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A B S T R A C T   

Spray and air–fuel mixing in gasoline direct-injection (GDI) engines play a crucial role in combustion and 
emission characteristics. While a variety of phenomenological spray models and computational fluid dynamics 
(CFD) simulations have been applied to identify air–fuel mixture distribution, most research efforts so far were 
concentrated on single axial-nozzle injectors and limited range of ambient conditions. Especially, the prediction 
of flash-boiling sprays in multi-hole injectors remains a great challenge due to the lack of understanding of the 
complicated two-phase flow dynamics. For the specific conditions, the question can arise concerning the capa-
bility of machine-learning algorithms to predict complex flash-boiling sprays. We developed a machine-learning 
algorithm, as a simple variant of linear regression, that is capable of predicting the spray 3D topology for various 
fuels and ambient conditions. A series of spray experiments were carried out in a constant-flow spray vessel 
coupled with high-speed diffused back-illumination extinction imaging to produce a data set for algorithm 
training. Nine different test fuels, including single component iso-octane (ic8) and multi-component EEE gaso-
line, that cover a wide range of fuel properties were injected using Engine Combustion Network (ECN) Spray G 
injector under ECN G2 (50 kPa absolute), G3 (100 kPa absolute), and G3HT (G3 with 393 K ambient temper-
ature) conditions. Among the test fuels, ic8ib2 (ic8 80%, iso-butanol 20% v/v) and EEE gasoline were specified as 
target fuels for spray prediction by the machine-learning algorithm, thus they were not included in the training 
data. The macroscopic spray analysis based on projected liquid volume (PLV) and computed tomographic (CT) 
reconstruction showed that the spray prediction by the machine-learning algorithm showed excellent agreement 
with true values from the experimental data. The maximum differences in liquid penetration for ic8ib2 and EEE 
fuel were 3.6 mm (7.3% error) and 1.3 mm (2.32% error), respectively. The 3D spray predicted had a consistent 
trend to experimental data showing slight plume movement for ic8ib2 but complete spray collapsing for EEE 
gasoline fuel. The plume direction angle enabled by the CT data showed differences up to 2◦ compared to true 
values during the injection period. The quantitative validation results showed that the machine-learning algo-
rithm is capable of predicting spray performance with nine input features (fuel properties and ambient condi-
tions), and is actually superior to CFD performance for these same number of spray parameters.   

Abbreviations: ANN, Artificial neural network; CFD, Computational fluid dynamics; CT, Computed tomographic; DI, Direct-injection; ECN, Engine Combustion 
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jection; PINN, Physics-informed neural networks; PIV, Particle image velocimetry; PLV, Projected liquid volume; PM, Particulate matter; SGD, Stochastic gradient 
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1. Introduction 

Increasing environmental concerns and fossil fuel costs have led the 
automobile industry to develop highly efficient and clean internal 
combustion engines. Amongst advanced engine technologies, high- 
pressure direct-injection (DI) engines have been widely adopted by the 
automotive industry because of lower knocking tendency and higher 
engine efficiency than port fuel injection (PFI). Reasons for these im-
provements include using DI fueling include charge cooling by fuel 
evaporation and high level of turbulence in the combustion chamber 
[1,2]. The application of DI strategy in engines is developing with other 
technologies such as multiple injections, exhaust gas recirculation 
(EGR), and enhanced air utilization by swirl or tumble motion [3–5]. 
Advanced gasoline direct-injection (GDI) engines encompassing low- 
temperature gasoline combustion (LTGC) or spark-plug controlled 
compression ignition (SPCCI) concepts are using multiple fuel injections 
(early intake stroke and top dead center) with high swirl and EGR ratios 
[6,7]. In these engines, inappropriate injection parameters or undesired 
fuel properties cause fuel impingement on the piston top or cylinder 
liner leading to a high amount of particulate matter (PM) emissions 
[8,9]. Therefore, understanding of plume direction and liquid penetra-
tion length under various ambient conditions and fuels is essential to 
improve the combustion and emission characteristics. Ideally, these 
processes could be predicted for all operating conditions to assist in the 
design of the engine or fuel injector. 

Spray and air–fuel mixing processes under engine-like conditions are 
complicated two-phase flow phenomena involving high turbulence, 
small temporal/spatial scale, droplet breakup, and evaporation. Liquid 
fuel from the injector nozzle experiences throttling, breakup, atomiza-
tion, evaporation, and mixing with ambient air [10]. The physics behind 
the spray formation process are highly dependent on thermodynamics 
conditions and fuel properties. For instance, spray breakup and mixing 
processes under critical temperature is very different compared to that 
of atmospheric or flash-boiling conditions [11,12]. Spray characteristics 
can be classified as macroscopic, i.e. liquid/vapor penetration and 
width, and microscopic, i.e. breakup process and droplet size. Many of 
the previous studies attempted to develop phenomenological models to 
predict spray characteristics for single nozzles. With reference to 
macroscopic aspects, Hiroyasu and Arai proposed semi-empirical cor-
relations for spray breakup and liquid penetration length [13], which 
was derived based on experimental data and jet disintegration theory 
from a previous study of Levich [14], and is capable of predicting liquid 
penetration before/after the breakup time. Based on the model, the 
liquid penetration length increases linearly with time before the breakup 
time, while it has a square root dependency on time after the breakup. 
This correlation has been widely used for computational fluid dynamics 

(CFD) simulations. Siebers also developed a model for prediction of 
liquid penetration length under a wide range of ambient density and 
temperature conditions with the hypothesis that maximum liquid 
penetration occurs at a point where vaporized fuel is at a saturated 
condition in thermodynamic equilibrium with the ambient gas [15]. On 
the other hand, for microscopic spray characteristics, models for atom-
ization and droplet behaviors have been developed based on nondi-
mensional parameters such as Reynolds (Re), Ohnesorge (Oh), and 
Weber (We) numbers [16]. Two types of breakup mechanisms in sprays 
have been reported: the bag breakup for low We numbers and the shear 
breakup for high We conditions. Bag breakup is typically associated with 
Kelvin Helmholtz (KH) instability, while the shear breakup is related to 
Rayleigh Taylor (RT) instability [17]. For fuel sprays in engine appli-
cations, the KH model is used for intact liquid-core breakup (a primary 
breakup) length prediction and the RT model is utilized for a secondary 
breakup after the liquid-core length [18]. Apart from these models, there 
are several different numerical models to predict droplet deformation, 
droplet collisions, droplet diameter, and modified forms of KH-RT 
models [19–21]. 

Spray models incorporating the physics discussed above are desired 
to predict the liquid distribution for engine design. The models may be 
phenomenological, usually for single nozzles without complicated gas 
flow, or they may incorporate CFD simulations, typically using 
Lagrangian parcels. The models were also based on conventional spray 
formation and combustion conditions that correspond to high ambient 
temperature and pressure. This aspect is becoming more critical under 
flash-boiling conditions where plume-to-plume interactions become 
more significant and can lead to full spray collapse into a single plume. 
The current state of Lagrangian parcel simulation cannot yet adequately 
capture plume interaction and liquid distribution [22,23]. There are 
specified spray models called homogeneous relaxation model (HRM) for 
the Eulerian approach, however, the CFD simulation results still remain 
unsatisfactory [24–26]. 

On the contrary to the model-based microscopic and macroscopic 
approaches, there is a recent trend to apply artificial neural network 
(ANN) and machine-learning (ML) algorithms in fuels and spray com-
bustion research [27–30]. Advances in experimental and numerical 
analysis, such as high-speed imaging and high-performance computing, 
are constantly accelerating the massive production of data across all 
fields. The analysis of those data through ANN and ML is offering novel 
breakthroughs in a wide variety of disciplines. As one promising solution 
to overcome the limitations of the model-based spray research, ANN and 
ML have been utilized to predict spray characteristics. In the work of 
Ikeda and Mazurkiewic, they utilized ANN techniques to predict droplet 
diameter in a spray burner system [28]. The experimental measure-
ments on droplet diameter and velocity were performed using phase 
Doppler anemometry (PDA) and particle image velocimetry (PIV). The 
model was trained to predict droplet size at different axial and radial 
locations with PIV data such as droplet travel time, droplet arrival time, 
radial velocity, and axial velocity. The results from the machine-learning 
showed reasonably good agreement in capturing the trend of droplet 
diameter depending on the relevant location in the spray region; how-
ever, it failed to match the quantitative profile by exhibiting discrep-
ancies up to 10 μm error in droplet diameter. Zhang et al. applied ANN 
and flamelet generated manifolds (FGM) to predict ignition delay time 
and lift-off length of a diesel spray flame using an ECN Spray H injector 
[29]. In this study, the ANN library PyTorch was linked to the CFD li-
brary OpenFOAM and the validation was conducted based on large eddy 
simulation (LES) results. The predicted spray combustion using ANN 
showed good agreement with other simulation results in terms of spray 
breakup length, evaporation rate, and mass fraction of chemical species, 
despite using eight times less memory. Meanwhile, combining model 
and data-driven analyses, Raissi et al. introduced physics-informed 
neural networks (PINN), which were trained to solve machine- 
learning tasks while reflecting any given laws of physics described by 
partial differential equations (PDEs) [27]. The proposed framework 

Nomenclature 

Cext Extinction coefficient [mm2] 
d Droplet diameter [mm] 
I Transmitted light intensity [a.u.] 
I0 Incident light intensity [a.u.] 
Îi,j PLV at (i,j) [mm3(liquid)/mm2] 
Pa Ambient pressure [Pa] 
Pv Vapor pressure [Pa] 
PLV Projected liquid volume [mm3(liquid)/mm2] 
T Distillation temperature [℃] 
τ Optical thickness [a.u.] 
wi,j Regression weight vector at (i,j) [a.u.] 
xk Feature vector for training [a.u.] 
ŷi,j PLV vector at (i,j) for training [a.u.]  
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demonstrated the capability of solving classical problems in fluids, 
quantum mechanics, reaction–diffusion systems, and the propagation of 
nonlinear pressure waves. 

While machine-learning approaches have been applied for spray 
combustion prediction on a limited basis, the current state of the art is 
for simplified cases with single-hole injectors or are with limited fuels or 
operating conditions that cover little of the operating envelope for GDI 
engine. In particular, injection from multi-hole nozzles often occurs 
where heated multi-component fuel is injected into a low-pressure gas to 
create flash-boiling sprays. Therefore, in this study, we aim to establish a 
framework to predict detailed quantitative information for flash-boiling 
and non-flashing multi-hole sprays using a machine-learning algorithm. 
We develop and apply a pixel regression model for time-resolved spray 
data as well as a variety of time-dependent spray characteristics without 
any time-marching simulations. For the training, experimental data 
using seven different fuels (single component iso-octane to multi- 
component EEE gasoline fuel) under ECN G2, G3, and G3HT condi-
tions were utilized. Input features were composed of nine parameters 
including fuel and ambient properties. Spray profiles were predicted in 
three different viewing angles by the machine-learning algorithm and 
the data were fed into a separate 3D computed tomographic (CT) al-
gorithm to generate quantitative spray information in a three- 
dimensional domain. To the best of the authors’ knowledge, this is the 
first study in the literature to introduce a machine-learning based 
methodology suitable for predicting and quantifying the 3D spray to-
pology of a multi-plume GDI injector under realistic operating 
conditions. 

2. Test procedure and condition 

2.1. Injector and fuels 

An ECN Spray G injector (AV67-028) that has axisymmetrically 
drilled eight nozzles was utilized for fuel injection. Detailed geometric 
dimensions are shown in Fig. 1. The inner orifice and counterbore were 
designed to have diameters of 165 µm and 388 µm, respectively, how-
ever, recent x-ray measurement by Duke et al., indicated actual di-
ameters of 173 µm and 394 µm [31,32]. The nozzles were drilled with an 
angle of 37◦ from the device center axis. It is noted that the plume di-
rection angle can deviate from the nozzle drill angle due to in-nozzle 
two-phase phenomena and the plume dynamics under different 

ambient conditions. The injector has specifically assigned ×, y, and z 
axes as shown in the inset of the figure so that injector orientation co-
incides with ECN guidelines, in order to derive spray macroscopic fea-
tures [33]. 

A major objective of this study is to develop a tool to predict spray 
behavior for various fuels, including renewable alternatives. Nine 
different fuels with significantly different fuel properties were included 
in the test matrix as are shown in Table 1. The test fuels were to maintain 
a high octane number (for high engine efficiency) and to have a wide 
range of fuel properties, especially with regards to vapor pressure and 
distillation temperature. The fuels include: single component iso-octane 
(ic8), multi-component surrogate di-isobutylene (1-hexene 4% , n-hep-
tane 12.1%, iso-octane 44.2%, toluene 20.1%, and di-isobutylene 19.6% 
by volume), multi-component fuel with olefin molecular structure, e30 
blend (gasoline 70%, ethanol 30% by volume), three-component e00 
(ic8 46%, n-pentane 36%, n-undecane 18% by volume), high- 
cycloalkane, alkylate, two-component ic8ib2 (ib8 80%, iso-butanol 
20% by volume), and EEE certification gasoline. The influence of 
compositional difference on distillation curves is presented in Fig. 2 
[34]. The contrast in distillation profiles and boiling temperature is 
illustrated, for instance, with ic8 as a single component fuel with a 
boiling temperature of 98 ℃ in comparison to e30 blends that have not 
only light but also heavy components contributing to a wide spectrum of 
distillation temperatures from 34.3 ℃ to 204.4 ℃. The large amount of 
light species in fuels attribute to the high vapor pressure as confirmed in 
Table 1. In order to obtain a format that can be easily integrated in the 
machine-learning algorithm, the distillation curve was processed to 
have a single value by summing up the differences in distillation tem-
perature between a test fuel and ic8 (reference fuel) from distilled vol-
umes of 0% to 100% with a 20% step size as presented in the following 
equation. 

Distillation parameter =
∑5

i=0

⃒
⃒Ttestfuel@20∙i − Tic8@20∙i

⃒
⃒

318.5
(1) 

Here, T is distillation temperature at a specific distilled volume, and 
318.5 is an arbitrary constant to normalize the distillation parameter. 
Fig. 2(b) shows an example of EEE fuel that has a wide range of distil-
lation temperatures. The distillation parameters are also reported in 
Table 1. In addition to the distillation parameters, fuel density [kg/m3], 
viscosity [mm2/s], vapor pressure [kPa], ambient to vapor pressure 
ratio (Pa/Pv) [n.a.], heat of vaporization [kJ/kg], ambient temperature 

Fig. 1. Cut plane image of ECN spray G injector with dimensions (inset figure shows the 3-D rendering of the injector with primary orientation) [31,32].  
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[K], ambient density [kg/m3], and ambient pressure [kPa], which are 
the actual measurement data from [34], were set as input features for 
machine-learning algorithm. 

2.2. Experimental setup 

A high-speed imaging campaign was conducted in a constant flow 
vessel at Combustion Research Facility, Sandia National Laboratories. 
Constant nitrogen flow in the vessel enabled fast scavenging of residual 
air–fuel mixture so statistically converged data from 300 injections 
could be obtained with an injection frequency of 0.5 Hz. Two optical 
windows made of quartz were installed in parallel to allow for the op-
tical access necessary for high-speed extinction imaging. The test 
injector was mounted at a port placed in the mid-distance of the win-
dows and its temperature was regulated at 90 ℃ by circulating hot water 
in the injector jacket. Fuel spray was expelled by the injector into the 
ambient of constant pressure having nitrogen flow rate regulated by an 
electro-pneumatic flow controller. Low pressure flash-boiling condition 
was achieved by a custom-built vacuum pump system. The vessel pres-
sure was measured at three different points by pressure transducers. The 
nitrogen flow entered the vessel through its lower side and flowed 
through a heating coil located at the bottom of the spray vessel sur-
rounded by an insulator piece. Afterward, the flow passed through a 

diffuser to enhance uniformity in the velocity and temperature field in 
the spray region. Using 24 thermocouples from the heater to the upper 
region of the spray, the temperature distribution was monitored during 
the experiment. The temperature at the target spray region was well 
controlled within 1 ℃ in the entire experiment. 

The liquid spray was identified by the diffused back illumination 
extinction imaging. A high-speed green light-emitting diode (LED), 
Fresnel lens (150 mm, f = 150 mm), engineered diffuser (20

◦

), and 
bandpass filter (center wavelength: 527 nm, bandwidth: 20 nm, full 
width-half max: 22 nm) were utilized. A high-speed digital video camera 
(Photron, SA-Z) equipped with a prime lens (Nikkor, 50 mm f/1.8) was 
used to capture images of spray development in the vessel. The green 
LED was operated with a 24 ns command signal (~220 ns LED flash 
time) duration to freeze the spray in the visualized frame. The imaging 
was performed at a shutter speed of 67,200 frames per second (fps) with 
an image resolution of 512 by 512. The aperture of the lens and exposure 
time of the high-speed camera was set to 2.8 and 13.27 μs, respectively. 
The engineered diffuser supplied a homogeneous light field and sup-
pressed beam steering by evaporation or temperature field in the vessel 
[35]. This imaging technique is designed to collect extinction only by the 
fuel in its liquid phase, yet not from the respective vapor. Normalized by 
incident light intensity (and other optical parameters), the side-view 
extinction imaging can become quantitative for projected liquid vol-
ume (PLV) as explained in the next section. Further details of the spray 
vessel and optical setup can be found in [36]. 

2.3. Image processing method 

2.3.1. Projected liquid volume (PLV) measurement 
Extinction imaging is recommended by the ECN community for spray 

characterization because it can provide more quantitative information 
for liquid fuel concentration than conventional Mie-scattering imaging 
associated with lighting and scattering uncertainties [37]. Using the 
measured optical thickness, droplet size, and extinction coefficient, the 
projected liquid volume (PLV) along a line of sight can be derived for 
direct comparison with CFD results. The optical thickness in a spray 
region can be calculated based on Beer-Lambert law as follows: 

τ = − ln(I/Io) (2) 

where I is transmitted attenuated light intensity due to interaction 
with the liquid spray, and Io is incident light intensity without any 
extinction [38]. This level of transmission intensity is reasonable for 
detection of the spray outline above the noise floor of the camera, but 
the vapor-phase beam steering needs to be considered and accounted for 
using engineered diffusers [35]. The measured optical thickness τ is 
correlated to the PLV, which is the integral of liquid volume fraction 
(LVF) along the cross-stream direction y, as follows: 

PLV = τ πd3/6
Cext

=

∫ y∞

− y∞

(LVF)∙dy (3) 

Mie scattering and extinction theories were applied in eq-3, along 
with assumptions that droplet diameter d and extinction coefficient Cext 

(which depends upon d) do not vary along the line of sight [37,38]. The 
PLV indicates how much liquid volume in a certain projected area, so it 
has a unit of mm3(liquid)/mm2. The PLV can easily be calculated from 
CFD simulations for direct comparison to experimental results. 

Table 1 
Fuel properties [34].  

Parameters ic8 di-isobutylene olefinic e30 e00 alkylate cycloalkane ic8ib2 EEE gasoline 

Density @15 ◦C [kg/m3] 698.7 736.2 722.9 752.7 674.2 686.8 755.5 719.4 744 
Viscosity (ν) @40 ◦C [mm2/s] 0.574 0.541 0.477 0.695 0.493 0.580 0.430 0.859 0.429 
Vapor pressure @90 ◦C [kPa] 70.9 74.2 170.6 286.8 246 128.7 237.6 64.28 287 
Heat of vaporization [kJ/kg] 271 295 337 565 339 309 393 333 349 
Distillation parameter [a.u.] 0 0.171 0.626 0.883 0.848 0.398 0.792 0.079 0.848  

Fig. 2. (a) Distillation curves of tested fuels and (b) example of distillation- 
parameter calculation [34]. 
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However, the experimentalists must evaluate parameters such as d and 
Cext to estimate PLV. In particular, Cext is a function of droplet size, 
wavelength of light, and collection angle of the receiving optics. 
Fortunately, droplet diameter measurements have been performed using 
Spray G injector by General Motors and Shanghai Jiao Tong University 
by phase-doppler interferometry (PDI) [39]. The measurements show a 
Sauter mean diameter (SMD) near 7 μm with fair uniformity across the 
plume during injection, and the Cext was calculated as 72.70− 6 mm2 with 
a droplet diameter of 7 μm using MiePlot available at [40]. Fig. 3 shows 
an example of PLV at 0.45 ms after the onset of injection using ic8 fuel. 
The raw value of PLV is presented in Fig. 3(a). Overall the PLV profile 

looks smooth; however, as it goes into a liquid dense region due to the 
uncertainty in the measurement, the jagged-edge noises appear in the 
PLV map, as seen in Fig. 3(b). Thus, data binning (averaging over cor-
responding binning size) using [5,5] size was utilized to remove the 
noise and provide with reduced noise dataset for machine-learning al-
gorithm. The PLV map after data binning is presented in Fig. 3(c). As 
revealed by the PLV distribution at z = 19 mm indicated in Fig. 3(d), 
data binning did not affect the peak value of the PLV but smoothed the 
profile as shown in subplots from Fig. 3(e) to (g). 

Fig. 4 depicts the image-processing techniques applied to quantify 
the spray liquid content and assess its macroscopic features. Starting 

Fig. 3. Preprocessing of PLV map data for machine learning algorithm (a) raw PLV, (b) magnified view of raw PLV indicated white box in (a), (c) magnified view of 
PLV filtered by [5,5] data binning method, (d) PLV profile at z = 19 mm (blue raw data, orange binned data), comparisons of PLVF at (e) first peak, (f) second peak, 
and (g) third peak of the graph shown in (d). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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from the brightness of an image under evaluation (Fig. 4(a)), ensemble- 
averaged by 300 injections was normalized using a background image 
absent of spray (Fig. 4(b)). Subsequently, the PLV map (Fig. 4(c)) was 
calculated using Eq. (3). A single threshold for PLV was chosen to 
indicate the extent of liquid penetration and width. The ECN community 
recommends thresholds of 0.2⋅10− 3 or 2⋅10− 3 mm3(liquid)/mm2 [31]. 
In this study, the lower threshold value of 0.2⋅10− 3 mm3(liquid)/mm2 

was used to binarize PLV maps to get a filled binarized image as in Fig. 4 
(d). In the binarized image, liquid penetration length was measured at 
the farthest axial distance from the nozzle at the primary viewing angle 
(0◦ rotation angle), and the spray liquid width was measured at z = 15 
mm based on the coordinate system of Fig. 1. In this image set, Fig. 4(c) 
was used as input data for the machine-learning algorithm. 

2.3.2. 3D computed tomography 
PLV data were taken at three different viewing angles to construct a 

3D spray by a CT algorithm known as inverse Radon transform. Fig. 5 
indicates extinction images at three different views and corresponding 
PLV images. The reconstruction was carried out by using a built-in 
‘iradon’ function in MATLAB. The reconstruction routine was applied 
from the nozzle tip to z = 60 mm. Initially, a line of PLV data at a specific 
location was extracted and placed in a map shown at the bottom of the 
figure. Since the PLV data were available at three viewing angles, i.e. the 
data within 0◦, 11.25◦, and 22.5◦. The rest of the instances required to 
produce a 180◦ rotation matrix were derived through interpolation and 
mirroring as discussed in detail in [38]. Then the pattern was copied for 
the angled greater than 22.5◦ based on the symmetric assumption. 
Finally, after a projection map from 0◦ to 180◦ is generated, the CT al-
gorithm was applied to build spray pattern at a certain location. More 
details of the 3D reconstruction routine can be found in [38], including 
confirmation of the process using synthetic model data for liquid volume 
fraction. It is noted that this is a separate procedure from the machine- 
learning algorithm. The CT routine was applied after the machine- 
learning algorithm predicted 2D PLV map. 

2.4. Test conditions 

A series of spray imaging was carried out under ECN Spray G2 (flash- 
boiling), G3 (early injection), and G3HT (G3 with elevated temperature 
conditions) conditions employing the nine different fuels mentioned 
above. The duration of electronic injection command and injection 
pressure were fixed at 680 μs (780 μs actual hydraulic duration) and 200 
bar, respectively, as per ECN Spray G standard. The imaging was con-
ducted at three different viewing angles by rotating the injector from 
0◦ to 22.5◦. The details of the experimental conditions are summarized 
in Table 2. 

2.5. Machine-learning methodology and computational setup 

An inference algorithm is a process using data analysis to infer un-
derlying properties of data, for example, by testing hypotheses and 
deriving estimates. A machine-learning algorithm takes many pieces of 
data, each pre-labeled with a decision, and outputs a mapping from data 
space to decision space. Together with recent advances in multi- 
processor computing, machine-learning offers novel breakthroughs in 
a wide variety of disciplines. Many researchers apply machine-learning 
algorithms to regression analysis: given a set of vectors, what (low 
dimensional) subspace comes closest to containing them? In this study, a 
pixel regression model is considered to predict an image-based fuel 
spray profile. 

2.5.1. Pixel regression model 
In the framework of the pixel regression model, instead of simulating 

the fuel spray from a physical equation-based model, the PLV value Ii,j at 
a pixel position at (i, j) is predicted pixel-by-pixel from a pre-trained 
regression model with a given set 

{
xl}

1≤l≤L of fuel, injection, and 
ambient properties: 

Ii,j = fi,j(x1, x2,⋯, xL) (4) 

Fig. 4. Image processing procedure (a) a raw image from a single injection, (b) ensemble averaged image from 300 injections, (c) PLV map, (d) binarized image with 
PLV threshold of 0.2⋅10-3 mm3(liquid)/mm2, and (e) spray boundary for liquid penetration and liquid width measurements. 
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where fi,j is a trained regression model for each pixel at (i, j). For 
training, we utilized K-number of L-featured vectors xk =
(
x1

k , x2
k ,⋯, xL

k

)
, (1 ≤ k ≤ K) with each observed PLV ̂I

k
i,j via experiments. 

A simple linear regression model without bias is considered from the 
assumption that PLV value vanishes when every input feature is zero 
(xk

l = 0,∀l). Moreover, since we focused on PLV value itself instead of 
building a classifier, our model was trained without any activation 
functions; however, it would be a meaningful investigation to introduce 
nonlinearity into the model through an activation function. The diagram 
of our simple pixel linear regression model is depicted in Fig. 6, and the 
formula is as follows: 

Ik
i,j =

∑L

l=1
wl

i,jx
l
k (5)  

where wi,j =
(

w1
i,j,w2

i,j,⋯,wL
i,j

)
is a regression weight vector for each 

pixel at (i, j). Moreover, our loss function for training is the most 
commonly used mean squared error (MSE): 

MSEi,j =
1
K
∑K

k=1

(

Ik
i,j − Î

k
i,j

)2

(6)  

where ̂I
k
I,j is an observed PLV from experimental results. Finally, for each 

pixel at (i, j), the regression weight vector wi,j minimizing MSEi,j is 
iteratively updated through an optimizer such as gradient descent al-
gorithm. 

However, it is not always necessary to run an iterative optimization 
algorithm to obtain regression weights. We can solve a specific algebraic 
equation, the normal equation, to obtain the optimized regression 
weight vector wi,j directly: let X be the matrix X = [x1, x2,⋯, xK]

T and ̂yi,j 

be a vector ŷi,j = [̂I
1
i,j, Î

2
i,j,⋯, Î

K
i,j]

T 
for each pixel. Then, for each pixel, we 

can obtain regression weights by 

wi,j =
(
XTX

)− 1XT ŷi,j (7) 

This can be regarded as a one-step learning algorithm, as opposed to 

Fig. 5. (a) Raw extinction image at the top, (b) converted ensemble averaged PLV map in the middle, and (c) line data at certain axial location with linearly weighted 
interpolated map at the bottom [36]. 

Table 2 
Experimental conditions.  

Item G2 G3 G3HT 

Injector viewing angle 3 views (0◦ , 11.25◦, 22.5◦) 
Repetition number 300 
Fuel ic8, di-isobutylene, olefinic, e30, e00, 

cycloalkane, alkylate, ic8ib2, EEE 
gasoline 

Injection pressure [bar] 200 
Fuel temperature [◦C] 90 
Injection duration (hydraulic duration) [µs] 680 (780) [32] 
Ambient pressure [bar] 0.5 1.0 1.18 
Ambient temperature [◦C] 60 60 120 
Ambient density [kg/m3] 0.5 1.01 1.01  
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iterative machine-learning algorithms. The normal equation is relatively 
faster than iterative algorithms due to its one-step calculation, but it can 
be computationally expensive when it deals with a large number of 
features (large L) since we need to take the L × L inverse of XTX. 
Moreover, the matrix XTX can be singular (non-invertible) if some 
feature vectors of X are linearly independent. 

2.5.2. Time-resolved image regression model 
For one M × N spray image, utilizing the matrix X = [x1, x2,⋯, xK]

T 

of input feature vectors and each vector ŷi,j = [̂I
1
i,j, Î

2
i,j,⋯, Î

K
i,j]

T
of the 

corresponding PLV values, we trained the regression weight tensor W =
[
wi,j

]

1 ≤ i ≤ M
1 ≤ j ≤ N 

of an image. In particular, the training process was 

accelerated by applying a parallel node computation. More precisely, we 
generated p-threads for p-number of pixel calculations (specifically row 
direction) in an image and spread them to a multi-processor pool at the 
same time so that p-number of pixel weight vectors are trained simul-
taneously in a parallel iteration. Here, an appropriate number p was 
determined from the number of available threads in the computing 
processor. The training schematic of an image is demonstrated in Fig. 7. 

Independently repeating this procedure for each time-step, we trained a 
time series regression model for the prediction of spray dynamics. Thus, 
once the training is completed and the trained model is obtained, unlike 
CFD simulations, we can directly predict the spray image at any desired 
time-step without an accumulating time-stepping simulation. 

2.6. Computational setup 

Computations were carried out on a workstation computer with an 
AMD Ryzen Threadripper 3990X 64-Core 128-Thread 2.90 GHz pro-
cessor, GeForce RTX 2080 SUPER (NVIDIA TU104; 8 GB RAM), and 128 
GB DDR4 RAM. Pre-processing of spray images and their denoising 
processes were carried out in MATLAB, while the machine-learning 
processes were implemented using Python. To accelerate the calcula-
tions, we utilized PyTorch (stable 1.7.0), which is one of the widely used 
open-source machine-learning libraries that enables the training pro-
cesses to cooperate with effective GPU array operation, and we paral-
lelized whole pixel iterations in an image with a multiprocessing library. 
Concerning data structures, measured PLV values via experiments were 
assigned into pixel values of images, and selected L = 9 features 
(mentioned in section 2.1) were utilized as training inputs. Also, we 

Fig. 6. Diagram of pixel linear regression model (MSE: mean squared error).  

Fig. 7. Schematic of the algorithm training procedure to derive a predicted image of the spray topology.  
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prepared K = 21 PLV at each time-step for the training. These feature 
data were not standardized since our regression model is a simple linear 
model without any interaction terms (eg. x1x2) or power terms (eg. xn). 
Furthermore, it was revealed from a comparison between standardized 
and non-standardized data that non-standardization showed a much 
better accuracy for our model. In order to avoid unnecessary calcula-
tions of in pixels of zero PLV values, every image was cropped to the size 
of M × N = 301 × 301 to cover entire spray regions with the smallest 
possible margins from zero-pixel regions. The training datasets had 
identical nozzle tip coordinates to prevent errors by the translational 
shifts. For the machine-learning process, stochastic gradient descent 
(SGD) optimizer as well as two adaptive optimizers namely Adam and 
DiffGrad, were considered for training, and we benchmarked the pre-
diction performances of the three optimizers and the normal equation, 
which is discussed in Section 3.1. The details of computation, opti-
mizers, and model hyperparameters are summarized in Table 3. 

3. Results and discussion 

3.1. Validation of regression model 

As aforementioned in Section 2.6, the regression model was trained 
by 21 different spray data consisting of 9-features and its PLV for each 
pixel. In order to validate the model, we depicted one of the spray im-
ages in the train set (ic8ib2 under G2, aSOI: 0.45ms) and its spatial heat 
map of the coefficient of determination (R2 score) with contour lines in 
Fig. 8, as an example, when we employed SGD as our optimizer for the 
heat map. The coefficient of determination was defined as the propor-
tion of the variance in the dependent variable (Ik

i,j) that was predictable 
from the independent variable (xk) and it lies in the range of [ − ∞,1] (in 
the figure, we cut the values at − 1 i.e. R2

i,j = − 1 if R2
i,j < − 1): 

R2
i,j = 1 −

∑K
k=1

(

Ik
i,j − Î

k
i,j

)2

∑K
k=1

(

Ik
i,j − Ik

i,j

)2 (8) 

where Î
k
i,j is an observed pixel PLV via experiments and Ii,j =

1
K

∑K
k=1 Î

k
i,j, the mean of the desired PLV values. R2 score is often used to 

evaluate the relative variability of a regression model, if R2
i,j value is 

close to 1, then the two variables (Ik
i,j and xk) are perfectly correlated and 

a low R2
i,j value would show a low level of correlation, meaning that a 

regression model is not valid. It can be seen from Fig. 8 that the region 
where R2 scores are above 0.5 contains the actual spray region, and the 
low scores, less than zero, are shown away from the periphery of the 

actual spray region. These low scores may stem from the vanishing PLV 
values of the region. Since we are mainly interested in properly repli-
cating the PLV values in the actual spray region, the low scores on the 
outer region can be ignored. Therefore, our model is still applicable to 
predict the spray profiles. It should be noted that more data and elab-
orated models are still necessary to enhance predictions and completely 
express the entire pixels. 

Running losses (MES) versus epochs (iteration number) at pixel (60,
100) (marked in Fig. 8(a)) for Adam, DiffGrad, and SGD optimizers are 
presented in Fig. 9., with each terminating-loss value being reported in 
the legend. Note that the normal equation is not included here because it 
does not require training. From the terminating loss values, it seems that 
the adaptive optimizers are more effective than the SGD optimizer. 
However, unlike SGD in Fig. 9(b), both Adam and DiffGrad showed 
continuous spikes in their running losses plots in Fig. 9(a), which were 
an unavoidable consequence of the intended tactics for the adaptive 
optimizers to avoid the local minima. Although these spikes are soon 
damped out to stable value (see the magnified view at the right corner in 
Fig. 9(a)), it might be harmful once training is terminated at these 
spikes, details are as follows. To investigate the performance of each 
optimizer, in Fig. 10, we depicted the true cross-sectional line (z = 28 
mm; 151 column of image) of (ib20-G2) spray profiles from the exper-
iment, the corresponding predicted results by the normal equation (NE), 
and the models trained with the different optimizers i.e., Adam, Diff-
Grad, and SGD. First, the NE results show a complete failure to predict 
the trend of the true values even though the algorithm is computation-
ally much more efficient than the other optimizers (about 7.5 times 
faster). The reason for the inaccuracy of the normal equation is that the 
performance of our utilizing linear system solver might be suffered by 
the singularity of the matrix XTX, which arises from linear dependencies 
between features. For the two adaptive optimizers, spike noises appear 
in their cross-sectional lines due to the premature termination at the 
unstable spike moment, as seen in Fig. 10(a). On the other hand, SGD has 
produced a smooth cross-sectional line without any noise. Applying the 
median filter to the noisy lines as postprocessing, we can obtain smooth 
lines in Fig. 10(b). As one can see from the figure, the adaptive opti-
mizers show more accurate predictions in the center region 
( − 10mm < y < 10mm) than SGD optimizer, while SGD optimizer re-
veals a more accurate prediction in the outer regions 
(y < − 10mmandy > 10mm) than the adaptive optimizers. The possible 
reason for discrepancies depending on spray region is that this model is 
using global thermodynamic parameter for instance uniform ambient 
temperature and pressure not spatial values according to spray region. 

From the observations in Figs. 9 and 10, we can conclude that SGD 
optimizer does not introduce unstable spikes into the prediction and can 
achieve better accuracy in the outer regions than the adaptive opti-
mizers. Again, in this work, our main concern is the overall outer edge 
shape of spray. Moreover, noises in the spray profile and its filtered 
result can mislead our quantitative analysis. For these reasons, we 
employed SGD optimizer for our training and analysis of the results with 
50,000 training epochs since it converges well enough at the epochs, as 
shown in Fig. 9. 

3.2. Liquid penetration and width 

The liquid penetration length and liquid width can provide an overall 
insight into the spray morphology, so the line-of-sight data analysis was 
first carried out based on the PLV threshold of 0.2⋅10− 3 mm3(liquid)/ 
mm2. It has to be reminded that the liquid penetration length and liquid 
width were measured from an ensemble averaged image of 300 in-
jections. The experimental data are presented in Fig. 11. It is noted that 
the spray results using ic8ib2 and EEE fuels were not included in the 
training data set but utilized only for comparison against the predictions 
of the machine-learning algorithm. True values from experiments are 
indicated with solid lines, while the predictions by the machine-learning 

Table 3 
Simulation details.  

Specification Description 

# of CPU threads 128 
Parallel pool size(p) 301 
Image size(M× N) 301× 301  
Input data(K) 21spray images  
Input features(L) 9 features; Density [kg/m3], Viscosity [mm2/s], Ambient T 

[K], 
Ambient density [kg/m3], Ambient pressure [kPa], Vapor 
pressure [kPa], 
Pressure ratio [Pa/Pv], Heat of vaporization [kJ/kg], 
Distillation [n.a]  

Training epoch 50,000 
Optimizers Learning rate β  Tolerance Momentum 
SGD 10− 7  n.a n.a 0 

Adam 0.15 (0.9,0.999) 10− 8  n.a 

DiffGrad 0.15 (0.9,0.999) 10− 8  n.a  
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are indicated with symbols. Under flash-boiling G2 condition presented 
in Fig. 11(a), the ratio of ambient pressure to vapor pressure (Pa/Pv) 
dominates spray process, unlike sprays under high pressure ambient 
where nondimensional parameters such as Reynolds number Re and We 
typically determine spray characteristics [41,42]. Comparing liquid 
width at z = 15 mm, both fuels showed a faster rate of decrease than G3 
and G3HT conditions. This implies that a certain level of plume 
collapsing occurs for flash-boiling conditions. Especially for EEE fuel has 
a very low ambient to vapor pressure ratios (Pa/Pv) equal to 0.17, 0.34, 
0.41 for G2, G3, G3HT, respectively, spray collapse even under the 
relatively high-pressure G3HT condition can be detected. The lower 
ambient density and plume collapse into a single structure under G2 
condition augmented the spray momentum at its leading edge so that the 
liquid penetration length increases compared to the G3 and G3HT 
conditions, despite the enhancement in vaporization for flash-boiling 
sprays. G3 and G3HT exhibited indistinguishable liquid penetration 
length because of identical ambient density, however, enhanced evap-
oration due to the higher ambient temperature under the G3HT condi-
tion resulted in the smallest liquid-outline width for the examined 
ambient conditions. The liquid width of ic8ib2 for the G3 condition did 
not show the drastic decrease as under G2 condition, since flash-boiling 
did not take place as suggested by the the pressure ratios (Pa/Pv) of 1.55 
and 1.83 for G3 and G3HT conditions, respectively. Details of plume 
direction derived from tomographic reconstruction will be discussed in 
the following section. 

With regard to the predictive capability of the machine-learning 

algorithm, good overall agreement with experimental results was 
accomplished especially referring to the liquid penetration length for the 
EEE fuel. It is challenging to predict the spray topology under flare flash- 
boiling conditions even by CFD simulations [43,44], nevertheless, the 
machine-learning approach showed similar values of liquid penetration 
length and liquid width, consistent with the experimental results. The 
liquid width under the G2 condition and the decrease in liquid width due 
to spray collapse can also be captured by the machine-learning algo-
rithm. For the EEE fuel, the maximum discrepancies between the 
machine-learning predictions and the experimental data regarding the 
liquid penetration length and liquid width during the injection period 
were 1.3 mm (2.32% error) and 2.4 mm (7.86%), respectively. The 
prediction of liquid penetration length of flash-boiling spray is very 

Fig. 8. (a) PLV map from experiment (ic8-G2), (b) predicted PLV map by machine learning algorithm (ic8-G2), and (c) its heat map with contour lines for the 
coefficient of determination (R2 score) at 0.45 ms after fuel injection. 

Fig. 9. (a) Running losses versus Epoch (iteration number) at the pixel position 
(60, 100) for each optimizer: Adam, Diffgrad, and SGD and (b) the magnified 
view of the losses for SGD; each terminating loss value is reported in legend. 
The small window at the right corner in (a) shows the magnified view of the 
losses at Epochs close to the termination. 

Fig. 10. (a) Cross-sectional line (z = 28 mm; 151 column of image) of (ib20- 
G3) spray profiles obtained experiment and its predicted results by the models 
trained with different optimizers: normal equation (NE), Adam, DiffGrad, and 
SGD and (b) their filtered lines smoothened with a median filter. 
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crucial for engine design since the extent of liquid fuel impingement on 
the surface of the combustion chamber. On the other hand, for the ic8ib2 
case, the machine-learning algorithm tends to have slightly higher 
values than the experimental results. The largest discrepancy occurred 
in the prediction of liquid width under G2 condition where the model 
predicted a slightly thicker spray plume on the upper part, as shown in 
the PLV distributions of Fig. 10. However, the algorithm predictions for 
G3 and G3HT conditions were satisfactory. The maximum differences in 
liquid penetration length and liquid width during the injection period 
were 3.6 mm (7.3% error) and 4.2 mm (13.3% error), respectively. 

3.3. 3D spray prediction 

The prediction of spray morphology using the machine-learning al-
gorithm at different viewing angles was also carried out to reconstruct 
the 3D spray distribution. The LVF distribution in 3D spray according to 
time under G2 condition is shown in Fig. 12. It is noted that this is 
quantitative LVF data that can be utilized for CFD validation. The overall 
behavior of spray dynamics is well presented by the prediction result 
using the machine-learning algorithm. The ic8ib2 fuel showed slight 
plume collapse as suggested by the wide-open leading edge and curved 
shape but still maintaining eight separate plumes. The complete plume 
collapsing with EEE fuel also can be captured by the machine-learning 
algorithm. In terms of evaporation time, as the algorithm predicted a 
lower level of projected liquid volume, the overall level of liquid volume 
fraction is smaller, especially near the injector compared to the experi-
mental results. The predicted 3D spray for ic8ib2 (at 0.88 aSOI) showed 
faster evaporation than the experiment. 

To compare the detailed spray boundary at a certain plane, the 3D 
spray under G2 condition was cut along a yz plane with a LVF threshold 
of 1⋅10− 4 as shown in Fig. 13. The nozzle drill angle is presented with 
grey dotted lines presenting 37◦ from the injector center axis. The spray 
boundaries obtained from the experiment and the machine-learning 
algorithm are indicated with solid and dotted lines, respectively. The 
spray boundary for ic8ib2 shows that it penetrates with a slightly 
smaller angle than the nozzle drill angle as it is under a mild flash- 
boiling regime. The decreasing liquid width in time is then confirmed 
in this cut plane data. Moreover, the consistent trend in liquid pene-
tration length and liquid width also can be found in this plane image. 
The ic8ib2 showed longer penetration and wider liquid width than EEE 
fuel during the fuel injection. A previous comparative study for various 

single- and multi-component fuels conducted in the same spray chamber 
had shown that strongly-collapsing sprays of multi-component fuels had 
increased momentum after the end of injection, leading to increased 
penetration [36]. The results for the EEE fuel in Fig. 13 also reveal 
vigorous spray collapsing from the beginning of the injection with a 
complete collapse of individual plumes. The strong plume-to-plume 
interaction finally left a significant amount of liquid phase fuel in the 
core region. The machine-learning algorithm demonstrated its capa-
bility to predict spray collapse for the EEE fuel under a flash-boiling 
condition. 

The comparison of LVF predictions and experimental measurements 
at an xy plane 30 mm downstream of the injector tip is shown in Fig. 14. 
A contour plot of LVF prediction is presented in Fig. 14 (a), and the 
averaged LVF through the centerline of the plumes, in Fig. 14 (b). 
Discrete plumes can be seen for the ic8ib2 case, yet the plumes have 
converged towards the injector axis for the EEE fuel . As the machine- 
learning algorithm tends to retain original plumes, it exhibited star- 
shaped morphology in the bottom view, however, the collapsing of 
the plumes is well presented. The quantitative comparison by averaged 
LVF (Fig. 14 (b)) showed a lower peak with the machine-learning al-
gorithm equipped with SGD optimizer, however, the prediction of plume 
dynamics was consistent regardless of fuel type. Overall, the machine- 
learning algorithm showed better agreement in the level of LVF and 
distribution for ic8ib2 than the EEE fuel. The possible reason for inac-
curate prediction for flare flash-boiling is that the critical features may 
not have been fed into the machine-learning algorithm. In this study the 
features are limited in nine different parameters, however, one can 
expand them by applying vapor pressures at various temperatures, 
plume cone angle, and different method for distillation parameter. 

As shown in the yz and xy cut plane information(Figs. 13 and 14) , 
the spray plume does not penetrate along the nozzle drill angle but at a 
smaller angle. Understanding of the fuel direction is essential to assess 
air–fuel mixing in an engine cylinder. Thus, the plume direction angle 
was derived from 3D spray results and defined as an angle between the 
axis corresponding to the plume center and injector axis. The plume 
center was selected at the 99% peak LVF position to eliminate bias 
induced by the skewed shape of plumes. As shown in Fig. 15, the plume 
direction angle of ic8ib2 maintained a constant value of about 35◦ for 
the G3 and G3HT conditions where flash-boiling was not an influencing 
factor, while plume direction exhibited slightly lower yet also relatively 
stable values for the G2 condition. On the other hand, the plume 

Fig. 11. Comparison of liquid penetration length and liquid width (@z = 15 mm) between experimental results and machine learning predictions under (a) G2, (b) 
G3, and (c) G3HT conditions. 
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Fig. 12. Three-dimensional LVF distribution by experiment and machine learning prediction under G2 condition.  

Fig. 13. Boundary of liquid spray at a yz plane enabled by 3D CT. The boundary was determined by an LVF threshold of 1⋅10− 4 under G2 condition.  
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direction angle of the EEE fuel continuously decreased continuously 
during the injection event regardless of the ambient condition since a 
certain level of plume-to-plume interaction took place even under G3 
and G3HT conditions. The plume direction angle from the machine- 
learning algorithm showed the best match under G3 and G3HT condi-
tions with ic8ib2 fuel. The prediction for the flash-boiling condition and 
EEE fuel showed a slight discrepancy compared to the experimental 

data, but still the difference was small up to 2◦. This result implies that 
the machine-learning algorithm can effectively predict quantitative LVF 
and overall spray dynamics under different ambient and fuel conditions. 

4. Conclusion 

In this study, a machine-learning algorithm was implemented to 
predict gasoline sprays under engine-like conditions. The non- 
deterministic numerical predictions were compared to high-speed 
extinction imaging performed in a constant-flow vessel under ECN 
defined G2, G3, G3HT conditions. Nine different fuels were injected 
using an ECN Spray G 8-hole injector. The machine-learning algorithm 
was capable of predicting not only line-of-sight measurement data but 
also 3D liquid volume fraction by computed tomographic reconstruc-
tion. Quantitative LVF and plume direction angle data of ic8ib2 and EEE 
fuels (not included in the training data set) were obtained by machine- 
learning prediction. The major findings from this study can be summa-
rized as follows.  

1) The introduced machine-learning technique is a simple regression 
model without a bias term that does not pose significant complexities 
regarding its implementation. Despite its simplicity, reliable results 
could be achieved. These model characteristics will enable future 
researchers to easily modify and enhance the model to accomplish 
better efficiency and accuracy in spray prediction. Here, we leave 
some suggestions for enhancement of the algorithm predictive 
capability: application of other regression models such as polynomial 
and logistic regression; application of neural network (NN), espe-
cially convolutional NN (CNN); a collaboration between the model- 
based and data-driven algorithm such as physics informed deep 
learning (PINN).  

2) The strength of the developed regression model is its natural neural 
network configuration. Although we trained our regression model 
per each pixel and per time-step independently without considering 
any spatio-temporal neural networks, the predicted spray profiles 
and their time sequences naturally show a continuous spatio- 
temporal spray dynamics evolution with high accuracy (as verified 
by predicted images and their temporal changes). This constitutes 
proof of the interconnection between the underlying spray dynamics 
and fuel, injection, and ambient properties, and eventually implies 
that our pixel-independent model can well-preserve the fundamental 
dynamics underneath training data, thus realizing a virtual spatio- 
temporal neural network.  

3) The machine-learning algorithm developed in this study predicts the 
spray patterns in an independent time-stepping manner. This in-
dicates that this algorithm can be used to reduce a significant amount 
of computational time and cost compared to CFD simulations that 
needs sequentially accumulated data to predict spray evolution in 
the subsequent time step. 

Fig. 14. (a) Liquid volume fraction contour plots, and (b) averaged liquid 
volume fraction distribution across the centerline (white dotted lines in (a)) at 
z = 30 mm (xy plane) under G2 condition. 

Fig. 15. Comparison of plume direction angle from experiment and machine learning algorithm under G2 condition. The plume direction angle was defined by an 
angle between the nozzle orifice axis and the center of plume width placed at 99% of the peak liquid volume fraction at z = 30 mm downstream the injector tip. 
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4) Predicted macroscopic spray characteristics, including liquid pene-
tration length and width, showed good agreement with experimental 
data, while the machine-learning based 3D computed tomography of 
the spray topology was demonstrated to be capable of predicting 
distinct features such as plume collapse and direction angle varia-
tion. The machine-learning data showed a slightly lower peak of LVF, 
however, the plume dynamics showed consistent trends with the 
experimental results. 
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