination of the DP. The base distribution essentially is the mean of the DP: for any

measurable set A ⊂ Θ, we have E[G(A)] = H(A). From the other side, the concentration

parameter can be understood as an inverse variance
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V [G(A)] =
H(A)(1−H(A))

(α +1)
. (1.38)

1.5.3 Indian Buffet Process

The Indian Buffet Process (IBP) is a distribution that imposes to binary matrices which

consisting by unbounded number of columns and N rows[36] which each column corresponds

to a feature and each row corresponds to an object it is something which is very close to

Chinese Restaurant Process (CRP) [37]. The IBP gives an effective way to determine non-

parametric Bayesian models with latent variables. The IBP also allows each object to possess

potentially any combination of infinitely many latent features. This setting has resulted to

provide unprecedented flexibility in the model and assisting the development of a range of

interesting applications such as choice behaviour, human similarity judgments, protein-protein

interactions etc.

The IBP is defined as the limit of a corresponding distribution over matrices with K columns,

as the number of columns K→ ∞. Let Z be a random binary N×K matrix, and denote entry

(i, k) in Z by zik. For each feature k let µk be the prior probability that feature k is present in

an object. We place a Beta(αK,1) prior on µk, with α being the strength parameter of the IBP.

The full model is:

µk ∼ Beta(
α

k
,1) ∀ k (1.39)

zik|µk ∼ Bernoulli(µk) ∀ i,k (1.40)

A different definition of the IBP where the feature probabilities are not integrated out and a

specific ordering is imposed on the features is known as the stick-breaking construction for

the IBP which fit perfectly with variational inference. This alternative representation gives

the ability to ensure sparsity in the obtained representations, while at the same time allowing

the emerge of components as new data appear. These representations help us to use new

MCMC samplers are that are much easier in the implementation on general models than Gibbs

sampling.

Let us assume observations, and a binary matrix ZZZ = [zi,k]
N,K
i,k=1, Ki=1 which each entry therein,

indicates the existence of feature k in observations. Taking the K → ∞, we can build the

following hierarchical representation:
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uk ∼ Beta(α,1) πk =
k

∏
i=1

ui zi,k = Bernoulli(π) (1.41)

where parameter α ≥ 0, controlling the sparsity and set k to be equal to the input dimension

to avoid over-representation of features when to the input dimensionality to avoid the over-

complete feature representation when limK→ ∞

Properties of Indian Buffet Process

Some properties of the binary matrix which arise from Indian Buffet Process:

1)The number of features chosen can arbitrary grows depending the data points.

2)The propensity to add new features decreases with data point as new features are added

according to Poisson(α/n). As n increases, the Poisson distribution rate decreases.

3)From the other side, the old features get reused based on the principle ”rich get richer” .

4)The non-empty columns are distributed as Poisson(αHn) where Hn = ∑1/n
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Chapter 2

Bayesian Deep Nets

2.1 Neural Networks

The first attempts at artificial intelligence were made after the Second World War and were

concerned with the imitation of the nervous system, ie they were neuromorphic. The first

networks were called perceptrons, and the mathematical theory was first formulated by

Mackalov in 1948. The first applications were made in 1950 at the US Air Force Laboratory at

Cornell University. In 1968, Minsky wrote a scientific paper dealing with the limits of the first

provisions of these neural networks, that is, studying what they could achieve. They discovered

that in order to be able to do something useful and high performance it was necessary to add

more levels, so we came to what is called deep neural networks whose definition refers directly

to their structure.

The architecture of Artificial neural networks is consist of nodes and layers. Each artificial

neuron or node connects to another and has a related weight.

The first neural network as we mentioned above is the Multi-Layer Perceptron (MLP) network,

MLP was the cornerstone of NN and also for modern architectures. Below depicted a simple

MLP with just one hidden layer which is suitable for classification and regression.

This neural network with dimension N1 and input x, the output can be modeled as

Φ j =
N1

∑
i=1

α(xiw1
i j) fκ =

N2

∑
j=1

g(φ jw2
jk) (2.1)

The parameter w means the connection between neurons f. Equation 1 represents the output

of the hidden layer, which will be dimension N2 also 1 represents the state of each node in
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Figure 2.1: Neural Network

the hidden layer,equation 2 is a summation over the N2 outputs from the prior hidden layer

this is expressed as a transform followed by a non-linear transform φ(·), which is called an

activation function. For the primitive perceptron the activation function that was used for

the first time was the sign(·) function although the utility of this function has stopped due to

the fact that the derivatives are equal to zero so it is of vital importance to use more flexible

activation functions such as the Sigmoid,Rectified Linear Unit (ReLU), Hyperbolic Tangent

,and Leaky-ReLU. When Sigmoid function is used expression 1 is equal with the logistic

regression which means that the output of the network becomes the sum of multiple logistic

regression models however when we are using regression model, the function that applied to

the output g(·) will be the identity function,and for binary classification will be the Sigmoid.

The aforementioned Equations can be implemented efficiently by using matrix representations

and very often is represented as such literature. This is managed by stacking the input vector

in our data set as a column in X. Therefore propagation can be performed as

Φ = α(XTW1) (2.2)

F = g(ΦW2) (2.3)

While this matrix notation is more comprehensive, the choice to use the summation notation

to describe the network here is deliberate. In the framework of frequentist NN learning, a

MAP or MLE estimate is found through the minimization of a non-convex cost function J(x,y).

Minimization of the function is performed through back-propagation, where the output of the
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model is computed from partial derivatives for the parameters

This formula sometimes is very slow due to the fact that it need to read the whole dataset

for each update. Simultaneously, due to the fact that all the dataset is needed to be stored,

memory issues may occur. The training must be started from the beginning when new training

examples appear, the training must be started from the beginning.

θt+i = θt−α∇θ J(θ) (2.4)

The stochastic gradient descent (SGD)[38], is designed in order to overcome the aforemen-

tioned problems and to execute an update at each parameter for all training example of the

dataset. The stochasticity is due to the fact that each example gives an estimation with noise

as regards the average gradient for all examples. By assuming the input of the example as x

and the output as y,the parameter update is

θt+i = θt−α∇θ J(θ ;x(i),y(i)) (2.5)

The expression above illustrate how the equation updates the weights through back propagate

with α to represent the learning rate and the subscripts indicate the iteration in the training

procedure. We are using the chain rule in order to find the derivatives of the parameters of the

network. This leads to the preference of the ReLU activation function which is discontinuous

and non-linear and so prevents the gradients from vanishing during training.

Figure 2.2: Gradient Descent Optimization

We assume three functions f (1), f (2),and f (3) in a chain, to form f (x)= f (3)( f (2)( f (1)(x)))[39].

The kind of this chain are the most commonly used structures of neural networks. In this
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case, f (1)is the first layer of, f (2)is called the second layer, and so on. The length of the chain

function gives the depth of the model, and based on that comes to the fore the terminology of

deep learning.

Let discuss firstly the linear models, for example, the linear regression and logistic regression,

are overused because they can be fit reliably and efficiently, either in convex optimization or

closed-form. Unfortunately, linear models have obvious disadvantages and can not interact

and model, models with more than two variables for this reason their ability is limited.

2.1.1 Overfitting

Overfitting occurs when our algorithm is modeling low-level patterns in the training set, in

such a way that leads to incapability to generalize on unseen data and our test set is low

performance. Learning details and unwanted information about the dataset cause noise in the

training set to the degree that it negatively impacts the execution of the model on testing data.

The model learns the noise in the training data is learned as concepts that are included in the

model.

Overfitting is more common phenomenon in nonlinear and non-parametric models that is

more flexible when learning a target function. However, a lot of non-parametric machine

learning algorithms also include specific techniques in order to constrain the amount of the

detail which model learns.

In contrast we have also the underfitting which refers to a model that is very poor as concern

the performance so if we want to training the data or to generalize to new data this is very

difficult. In a simple words:

• Overfitting: High performance on the training data, poor performance when generalize to

new data.

• Underfitting: Low performance on the training data and also poor performance when gener-

alize.

Due to these problems have been arisen methods in order to overcome it. The ultimate purpose

of these methods is to prevent the models from overfitting but also be computationally efficient.

Methods like early stopping, learning rate annealing and L1,L2, soft weight sharing[40],

Dropout and DropConnect are some of the most importance. Figure 2.3
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Figure 2.3: An illustration of how the data is modeled in the case of underfitting,well fitting

and overfitting

Regularization Techniques

The meaning of ‘regularization’ refers to group of techniques that regularizes learning from

specific features for conventional algorithms or neurons in the case of neural network algo-

rithms.

It normalizes and moderates every weight that is linked to a neuron so that algorithms do not

depend only on a few features or neurons to predict the result, we try to boost this technique

in order to avoid the problem of overfitting.

In order to understand regularization is necessary to consider a simple case of linear regression.

Mathematically, linear regression is stated as below: where y is the value to be predicted;

y = w0 +w1x1 +w2x2 + ...+wnxn (2.6)

x1,x2, ...,xn are features that decides the value of y; w0 is the bias w1,w2, ...,wn are the weights

attached to x1,x2, ...,xn relatively.

In order to train a regression model that predict with accurate the y value is needed the

optimization of bias and weights.

To achieve this is needed to use an objective function and find the parameters by using the

optimization method gradient descent algorithm.

RSS =
m

∑
j=1

(yi−w0−
n

∑
i=1

wix ji)
2 (2.7)

If the dataset has noise, it will tackle the aforementioned problem of overfitting, and learned

parameters will not generalize well on unseen data. Avoided this by regularizing weights

for better learning. The main three regularization techniques, namely Ridge Regression
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(L2 Norm) Lasso (L1 Norm), and Dropout. L2 and L1 can be applied for any algorithms

that involve weight parameters. Dropout is widely used in any neural network such as

recurrent, convolutional in order to moderate the learning. Below we will take a glance at

these techniques.

Ridge regression

Ridge regression is also called L2 norm or regularization.

Loss =
m

∑
j=1

(yi−w0−
n

∑
i=1

wix ji)
2 +λ

n

∑
i=1

w2
i (2.8)

This technique presupposes to add the term of weight’s square to the loss function and thus a

new loss function generated which is denoted.

As we observed above, the original loss function is reformed by adding normalized weights

here the weights are in the square form.

The parameter λ will be tuned by using a cross-validation dataset when λ = 0, it returns the

residual sum of square as loss function which you chose initially. When the parameter λ is

too high, the objective function will ignore the core loss function and will reduce the weight’s

square and will end up taking the value of the parameter as zero.

Using the aforementioned objective function we push the parameters to a learning procedure

in order to minimize the loss function is of vital importance to push the parameters to be as

small as possible. Thus, L2 norm resist weights from rising too high.

Lasso Regression

Also called lasso regression and denoted as below:

Loss =
m

∑
j=1

(yi−w0−
n

∑
i=1

wix ji)
2 +λ

n

∑
i=1
|wi| (2.9)

Lasso regression differs greatly from the ridge reggresion due to the utility of the absolute

weight values for normalization instead from square weights. The lambda parameter behaves

exactly the same way as behave in ridge regression what is needed is just the tuning.

Optimization algorithms penalize higher weight values as objective function only considers

absolute weights.
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Loss function in lasso regression along with the optimization algorithm pushing parameters

very close to zero but not actually in zero, from the other side lasso eliminates the less

important features and setting the respective weight values to zero. Thus, lasso also performs

feature selection along with regularization.

Dropout

Another regularization technique which is used with the main purpose to dealt with the prob-

lem of overfitting, what it really doing is to randomly dropping different layer outputs at each

iteration when this procedure applied, the output of the network layers is given by

r = m∗α(Wu) (2.10)

where m is a binary mask and ∗ depicts element-wise product.

Figure 2.4: a)Two hidden layers Neural Network b)Dropout method

The mask is drawn independently from m j ∼ Bernoulli(p) where p is the probability to keep

the element and j is the element of the layer’s.

Noise Injection

In several cases, we are using noise injection so, in that way we form a sort of data augmen-

tation [41]. Also if inject random noise to the inputs layers and also to the hidden layers of

the model during the training we achieve a significant increase of robustness [42]. Moreover,

noise can be injected into the weights as proposed by Jim et al. (1996) [43] and Graves et. al

(2011)[44]. Under the Bayesian approximation,the weights of the models are governed by
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an amount of uncertainty and are represented via a probability distribution that models this

uncertainty. The noise injection to the weights can be considered as a stochastic and practical

way to reflect this uncertainty. The output units of the model could also be injected with noise

which is known as label smoothing [45].

2.2 Deep Learning

Deep learning caused a revolutionary state in the field of machine learning due to its ability to

handle huge number of layers and much better software tools, providing solutions to overcome

problems. Deep learning is a part of machine learning. You can imagine it as an extension of

machine learning[46].

Deep learning constitutes a new approach for data learning.Uses a specific family of models

sequences of simple functions interconnected. These function chains are the neural networks.

These sequences of functions can analyze a complex idea in a hierarchy of simpler ones. Each

layer organizes the previous layer into more advanced and abstract concepts.

Deep neural networks map input-output (target) mapping through a deep sequence of simple

data transformations, and these data transformations are learned through exposure to examples.

More specifically, the specifications of what a layer does in its input data are stored in its

weights which form a set of numbers. Learning means finding the values for the weights of

all the layers in a network so that it correctly matches the inputs to the outputs targets. It is

a particularly difficult task, as modifying the value of one parameter affects the behavior of

others.

In order for a neural network to control output it must be able to measure the deviation of the

value of each output from the expected one.This process is performed from the loss function

of the network.This function calculates the deviation between the predictions made by the

network, and true targets, recording network performance.

How successfully the network worked or not, as it resulted from the value of the loss function,

is used as feedback to change the values of the weights to reduce the loss score. This

weight modification is performed by the optimizer, which essentially executes the algorithm

backpropagation.

As the weights have been given random values the network implements a series of random

transformations and the degree of loss is very high.With each example, the network adjusts the
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weights better and reduces the degree of loss until a network with minimal loss occurs. The

process of deep learning includes two phases: training and inference. Deep neural networks

learn new skills during the training phase from existing data, and these skills are applied to

unknown data in the inference phase.

Deep learning models are intended to find patterns among data with a logical structure in

order to approach the way that people make decisions and draw conclusions so in that way

to construct algorithms that can learn and make decisions on their own. This design makes

deep learning models more capable than standard machine learning models. Oftentimes, deep

learning algorithms require very large datasets in order to be successful, but once they have

data, they can produce immediate results. An important advancement in the field of deep

learning is called transfer learning, which involves the use of pre-trained models. These

pre-trained models contribute to the need for algorithms to train large datasets. We mention a

few examples of deep learning algorithms. Convolutional neural networks[47] is a type of

neural network that has multiple layers. These layers extract features from data and analyze

them. CNN’s are mainly used for image processing, computer vision, and object detection.

Recurrent neural networks [48] are using for sequential data and time-series data. They are

well known for their “memory” as they take information from the previous layer to influence

the next layer and eventually the output. Google Translate, image captioning, and Siri are

some of the problems that RNN’s are mainly used. Autoencoders[49] use neural networks,

especially for representation learning. are used to mainly solve unsupervised learning problems

and they replicate data from the input layer to the output layer. They are used for things such

as pharmaceutical research and image processing.

In conclusion, the new era of Deep Learning has begun in 2006 by designing more complex

architectures such as [50][51][52]. After an innovative breakthrough in speech and natural

language processing in 2011, and also in image classification through the scientific competition

ILSVRC in 2012 [53] so deep Learning won challenges beyond their conventional applications

field.

However, deep learning models are tending to overfitting, which affects their generalization

abilities[54]. When they provide a confidence interval they are prone to be overconfident

about their predictions, also are very data-hungry, face difficulties in modeling uncertainty,

and particularly prone as regards adversarial examples. This is a problem for applications

such us medical diagnosis self driving cars or finance. Therefore, many approaches have been

proposed to moderate this danger. Among them,the Bayesian neural networks which provides

a framework to analyze and train uncertainty-aware neural networks, and more generally, to
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support the development of learning algorithms.

2.3 Bayesian Neural Networks

The definition of Bayesian Neural networks(BNN) is slightly different across the machine

learning literature, but a common undeniable definition is that a BNN is a stochastic artificial

neural network that is trained using Bayesian inference[55].

Conventional ANNs such as convolutional, feedforward, recurrent networks are created by

using a sequence of one input layer, a number of hidden layers, and one output layer. In the

simplest architecture of feedforward networks, each layer l is a linear transformation, followed

by a nonlinear operation s, which is known as activation function:

l0 = x (2.11)

li = si(Wili−1 +bi) (2.12)

y = ln (2.13)

An ANN architecture represents a set of isomorphic functions to the set of θ = (W,b) which is

the parameters where W represents the weights of the network and b the biases.Deep learning

is the procedure of regressing the parameters θ from the training data D. A usual approach is

the minimum point estimation of the parameters θ̂ , an individual value for each parameter by

using the back-propagation algorithm. The log-likelihood is often defined as the cost function

of the training set, often including the regularization term.This is known as Maximum A

Posteriori (MAP) or Maximum Likelihood Estimation (MLE), when regularization is used.

The approximation of point estimate, which is a long-establish approach in deep learning,

is relatively easy to use with algorithms and software packages but lags behind a lack of

explainability. There is a possibility the final algorithm to generalize in overconfident and

unexpected ways on data points out of training distribution [56][57]. The weakness of ANNs

to say “I don’t know” is a problem for many applications. Of all the techniques that exist [58],

stochastic neural networks have shown to be the most flexible and effective.

Stochastic neural networks are sub-categories of ANN which created by introducing stochastic-

ity components into the network. This is achieved by adding to the network either a stochastic

activation or stochastic weight in order to simulate multiple possible models θ with their
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associated prior distribution p(θ). In this way, they can be considered as a particular case of

ensemble learning.

The main incentive that ensemble learning relies on the observation that aggregating the

predictions of a large set of average-performing but independent predictors can lead to better

predictions than a single well-performing expert predictor. Stochastic neural networks could

improve their accuracy in relation to corresponding point-estimate in a similar way, but this is

not their purpose.

Stochastic neural network architecture has the main purpose of helping to estimate the quantity

of uncertainty through modeling. Comparing the predictions of multiple sampled model

parametrizations θ when different kinds of models agree, then the uncertainty is low if they

disagree, then the uncertainty is high. This procedure could be expressed as follows:

θ ∼ p(θ) (2.14)

y = Φθ (x)+ ε (2.15)

where ε is the random noise due to the fact that the Φ is just an approximation.

Bayesian Neural Network is a stochastic artificial neural network similar to the ones existed in

1980 and 1990 trained by recruiting Bayesian inference.The ultimate aim of Artificial Neural

Networks is to represent a function y = Φ(x). Bayesian statistics gives us a clear framework

to understand and quantify the uncertainty which related with deep neural network predictions.

The Bayesian paradigm in contrasts with the frequentist paradigm has an area of distinction

which is hypothesis testing.

We considered as a first BNN was mentioned in [55]. This paper highlights the statistical

properties of NNs by introducing the statistical interpretation of loss functions that are used.

Proved that the procedure of minimizing the squared error term is similar to the procedure of

finding the Maximum Likelihood Estimate (MLE) of a Gaussian. Was shown that by imposing

a prior over the weights of the network, Bayes Theorem can be used in order to obtain an

appropriate posterior.

Bayesian analysis has been proved that provide enough theory in order to address challenges

such as overconfident predictions from typical NNs. In order to yield accurate approximations

for the posterior, we must based on the approximate inference.

In order to create a BNN [59], the first step is to select the architecture of the neural network.
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The second step is to select the stochastic model, before we observed the data we impose a prior

distribution over the parameters which might have some hyperparameters, p(θ) is the prior

confidence in the predictive power of the model p(y|x,θ). The selection of a BNN stochastic

model is in some way equivalent to the selection of a loss function when training a neural

network with point estimation. When we used BNN in order to predict, the distribution which

is really interesting is the marginal probability distribution p(y|x,D)[60], which achieves to

quantifies the model’s uncertainty on its prediction.

p(y|x,D) =
∫

θ

p(y|x,θ ′)p(θ ′|D)dθ
′ (2.16)

The final prediction is summarized by a few statistics computed using a Monte-Carlo approach.

Algorithm 1 summarizes the inference process for a BNN.

Figure 2.5: How the inference process can be implemented step by step

The p(θ |D) which is the posterior distribution, for complex models such as artificial neural

networks is a high dimensional and highly non-convex probability distribution[61].

Below we will mention some practical advantages of using BNNs

· Firstly, BNN gives an inherent way to approximate the quantify the amount of uncertainty

in deep learning since BNNs have better calibration than classical neural networks, their

uncertainty is more reliable with the observed errors.

· Secondly, a BNN achieve to distinguishing the epistemic uncertainty p(θ |D) and the aleatoric

uncertainty p(y|x,θ) [62][63]. This makes BNNs very efficient since they can learn from a

relatively small dataset without the problem of overfitting.

· Thirdly, the Bayesian paradigm enables the analysis of learning methods. A number of

methods that initially do not seem as Bayesian and can be understood as being approximate

Bayesian, e.g., regularization or ensembling .
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BNNs have found fertile ground in many different fields to quantify uncertainty such as network

traffic monitoring, in computer vision, civil engineering,aviation,astronomy, electronics, and

medicine. BNNs are also useful in active learning.

2.4 Adversarial Robustness

Despite their importance and great success, DNNs have some weaknesses. In particular, it has

been observed that small perturbations in a DNN inputs may disorient the model and lead to a

completely different result than expected.

The first report of the problem for DNN classification models was made in[54], where it was

confirmed that with the introduction of carefully constructed noise in the original training

images, adversarial examples emerge, which the classifier categorizes wrong. The noise input

process for the purpose of constructing adversarial examples and consequently leading the

DNN’s to an intentional error is referred to as adversarial attack.

Example in Figure 2.5 while the initial classifier prediction is correct, the noise input in the

original image produces the adversarial example which leads the classifier to an erroneous

prediction with a high degree of confidence.

Figure 2.6: Noise input for Adversarial Example production

In addition, an important feature of adversarial examples is their similarity to the original

sample, which suggests that the problem is mainly located in the inability of DNNs to ”learn”

the requested representations.

The existence of adversarial examples has been a major research problem in recent years, as

more and more systems use Machine Learning algorithms, so they are vulnerable to such

variants. Thus, methods are researched and developed to increase it robustness of Machine

Learning models, methods to increase the resilience of models to competing examples. These
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methods protect the classification models, so they are referred in the literature as adversarial

defenses.

Essentially, through the specific methods it is sought to change the decision boundary of the

model, so that it is closer to the real one while at the same time leaving less space available for

the emergence of adversarial examples.

Adversarial Training is a technique for creating robust classifiers in which training in adver-

sarial examples is performed. Its first successful application Adversarial Training in DNN

appears in [64]. More specifically, training is carried out in data sets that contain authentic

samples and adversarial examples in a ratio of 70% in favor of adversarial examples.

The simplest method for training model robustness against adversarially exambles is the

one that seems most intuitive. Adversarial training is the basic idea in the machine learning

literature is the basic technique for robust optimization. Is trying is to include and create

adversarial examples in the training process. Since we know that the conventional way of

training creates networks that are sensitive to adversarial examples what is trying to do is just

train networks on a few adversarial examples.

The reasonable question that arises is which adversarial examples we should train.In order

to get at an answer for this question. assume we generally want to optimize the min-max

objective:

minimizeθ

1
|S| ∑

x,y∈S
maxl(hθ (x+δ ),y) (2.17)

2.4.1 White-Box Attacks

White-box attacks are the most popular category of attacks, in which the prospective attacker

has access to all DNN information.Very often in the literature, these types of attacks are

referred to as gradient-based attacks, since the most basic information in order to be able to

apply them is the gradient of the cost function that controls the performance of the classification

model under consideration.

Fast Gradient Sign Method

Fast Gradient Sign Method(FGSM)[65] is the first successful attempt to deal with the issue of

adversarial examples in DNN. The results of this research are a consequence of the hypotheses
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that were made and proved through tests. More specifically, the researchers claim that:

· All models, regardless of architecture, are sensitive to adversarial examples.

· The sensitivity of the Neural Networks is due to their strongly linear behavior in high

dimensional spaces.

·Model training in adversarial examples is an additional effective means (regularization) in

addition to other techniques such as Dropout, model averaging and prepossessing of training

data.

The application of the method can be described by the following equation, in which the

perturbation is equal to:

η = εsign(∇xJ(θ ,x,y)) (2.18)

where x is the image(input), θ is the parameters of the model, y is the output and finally J(·) is

the cost function.

FGSM’s goal was to create a method, in which adversarial examples are produced very

quickly and not the production of the most efficient adversarial examples.This method possibly

increased the model error to high levels. Finally, in terms of adversarial training, this has

proven to be a successful method of increasing model performance in predicting adversarial

examples. Adversarial training is performed using the following objective function:

J(θ ,x,y) = αJ(θ ,x,y)+(1−a)(J(θ ,x+ εsign(∇xJ(θ ,x,y)) (2.19)

where α is a hyperparameter that takes the value 0,5[39].

2.4.2 Black-Box Attacks

The research community dealing with the problem of adversarial examples, started with the

hypothesis that the potential attacker has full access to the DNN that examined (white-box

setting). However, in many cases this condition is not met as such access is usually limited.

For this reason in recent years the interest has been concentrated around black-box setting 50

methods, in which the attacker has access only to the input and output (labels) or logits (the

last layer of the network from which the vector is derived cumulative probability (softmax) for

the classes examined before the final forecast). One of the first attempts in this direction was
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[66], during which they are made white-box attacks on a substitute model, different from the

candidate to be attacked, and transferred to the latter in a black-box[67] setting.

Gaussian Data Augmentation

Gaussian Data Augmentation(GDA)[68] is a defense technique in which Gaussian noise is

added to the original dataset on which the classification model will be trained. This can be

achieved in two ways: 1) By applying the noise during the model training, as a result of which

some augmentation examples are added to the original dataset so that its size can be expanded

and 2) By applying it noise during its forecasting process of the model, so the size of the

original dataset remains the same but consists of noisy examples.

Regarding the methods which used to measure GDA performance,the following three are used:

· Robustness as defined in [69] · measuring the distance between original and adversarial

training sets · the calculation of the local loss sensitivity metric (lF) [70] which is defined as:

lF =
1
M

M

∑
i=1
‖∂J(θ ,x,y)

∂xi
‖2 (2.20)

where M is the total number of samples which used to verify the performance of the model.
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Chapter 3

Stochastic LWTA(Local Winner Takes
All) A promising new paradigm

As we previously mentioned neural network is consists of nodes and layers and learns how

to find the patterns between inputs and outputs, in each node the inputs are multiplied with

the weights and summed together, the result is known as the summed activation of the node.

Then the value of the result is transformed via an activation function and defines the specific

output or “activation” of the node. The easiest and simplest activation function is known as

linear activation. In a network that is comprised only of linear activation functions the training

becomes very easy unfortunately can not learn complex functions. Linear activation functions

most of the time are used in regression problems that predict a quantity. Nonlinear activation

functions are used much more often as they allow us to learn more complex structures in our

dataset. Two conventionally widely used nonlinear activation functions are the hyperbolic

tangent and sigmoid activation functions.

A very acute problem with both of them sigmoid and tanh is the fact that they have been used

extensively from the specialists. This means that large values snap to 1.0 and small values snap

to -1 or 0 for tanh and sigmoid respectively. Although, the functions are only really sensitive

to changes around the mid-point of their input, such as 0.5 for sigmoid and 0.0 for tanh.

Large networks which using these functions with the property of non-liniarity are failing to

infere useful gradient information. Error is backpropagated through the network and is used in

order to update the weights. In each next layer the error decreases exponentially, due to the

given the derivative of the chosen activation function. Deep networks fails to learn effective

due to the problem which is known as a vanishing gradient.
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Is necessary to use an activation function in order to use stochastic gradient descent with

backpropagation of errors to train deep neural networks, that act and look like a linear function,

but in fact, is a nonlinear function allowing to capture of complex relationships in the dataset.

To avoid easy saturation the function must also give more sensitivity to the activation sum

input. The key is the utility of the rectified linear activation function(ReLU), a node that

implements this activation function. Most of the times networks that are using the rectifier

function for the hidden layers are referred to as rectified networks.

Figure 3.1: Rectified Activation Function.

Deep neural networks (DNNs)[71] as we mentioned to the previous chapter are models with

a lot of flexibility that depict complicated functions as a combination of simpler. In spite of

their high performance in a lot of applications, very often have to confront the problem of

overparameterization that entails numerous weights, which a large part of them is actually

unnecessary. This guides us to redundant computational costs and limits their scalability to

hardware devices.

In addition, this fact cause in DNNs the tendency to be susceptible to the problem of overfitting

which may be an obstacle if we try to predict unseen data.

The specialists have spent remarkable effort in order to deal with the problem of over-fitting in

deep learning. Therefore, the range of regularization is restricted to effective training of all

network weights. Dealing with redundancy in deep networks requires data-driven structure

shrinkage and weight compression techniques.

A well-known type of solution for this purpose, is the training a condensed student network by
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take advantage of previous trained full-fledged teacher network[72]. However, this paradigm

have two main drawbacks: (i) Can not avoid overfitting and computational costs. On the

contrary, the total training costs are increased related to the training costs of the student

network and weight distillation (ii) the student teaching procedure itself entails a large deal of

heuristics and assorted artistry in designing effective teacher distillation.

Chatzis [73] on 2018 considered that in order to face this problem is needed to introduce an

extra set of auxiliary Bernoulli latent variables, which each of them indicates the utility of

each component (in an “on/off” way).

Under this framework, by imposing stick-breaking priors over the weights they observed a

sparsity [74]over the postulated auxiliary latent variables. Although, their research was limited

to variational autoencoders fortunately showed promising results in a variety of benchmarks.

The deep networks have the main drawback of the over the utility of nonlinear units on

each layer. This kind of function gives us an effective way to build hierarchical models

as we mentioned in the introduction but unfortunately does not have the characteristic of

biological plausibility. In neuro-science existing a reinforce belief with a lot of indications

that neurons with similar functionalities and properties are aggregated in columns where the

local competition takes place[75][76]. This is achieved through the resulting lateral inhibition

mechanisms, according to which just a neuron that is in the block can be active in a steady

state.

Having this as a guideline, numerous specialists have examined the scenario to develop deep

networks which replace nonlinear functions with local competition mechanisms among simpler

linear units.

As it has been proven, such local winner-takes-all (LWTA) networks can find out sparse and

effective representations of their inputs [77] [78], and constitute universal function approxima-

tors, as powerful as networks with threshold or sigmoidal units [79]. Furthermore, this type

of network organization has been shown that gives a lot of fascinating properties, including

noise suppression ,automatic gain control, and prevention of catastrophic forgetting in online

learning[80].

We consider that the ability to infer the posterior distribution of component (connection/unit)

utility in the context of LWTA-based deep networks may offer considerable advantages such

as computational efficiency. The construction of the model is based on nonparametric Stick-

breaking priors which are Bayesian inference arguments we are implementing these arguments

in a way that is matched perfectly to the distinctive characteristics of LWTA networks and in
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that way, we give the opportunity to a data-driven mechanism will be intelligently adapted to

the complexity of the model structure and infers the needed floating-point precision.

In order to construct algorithms to be efficient for training and inference, the model are

based on stochastic gradient variational Bayes (SGVB)[81]. The name of the approach is

Stick-Breaking LWTA (SBLWTA) networks. The evaluation of the approach is taking place

to well-known benchmark datasets.

We introduce the architecture of deep networks where the output of each layer is obtained

from competing blocks for linear units, and we are employing suitable arguments from

nonparametric statistics to infer network component utility in a Bayesian sense. Below we

depicted the design of the model.

Figure 3.2: The rectangles illustrate the LWTA blocks also circles illustrate the competing

units therein. The winner units are depicted with bold contours (ξ = 1) and bold edges signify

retained connections (z = 1).

Inspired by the tendencies of neuroscience in biological systems to consider that neurons with

similar functionality are concentrated in a neuron and local competition takes place for their

activations gave the opportunity to Dr.Panousis to introduce the mechanism of Local Winners

Takes All (LWTA). A mechanism that allows us to eliminate the problem of overfitting and

also to address the adversarial context due to its efficiency of sparsely distributing input

representations[82], while demonstrating automatic gain control, suppression noise, and

robustness to catastrophic oblivion [80][83]. Thus, in each block only one neuron can be
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active, while the rest are as if they do not exist [84][85] [76], leading to a Local Winner Takes

All mechanism.

Activation functions which is commonly employed, such as ReLUs, constitute a mathematical

tool that has been used extensively for training deep neural networks but they do not have

biological plausibility. Following we describe the mathematical framework in more detail

when locally competing units are employed via the LWTA mechanism.

We consider the inputs xn ∈ RN×J in a single layer of an LWTA-based network comprising

K blocks with U competing units inside the blocks. Each block produces an output yk.

Each linear unit in each block, computes its activation hu
k and the output is decided through

competition:

yu
k = g(h1

k ...,h
u
k) (3.1)

where g(·) is the competition function,the activation of each individual neuron follows the

conventional inner product computation hu
k = wT

kux where W ∈ RJ×K×U is the weight matrix

in this context. In the finally definition of LWTA network , the final output is:

yu
k =

{
1 if hu

k ≥ hi
k

0 otherwise
(3.2)

One more expressive version of the activation function have been proposed in the literature in

order to overcome the restrictive binary output[80]

yu
k =

{
hu

k if hu
k ≥ hi

k

0 otherwise
(3.3)

Let assume a single layer of the model consisting of K blocks with U competing units therein.

Each block by considering an input X ∈ RN×J with N examples comprising J features, each

produces an output Yk ∈ RN×K . The input layer is present at each block K, via different

weights for each unit in this way the weights of the connections are illustrated into a three-

dimensional matrix W∈RJ×K×U also ξn ∈ one−hot(U)K , which is the discrete latent vectors

and the one−hot(U) is an one-hot vector with U components,denoting the outcome of the

local competition.In order to infer which layer connections must be retained, we borrow some

concepts from the field of Bayesian Statistics. Especially, we begin by introducing binary

latent variables Z ∈ [0,1]K×J simultaneously we impose a prior over the latent variables Z in
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order to perform inference over it, in a way that promotes the preservation of the minimum

necessary components. Following the above logical reasoning we will define the layer output

yn as below

[yn]ku = [ξn]ku

J

∑
j=1

(w j,k,u ∗ z j,k)∗ [xn] j ∈ R (3.4)

In the following expression, we assume that the winner indicator ξn are drawn from a Categor-

ical distribution of the form:

q([ξk]) = Discrete([ξn]k | so f tmax(
J

∑
j=1

[w j,k,u]
U
u=1 ∗ z j,k ∗ [xn] j)) (3.5)

Regarding the utility latent variables, Z, are drawn from the Bernoulli distribution that read:

q(z j,k) = Bernoulli(z j,k | ˜π j,k) (3.6)

Therefore, we impose an IBP prior distribution over the utility indicators and a Discrete prior

distribution over the winner latent indicators, [ξ ]k ∼ Discrete(1/U):

uk ∼ Beta(α,1) πk =
k

∏
i=1

ui z j,k ∼ Bernoulli(πk) (3.7)

while we resort to fixed-point estimation for the weight matrices W. The definition of the

intermediate layer of the considered approach has been completed we also assume a variation

relied on common feed forward layer as regards the output layer.

Finally we impose a distribution over the weight matrices WWW . For simplicity we define a

spherical prior over

WWW ∼ ∏
j,k,u

N (0,1)

and attempt to infer a posterior distribution of the form

q(W) = ∏
j,k,u

N (µ j,k,u,σ
2
j,k,u)

3.0.1 The Convolutional perspective of LWTA

However, we consider a variant of SB-LWTA which allows the processing of convolutional

operations. This is very useful if we deal with problems with signals of 2-dimensions such as
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images. However in contrast with the aforementioned to the grouping of linear units in LWTA

blocks the convolutional perspective variant executes local competition among feature maps.

Therefore each layer that contains kernels is confronted as an LWTA block. Convolutional

SB-LWTA networks at each layer comprise multiple kernels of competing feature maps.

We consider the latent indicator variables, z, over whole kernels, that is full LWTA blocks. If

the inferred posterior, q(zk = 1), over the kth block is under a certain threshold then the block

is as if it does not exist in the network. Especially, this setting allow us for entirely removing

kernels and in that way the number of convolution operations are decreasing dramatically.

Therefore, this structure is very efficient due to the fact that relieves the model from the

computational burden. Due to this rationale, a layer of the proposed convolutional variant

represents an input, Xn, via an output tensor Yn ∈ RH×L×KU obtained as the concatenation

along the last dimension of the subtensors [Yn]k
K
k=1 ∈ RH×L×U defined below:

[Yn]k = [ξn]k((Wk ∗ z)?Xn) (3.8)

where “?” represent the convolution operation and [ξn]k ∈ onehot(U). Local competition

among feature maps within an LWTA block is implemented through a sampling procedure

which is instructed from the feature map output, yielding:

q([ξnk]) = Discrete([ξn]k|so f tmax(∑[zkWk ?Xn]) (3.9)

We impose a prior [ξn]k ∼ Discrete( 1
U ).We assume

q(zk) = Bernoulli(zk|π̃) (3.10)

with corresponding priors:

uk ∼ Beta(α,1) πk =
k

∏
i=1

ui zk ∼ Bernoulli(πk) (3.11)

As I mentioned earlier imposed a spherical prior N(0, 1), and seek to infer a posterior

distribution of the form N(µ,σ2).This concludes the formulation of the convolutional layers

of the proposed SB-LWTA model.
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Figure 3.3: The convolutional approach of the method which bold frames denote the effective

kernels (LWTA blocks of competing feature maps, with z = 1 and bold rectangles illustrate

winner feature maps (with ξ = 1).

3.0.2 Training and inference algorithms

The training of the aforementioned model based on the maximization of the ELBO expression.

More especially, we use Stochastic Gradient Variational Bayes (SGVB)[86] with the assist of

the standard reparameterization trick for the postulated Gaussian weights, the Kumaraswamy

reparameterization trick for the stick variables u ; and finally the Gumbel-Softmax relaxation

trick for the introduced latent indicator variables, ξ and Z. Specifically, when dealing with stick

variables which is Beta-distributed, it is observable the difficulty to use the reparameterization

trick from the other side the postulated Gaussian weights is more feasible, in order to address

this issue, we can approximate the variational posteriors q(uk) = Beta(uk|ak,bk) via the

Kumaraswamy distribution.

q(uk;αk,bk) = αkbkuαk−1
k (1−uαk

k )bk−1 (3.12)

Samples from this distribution can be reparameterized as follows [87]

uk = (1− (1−X)
1

bk )
1

αk (3.13)

In the case of latent variables which in this case are Discrete performing back-propagation

through reparameterized drawn samples becomes unachievable. All the posterior expectations

in the ELBO are computed by drawing MC samples under the Normal, Gumbel-Softmax and
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Kumaraswamy reparametrization trick, respectively. On this basis, ELBO maximization is

performed with the utility of stochastic gradient techniques especially, we are using ADAM

[23] with default settings. The objective function of the obtained ELBO is optimized by

ADAM eventually.

ADAM optimize the resulting expression of the ELBO by the network which takes the form:

L(φ) = Eq(·)[log p(D|u,W,Z,ξ )]−

−β (KL[q(Z)||p(Z)]−KL[q(u)||p(u)]−KL[q(ξ )||p(ξ )]+

KL[q(W)||p(W)])]

(3.14)

where we postulate:

q(u) = ∏
k

q(uk) s.t : q(uk)≈ Kumarasuamy(uk|αk,bk) (3.15)

we consider φ as the target parameters which be optimize by algorithm. KL divergences which

included in the ELBO separate into sums over the components of the latent variables, as a

result of the mean-field aproximation which all the KL divergences are computed by MC

sampling from the corresponding posteriors distributions. In this framework, we are using the

reparameterization trick in order to reduce the variances. Hence, for the stick-variables uk we

obtain:

KL[q(uk)|p(uk)] = Eq(uk)[logq(uk)− log p(uk)]≈ logq(ûk)− log p(ûk) k = 1, ...,K (3.16)

where ûk is a reparameterized sample from the Kumaraswamy distribution with parameters αk

and bk.

As regards the component utility indicators z, the estimation of KL divergences is calculated

as follows (the expression of KL divergence below is just for simple feedforward network):

KL[q(z j,k)|p(z j,k)] = Eq(z j,k),q(uk)[logq(z j,k)− log p(z j,k)] (3.17)

≈ log p(ẑ j,k)− log(ẑ j,k|
j

∏
i=1

ui) j = 1, ...,J k = 1, ...,K (3.18)

where the ẑ j,k samples are reparameterized via the Gumbel-Softmax trick with parameters

π̃ j,k and 1-π̃ j,k. We are using a similar process to estimate the terms of KL for the winning

indicator variables ξnku:
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KL(q(ξn,k,u)|p(ξn,k,u)) = Eq(ξn,k,u)q(w)q(z) =[
logq

(
ξn,k,u|so f tmax

(
J

∑
j=1

w j,k,u ∗ z j,k ∗ xn, j

))]
− log p(ξn,k,u)]

≈

[
log

(
ξ̂n,k,u|so f tmax

(
J

∑
j=1

ŵ j,k,u ∗ ẑ j,k ∗ xn, j

))
− log p(ξ̂n,k,u)

] (3.19)

where the samples ξ̂nku are reparameterized via the Gumbel-Softmax trick.The Gaussian

weights yield:

KL[q(w j,k,u)|p(w j,k,u)] = Eq(w j,k,u)[logq(w j,k,u)− log p(w j,k,u)]≈ logq(ŵ j,k,u)− log p(ŵ j,k,u)

(3.20)

where ŵ j,k,u = µ j,k,u +σ j,k,u · ε̂ , and ε ∼ N(0,1).

The expectation posterior of the log p(D|u,W,Z,ξ ) is interpreted as the negative categorical

cross-entropy between the class probabilities and the data labels which is generated one

layer before the last which is the Softmax layer. The aforementioned posterior expectation is

estimated with the samples that is already reparametrized. In this context, the task of optimize

the targets φ , which comprises the ak and bk hyperparameters of the Kumaraswamy(uk|αk,bk)

posteriors, the µ j,k,u and σ j,k,u hyperparameters of the N(w j,k,u|µ j,k,u,σ
2
j,k,u) posteriors, and

the π̂ j,k hyperparameters of the q(z j,k) posteriors.

SB-LWTA gives us two main advantages over conventional techniques in terms of inference

for unseen data. Taking advantage of the inferred component utility latent indicator variables,

we can naturally build a method for omitting the contribution of components that essentially

is unnecessary. This is a unique benefit of the model due to the fact that compared to the

alternatives obviates the need of an extensive heuristic search of hyperparameters values also.

The fully Gaussian posterior distribution over the network weights, W, provides a way of

reducing the floating-point bit precision level of the network implementation. Especially,

the weights of the network which has each of them a posterior variance indicates a measure

of uncertainty in their estimates. However, we can take advantage of this information of

uncertainty in order to estimate which bits are really significant and to take away these which

cause a high level of fluctuations under the approximation of the posterior sampling.

We perform the conventional forward propagation using the means of the weight posteriors in

place of the weight values. In terms of winner selection, we inferred the posteriors q(ξ ) and

then we select the unit with maximum probability as the winner, instead of just the sampling.
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Finally, we maintain all network components the posteriors, q(z) of which exceed the imposed

truncation threshold.
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Chapter 4

Obtaining Stronger Representations
From Deep Nets

Here we present our novel contribution. The work has been published in the conference of

Association for the Advancement of Artificial Intelligence (AAAI) with the title ”Competing

Mutual Information Constraints with Stochastic Competition-based Activations for Learning

Diversified Representations”

4.1 Information theory

Telephones,radios, televisions, and, computers are devices that transmit, store and process

information today they belong to the basic equipment of the average citizen in the industrialized

world. undeniable the twentieth century witnessed the greatest revolution of information and

communication technology since the invention of the printed book. This powerful development

guided to the need for a well-established theory that would allow discussion about information

with scientific precision. The roots of information theory are going back to eighteenth century

when American inventor Samuel F.B.Morse and Alexander Ghrahabell discovered respectively

the telegraph and the telephone. These discoveries attracted the interest of many remarkable

scientists which with the assist of Fourier analysis they boosted up the theory and solved

several practical mechanical problems of communication systems.

Modern information theory first appeared by Claude Shannon in early 1948 in the article

“A Mathematical Theory of Communication” in the Bell System Technical Journal who
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is considered as the father of the digital age, then that developed into a vigorous field of

mathematics that motivated the growth of other scientific fields, such as biology, statistics,

statistical mechanics, behavioral science, and neuroscience. The greatness of Shannon’s idea

was that he realized that in order to build a theory it is necessary to separate the signals of

communication from the meaning of the messages that they convey and secondly he had

realized that the amount of knowledge transmitted by a signal is not related to the size of the

message. The potential of mobile phones and the growth of the internet is largely due to him.In

order to have a solid background of information theory[88] is obligated to have a general idea

about meanings such as compression,mutual information,KL distribution divergence,entropy

and Data processing inequality which we will mention below with detail[89][90].

Compression To compress an information like text document, image or a sequence of bits,

is to represent it in an abbreviated fashion, usually with the help of a code. We take our

information, encode it using our short and efficient code and store it or transmit it, and,

when we need to, decode the information back to its original form[91][89].Let us assume an

information source that generates a sequence of symbols X = X1, ...,XN which takes values

in a measurable alphabet X. Due to the fact that we examine a probabilistic model for the

information source automatically Xi are considered as random variables. The most important

problem of source coding is the procedure of storing information as compact as is possible that

contained in the source x = x1...xN . It is a very practical and interesting issue, which is also

an instructive subject that allows us to gain the intuitions of ‘uncertainty’ and ‘information’

and are closely related to the definition of entropy which is very important for the rest of the

chapter.

Mutual Information

The mutual information which illustrate the amount of dependency between 2 random variables

that asre sampled simultaneously, in a simple words how much information two variables

shares and mathematically defined as[92]. Let (X; Y) be two discrete random variables,

distributed according to p(x; y) and with marginal distributions p(x) = ∑y p(x,y) and p(y) =

∑x p(x,y). The mutual information between X and Y is defined as

I(X ,Y )≡ I[p(x,y)] = ∑
x

∑
y

p(x,y) log
p(x,y)

p(x)p(y)
(4.1)

Using this definition and the above mentioned definitions, it is easy to obtain

I(X ,Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X) (4.2)

I(X ,Y ) = H(X)+H(Y )−H(X ,Y ) (4.3)
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It is very close to the meaning of entropy due to the fact that can be known as the reduction

of uncertainty of a random variable if another is known so when we have a high value of

mutual information that means a large reduction of uncertainty in contrast when the value is

low that means a small reduction, in the case of zero value we have independencies between 2

variables.

Entropy:

H(Y ) is the entropy of a random variable X and can be computed through the

H(Y )≡ H[p(y)] =−∑ py log py (4.4)

The mentioned function has as a threshold a multiplicative constant, the base of the logarithm

is just setting the scale for this measure. If the base of the logarithm is chosen to be 2, the

entropy is expressed in bits. In this case could be interpreted as the expected minimal number

of ’yes’/’no’ questions that is required in order to estimate the value of Y. In addition, the

entropy emerging as the answer to several natural questions, such as “How much is the average

length of the random variable?”In a simple words entropy which represent the “mess” in the

variable X given the number of different values X can take[93].

The Data Processing Theorem

X ↔ Y ↔ Z is a Markov chain which follow the I(X ;Z) ≤ min[I(X ;Y ), I(Y ;Z)]. In other

words, if the only connection between X and Z is through Y, the information that Z gives about

X cannot be bigger than the information that Y gives about X.

KL-divergence

Kullback-Leibler divergence which is a kind of a distance between the exactly posterior and

the approximate posterior, in simple words is a way to estimate the difference between two

distributions.

KL(q(·)||p(·)) =
∫

q(θ) log
q(θ)

p(θ |y)
dθ (4.5)

=
∫

q(θ) log
q(θ)p(y)

p(θ ,y)
dθ (4.6)

= log p(y)−
∫

q(θ) log
p(θ ,y)
q(θ)

dθ (4.7)

Jensen-Shannon divergence
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For two probability distributions p and q on the same alphabet L ,the Jensen-Shannon diver-

gence of p and q is defined as:

JS(p‖q) = 1
2
(D(p‖ p+q

2
)+D(q‖ p+q

2
)) (4.8)

These measures are closely related to that of Shannon’s Entropy, given in[94], which is defined

loosely as a measure of the dispersion or “variance” of the individual distribution populations

p, q.

4.2 Information Bottleneck

An important problem for humans was how they were able to extract relevant information

from complex data in order to address problems such as filtering, learning, prediction etc. The

problem of Information Bottleneck have been proposed by Tishby in 1999[95] as a way to

quantify the trade-off between compression and prediction and the first implementation at

[96][97]. Until 1999 information theory was not examined the relevance of information. Is an

iterative algorithm which aim to find these representations that capture the relevant structure

of the signal and ensure convergence of the algorithm.

It is important to mentioned that a significant property of the Information Bottleneck framework

is that it can be implemented to a wide variety of data sets in exactly the same way. There

is no need to adapt algorithms to the data each time, or define a distortion measure. When

estimate the joint distribution the setup is completed. In addition, its architecture contain the

ability to avoid the major problem of over-fitting without using any kind of specific technique

to avoid it. Thus we avoiding the complexity of the model.

If we want to have a deep understanding of what exactly is Information bottleneck we must

take a glance to the statistics field and focuses more specifically to the minimal sufficient

statistic which in a simple words is a statistic functions T(x) that having the property to contain

all information about the unknown parameter θ (and therefore g(θ)) containing the sample

X = (X1, ...,Xn). In addition, sufficient statistical function T(X) has the significant advantage

over X to usually has a much smaller dimension than the dimension n of X = (X1, ...,Xn).In

this sense, sufficient meaning brings a desirable compression of the data to be analyzed without

loss of information about θ .

In real life the problems where X = [X(i)]Ni=1 is an N-dimensional data, when you try to

find the minimal sufficient statistic in such a way that its dimension does not depend on N.
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Unluckily, it is very difficult almost impossible to find for all distributions except the ones

that belonging to exponential family. In other words this is the reason why IB have been

emerged,due to the inability of minimal sufficient statistic function.

Let us consider an information source X and we want to compress the this information and

to convert to representation of the information, T, such that the amount of data that can be

transmitted in a given period of time is minimal, so that communication is facilitated, while

keeping the maximal amount of information about a specific characteristic of X. The random

variable Y represents this characteristic. The mathematical form of the problem takes the

following format [98]:

min
PR|X

I(R;Y )–β I(R;X)≡ 〈log p(y|r)− log p(y)+β log p(r)−β log p(r|x)〉 (4.9)

The β coefficient regulate the counterbalance between the importance of forgetting unuseful

parts of X while creating R and the importance of keeping the useful parts for Y and represent

the strength of the bottleneck. When β has high value compression is no longer significant and

the we achieve the minimum by selecting R = X. The importance of compression is depicted

by the tendency of β to zero.

Figure 4.1: The information between X and Y is squeezed through the “bottleneck” represen-

tation, T.

4.3 Mutual Information and Representation Learning

Representations are very practical when you want to handle multiple modalities to transfer

learned knowledge to tasks with few or no examples being given but a task representation

exists. The difficulty of any information processing task depends on how the information is
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represented. This is applicable also to daily life to machine learning and generally to computer

science. For instance, it is just a simple mathematical operation for a person to divide 210 by

6 using long division. The task becomes much more difficult when instead of posed using the

Roman numeral representation of the numbers. Most of the people asked to divide CCX by VI

would begin by converting the numbers to the Arabic numeral representation, permitting long

division procedures that make use of the place value system. In the framework of machine

learning, a representation is better than another when makes a subsequent learning task easier.

The choice of representation will usually depend on the choice of the next learning task.

Mutual information (MI) is a needful tool in the framework of Representation Learning which

is used in both the unsupervised settings, supervised settings, as well as in the semi-supervised

typically relying on MI maximization[99][100][101]. Here, we focus on the supervised task,

where commonly MI minimization is employed.

In spite of the success of the MI rationale to deep networks,there is still much space for

improvement towards constructing networks with disentangled and diversified representations.

The information-theoretic principles seem to be effective for representations with increased

diversifying and discriminative capabilities. However, most of the methods that exist typically

resort to the optimization of a single information constraint, significantly suppressing the

variety of the emerging representations.

For this purpose, a detailed research attempt has been made for learning programs that rely on

the idea of competition and collaboration between different neural representations.

Hu [102], recently proposed an innovative approach for diversifying the learned information

by providing generalization and diversification capabilities in self-supervised and supervised

settings. Under the proposed approach, different representation parts are constructed; these

except the competition, give us the ability to collaborate in order to achieve a downstream

task, by giving us the capability to learn the richest and discriminative representations.

Especially, let t indicate the downstream task that we want to achieve, e.g. x is the label of an

input, and r illustrates the representation of input x. The purpose is to maximize the mutual

information between the representation r and the target t, guiding to the objective function:

max[I(r, t)] (4.10)

where I(·, ·) indicates the mutual information. We segregate reprsentation r into two different

parts [z, y] with different constraints each one in order to achieve a considerable diversification
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of the learned information, aiming to learn distinct pieces of information from the input x.

Specifically, two different constraints are introduced, such that the “information capacity” of z

is minimized, while the “information capacity” of y is maximized. The above process yields

the following objective function:

max[I(r, t)+αI(y,x)−β I(z,x)] (4.11)

α , β are regularization constants. In order to boost the diversification of the learned infor-

mation avoiding the domination of either term, z and y are constrained to be independent of

each other, while trying to accomplish the downstream task only through their MI constraints.

These modifications guide us to the ICP objective function:

max[I(r, t)+αI(y,x)−β I(z,x)+ I(z, t)+ I(y, t)− γI(z,y)] (4.12)

where γ is also a regularization constant. The objective function which is optimized is based

on the computation of the MI between different pairs of variables, due to the fact that different

optimization methods are required since they aim to achieve different tasks. The above

procedures can be found in [102]. Here we highlight that the objective constructions are

differentiable and can be trained via backpropagation.

4.3.1 Information Competing Process

In spite of the significant improvement in the field most of the methods that exist what is

exactly doing is to optimize a specific information constraint in order to learn “useful” and

diverse representations; unfortunatly, this approximation fails to encourage the diversification

among the representations that inferred from the latent units. Therefore, numerous of learning

schemes have been invented in the field in order to deal this inadequacy; these are relied on

the idea of competition and collaboration between different neural representations.[103]

Relied on recent advances in Representation Learning, we espouse the Information Competing

Process(ICP) [102] in order to boost the diversification of information. The incentive behind

ICP is that traditional mutual information approaches are often based on a single mutual

information constraint, decreasing the diversification of the emerging representations. In

contrast, the ICP rationale carries out a new diversifying objective function, separating the

representation into two parts with different mutual information limitations each one the
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structure of the function ensures that these parts “compete” in order to fulfill a task, but are

then combined to accomplish said task in a synergistic way. The ICP objective function is :

max[I(r, t)] (4.13)

where I(·, ·) means the mutual information. This constraint has as the ultimate goal in order to

maximize the mutual information between the representation r and the target t. In order to

enrich the information on representations distinguish instantly the representation r into two

parts [z, y] with different constraints each other, and motivate the representations to learn

discrepant information from the input x. Especially the information capacity of representation

part z is constrained while at the same time the information capacity of representation part y is

increased. To that effect, we have the following objective function:

max[I(r, t)+αI(y,x)−β I(z,x)] (4.14)

where α > 0 and β > 0 are the regularization factors. In order to obstruct any one of the

representation parts to dominating the task, we let z and y to fulfil the task t by uzing only

the mutual information constraints I(z, t) and I(y,t). In addition, in order to ensure that

the representations capture information via different constraints, ICP prevents z and y from

knowing what each other learned for the downstream task, which is realized by enforcing z

and y independent of each other. Those constraints instruct us in a competitive environment

and enrich the information carried by representations. The ICP has an objective function that

we could express as:

LICP = max[I(r, t)+αI(y,x)−β I(x,z)+ I(z, t)+ I(y, t)− γI(z,y)] (4.15)

where I(z, x) and I(y, x) are called the mutual information minimization and maximization

terms respectively, while I(z, t), I(y, t), I(r, t) are the inference terms and I(z, y) the predictabil-

ity minimization term; γ are also regularization constant which in order to optimize them

needed appropriate tractable bounds based on variational approximations for each task. All

the aforementioned components, including the probabilistic feature extractors, task solvers,

predictors and discriminators are implemented via deep neural networks, while the variational

approximations are assumed to be Gaussian distributions.
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Figure 4.2: In the competitive step, the rival representation parts are forced to accomplish

the downstream task solely by preventing both parts from knowing what each other learned

under different constraints for the task. In the synergetic step, these representation parts are

combined to complete the downstream task synthetically.

4.4 The Blahut Arimoto algorithm

Blahut Arimoto is an iterative computational algorithm that converge to maximum of the

optimization problems with concepts like theoretical information capacity of a channel, the

rate distortion function of a source or a source coding. Considered we have two convex sets

A and B in RN and we want to find the minimum distance between them. I choose a point

a randomly and we trying to find the β that is closest to α . Then we stabilize β and find

α . I repeat this process until my algorithm converges. At this point arises two reasonable

questions is it this point the total minimum and what is going on in the case which p(x,y) is

high-dimensional or is not-Gaussian. The way to deal with the aforementioned questions is to

introduce the concept of deep learning and statistical learning by using variational scheme

in order to maximize the lower bound above the information bottleneck method. In a simple

words is intractable to apply Blahut Arimoto algorithm to deep neural networks[104].

4.5 Variational Information Bottleneck

There is a close connection between VIB and the well-known β -VAE formulation [105]. Both

of them are based on information theoretic arguments but used in different contexts; the first

one is for supervised while the second one for unsupervised learning.

The aproximation of variational information bottleneck[106] trying to maximize a lower bound

on the IB objective function and this algorithm is related to the variational EM algorithm[107].
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Figure 4.3: Pseudo-code of Blahut Arimoto

Tishby proved that the IB loss function can be optimized by applying iterative updates:

pt+1(r|x)∝ pt(r)exp[
1
β

∫
y

p(y|x) log
p(y|x)
pt(y|r)

] (4.16)

pt+1(r) =
∫

x
p(x)pt+1(r|x) (4.17)

pt+1(y|r) =
∫

x
p(y|x)pt+1(x|r) (4.18)

[108] when p(x,y) is complicated, high-dimensional and non-gaussian these updates are very

hard to find it analytically so approximation methods are necessary. Due to the positivity of

the KL divergence, we can write,〈logq(·)〉 ≤ 〈log p(·)〉 for any approximative distribution

q(·).This allows us to formulate a variational lower bound for the IB objective function:

L̂p(r|x),q(y|r),q(r) =
1
N

N

∑
n=1
〈logq(yn|r)+β logq(r)−β log p(r|xn)〉 ≤ Lp(r|x) (4.19)
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where q(yn|r) and q(r) are variational distributions, and we have replaced the expectation

over p(x,y) with the empirical expectation over training data. The constant term have omitted

for simplicity, HY = −〈log p(y)〉. Setting q(yn|r)← p(yn|r) and q(r)← p(r) fully tightens

the bound (so that L̂ = L), and guides to the iterative algorithm of Tishby. However, when

these exact updates are not possible, one can instead choose a restricted class of distributions

q(y|r) ∈ Qy|r and q(r) ∈ Qr for which inference is tractable. In this way, in order to maximize

the objective L̂ with respect to parameters Θ of the encoding distribution p(r|x,Θ), we repeat

the procedure as follow until convergence:

• For fixed Θ, find qnew(y|r),qnew(r) = argmaxq(y|r),q(r)∈Qy|r,Qr L̂

• For fixed q(y|r) and q(r), find Θ = argmaxΘL̂

The concept of Information Bottleneck has been extended analytically and studied in different

kind of scenarios such as Gaussian variables, continuous variables through variational methods

[109] ,geometric clustering and is used for learning invariant and disentangled representations

in deep neural networks.

This method allows us to parameterize the information bottleneck model using a neural network

and leverage the reparameterization trick for efficient training. As a result we observe that this

approach gives us the opportunity to be able to model the mean and variance separately, thus

ensuring the independence of these two important quantities also allows us to have much lower

computational costs and of course we have much better results than pre-existing methods.

Applications such us image clustering ,neural code analysis word clusters for supervised and

unsupervised text classification,natural language processing,galaxy spectra analysis, gene

expression data analysis,protein sequence analysis are some of the main domains that could

implemented by variational information bottleneck.

4.6 Proposed Approach

The main characteristic of the Representation Learning (RL) is the ability of extraction

varified representations from the dataset. In spite of the huge research effort, the learning

representations with such qualities remains an open research question which needs develop.

Latterly mutual information constraints [110][100][111], have risen as a promising source
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in order to help RL to be successful. Notably, the Information Bottleneck (IB) [95] has

attracted a substantial amount of attention [106][112][113]. The essence of the IB theory lies

in constraining the inferred representations, so as to minimize the information transmitted for

the input while being maximally informative about the target outputs [95]. As regards deep

learning, we can be found the first implementations of IB in [114].

It is remarkable that the major part of the proposed works do not examine the most important

perspective of modern deep architectures which is the utility of the non-linearity, despite these

advances. We consider that an extremely different paradigm of latent unit operation may allow

the significantly improvement of the representation learning of deep networks.

The inspiration of the architectures is drawn from the biologically-plausible brain. The

previous years it has been proven that neurons with same functionalities in the brain massing

together in blocks, and a local competition takes place for their activation (Local Winner-

Takes-All/LWTA). We consider that an extremely different paradigm of latent unit operation

may allow to significantly enhance the representation power of deep networks. In each block,

we have a winner that gets to convey its activation to neurons outside the block, while the rest

are forced to silence. Simultaneously, a major operating principle of this mechanism seems

to be stochasticity; the activations within a block may differ when presented with the same

stimulus at different times [77][115][84].

The incorporation of the LWTA mechanism in deep architectures has been shown to yield

important benefits [83][116], while exhibiting significant properties such as noise suppression,

specialization, automatic gain control, robustness to catastrophic forgetting and adversarial

attacks and compression. Despite these properties, LWTA-based networks have been scarcely

examined in the RL literature, while most works fail to take into account the core principle of

stochasticity that characterizes biological systems.

The aim of this work has purpose to deal with a long-established problem of learning diversi-

fied representations. For this purpose, we combine stochastic competition-based activations,

namely Stochastic Local Winner-Takes All (LWTA) units with information-theoretic argu-

ments. In this framework, we do not use the conventional deep architectures commonly used

in Representation Learning, that are based on non-linear activations and we are using sets of

locally and stochastically competing linear units.

Each layer of the network achives to increase the sparsity of the outputs, this is a result of the

competition by between units that are organized into blocks of competitors. We are recruiting

the stochastic arguments for the competition mechanism, which perform posterior sampling to
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determine the winner of each block. Αre considered networks with the ability to infer which

sub-parts of the network is actually necessary in order to model the data we have, to achieve it

we are using the stick-breaking priors to this end. Also to enrich the information of the rising

representations, we resort to information-theoretic principles and specifically the Information

Competing Process (ICP).

The combination between components is linked together under the framework of stochastic

Variational Bayes for inference. We execute an experimental investigation in-depth, for our

approach we are using datasets for image classification.

To train the model we use stochastic Variational Bayes. The objectives of the ICP are

differentiable and can be trained using the reparametrization trick that we analyzed in chapter

1. However, the introduction of the Stochastic LWTA activations and the IBP-based mechanism

entails the discrete latent variables ξ , z and Beta-distributed stick-variables u that are not

readily amenable reparameterization trick. To this end, we utilize the proposed continuous

relaxation of the Discrete distribution, founded on the Gumbel-Softmax trick[117][101] and

the Kumaraswamy Beta-approximating distribution. These relaxations are employed during

training in order to obtain unbiased low-variance estimates of the ELBO gradients. During

inference, we draw samples from the trained posteriors for the winner selection variables and

the respective component utility indicators.

4.7 Foundational Principles

Let us assume a dense layer of a conventional deep neural network comprising K hidden

units. When presented with an input x ∈ RJ , each hidden unit k performs an inner product

computation, hk = wT
k x = ∑

J
j=1 w jkx j ∈ RW ∈ RJ×K . Let us assume a dense layer of a

conventional deep neural K is the associated weight matrix of the layer. This response usually

passes through a non-linear function σ(·), yielding yk = σ(hk), ∀ k. In this way, the output of

the final layer emerges from the concatenation of the non-linear activations of each unit.

Contrary to the framework of the LWTA, the hidden units which are singular nonlinear

are replaced by U competing linear units which are grouped together in an (LWTA) block,

and each layer has multiple blocks like these. Then, we signify by B the number of such

blocks in a particular LWTA-based layer. The weight synapses are now structured as a three

dimensional matrix W ∈ RJ×B×U , revealing that, in this case, each input is now presented

to each block b and each unit u therein. In this context, each linear unit u in each block
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b computes its response, following the conventional inner product computation, such that

hb,u = wT
b,u = ∑

J
j=1 w j,b,ux j ∈ R; then, competition takes places among the units in the block.

The dominant principle of this theory is that among all of the U units which are in the block,

just one can be the winner of the block. This unit can transmit its (linear) activation to the next

layer, while all the rest are passed a zero value i.e convey to silence. It is obvious that this

procedure ends up with a very beneficial property which is the sparsity among representations.

In each block, only one out of the U units produces a non-zero output of 1. In the literature

which is related to LWTA, the competition process is usually deterministic, i.e., the winner

with the highest linear activation is considered the winner at each time. Therefore, [118]

has introduced the novelty to use stochastic arguments for the competition process. In this

context, they introduced an appropriate set of discrete latent vectors ξ ∈ onehot(U)B to encode

the outcome of the competition in each of the B stochastic LWTA blocks that constitute a

stochastic LWTA layer.

This vector comprise B component subvectors; each component entails exactly one non-zero

value at the index position that corresponds to the winner unit in each respective LWTA block.

Further, in this work, we introduce an additional data-driven mechanism in order to endow the

networks with the ability to infer which sub-parts of the network are essential for modeling

the data at hand.

To this end, we introduce a matrix of auxiliary binary latent variables Z ∈ [0,1]J×B. Each entry

therein is 1 if the jth component of the input is presented to the bth block and zero otherwise.

In this setting, the response of each unit is facilitated via the inner product operation between

the effective network weights (as dictated by the latent indicators Z) and the input. We can

now express the output y of a stochastic LWTA layer’s (b,u)th unit, yb,u, that is, the output of

the uth unit in the bth block, as:

yb,u = ξb,u

J

∑
j=1

(z j,b ·w j,b,u) · x j ∈ R (4.20)

where ξb,u denotes the uth component of ξb, and ξb ∈ onehot(U) holds the bth subvector of ξ .

We postulate that the winner unit latent indicators ξb,∀b in 4.17 are obtained via a competitive

random sampling procedure; this, translates to drawing samples from a Categorical distribution,

where the probabilities are proportional to the intermediate linear computation that each unit

performs. Accordingly, the higher the linear response of a particular unit in a particular block,

the higher its probability of being the winner in said block; this yields:

86



q(ξb) =Categorical(ξb|so f tmax(
J

∑
j=1

z j,b · [w j,b,u]
U
u=1 · x j)) (4.21)

where [w j,b,u]
U
u=1 denotes the vector concatenation of the set[w j,b,u]

U
u=1. On the other hand, we

postulate that the binary latent indicators Z are drawn from a Bernoulli distribution, operating

in an “on”-“off” fashion, such that:

q(z j,b) = Bernoulli(z j,b|π̃) (4.22)

where π̃ j,b,∀ j, b are trainable parameters. A graphical illustration of the proposed stochastic

LWTA block is depicted in Fig. 4.4. Each stochastic LWTA layer comprises multiple such

LWTA blocks as illustrated in Fig. 4.5(a). At this point, it is important to note a key aspect of

the proposed approach; that is, stochasticity. In each layer, different stochastic representations

arise due to the sampling procedure for both latent indicators ξ and Z. Even when presented

with the same input, different subnetworks may be activated and different subpaths are followed

from the input to the output, as a result of winner, ξ , and component utility, Z, sampling.

4.8 A Convolutional Variant

To take into consideration networks that employ the convolutional operation, we formulate

a convolutional variant of the proposed Stochastic LWTA rationale. Now we will examine

an input tensor X ∈ RH×L×C, where H, L, C are the height, length, and channels of the input.

Under this framework, we are setting a group of kernels, each with weights Wb ∈ Rh×l×C×U ,

where h, l, C, U are the kernel height, length, channels, and a number of competing feature

maps; each layer comprises B kernels. Analogously to the grouping and competition of linear

units in dense layers, in this case, local competition is performed on a position-wise basis

among feature maps. Each kernel is treated as an LWTA block with competing feature maps.

The feature maps of each kernel compete to win the activation pertaining to each position;

thus, we have as many competition outcomes within the kernel as the number of positions (in

the definition of the feature maps).

This way, the latent winner indicator variables now pertain to the selection of winner feature

maps on a position-wise basis. Further, we introduce analogous latent utility indicators

z ∈ [0,1]B in order to infer which kernels (LWTA blocks) are necessary for modeling the

available data. Thus, here, if zb = 0, we omit whole blocks of competing feature maps. Under
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Figure 4.4: A detailed bisection of the bth Stochastic LWTA block in an LWTA layer. Presented

with an input x ∈ RJ , each unit u = 1, ...,U computes its activation hb,u via different weights

wb,u ∈ RJ, i.e.,hb,u = (zb ·wT b,u)x. Here, zb is the component utility indicator pertaining to

the bth block, which encodes which synapses leading to the bth block the inference algorithm

deems useful, and which not. The linear responses of the units are concatenated, such that

hb = [hb,1, ...,hb,U ], and transformed into probabilities via the softmax operation. Then, a

Discrete sample ξb = [ξb,1, ...,ξb,U ] is drawn; this constitutes a one-hot vector with a single

non-zero entry at position u
′
, denoting the winner unit in the block. The winner unit passes its

linear response to the next layer; the rest pass zero value.

this regard, each feature map u = 1, ...,U in the bth LWTA block (kernel) of a convolutional

LWTA layer computes:

Hb,u = (zb ·Wb,u)?X ∈ R (4.23)

Then, competition takes place among the U kernel feature maps for claiming the available

positions, one by one. Specifically, the competitive random sampling procedure reads:

q(ξb,h,l) =Categorical(ξb,h,l|so f tmax(Hb,u,h′ ,l′)) (4.24)

where [Hb,u,h′ ,l′ ]
U
u=1 denotes the concatenation of the set Hb,u,h′ ,l′

U
u=1

. In each kernel b= 1, ...,B

and for each position h
′
= 1, ...,H, l

′
= 1, ...,L,only the winner feature map contains a non-zero

entry; all the rest feature maps contain zero values at these positions. This yields sparse feature
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Figure 4.5: (a) A graphical representation of our competition-based modeling approach.

Rectangles denote LWTA blocks, and circles the competing units therein.The winner units are

denoted with bold contours (ξ = 1). Bold edges denote retained connections (z = 1). (b) The

convolutional LWTA variant. Competition takes place among feature maps on a position-wise

basis. The winner feature map at each position passes its output to the next layer, while the

rest pass zero values at said position.

maps with mutually exclusive active pixels. Accordingly for the utility indicators:

q(zb) = Bernoulli(zb|π̃b)∀b (4.25)

Thus, the output Y ∈ RH×L×B·U of a convolutional layer of the proposed stochastic LWTA-

based networks is obtained via concatenation of the subtensors Y b,u that read:

Yb,u = Ξb,u((zb ·Wb,u)?X) ∀b,u (4.26)

where Ξb,u = [ξb,u,h′ ,l′ ]
H,L
h′ ,l′=1

. The corresponding illustration of the proposed stochastic con-

volutional LWTA block is depicted in Fig. 3. Convolutional stochastic LWTA-based layers

comprise multiple such blocks, as shown in Fig. 2b.

4.9 Proposed Approaches

Let consider by t the output of the task, and by r the learned representation of x; in supervised

learning, t corresponds to the target label pertaining to an observation x. Most of the approaches

in information theory has as a main purpose to maximize a single constraint for example

the MI between r which is the representation and t which is the label or target denoted as
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I(r, t) in contrary to ICP which takes a different path. The promoting of diversification of

the emerging representations, r is explicitly split into two different parts, ζ ,y; each imposed

different constraints: the “information capacity” of ζ is minimized, while the “information

capacity” of y is maximized. Under this regard, the objective reads:

max[I(r, t)+αI(y,x)−β I(ζ ,x)] (4.27)

where α,β are regularization constants. I(ζ , x) and I(y, x) are called the mutual information

minimization and maximization terms respectively. It is important to note at this point that

estimating the MI is very often quite difficult to calculate. Therefore it is necessary, to devise

different optimization schemes for each considered term. For example, to minimize I(ζ , x),

we introduce a variational approximation Q(ζ ) to P(ζ ) by giving the following tractable upper

bound:

I(ζ ,x)6 Ez∼p(x)[KL[P(ζ |X)‖Q(ζ )]] (4.28)

where Q(ζ ) is a standard Gaussian distribution. The parameters of this distribution, i.e., µζ ,σζ

, are founded on an amortization scheme, similar to the well-known VAE formulation [86];

therefore, for their estimation are employed deep neural networks. In this framework, before

starting to define the full ICP objective, we highlight that all components stemming from

the corresponding tractable bounds and optimization schemes described next, e.g., feature

extractors, discriminators, and classifiers are originally implemented in [102] via ReLU-based

DNNs. On this basis, this work represents an extremely different view, we are using deep

networks which are constructed by novel stochastic LWTA arguments, instead of the over-used

nonlinearities. Then, we complement this unique latent unit operation with a sparsity-inducing

framework that allows determining the best-postulated sub-network configuration. As already

discussed, a notable aspect of ICP is the introduction of auxiliary constraints in order to

prevent either part from dominating the downstream task. To this end, the separated parts are

individually allowed to accomplish t via dedicated MI constraints, namely I(ζ ,t) and I(y,t);

however, ζ and y are constrained from knowing what each other has learned. This property is

achieved through an additional constraint, that is by minimizing I(ζ ,y); this pushed y and ζ to

be independent of each other. The objective function that we obtained reads:

LICP = max[I(r, t)+αI(y,x)−β I(x,ζ )+ I(ζ , t)+ I(y, t)− γI(ζ ,y)] (4.29)
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where γ is another regularization constant, I(ζ , t), I(y, t), I(r, t) are called the inference terms,

and I(ζ ,y) the predictability minimization term. I(r, t) denotes the (synergy) between the

separate parts, aiming to accomplish the downstream task in a synergistic way. Contrarily, the

last three terms, i.e., I(ζ , t), I(ζ ,y), I(y, t) constitute the (competition) aspect of the approach.

This conception allows for both competition as well as synergy of the different representation

parts, enhancing the information carried by said representations. In the following, we briefly

present the required optimization schemes for each term of the objective. In the case of I(y,x)

the KL divergence is divergent [102]; thus, we resort to maximization of the Jensen Shannon

(JS) divergence. Its variational estimation yields:

JS[P(y|x)‖P(y)P(x)] = max[E(y,x)∼P(y|x)p(x)[logD(y,x)]+E(ŷ,x)∼P(y|x)p(x)[log(1−D(ŷ,x))]]

(4.30)

where D(·) is a discriminator, estimating the probability of an input pair; (y, x) is the positive

pair sampled from P(y|x)P(x) and (ŷ,x) is the negative pair sampled from P(y)P(x); ŷ is a

“disorganized” version of y [102]. For the inference term I(r, t), the following lower bound is

derived:

I(r, t)≥ Ex∼P(r|x)[Er∼p(r|x)[
∫

P(t|x) logQ(t|r)dt]] (4.31)

where Q(t|r) is a variational approximation of P(t|r), and P(t|x) denotes the distribution of

the labels. Thus, 4.28 essentially constitutes the cross-entropy loss. The expressions for the

inference terms I(ζ ,t) and I(y, t) are similar. Then, the term predictability minimization tries

to push the parts of the representation to be independent. For this purpose, we introduce a

predictor H that is used to predict y given ζ ; by this way, we guide the variable extractor ζ

from producing ζ values that can predict y[102]. The same process is followed for y to ζ .

This yields:

minmax[E j∼p( j|x)[H(y|ζ )+Ey∼p(y|x)[H(ζ |y)]] (4.32)

A graphical illustration of the described optimization process of the ICP objective of 4.26 is

depicted in Fig. 4. Therein, all DNN-based components are founded on the Stochastic LWTA

and component utility arguments of Section 2.
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4.10 Training & Prediction

The core training objective was defined in the previous section; this stems from the ICP

rationale as expressed in 4.26; however, the existence of Stochastic LWTA activations and the

component utility mechanism, necessitates the augmentation of the final objective via appro-

priate KL terms. Without loss of generality, we begin by considering a symmetric Categorical

distribution for the latent variable indicators ξb; hence, p(ξb) =Categorical(1/U)∀b for the

dense layers, and p(ξb,h′ ,l′ ) =Categorical(1/U),∀b,h′, l ′ for convolutional ones. Differently,

for the latent utility indicators Z (or z) we do not impose a symmetric prior; instead, we

turn to the non-parametric Bayesian framework and specifically to the Indian Buffet Process

(IBP)[119]. This constitutes a sparsity-promoting prior; at the same time, its so-called stick-

breaking process (SBP)[120] renders IBP amenable to ¨Variational Inference. The hierarchical

construction reads:

p(z j,b) = Bernoulli(πb) πb =
b

∏
i=1

ub ub ∼ Beta(ω,1) (4.33)

where ω is a non-negative constant, controlling the induced sparsity. The SBP requires an

additional set of latent stick variables ub, ∀b. Since these are Beta-distributed, we assume a

posterior of similar form: q(ub) = Beta(ub|ãb, b̃b), where ãb, b̃b, ∀ b are trainable variational

parameters. This yields:

L = LICP−KL[q(ξ )||p(ξ )]−KL[q(z)||p(z)]−KL[q(u)||p(u)] (4.34)

For training, we perform Monte-Carlo sampling to estimate (4.31) using a single reparam-

eterized sample for each latent variable. For the Gaussian distributed variables, e.g. ζ , we

resort to the well-known Gaussian trick. For xi and Z, these are obtained via the continuous

relaxation of the Categorical and Bernoulli distribution [117]. In the following, we describe

the reparameterization trick for the ξ variables of dense layers; the cases for Z and for the

convolutional variant are analogous. Let ξ̃ denote the probabilities of q(ξ ) (Eqs.(4.18),(4.21)).

Then, the samples ξ̂ can be expressed as:

ξ̂b,u = so f tmax(
log ξ̃b,u +gb,u

τ
) ∀b,u (4.35)

where gb,u =− log(− logVb,u),Vb,u ∼Uni f orm(0,1) and τ ∈ (0,∞) is a temperature constant

that controls the degree of the approximation. Alike, the Beta distribution of the stick variables
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u is not easily reparameterize; we get samples through the Kumaraswamy distribution for this

kind of variables [121]; this constitutes an approximation of Beta and admits the following

reparameterization trick:

ûb = (1− (1−G)
1

ãb )
1

b̃b (4.36)

where G ∼ Uni f orm(0,1) and ãb, b̃b are the variational parameters of the original Beta

distribution. We can now compute each expectation term in the objective (4.31) via these

samples. For example, we can write the KL divergence term for the latent variables ξ as:

KL[q(ξb)||p(ξb)] = Eq(ξb)[logq(ξb)− log(p(ξb))]≈ logq(ξ̂b)− log p(ξ̂b),∀b (4.37)

During prediction time we draw samples directly from the trained posteriors q(ξ ) and q(z), in

order to determine the winner in each block of the network and to evaluate component utility

respectively. Thus, each time we sample, even for the same input, a different sub-path may

be followed according to the outcomes of the sampling processes. This leads to a stochastic

alternation of the emerging representations of the network at each forward pass.

4.11 Experimental Evaluation

We perform a rigorous experimental evaluation in order to assess the efficacy of the proposed

framework. To this end, we evaluate our model on image classification, where we consider two

popular benchmarks, namely CIFAR-10 and CIFAR-100 [122] containing natural images with

10 and 100 classes respectively. We compare our approach to recent information-theoretic

approaches to deep networks including VIB [106], DIM[111] and ICP [102]. To this end,

we follow the same experimental setup of[102] and consider four different networks for both

datasets: (i) VGG-16 [3], (ii)GoogLeNet[54], (iii) ResNet20 [123] and (iv) DenseNet40[124].

We employ some common data augmentation procedures, including random cropping and

mirroring.

4.11.1 Experimental Setup

We consider two different setups To evaluate our approach,for our competition that relied

on LWTA activations: (i) an architecture comprising LWTA blocks with U = 2 competing
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units/feature maps, denoted as ICPLWTA−2; and (ii) an architecture comprising LWTA blocks

with U = 4 competing units/feature maps, denoted as - ICPLWTA−4. In all cases, the total

number of hidden units/features in each layer remain the same as in the original ReLU-based

architectures. The comparability is ensuring (size-wise) by existing approximations. We

also compare the performance when we employ the proposed, IBP-driven, network sampling

mechanism, and when we omit it. For clarity, in the following, we denote our full model (which

employs the IBP-based mechanism) as ICPIBP&LWTA−2 and ICPIBP&LWTA−4, respectively. In

this context, to allow for compressing the model by exploiting the trained posteriors over the

latent indicators z, we adopt the following rationale: After network training, we introduce a

cut-off threshold τ = 0.001. All components with trained utility posterior π̃ , q(z = 1)≤ τ are

removed from the network; all rest are retained and used at prediction time. In the following

tables, the compression metric corresponds to the ratio of the number of network components

removed to the total number of network components. We choose an uninformative Beta prior

for the IBP (4.30): Beta(1, 1); thus, ω = 1. For the Gumbel-Softmax relaxation, we set the

temperatures τ for the prior and posterior distributions to 0.5 and 0.67 respectively[24]. We

draw a reparameterized sample from all the involved random variables through training , while

we draw 5 different samples during inference (and proceed with Bayesian averaging). We

execute a a lot of evaluations for each dataset and architecture, i.e., 5 runs, and report the best

performing one. All experiments were run on a workstation with 2 × Quadro P6000 24GB

GPUs and 64GB RAM.

4.11.2 Detailed Experimental Setup

To assess the efficacy of the proposed approach, we evaluate the performance on image

classification, following the experimental setup of [102].Specifically, we consider four dif-

ferent networks, namely (i) VGG-16 [3], (ii) GoogLeNet [54], (iii) ResNet20 [125], and (iv)

DenseNet40[124]. The original architectures are described in their respective papers; we

consider CIFAR-10 and CIFAR-100 datasets [122]. To further diversify the emerging repre-

sentations of the LWTA-based networks, we resort to recent information theoretics approaches

and specifically to ICP [102]. The objective reads:

LICP = max[I(r, t)+αI(y,x)−β I(z,x)+ I(z, t)+ I(y, t)− γI(z,y)] (4.38)

where α , β and γ are regularization constants. The original ICP approach uses Deep Networks

that employ conventional based in Relu activation function. To allow for transparency and
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comparability with these networks, we use the same regularization constants as found in

the official code implementation of the ICP approach 1. We report the used values for each

architecture and dataset in Table

Table 4.1: Values of the regularization parameters of the ICP objective for all architectures

and dataset

Model VGG-16 GoogLeNet ResNet20 DenseNet40

cline2-5 α ‖ β ‖ γ

CIFAR-10 0.01 ‖ 0.1 ‖ 0.01

CIFAR-100 0.001 ‖ 0.1 ‖ 0.001 0.01 ‖ 0.1 ‖ 0.01 0.01 ‖ 0.1 ‖ 0.01 0.001 ‖ 0.1 ‖ 0.001

Concerning the initialization of the parameters for each network layer, we use Xavier/Glorot

initialization for the weights of the Fully Connected layers, and [125] initialization [123] for

the weights of the Convolutional ones. For both types of layers, we set the initial estimates

for the biases to zero. To avoid overflow/underflow in the computations, after each parameter

update, we constrain the values of the parameters of the Kumaraswamy distribution[121] to lie

in [1e−4,1] and the parameters of the Bernoulli/Gumbel-Softmax posterior π̂ ∈ [1e−4,1].

This allows for a stable training regime, which avoids precision errors, without harming

the parameter estimation process. In order to estimate model parameters, we draw a single

(reparameterized) sample from all the involved random variables during training, while we

draw 5 different samples during inference and proceed with Bayesian averaging.

4.11.3 Experimental Results

CIFAR-10.For CIFAR-10, in order to have transparency and as accurate results as possible

in comparability we train the networks in a different number of optimization parameters

and epochs, following the original implementation of ICP [102] .The obtained comparative

results for all considered methods and networks can be found in Table 1. As we observe, our

proposed method yields comparable classification accuracy to the best performing baseline

ICP alternative, while at the same time allowing for powerful compression of the considered

architecture. Apart from the computational benefits of the compression capabilities of the

proposed approach, using the component omission mechanism allows for inferring the relevant

parts of the input, further facilitating the diversification process of the emerging representations.

CIFAR-100.For CIFAR-100 the procedure is similar to the above on CIFAR-10. Table 2
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depicted the results of the classification problem. In this set of experiments, the increased

classification capabilities of the baseline ICP model, that is the conventional ICP model with

ReLU-based nonlinearities, compared to the other information-theoretic approaches is more

evident. Our proposed approach, once again follows this trend, yielding on-par or better

classification accuracy with ICP while at the same time showing significant compression

capabilities.

Random Seed Effect. A core aspect of the considered approach lies in its stochastic nature.

Thus, to evaluate the overall robustness of our proposed method, we execute each experiment

5 times and report the means and standard deviations and these are presented in Table 3. We

observe that our approach exhibits consistent performance in all cases, while in most occasions,

the mean performance obtained by multiple runs outperforms the baseline ICP approach.

Here, we focus on the VGG-16 architecture described in the previous section, and assess the

individual impact of each of the proposed components, i.e. LWTA and IBP, to the classification

performance of the network. At the same time, we examine whether adoption of a deterministic

LWTA scheme, as opposed to the adopted stochastic construction, would yield equal or inferior

performance in these benchmarks.

The obtained comparative results are depicted in Table 4. Therein, the ICPLWTA−∗max and

ICPIBP&LWTA−∗max entries correspond to networks where the LWTA competition function

picks the unit with greatest activation value, in a deterministic fashion; ∗ = 2, 4 denotes the

number of competitors in each LWTA block. We take into consideration both, the use and

omission of the IBP-based mechanism, respectively. As we notice, for U=2 and U=4 settings,

the Stochastic LWTA approach outperforms deterministic LWTA units picking the greatest

value. The mechanism that IBP is based on increases classification accuracy (in addition to

compressing the network we perform inference with).

4.11.4 Representation Diversification

This work is aiming to enrich and sufficiently diversify the representations for deep networks.

Below, we try to investigate the diversification capabilities of the proposed framework, both

quantitatively and qualitatively. To execute this analysis, and due to space limitations, we

focus on the CIFAR-10 architecture and the VGG-16 dataset.

To perform a qualitative evaluation, we visually compare the emerging intermediate repre-

sentations from the hidden layers of employed ReLU-based networks (standard ICP) and
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our approach. As we observe in Fig. 5, there exists a clear disparity between the proposed

approach and the commonly employed nonlinearities. Clearly, the ReLU-based architecture

allows for more “aesthetically pleasing” representations. However, the proposed networks

yield significant diversification, as they split the resulting representations from each block to

mutually exclusive parts. This constitutes a radically different RL scheme with significant

diversification capacity for the emerging intermediate representations. For the quantification of

the diversification properties, we turn to the commonly used Linear Separability metric. This

metric constitutes a proxy for quantifying the disentanglement and MI between the emerging

representations and the class labels ([111]). In this context, linear classification is usually

considered, and for this we use the standard Support Vector Machine (SVM) approach. To

this end, we hold the encoders of y and ζ fixed, and build separate SVM based classifiers on

the two representation parts ζ , y, their combination (denoted as Total), as well as the output

of the last convolutional layer of the ζ encoder (Conv), which stems either from ReLU units

or LWTA blocks.

The results which are obtained are comparative and separable is illustrated in figure 4.10. We

observe that the accuracy in the case of training a linear model SVM with representations a and

b separately or the combination of these two or the last convolutional layer of the underlying

encoder is much greater when inputs come from the networks of our own approximation

(LWTA & IBP arguments). This suggests the existence of more diverse representations, that

enrich the information and are able to be utilized by the classifier much better.

Below, we provide some further qualitative evaluations of the emerging intermediate represen-

tations when employing the described competition-based mechanism, namely Stochastic Local

Winner- Takes-All. To this end, in Figs. 4.15-4.22 we visualize the outputs from different

blocks of competing feature of the ResNet-20 and DenseNet40 architectures; we focus on

various test examples of the CIFAR-10 dataset. Similar to the visualization of the VGG-16

architecture provided in the main text, we observe that the emerging feature maps result in

almost mutually exclusive representations of the input. These visualizations suggest that our

approach yields networks with significant diversification capacity.

4.11.5 Further Investigation

To gain some further insights into the behavior of the employed Stochastic LWTA activations

and to assess that the competition mechanism does not collapse to singular, always-winning

units, we examine the arising competition patterns in a random layer of the ζ encoder of the
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VGG-16 architecture. The graphical illustration is provided in Fig. 9. As we observe, each

class (y-axis) exhibits a unique distribution of unit activation. This suggests that the introduced

mechanism succeeds in encoding diverse and salient discriminative information through the

arising patterns.
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Figure 4.7: The ICP pipeline: r is splitting into two parts [ζ , y]. These two parts except the

cooperation are entered into the competition process in order to accomplish the downstream

task. This helps us to compute the MI between different pairs of variables; this is usually in-

tractable and optimized through different schemes. All components of these, are implemented

via LWTA and IBP-based DNNs.
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Figure 4.8: Table 1: Classification Error rate(%) on CIFAR-10

Figure 4.9: Table: 2 Classification Error rate(%) on CIFAR-100

Figure 4.10: Table 3: Means and standard deviations of 5 different runs under different seeds

for all datasets and architectures.
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Figure 4.11: Table 4: Ablation Study: CIFAR-10 test-set using a VGG-16 (Simonyan and

Zisserman 2015) [3] architecture.

Figure 4.12: Feature map visualizations for a test example of the CIFAR-10 dataset, emerging

from the first layer of the considered VGG-16 architecture. (Left) The original image, (Upper

Row) a visualization of the outputs of the two competing feature maps of the first LWTA

block (U = 2), and (Bottom Row) a visualization of the first two filters of the conventional

ReLU-based approach. The latter exhibit significant overlap, contrary to the much diverse

representations of our approach which are mutually-exclusive.

Figure 4.13: Results on linear separability using SVMs.
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Figure 4.14: Feature map visualizations for a test example from class 0 of the CIFAR-10

dataset, emerging from the first layer of the considered ResNet-20 architecture. (a) The

original image, (b)-(c) a visualization of the outputs of the two competing feature maps of the

first LWTA block (U =2), and (d)-(e) a visualization of the ouputs of the second block.

Figure 4.15: Feature map visualizations for a test example from class 5 of the CIFAR-10

dataset, emerging from the first layer of the considered ResNet-20 architecture. (a) The

original image, (b)-(c) a visualization of the outputs of the two competing feature maps of the

first LWTA block (U = 2), and (d)-(e) a visualization of the ouputs of the second block.
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Figure 4.16: Feature map visualizations for a test example from class 6 of the CIFAR-10

dataset, emerging from the first layer of the considered ResNet-20 architecture. (a) The

original image, (b)-(c) a visualization of the outputs of the two competing feature maps of the

first LWTA block (U =2),and (d)-(e) a visualization of the ouputs of the second block.

Figure 4.17: Feature map visualizations for a test example from class 8 of the CIFAR-10

dataset, emerging from the first layer of the considered ResNet-20 architecture. (a) The

original image, (b)-(c) a visualization of the outputs of the two competing feature maps of the

first LWTA block (U = 2),and (d)-(e) a visualization of the ouputs of the second block.
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Figure 4.18: Feature map visualizations for a test example from class 8 of the CIFAR-10

dataset, emerging from the first layer of the considered ResNet-20 architecture. (a) The

original image, (b)-(c) a visualization of the outputs of the two competing feature maps of the

first LWTA block (U = 2), and (d)-(e) a visualization of the ouputs of the second block.

Figure 4.19: Feature map visualizations for a test example from class 9 of the CIFAR-10

dataset, emerging from the first layer of the considered ResNet-20 architecture. (a) The

original image, (b)-(c) a visualization of the outputs of the two competing feature maps of the

first LWTA block (U = 2), and (d)-(e) a visualization of the ouputs of the second block.
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Figure 4.20: Feature map visualizations for a test example from class 2 of the CIFAR-10

dataset, emerging from the first layer of the considered DenseNet40 architecture. (a) The

original image, (b)-(c) a visualization of the outputs of the two competing feature maps of the

first LWTA block (U = 2), and (d)-(e) a visualization of the outputs of the third block.

Figure 4.21: Feature map visualizations for a test example from class 8 of the CIFAR-10

dataset, emerging from the first layer of the considered DenseNet40 architecture. (a) The

original image, (b)-(c) a visualization of the outputs of the two competing feature maps of the

first LWTA block (U = 2), and (d)-(e) a visualization of the outputs of the third block.

Figure 4.22: Changes in the probabilities of unit activation per class during training. Darker

denotes probabilities closer to 1, while white denotes a 0 probability of activation.
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Figure 4.23: Probabilities of unit activation per class for various layers of the considered

ResNet-20 architecture. Darker denotes probabilities closer to 1, while white denotes a 0

probability of activation.
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Chapter 5

Conclusion

The deep neural networks from the beginning of their discovery address several problems, the

most important being the generalization. This is due to the fact that the representations are not

good enough and is difficult to generalize to unknown data also problems such as adversarial

vulnerability occurs frequently.

Thus, we rely on a new innovation characterized by local stochasticity. We deepen in this

approach with important innovations for these networks.

What we achieved was to combine the stochastic local with information-theoretic arguments

in order to train the model which led us to many better-learned representations and secondly

we constructed neural networks that are much better from the state of the art.

In this work, we attacked the problem of promoting diversified representations in Deep

Learning. To this end, we introduced principled network arguments formulated by stochastic

competition-based Local Winner-Takes-All activations. We combined these with network

component utility mechanisms, which rely on the use of the IBP prior. Then, to further enrich

the emerging representations, we employed information-theoretic arguments, founded on

competing for mutual information constraints under the Information Competing Process.

This results in an efficient network training and prediction scheme, that significantly com-

presses the networks during prediction. We performed a thorough experimental evaluation,

using benchmark datasets and several standard network architectures. We compared net-

works crafted using the proposed arguments against standard, ReLU-based constructions.

Our experimental results provided strong empirical evidence of the efficacy of the proposed

framework.
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Specifically, in all cases, our approach yielded on-par or improved accuracy for significantly

compressed networks. At the same time, our qualitative and quantitative analysis of the

obtained representations showed our approach results in representations that: (i) visually

appear much more diverse; and (ii) are more informative to a linear classifier trained on them,

specifically an SVM used as a proxy to linear separability.

5.1 Future Work

In many real life situations, as we have shown in this thesis, we rely on mathematical models

to help us to confront a variety of difficult tasks. Machine learning advances have enabled

these models to develop and, in some cases, even outperform their human counterparts.In this

setting, the question arises: Can we derive a perfect model that can address any real-world

problem? An optimal model, in our opinion, is one that has the plasticity required to cope with

uncertainty in a flexible manner. Bayesian inference is a tool for achieving that objective. It is

capable of effectively counteracting the observable data epistemic uncertainty. We looked at a

variety of ways to use Bayesian inference in model training in this thesis. As we have shown,

our method can help models perform better in classification tasks. Specifically, Bayesian

approaches were applied to the three key components of deep networks for the winner of

each block the component utility mechanism and in the case in which we tried to enrich

the representations. Machine learning is a dynamic field of research that developing and

introducing new techniques continuously. For instance, new frameworks are developed like

Transformers networks. Transformer is the first sequence model based purely on attention

mechanism, with multi-headed self-attention replacing the recurrent layers most typically

employed in encoder-decoder networks. The intersection between our contributions and these

kind of networks we consider to have great potential for substantial breakthroughs in the

future.
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