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Abstract: The expanding role of renewable energy sources in the electricity market share implies the
increasing role of hydropower and the exploitation of unharnessed hydraulic potential, in the scope
of sustainability and net zero emissions. Hydro-turbine design practices are expected to expand
beyond achieving high efficiency goals, to multi-objective criteria ranging from efficient reversible
operation to fish-friendly concepts. The present review paper outlines fundamental characteristics
of hydropower, summarizing its potential impact toward aquatic life. Estimates of lethality for
each damage mechanism are discussed, such as barotrauma, blunt impact and shearing, along with
relevant advances in experimental techniques. Furthermore, numerical techniques are discussed,
ranging from simple particle tracking to fully coupled six-degree-of-freedom tracking, which can be
used to investigate candidate designs and their fish-friendly performance, presenting their advantages
and disadvantages. Subsequently, a link to the individual damage mechanisms is established, to
proposed holistic performance metrics, useful for providing estimates of fish-friendliness of a given
hydropower installation. Finally, recent developments and design practices for fish-friendly turbine
concepts are presented.

Keywords: fish-friendly hydropower; hydropower statistics; fish injury assessment; experimental
methods; numerical methods; turbine design considerations

1. Introduction

Hydropower is perhaps the oldest form of renewable energy resource, and it plays
a paramount role in energy production worldwide. Indicatively, Figure 1 shows the
contribution of hydropower, compared to other resources globally; in terms of global
energy consumption (that is, including transportation), hydropower contributes 7% of the
total, whereas in terms of electricity production, hydropower contributes almost 15% of the
total (see also [1]). It is also notable that the contribution is effectively comparable to all the
other renewable energy resources combined; indicatively, it has an estimated contribution
of almost 60% compared to other renewable energies based on 2021 data [2].

The role of hydropower has been constantly increasing over the years. Indicatively,
as shown in Figure 2, the recent trend both in terms of installed capacity and produced
energy per year shows an annual growth of 1.8% and 2.3%, on average for the last 2–3 years,
respectively. Despite the minor drop in annual growth of installed capacity for the year
2019 and, given the goal for a Net Zero Emissions by 2050, hydropower is expected to
maintain an average annual generation growth rate of about 3% in 2022–2030 [3]. The
growing role of hydropower is justified for two main reasons:
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(A) It can greatly contribute as an energy storage solution, in the form of pumped
hydropower (also abbreviated as PHP), along with batteries, allowing for the increased
penetration of other renewable sources [4], such as wind and solar energies. Pumped
hydropower not only generates electricity and serves as daily or weekly balancing, but also
provides additional services to the grid, such as system inertia, frequency response and
grid regulation. Indicatively, as of 2020 statistical data [5], pumped hydropower contributes
more than 90% in installed capacity. Estimates indicate that the installed capacity of
reversible hydro/pumped storage will increase by 42% until 2026 [6].

(B) There is a considerable quantity of unharnessed hydropower potential, with
rough estimates indicating that about 25% of the technically achievable and 50% of the
economically feasible potential (for the current technologies) is presently being utilized,
see [7–9]. Indicatively, an appreciable hydraulic potential can also be found in existing
infrastructure that currently lacks generating units (e.g., existing barrages, weirs, dams,
canal fall structures, water supply schemes) by adding new hydropower facilities.

Despite the renewable nature of hydropower, it unavoidably has an impact on the
local ecosystems and aquatic life. In particular, the following aspects have been identified
and recognized [10]:

- The direct destruction of fauna and flora habitats, by changing the use of land and by
submerging large areas, to achieve the formation of a reservoir;

- Indirect disturbance to local life, due to building infrastructure (e.g., roads, electrical
grid, etc.) and gaining access to previously inaccessible areas. This can also involve
induced disturbance due to population living in the reservoir area being resettled to
formerly natural areas;

- Disruption of the natural flow of a water stream, by forming a reservoir. Inherently,
the construction of any sort of dam implies a partial or total impedance of free migra-
tion of aquatic species, the blocking of sediments that would replenish downstream
ecosystems and the change in the downstream flow patterns of the river.

The first two points mainly affect terrestrial vegetation and fauna, while the third
point refers to impacts on hydrobiology (fish and other aquatic life). Whereas there are
methodologies for assessing the impact both on terrestrial vegetation, as well as fauna,
and taking proper mitigation measures, see indicatively [10], fish fauna is considered to
be particularly susceptible to the disruption caused by hydropower facilities [11,12]. In
particular, the presence of the dam and the introduction of the hydraulic turbine, necessary
to extract energy from the water stream, inherently alter the natural course of a river stream
and affect the active (migration) and passive (drift) movements of aquatic organisms’
travelling routes. In the last decade, severe declines in the freshwater populations has been
observed and a major contribution to this decline is believed to be due to river ecosystem
fragmentation [13,14]. Undoubtedly, the fish fauna of a river is, in every case, affected
in a major way by a hydropower project; hence, it has to be one major focal point of
design considerations.

Over time, measures for enabling fish passage through a hydropower project have
been developed in the form of fish passages, a term generally used to refer to any structure
built to facilitate the travel of fish through a water stream. These can be classified as:

(A) Passive, in the form of:

- Artificial fishways incorporate artificial flow reduction elements such as baffles (also
known as Denil fishways) or steps (e.g., pool-and-weir, vertical-slot fishways or fish-
ladders, see Figure 3a,b, respectively);

- Nature-like fishways contain natural features that increase bottom roughness such
as cobble and boulders (see, e.g., Figure 4a), although they may incorporate some
engineered elements such as anchored concrete blocks or other artificial elements that
may be found in technical fishways.
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(B) Active systems, such as fish locks and fish lifts that use mechanical locking gates
to direct fish and lifting devices such as baskets to physically move them past barriers, see,
e.g., Figure 4b.

Nevertheless, despite these measures which enable fish to pass through the installed in-
frastructure, systematic studies have demonstrated that these are not perfect remedies [15];
in fact, extensive statistical analysis of fish mortality indicates that bypasses pose a de-
creased injury risk relative to controls, whereas turbines and spillways were associated
with the highest injury risks relative to controls [16]. Furthermore, despite the existence
of general guidelines or risk factors for aquatic life (e.g., Kaplan turbines are known to be
safer comparing to Francis turbines [16]), the development of methodologies estimating
damage/mortality [17–19] or the compilation of extensive statistical data on mitigation
measures and fish mortality (see [15,20–25]), there is lack of a widely accepted indicator
or methodology that could characterize reliable fish-friendliness. Such an assessment is
critical in determining the effectiveness of potential remedies to alleviate risks, since fish
passage is highly dependent on details of each particular site and fish species [16].

As underlined at the beginning of this section, it is clear that hydropower will con-
tinue playing an important role in power generation either in the form of production or
energy storage and grid regulation. Moreover, it is expected that, in the future, previously
unharnessed water resources (such as unpowered dams, unexploited low-head streams,
small reservoirs, streams of impaired quality, etc., all the previous also denoted as “hidden
hydro”), will be further exploited (see for example [26–28], or the recent HORIZON-CL5-
2021-D3-03-11 call [29]). Hence, hydropower penetration in the near future is expected to
place more pressure on aquatic life [30,31], rendering fish-friendly design concepts essential
considerations for any prospective hydropower infrastructure (see [32,33]). The aforemen-
tioned observation is the motivation behind the present paper, aiming to condense existing
know-how on fish-friendly hydropower concepts, identify challenges and propose further
fields of study.
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The present paper is structured as follows: Section 2 provides a brief overview of the
structure of a hydropower facility, Section 3 presents potential mechanisms and phenomena
due to hydraulic machinery operation that can adversely affect fish, along with relevant bio-
logical investigations on the topic and Section 4 examines methodologies for predicting fish
injury, derived through experiments or simulations. Then, Section 5 discusses attempts on
deriving fish-friendliness indices and Section 6 investigates fish-friendly turbine concepts.
Finally, Section 7 is the conclusion, discussing challenges and future perspectives.

The methodology for performing the literature review involved a literature search
to six electronic journal databases relevant to engineering, energy and environmental
sciences, as well as the US Department of Energy resources and Google Scholar. The search
was performed using terms such as fish-friendly hydropower, environmentally friendly
turbines, fish barotrauma, turbine blade strike, fish injury mechanism and turbine design
optimization. The literature resources were included if relevant to the scope of each section
of the present paper.

2. Structure of Hydropower Station

For the sake of completeness, a short description of a typical hydropower plant is
depicted in Figure 5 and is discussed to demonstrate its main components and mitigation
measures for aquatic life; it will also assist in the understanding of damage mechanisms,
which will be discussed in Section 3.

Inherently to their method of operation, hydroelectric power plants direct a water
stream through the hydraulic turbine to extract energy [34]. This can be achieved in two
ways: in the form of impoundment hydroelectric power plants or in the form of diversion
hydroelectric power plants.

The first type, shown in Figure 5a, implies the construction of an obstruction, termed
as dam. This obstruction cuts off the normal water path, forming a reservoir and forcing
the main water stream to pass through the turbine. This type of hydropower implies
heavy capital costs due to large civil engineering projects and is commonly associated
with large hydropower facilities (>15 MW [34]). Such facilities also include reversible
hydropower plants in the form of pumped storage systems, if the turbine is designed to
be operated as a pump. Apart from the infrastructure for directing water through the
turbine, common additional components involve regulating systems, such as control gates
to regulate incoming flow, or safety systems, such as spillways in case hydraulic energy
needs to be rejected. Furthermore, to protect aquatic life, it is common to introduce grates
or racks at the intake pipe of the turbine to prevent large objects/fish to enter the turbine,
potentially causing damage; recently, electric [35,36], electromechanical [37] or acoustic [38]
deterrence techniques are also proposed to prevent fish from entering the turbine intake.
Additionally, fishways/fish ladders may be incorporated at a bypass stream.

In the diversion design the main path of the water stream remains unaffected, but
only a small, diverted flow actually passes through the hydraulic turbine and then merges
further downstream with the main river, see Figure 5b. Additional preventive measures,
such as intake grates, may be employed to prevent large fish entering the turbine intake
as well. Naturally, this type of project is more fish-friendly, since the majority of the water
stream remains relatively unaffected; however, a large part of the water stream remains
inherently unexploited. Hence, it is suitable for small hydropower projects (<15 MW [34]).
Furthermore, pumped storage is not an option for this type of project, since there is no
upper reservoir to store water.

In terms of turbine technologies, it is common to categorize hydropower facilities
depending on the available head, commonly indicated with the symbol H. Commonly,
low-head plants use bulb turbines (H < 20 m) or Kaplan (20 m < H < 60 m). Medium-
to-high head plants (40 m < H < 400 m) use Francis turbines (see Figure 5c) and finally
plants of very high head (350 m < H < 1100 m) use Pelton turbines (see Figure 5d). Many
variations or alternatives to the aforementioned turbine types exist, such as Turgo, which
is similar to Pelton, or the Archimedes screw design which can be an alternative to bulb
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turbines for very low heads (1 m < H); some of them will be discussed in Section 7 as more
fish-friendly alternatives.
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A distinct classification of the turbine designs, however, can be made in terms of
reaction and impulse turbines. The distinction lies at the location of the pressure drop,
whether it takes place at the stator (impulse turbine) or the rotor (reaction turbines), as
this affects the operation of the turbine. Impulse turbines, such as Pelton turbines, operate
inherently in a non-immersed environment. Hence, they cannot play the role of a reversible
turbine, unless a dedicated pump is also used [41].

3. Mechanisms of Fish Damage and Mortality during Passage through a Turbine

In order to define criteria for the design of fish-friendly turbines, it is necessary to
identify the mechanisms relevant to fish damage. Such mechanisms have been identified
since the early 2000s, in an effort to improve designs, provide guidelines and develop novel
turbine concepts with minimum effect on passing fish. In particular, several critical damage
mechanisms have been identified [24,42–44], which are presented below, following the flow
direction from the inlet racks toward the draft tube (see also Figure 6).
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3.1. Pressure Changes

As a passing fish moves through the turbine intake, through the turbine, the draft tube
and finally downstream the tailrace, it experiences severe pressure changes. After the racks
and inside the penstock, pressure gradually increases, due to hydrostatic pressure [46]; an
indicative of such variation is shown in Figure 7a; however, depending on the elevation
change, this can be in the order of 1 bar to more than 10 bar. Then, at the vicinity of
the stator blades, and especially the runner, pressure drops rapidly, much faster than the
pressure rise. Gauge pressure can drop even below zero (vacuum), near the suction side of
the blades [47,48], or the spiraling vortex tube, also known as vortex rope in the relevant
literature, emanating from the turbine hub [40,49]; indeed, the latter is well known to
induce strong low-frequency vibrations to the whole turbine, which potentially threaten
the integrity of the whole installation [50–53]. In any case, as the trajectory of a passing fish
reaches the tailrace, pressure recovers gradually to near atmospheric conditions.
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Given the fact that fish are equipped with a gas bladder to adjust buoyancy, it is
expected that pressure changes will greatly affect their capability to float and adjust their
motion. Nevertheless, extensive research with controlled pressurization and depressur-
ization of fish [56–59], both in terms of magnitude and rate, has shown that, in general, a
pressure increase is rather well received; even at high pressurization rates, fish damage
is minimal and no direct mortality was observed [43]. On the other hand, depressuriza-
tion, and especially at a fast rate (indicative values for onset of mortality in the order
of 90 kPa/s [54]), is rather problematic, leading to barotrauma [60,61]. Typical effects of
barotrauma-related injuries include ruptured swim bladder, exopthalmia, internal hemor-
rhaging and gas bubbles (emboli). Extensive studies, using X-rays at fish exposed to rapid
decompressions [60], indicated that the most prevalent theory for fish barotrauma is the
rupturing of the fish gas bladder, which subsequently releases gas inside the bloodstream
causing the aforementioned effects, eventually leading to severe mortality. While factors
such as the pressure history (e.g., acclimation at high pressures) or the structure or existence
of the fish gas bladder (e.g., physostomous fish can expel gas from the bladder naturally;
lampreys lack gas bladder; both cases are expected to be more resilient to decompres-
sion [60]), an extensive compilation of experimental studies indicated that decompression
mortalities can even reach 100% [43].

In cases of local pressure drops at vapor pressure levels, a more severe case of baro-
trauma may occur due to cavitation. Given the highly transient nature of cavitation and
the associated rapid decompression and pressure recovery, formed vaporous pockets tend
to collapse violently; indicatively, cavitation collapse is known to produce very fast micro-
jets [62] that can pierce tissues [63] and even pit metallic surfaces [64] and to emit powerful
shockwaves [65]. Despite the resulting aggressiveness of cavitation collapse, experimen-
tal investigations have shown mixed results [66], with a range of mortalities between
0 and 60% when fish are exposed to cavitating conditions. Nevertheless, there is a limited
number of investigations on fish passage through a turbine in association with cavitation
effects; possibly, this is because turbines are designed or controlled to limit operation in
cavitating conditions [43], as this has severe adverse effects on their operation, longevity
and efficiency.
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3.2. Mechanical Damage

A more direct cause of fish mortalities is the interaction of fish with the rigid, struc-
tural/operational elements of the turbine rotor/stator. This can be classified into three
categories, as: (1) strike, in the case of fish impact on surfaces, (2) grinding, in the case of
fish being trapped in small gaps or clearances and (3) friction and abrasion.

Mechanical injury due to strike is expected to depend on various parameters, such
as the fish size, the turbine passage, blade shape, rotating speed and flow rate. Indeed,
numerous studies ([22,67–69]) have attempted the derivation of correlations for estimating
the effect of the aforementioned factors on fish mortality; however, simplifying assumptions
are commonly being involved, and thus confidence varies greatly [43]. Moreover, such
estimations may be skewed by the exact fish species’ behavior and characteristics. For
example, fish behavior affects the outcome of the impact, since some fish species tend
to move as a rigid body through the turbine, whereas other tend to react and actively
avoid collision [43]. Additionally, aside the influence of fish dimensions, fish weight can
play a role in the impact outcome, since smaller fish have less inertia; hence, they tend to
be dragged by the flow around the blades, instead of colliding with them. Indicatively,
studies indicated that fish with a mass of less than 20 g were unlikely to suffer a blade
collision [70]. Nevertheless, extensive testing with different blade profiles and rotational
velocities has shown that blunt, thick blades rotating at low velocities are the least threaten-
ing to fish [70,71]. Indicatively, collision velocities at ~5 m/s with thick blades were found
to cause little damage and no mortality, whereas impacts on thinner blades at collision
velocities of 6–7 m/s caused severe damage.

Considering grinding, there are very few references or investigations relevant to its
influence. While it is directly related to the existence of gaps and clearances, where passing
fish may get entrained, it is considered to be related more to fish dragged by leakage flows
(e.g., at various control gates), rather than the main flow path. Hence, a general guideline
involves eliminating gaps, as minimizing them at a size of less than 2 mm is expected to
prevent fish injuries due to grinding [72].

The last category of mechanical damage, friction and abrasion refers to the shearing of
fish along the solid turbine walls. As an effect, it is observed mainly in the draft tube [43]
and is related to the swirling motion, imparted to the passing flow due to turbine operation.
Despite the existence of dedicated techniques to investigate the occurrence and extension of
external damage [73], it is, in practice, rather difficult to distinguish friction/abrasion from
the other types of physical damage [74]. Efforts to devise techniques for the quantification
and distinction of abrasion from shearing are ongoing [75]. In any case, the existence of
irregularities on the draft tube, such as protrusions from welding, or bolts used for pipe
connections, greatly increases the potential risk of abrasion [74].

3.3. Shear Stresses

The flowing water streams inherently develop from boundary layers, recirculations
and flow detachments, all attributed to viscosity effects; thus, shear stresses are induced in
all these cases due to the interaction of fluid layers moving at different velocities. Indica-
tively, shear stresses in water streams/rivers may be in the order of 100 Pa, whereas in the
draft tubes of turbines they are in the order of 5000 Pa [76]. Even though these values are
much lower than pressure magnitude (which can be two or three orders larger—see indica-
tively Figure 7b,c), fish are much more sensitive to shear, since exposure to high shear levels
can be comparable to exposure to friction forces generated by two solid surfaces contacting
and sliding against each other [77]. Common injuries resulting from high levels of shear
are loss of mucous layer, descaling, tissue tearing or bruising and even decapitation [78].

Quantification of shear thresholds for fish damage has been performed in the past
with various methods. The most common approach involves a high-velocity jet that is
expelled in a stagnant water container, in which test subjects are kept. The jet produces
a shear layer around its axis and shear stresses can be quantified in terms of the radial
distance from the center of the jet and the axial distance from the source of the jet. This
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technique has been employed several times to identify damage/mortality thresholds (see
indicatively [70,79,80]), with values exceeding 3400 Pa being tested; damage was strongly
dependent on fish species (indicatively, eels seemed to be the most resilient), though a
threshold of 1600 Pa was proposed for onset of descaling [81]. A drawback of this method
is that it does not allow for a precise control of the actual shear stress fish are exposed
to, since shear stress magnitude is strongly related to exact position around the jet axis.
Additionally, the formation of a fast-moving jet may involve the generation of shear layer
cavitation [43,80], which can further blur the actual influence of shear stresses as a damage
mechanism. Alternative approaches involve a Taylor–Couette-type apparatus [55], where
concentric cylinders form an annular passage filled with water and test subjects, though
it has been tested on fish larvae, demonstrating mortalities at shear magnitudes of even
35 Pa.

3.4. Vorticity and Turbulence

The flow in hydraulic turbines and relevant piping can be classified as turbulent,
given that the Reynolds number is in the order of 106–107, or even more. Turbulent flows
inherently imply a highly fluctuating unsteady flow, with many different scales of motion;
in practice, this means that there are strong variations of local pressure and velocity which
can cause strain to the body of passing fish [43], either in the form of normal or shear
stresses, respectively. Hence, high turbulence levels are expected to cause mortalities for
both large fish and their eggs or larvae [82].

Despite the existence of limited investigations on correlating turbulence and fish
mortality, its influence is not clearly understood. There are very few investigations relating
turbulence directly with fish mortality; indicatively, in [83] the authors employed a water
jet to create a turbulent flow field of variable intensity, in an annular passage, in which fish
larvae and eggs were exposed for different durations. A near to 80% mortality rate was
found, after a 10 h exposure to high turbulence conditions, which were quantified as velocity
fluctuations of ~0.55 m/s and pressure fluctuations of ~6300 dynes/cm2 (~630 Pa). The
turbulence level was found to contribute more to lethality than to frequency of disturbance.

In other works, turbulence is considered as only indirectly affecting survivability,
given that it contributes to the disorientation of passing fish at the tailrace [15,84]; these
fish are subsequently more susceptible to being preyed upon. Indeed, turbulence and shear
stress influence is considered to be the most difficult to describe [77].

4. Assessing Fish Damage
4.1. Experimental Methods

Numerous studies have been conducted with experimental means to understand the
mechanisms of fish passage and potential damage and to extrapolate these findings to
fish-friendly turbine concepts. These mainly involved tagging fish with various means,
followed by their subsequent release upstream a specific hydropower plant, while also
tracking their position and their recapture further downstream.

An example of such investigations involved the use of inflatable balloons, to ensure
the recapture of fish passing through the turbine. In particular, the inflatable tagging device
was externally mounted and triggered before release. A delayed chemical reaction, whose
timing can be pre-adjusted accordingly, released gas inflating the balloon tag shortly after
turbine passage, facilitating easy tracking and recapture for further examination. This
technique allowed for up to 96% of tagged fish being recaptured and the derivation of
statistics for Kaplan and mixed-flow turbine types, showing a low percentage of injury. In
particular, one study showed that only 5% of the tested fish exhibiting small lacerations [85],
whereas another study found that only 5.7% of the tested fish had severe injuries (severed
body, lacerations, bruises and hemorrhaging or major scale loss) [86].

Similar tagging methods involving less invasive means were performed with passive
integrated transponder (PIT) tags [87]. Such tags have a small footprint (0.1 g) and do not
require battery, as transceiver antennas at installed locations externally energize them. Such
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tags have been used to identify paths of preference of migrating fish in hydropower plants
and to obtain water allocation routines between bypass and turbines that optimize both
fish guidance efficiency and hydroelectric production.

Despite the small signature of PIT systems, radio-telemetry can provide more insight
into the survivability of fish that pass through hydropower plants. Such a study involved
small devices weighting 4–5 g surgically embedded to the bodies of the examined fish
(e.g., eels) [84]. The fish were subsequently released upstream the examined hydropower
stations and their status was tracked by stationary or portable receiver antennas placed
downstream the examined site. The identification of dead fish was not straightforward, as
a stationary transmitter may not necessarily indicate mortality, as the fish may intentionally
remain stationary at specific river locations. For this reason, a number of fish were also
released downstream the hydropower facility as a control group. This study found that
at least 92–96% of the fish passing through the turbine stations were likely to survive;
however, it did not find direct turbine mortalities, as it showed that no fish actually passed
the turbine. Instead, any detected mortalities were related to injuries at the bypass routes.
Alternative to radio signals, which inherently have a small transmission range within
water streams, recently developed technologies involve acoustic telemetry. The latter has
several advantages over radio telemetry, aside the greater transmission distance; acoustic
telemetry transmitters are less invasive, as they do not involve the trailing antenna of
the former. In a recent study [88], such a system employed multiple receivers, cabled or
autonomous, to determine the 3D fish track by measuring the time of arrival information
for the valid detection of embedded tags to fish, revealing the specific route of passage
(spillway or turbine) [89].

Aside from the techniques used for tracking fish, the assessment and analysis of the
results of such investigations is another topic that requires care. Indeed, it has been recently
demonstrated that capturing fish after the hydropower installation and handling them may
introduce additional injuries [90]. Specifically, frequently occurring injuries, such as scale
loss, tears in the fins, dermal lesions, hemorrhages or bruises could be also induced by
subsequent handling after testing, though the intensity of the trauma can be an indication
of its origin.

Apart from the aforementioned techniques that involve handling live fish and the
associated ethical issues of exposing them intentionally to danger, experimental investiga-
tions may involve autonomous sensor devices [91,92] that replicate fish trajectories through
a turbine. Such sensor devices, termed as “sensor fish”, can provide much more detailed
information and analytical data of local accelerations and even pressure and temperature,
with sampling rates in the order of 200–2000 Hz. Such devices have been tested in large
Francis [93] and Kaplan turbines [94], providing details on the pressure field experienced
along the trajectory of “sensor fish”, as well as accelerations indicating collisions with
blades and structural elements of the turbine. Data from the sensors have been used as
pressure input for other studies, see, e.g., [46].

4.2. Assessing Fish Damage—Numerical Methods
4.2.1. Early Attempts

The advancement of computer technology enabled more recent works to be carried
out in combination, or in their entirety, with computer models, thus allowing for a much
greater insight into hydraulic machinery operation and possible interactions with passing
fish. These computer models involve various assumptions, encompassing different degrees
of physical mechanisms, complexity and computational cost. One of the first attempts to
describe the fish-friendliness of hydraulic turbine systems was to estimate the volume of
locations where various metrics relevant to fish damage and mortality, such as pressure,
shear or turbulence, as mentioned in Section 3, exceeded specific limits, see [81,95–97];
this volume was subsequently correlated with the possibility of fish mortality. While this
straightforward indicator could be employed as a criterion for optimization studies, it can
be misleading, since the existence of locations exceeding a particular stressor metric, or its
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volume, does not necessarily mean that a fish will pass through this location. Further refine-
ments involved the simplification of treating a fish trajectory as a flow streamline [81,98,99]
and deriving pressure or shear stress variation along this path; subsequently, averaging of
the calculated values along sampled paths can provide metrics relevant to fish mortality.
Still, using streamlines ignores fish inertia and can be misleading.

4.2.2. Particle-Based Methods

More recent investigations involve a Lagrangian perspective for tracking fish motion;
in such an approach, a fish is approximated as a particle [100] or some configuration of
linked particles with the discrete element method (DEM) [101]. Such Lagrangian, particle-
based methods, in any of the forms of the discrete particle method, dense discrete particle
method or discrete element method, are very popular in computational fluid dynamics for
tracking populations of objects dragged by the flow; hence, they have been investigated
for tracking fish motion in hydraulic turbines, see particularly [100–103]. A common char-
acteristic in all Lagrangian methods is that the motion of the tracked bodies is captured
by integrating Newton’s law of motion, considering various forces that are applicable per
case. On the downside, a basic limitation is that in most cases the forces arising from the
interaction of the flow with the body are derived based on the assumption of tracking
spherical particles. Even if some models may feature corrections for non-spherical shapes,
in their core, the three-dimensional body orientation is not taken into account. More-
over, particle-to-particle or particle-to-boundary interactions are also performed assuming
point-like objects with no volume, with a notable exception being the discrete element
method, which can handle objects approximated as simple, general shapes (e.g., ellipse,
cylinder, etc.).

4.2.3. Fully Coupled 6-Degrees-of-Freedom (6-DoF); Overset Meshes

Overset mesh (also known as “Chimera” or “Overlapping” mesh/grid) is a method
of manipulating multiple overlaying and disconnected computational domains, by per-
forming interpolations and by enabling/disabling suitably chosen cells, in order to form a
single computational continuum over which a flow field can be resolved. The fact that the
individual domains are topologically disconnected renders the method highly suitable for
the handling of complex motions/deformations [104]. In general, it involves a background
mesh and several component meshes, which, in the case of the interest of the present
paper, are attached to moving bodies. Thus, during calculations, connectivity between the
topologically disconnected meshes is redefined at every time step, whereas the motion of
the tracked body is captured accurately, inherently taking into account the volume and
exact shape of the tracked body, whereas motion can be described by resolving the 6-DoF
equations of motion coupled with the fluid flow. It is a well-established, accurate and
versatile method to handle 6-DoF body tracking, indicatively see, e.g., Figure 8, where an
accurate fish model was tracked through an axial turbine.

While highly accurate, the main drawbacks of coupled overset 6-DoF are: (a) high
computational cost, (b) lack of a default collision detection handling and prevention method,
(c) special requirements for constructing the computational meshes, mainly in terms of
sizing at the overlap region between component/background meshes and (d) per-case
adjustment of schemes for cell-cutting and grid priorities, to reduce the number of cells
without suitable interpolation neighbors (also called orphan cells).
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Figure 8. Indicative sequence of an fish model, tracked with overset mesh 6-DoF, in an axial flow tur-
bine (for more details refer to [105]). (a) The detailed fish model used to construct the computational
mesh of the overset zone (refinement is also visible), (b–e) overset tracking simulation instances (at
0.42, 0.69, 0.89 and 1.14 s) for an axial turbine.

4.2.4. Fully Coupled 6-Degrees-of-Freedom (6-DoF); Immersed Boundaries

The immersed boundary method (IBM) is a technique of mapping solid geometry on
a background mesh [106]; this can be achieved either by altering the flow equations, e.g.,
through the introduction of appropriate source terms in the momentum equation, or by
actually altering the computational mesh through cell-cutting to conform to the body shape.
Similar to overset meshes, it is an accurate technique that can describe the precise shape of
a tracked body and is rather computationally expensive. Since the method relies on the
mapping of the described body to the computational mesh, a natural requirement is that
the mesh is fine enough to describe all the necessary details of the body; otherwise, the
solid mapping to the fluid domain may fail or will not be accurate (non-smooth surface,
artificial gaps/holes). This requirement poses practical resolution restrictions if the tracked
body is much smaller than the turbine dimensions, since the required computational mesh
will be highly refined and the computational cost intractably high. Recently, the lattice
Boltzmann method with immersed boundaries was employed for tracking fish motion
through axial turbines [107]; the reported computational cost was in the order of 500–800 h
for 1–3 simulated fish. In the author’s experience [105] (see also, e.g., Figure 9), immersed
boundary techniques can be efficiently applied for bodies roughly 50 times smaller than the
turbine; beyond that point, the computational cost becomes prohibitive, unless adaptive
refinement is used around the tracked object.



Energies 2023, 16, 2661 14 of 25Energies 2023, 16, x FOR PEER REVIEW 14 of 25 
 

 

 
(a) (b) (c) 

Figure 9. Indicative sequence of an ellipsoid body (the dark blue ellipse), tracked with immersed 
boundaries, in an axial flow turbine (for more details refer to [105]). Time instances (a) 0.45 s, (b) 
0.87 s and (c) 1.21 s. 

4.2.5. Uncoupled 6-Degrees-of-Freedom (6-DoF) 
A recent variant [108] to the more computationally expensive 6-DoF techniques de-

couples the flow field from the body tracking. This decoupling makes it possible to solve 
the flow field with steady-state moving reference frames, which greatly speeds up the 
solution by roughly two orders of magnitude, allowing for the derivation of statistics (see 
indicatively Figure 10, where a specifically designed reversible, fish-friendly Deriaz tur-
bine [109] was tested). Since the flow is decoupled from the body motion, the pressure 
field around the moving body is approximated through the dynamic pressure of the slip 
velocity. Pressure can be integrated to calculate forces and torques acting on the body. 
External forces from collisions with rigid boundaries (blades, draft tubes, etc.) can also be 
taken into account (indicatively, see Figure 11, where an ellipsoidal fish model collides 
with the rotor of an axial turbine, causing it to tumble). 

 
Figure 10. Trajectories and observed collisions of fish for different starting positions for a 
fish-friendly Deriaz-type turbine [109], at turbine mode (left) and pumping mode (right). Colored 
spheres indicate the forces above 10 N, corresponding to collisions. 

The major underlying assumption is that the body mass of the tracked object is in-
significant compared to the flow momentum; hence, it does not significantly alter the 
flow field. Numerical experiments have shown that this assumption seems valid when 
considering fish sizes with characteristic dimensions at most 50 times smaller than a tur-
bine (see [105,108]); indeed, the predicted trajectory with the uncoupled fast tracking is 
very similar to the fully coupled 6-DoF either with immersed boundaries [105] or overset 
meshes [108], in the case of axial and diagonal (Deriaz)-type turbines. 
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and (c) 1.21 s.

4.2.5. Uncoupled 6-Degrees-of-Freedom (6-DoF)

A recent variant [108] to the more computationally expensive 6-DoF techniques de-
couples the flow field from the body tracking. This decoupling makes it possible to solve
the flow field with steady-state moving reference frames, which greatly speeds up the
solution by roughly two orders of magnitude, allowing for the derivation of statistics
(see indicatively Figure 10, where a specifically designed reversible, fish-friendly Deriaz
turbine [109] was tested). Since the flow is decoupled from the body motion, the pressure
field around the moving body is approximated through the dynamic pressure of the slip
velocity. Pressure can be integrated to calculate forces and torques acting on the body.
External forces from collisions with rigid boundaries (blades, draft tubes, etc.) can also be
taken into account (indicatively, see Figure 11, where an ellipsoidal fish model collides with
the rotor of an axial turbine, causing it to tumble).

The major underlying assumption is that the body mass of the tracked object is
insignificant compared to the flow momentum; hence, it does not significantly alter the
flow field. Numerical experiments have shown that this assumption seems valid when
considering fish sizes with characteristic dimensions at most 50 times smaller than a
turbine (see [105,108]); indeed, the predicted trajectory with the uncoupled fast tracking is
very similar to the fully coupled 6-DoF either with immersed boundaries [105] or overset
meshes [108], in the case of axial and diagonal (Deriaz)-type turbines.
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Figure 11. Indicative sequence of an ellipsoid body (the dark blue ellipse), tracked with the fast
uncoupled 6-DoF, the fast tracking method. The method also includes collisions, as evidenced at
0.33 s, which causes the tracked body to tumble.

4.2.6. Summary of Computational Methods

Here, a concise qualitative comparison of the different methods is presented in the
form of a table, see Table 1. Comparison criteria involve accuracy, computational cost and
ability to handle collisions for estimating blade impact.

Table 1. Summary of different methods for tracking fish motion through hydraulic tur-
bines/estimating fish-friendliness of concept designs. Plus sign (+) indicates advantage, minus
sign (−) indicates disadvantage.

Method Accuracy Computational Cost Collision Detection

Volume-based criteria − ++++ −
Streamlines ++ ++++ −

Particle-based +++ + +

Fully coupled-overset +++++ − −/(not by default)

Fully coupled immersed boundary +++++ − −/(not by default)

Uncoupled 6-DoF ++++ +++ +

5. Derivation of Indices/Metrics to Assess the Fish-Friendliness of Hydro-Turbines

The aforementioned methods, either experimental correlations or numerical tech-
niques, are helpful to quantify the severity of different stressor factors that affect fish
survivability. However, the combinatory effect of all these stressors has to be integrated
into a metric that can be used in the design and planning phase of hydropower infras-
tructure. One of the first attempts involved only blade-strike estimations to estimate the
probability of such events [110], based on the fish size, the turbine type and the operating
conditions of the turbine.

Subsequent iterations involved refinements and considerations of additional factors
aside blade strike. Such a metric, developed by the Pacific Northwest National Laboratory,
is the biological performance assessment (BioPA) method [19]; this method estimates the
probabilities that fish will encounter specific conditions during passage through a hydraulic
turbine. This metric also relies on specific dose–response relationships between species
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of fish and known injury mechanisms, which are determined by subjecting a suitable
number of fish to various magnitudes of a stressor (see Section 3) and computing the
probability of injury or mortality at each magnitude. BioPA employs four metrics for
assessing mortality: nadir pressure, shear, turbulence and blade strike, which are integrated
over time, to estimate the BioPA score for each individual stressor factor. Indicatively,
mortality probability, Pmort, due to pressure is estimated through the following relation [25]:

Pmort =
e−5.56+3.85·LRPi

1 + e−5.56+3.85·LRPi
(1)

where LRP stands for the natural log of the pressure change ratio of acclimation pressure
pA, to nadir (i.e., lowest possible) pressure, pL:

LRPi = ln
(

pA
pL

)
(2)

The overall risk of mortal injury during passage is evaluated with a performance score,
β, accounting for the probability, P(pL), of exposure at different minimum pressure levels,
by sampling all the examined streamlines:

β =

(
1 −

N

∑
i=1

Pmort,i · P(pL)i

)
· 100% (3)

The authors of the method highlight that Equation (1) does not describe delayed
mortality effects. For blade strike, the probability Pblade is estimated through the following
equation [111]:

Pblade =
nNL cos(θ)

60Vax
· 100% (4)

where n stands for runner rpm, N is the number of blades, L is the fish length, θ is
the angle between absolute and axial (or radial) velocity vector and V stands for the
velocity, either axial or radial, depending on the application (axial/radial turbine). In
any case, various stressor scores are combined into a single operating condition score
using a weighting algorithm. Statistical sampling is used for fish tracks, approximated as
streamlines, i.e., neutrally buoyant particle traces, which are emitted uniformly from the
turbine inlet section (unless site-specific information is available and suggested otherwise).
Inherently, this method requires a numerical solution of the flow field in the turbine, using
computational fluid dynamics, to provide the stressor values and the streamlines. This
metric has been used in several studies, see [25,76], with the aim to expand its scope to
more complex physical mechanisms, such as considering fish inertia and turbulence effects.

Another, more recent, metric is the European fish hazard index (EFHI) [17], which
integrates species-specific sensitivities of the ambient fish community, derived from species’
life-history traits and conservation value, and the specific operational, constructional and
technical characteristics of a hydropower plant site. The input information for this index
is: (1) turbine dimensions, type and operating conditions; (2) fish migration or protection
facilities; (3) target species and (4) stream reach. These categories are then cross-tabulated
and contrasted to the rounded integer value of the species’ biological sensitivity to produce
a numerical score for each hazard and species. The EFHI heavily relies on semi-empirical
data, relations and regressions, to derive these scores; for example, blade strike mortality,
denoted as MMonten, is estimated as:

MMonten =
0.5Lmax

Srel
· 100% (5)

where Lmax is the ratio of intake screen gap-width to a geometric parameter, b, dependent
on the fish species (e.g., 0.11 for fusiform fish, or 0.03 for eel-like body shapes) and Srel is
the relative space between blades, taking into account the blade angle, annular passage
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diameters and number of blades. Barotrauma risk is simply related to the barrier/dam
height and hence classified as low for H < 2 m, moderate for 2–10 m and high for >10 m;
subsequently, it is adjusted to the particularities of each examined fish species (in particular,
the structure and presence of their gas bladder, e.g., physostomous or physoclistous). In
any case, the entire process is performed within an Excel worksheet, which, based on the
aforementioned user input, determines individual hazard scores with values of 0, 0.25,
0.5, 0.75 or 1, with higher scores indicating a more severe hazard. The implementation
as is can involve ensemble estimations for up to five target species that are considered by
the user to best reflect the local fish population, conservation status and river region. In
case of specific conservational status or environmental concern, selected species can be
individually categorized to the highest sensitivity class. The final EFHI score is finally
calculated as an aggregation of all hazard scores.

A general observation, based on the aforementioned details of the BioPA and EFHI, is
that BioPA relies more on detailed flow field information data of a particular turbine design
(i.e., manipulations of a 3D flow field with streamlines, etc.), whereas the EFHI relies on
regressions and empirical data entirely. It is thus expected that the EFHI may be more suc-
cessful in assessing traditional turbine concepts and existing installations/refurbished sites,
for which the assessment criteria fall within the calibration range of the regressions/models
used. On the other hand, BioPa, even though more detailed, is expected to be much more
computationally intensive; hence, seems suitable to designing new turbine concepts.

6. Fish-Friendly Hydropower Design Concepts

The US Environment Protection Agency has established specific considerations and
engineering-based criteria that are considered critical in the design of fish-friendly turbines;
these criteria involve [16,44]:

- Blunt, thick blades (see indicatively the Restoration Hydro Turbine or RHT in [71],
or Figure 12a);

- Low rotational speed of the turbine runner;
- Large passages;
- Few blades;
- No exposed gaps.

However, these criteria mainly address the blade/fish collision, rather than consist
in a holistic approach in assessing all potential mechanisms of fish damage. In any case,
when considering existing designs, field studies indicate that Francis turbines resulted in a
higher immediate mortality risk than Kaplan turbines relative to controls [16].

In recent years, several new turbine concepts, or modifications/variations of existing
concepts, have emerged, specifically to address fish-friendly passage. One such example is
the minimum gap runner (MGR) turbine [112], see Figure 12b; this design is very similar to
the Kaplan turbine, but the blades, the hub and the discharge ring have a more spherical
profile to reduce clearances; hence, it was expected that the performance against mechanical
injury would be improved. This design modification also removes part of the leading edge
and, as a result, also reduces the local pressure gradients and shear stresses, while also
having a positive effect in the efficiency of the turbine [113]. Indeed, the testing of the MGR
turbine showed improvement in fish injuries compared to a traditional Kaplan turbine,
with only 1.4% of the fish being injured, compared to 2.5% of the statistical control group
tested with a Kaplan turbine [114].

Similar to the MGR, the very low head (VLH) turbine can be considered a Kaplan-type
turbine, specifically engineered for safe fish passage [115]. This turbine was originally
developed in France, to be installed at an existing low head hydropower facility, for heads
of 1.4–4.2 m and flows between 10 and 30 m3/s, mounted in an inclined position (30–50◦)
from horizontal and using an eight-bladed Kaplan-style runner, as seen in Figure 12c. The
unit is designed to be compact and easily integrated to existing facilities, by reducing intake
and outlet structure sizes by maximizing the diameter of the turbine runner. The large
diameter of the turbine contributes to slow rotational speeds, which is a major requirement
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for safe fish passage. Indeed, testing in Europe indicated mortality rates of less than
5% [115]; however, similar projects in North America have been hampered by extremely
cold temperatures and ice.
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Another Kaplan turbine design variation is the vaneless swirl injector system [116],
seen in Figure 12d; in this design, the traditional inlet guide vane (IGV) array is replaced
with a vaneless casing, which is coupled with a fish-friendly Kaplan turbine and is applica-
ble for a head up to 6 m. The vaneless casing creates the required swirl velocity component
necessary for the runner by guiding the flow through a spiral-shaped track. Since there are
no vanes, fish mortality caused by strike damage is dramatically reduced.

An innovative turbine concept that was developed at the same time as the MGR
turbine is the Alden turbine [112,117], seen in Figure 12e. It is a low head turbine (H~25 m)
developed jointly by Alden Research Laboratory, Inc./Northern Research and Engineering
Corporation (ARL/NREC) and Voith Hydro, Inc. (Voith) in 1995. The final proposed
design has three helical blades, which are attached both to the hub and to an external
rotating shroud, hence eliminating gaps and the possibility of grinding injury. The casing
of the turbine has a traditional scroll/spiral shape, directing the flow through a radial
space with few but long vane blades (also termed as wicket gates) and then through a
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gradual downturn toward the runner entrance. The long helical shape of the rotor blades
was specifically designed to reduce pressure changes and to improve fish survival due to
barotrauma through the turbine. Furthermore, the blades of the Aden turbine feature a
thick leading edge, which has been demonstrated to reduce blunt body impact injury. Thus,
these design choices in the Alden turbine concept, namely the reduction in the number of
blades, the reduction in the operating speed, the minimization of pressure differences and
the thick leading edges, have been demonstrated to greatly improve fish survivability.

The Archimedes turbine [118,119], seen in Figure 12f, although not new, is a very
simple design, well suited for low head installations (H < 10 m). The Archimedes turbine
consists of a screw-shaped runner, placed within a co-axial, tubular shroud. When water
enters the top of the shaft, the weight of the water pushes on the screw blades, causing the
shaft to rotate and allowing for the water to fall to the lower level. Such designs are intended
for low heads and have diameters between 1.5 and 3.5 m. Their low rotational speeds,
minimal pressure changes and shear forces minimize injury to fish that pass through this
turbine. The Archimedes screw turbine particularly as a fish-friendly solution has been
installed and tested at several sites in Europe and the UK with positive results [120–122].
Studies indicate minimal to no injuries and no mortalities from the downstream passage of
adult European eels, larval and juvenile river lamprey, sea-run Brown Trout and Atlantic
Salmon kelts.

The vortex turbine design Is installed as a by-pass system to a dam or classical weir,
and which is intended to permit two-way fish migration [123], as seen in Figure 12g. It
consists of a vortex pool where a strong free-surface vortex develops, in the center of which
a Francis-like turbine is located. The water leaves the pool through an orifice at the bottom
and flows back into the river through an outlet channel. The turbine is inherently designed
to be operated as a low-head device (as low as H~0.7 m) [124], operating at low rotational
speeds (indicatively, 30 rpm). The rotating speed of the runner makes it possible to achieve
a very small slip tangential velocity, so there is a low risk of fish/blade impact. Additionally,
clearances can be adjusted, to allow for fish to pass freely in both ways.

Entirely alternative to reservoir-based, or diversion-based hydropower discussed so
far, are in-stream turbines, which can be placed directly in the water stream, thus relying
heavily on the flow kinetic energy of the incoming water. A version of this concept, seen in
Figure 12h, was recently proposed [125], which resembles a hub-less axial turbine. This
concept was found to satisfy pressure drop and strain rate criteria [125], conforming to
requirements for safe fish passage [74]. However, the authors of the work identify that the
design is an extremely low head turbine and has a low efficiency (in fact calculated to be
much lower than the Betz limit). Similar concepts of in-stream turbines have been examined
for vertical-axis turbines, such as Darrieus-type [126] turbines, as seen in Figure 12i, which
are found to have an efficiency of up to 50%, whereas the estimated survivability through
them is of more than 98% [127].

Finally, some additional factors, even if not directly related to turbine technolo-
gies/subsystems, still affect fish mortality [128]:

- Oxygen deficiency in the water of reservoirs of hydropower plants, which can cause
damage to downstream ecosystems. Hence, artificial aeration of the flowing water
is a consideration that needs to be taken into account for successful fish-friendly
turbines [129];

- Oil leaks; oil is used both as a means of lubrication and as a means of actuation of
turbine blades (e.g., in the case of Kaplan turbines). To date, several Kaplan–Bulb and
Francis turbines have been upgraded so as to make them work free from oil, and new
materials and lubricants are being developed.

7. Conclusions and Future Perspectives

It is clear that hydropower will continue to play an important role in energy production
worldwide; thus, ecological pressure to aquatic life is expected to increase. The necessity to
design new concepts that holistically approach aquatic life, either as a mean of deterrence,
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i.e., leading migrating fish through a bypass stream, or protecting passing fish through the
turbine, is becoming apparent.

While there are guidelines and estimates for the damage thresholds of various fish
species, useful to predict potential damage as they pass through a turbine, these thresholds
vary wildly and are strongly dependent on the exact specie examined. This fact, along
with the inherent site-specific nature of hydropower sites, renders estimations of surviv-
ability unique for each case and difficult to generalize easily. Some success was found
with semi-empirical models; however, the progressive integration of computational fluid
dynamics (CFD) in the design phase of hydropower can provide much more insight than
any experimental technique. Moreover, CFD predictions can be combined with damage
thresholds to assess the survivability of a candidate design.

Indeed, CFD predictions already have contributed greatly to the design of existing fish-
friendly concepts. However, all these concepts are applicable only to low head applications
(<40 m). A future challenge is clearly the development of such fish-friendly concepts at
higher operating heads and other turbine types (e.g., Francis and Pelton).
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