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Abstract

This paper proposes the time-heterogeneous Student’s t

autoregressivemodel as an alternative to the various volatil-

ity forecastmodels documented in the literature. The empir-

ical results indicate that: (i) the proposed model has better

forecasting performance than other commonly used mod-

els, and (ii) the problem of reliable risk measurement arises

primarily from the model risk associated with risk fore-

cast models rather than the particular risk measure for

computing risk. Based on the results, the paper makes

recommendations to regulators and practitioners.
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1 INTRODUCTION

A risk measure is a mathematical method for computing risk. Risk measures are widely used by various institutions

(even individuals) to quantify potential downside risk within a firm, portfolio, or position over a specified period of

time. For example, depository institutions use risk measures as the basis for determining their regulatory capital

requirements.What is often unappreciated in practice is that behind every riskmeasure, there is a statistical volatility

model, which is used to calculate risk forecasts. If the statistical assumptions underlying a volatility model are bad, the

produced risk forecasts are likely to be ugly, regardless of whether the risk measure used is good or not. Inaccurate
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2 MICHAELIDES AND POUDYAL

risk forecasting often leads to either overestimating or underestimating risk, which can be detrimental for the

decision-making process in risk management.

This paper is primarily motivated by the recent changes in the regulatory framework of the Basel Committee on

Banking Supervision (henceforth “BCBS” or “the Committee”), particularly the implementation of a new risk measure

for determining market risk capital requirements. As argued in subsequent sections, the choice of the risk measure

is not the only source of risk involved in the process of risk measurement. This paper makes recommendations and

puts forward suggestions for further strengthening themarket risk regulatory capital framework. Furthermore, given

that riskmeasures are commonly used by nonregulatory institutions for a variety of applications, the paper alsomakes

recommendations to the average practitioner.

1.1 Historical background and regulatory framework of BCBS

At the end of 1974, the central bank governors of the G10 countries established a Committee on Banking Regula-

tions and Supervisory Practices in response to a series of adverse events and disruptions in the international financial

markets.1 Later renamed BCBS, the Committee was designed as a forum for regular cooperation between its member

countries on banking supervisory matters. In 1988, the Committeemade the first attempt to assess capital. The Basel

Capital Accord (Basel Committee on Banking Supervision, 1988), or Basel I as it has been knownmore recently, intro-

duced a set of minimum capital requirements, mainly in relation to credit risk. After several revisions, the Committee

refined the original framework to address risks other than credit risk. In 1996, the Committee issued theMarket Risk

Amendment to the Capital Accord (Basel Committee on Banking Supervision, 1996), designed to incorporate a capital

requirement for the market risk arising from banks’ exposures to foreign exchange, traded debt securities, equities,

commodities, and options. An important aspect of the Market Risk Amendment was that banks with well-established

riskmanagement functionswere, for the first time, allowed touse internalmodels as abasis formeasuring theirmarket

risk capital requirements.

Over the years, the reforms in the successive accord of Basel II (Basel Committee on Banking Supervision, 2004)

improved the effectiveness of supervision and strengthened the regulatory capital framework. Likewise, banks them-

selves refined the practice of risk management by the development of new techniques respecting the internal risk

measurement. Nevertheless, the financial crisis of 2007−2009 revealed structuralweaknesses in the financial system,

regulation, and supervision. In response to these weaknesses, the Committee proposed a stronger regulatory frame-

work, known as Basel III, concerning better quality of capital, increased coverage of risk for capital market activities,

and better liquidity standards, among other benefits. As part of the review of its regulatory approach, the Commit-

tee has proposed a shift from Value-at-Risk (VaR) with a confidence level of 99% to Expected Shortfall (ES) with a

confidence level of 97.5% for the internal models-based approach (Basel Committee on Banking Supervision, 2016,

2019b). The decision of the Committee to replace the most commonly used market risk measure of VaR stemmed

from a number of weaknesses associated with VaR, including its inability to capture tail risk and lack of coherence

(Basel Committee on Banking Supervision, 2011, 2012, 2013, 2016).

1.2 Related literature and contributions of the paper

This paper proposes the time-heterogeneous Student’s t autoregressivemodel (henceforth “t-StAR”) as an alternative

to the various volatility forecast models documented in the literature. To the best of our knowledge, this model has

not been used before as a risk forecast model (we provide R code for the model in Appendix B). The forecasting

1 Namely, the breakdownof BrettonWoods systemofmanaged exchange rates, the closure and liquidation of BankhausHerstatt, and the collapse of Franklin

National Bank of NewYork.
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MICHAELIDES AND POUDYAL 3

performance of this model is compared to that of the most commonly used risk models. The empirical results indicate

that: (i) the proposed model has better forecasting performance than other commonly used models, and (ii) the

problem of reliable riskmeasurement arises primarily from themodel risk associatedwith risk forecast models rather

than the particular risk measure for computing risk.

Our paper contributes to the existing literature in two main dimensions. First, the paper adds to the broad risk

modeling/forecasting literature through the introduction of the t-StAR model. Previous studies have shown that an

inappropriate choice of risk models (“model risk”) produces inaccurate risk forecasts, primarily because the statistical

assumptions underlying those models are often invalid (Beder, 1995; Hendricks, 1996; Alexander & Sarabia, 2012;

Boucher et al., 2014; Danielsson et al., 2016). Within the same context, a number of studies have shown that risk

models are more likely to perform poorly in times of financial crisis (Danielsson, 2002; O’Brien & Szerszen, 2017;

Danielsson et al., 2016).

We argue that, even though it is impossible to identify a single risk model, which can always forecast risk perfectly,

the choice of a data-coherentmodel (Hendry &Richard, 1983) can considerably improve the accuracy of risk forecasts:

a rich probabilistic structure that can describe all the relevant features of financial data that could be accounted for

over a period of time. The results in this paper show that the proposed t-StAR model performs well during periods of

both financial crisis and stability because its probabilistic structure captures common features exhibited by financial

data. Its underlying statistical assumptions of Student’s t, heteroskedasticity, and temporal dependence contribute

to the modeling of the fat-tailed, non-Gaussian, and nonlinearly dependent financial returns. Further, and perhaps

more important, themodel incorporates orthogonal trend polynomials with the aim tomodel the time-varying volatil-

ity exhibited by financial returns. This is a distinctive characteristic of the proposed model because its conditional

variance is a function of both the lagged conditioning variables (heteroskedastic) and time (time-heterogeneous).

Second, the paper relates to the ongoing debate around the use of VaR versus ES. This debate is nothing new (see,

for example, Yamai & Yoshiba, 2005), yet it grew in popularity after the decision of BCBS to move from VaR to ES for

regulatory purposes. Overall, there is little doubt among the literature that the transition from VaR to ES will lead to

higher level of capital requirements since ES has the ability to capture the fat-tailed behavior of risk, which leads to

more capital. This is important, of course, because more capital makes banks more resilient and reduces the proba-

bility of financial distress (Repullo & Suarez, 2013). Despite the obvious advantage of ES to capture tail risk, however,

the decision of BCBS has been heavily criticized by the recent literature. A number of studies have focused on the

theoretical failure of ES to satisfy the mathematical property of elicitability (Gneiting, 2011). These studies suggest

that elicitability should be taken into considerationwhen choosing a riskmeasure because nonelicitablemeasures are

difficult to backtest (Emmer et al., 2015; Ziegel, 2016). In addition, important work has been done to analyze howVaR

and ES react to different sources of model risk (Kellner & Rösch, 2016), as well as to evaluate the forecasting accuracy

of the two risk measures (Danielsson & Zhou, 2015). The findings show that both VaR and ES are vulnerable to model

risk and yield inaccurate risk forecasts.

Our point of view is that the decision of BCBS is solelymotivated by the theoretical strengths of ES over VaR. From

a theoretical perspective, there is no question that ES is superior to VaR. Yet, theoretical superiority alone does not

automatically lead to accurate risk forecasts because the process of forecasting volatility involves statisticalmodeling.

Supporting theargumentofDanielssonandZhou (2015) thatVaRandESare relatedbya small constant,weargue that,

in the presence of model risk, both VaR and slightly greater ES risk forecasts are likely to be inaccurate. The results in

this paper suggest that it is of primary importance tominimize themodel risk associatedwith the risk forecast models

used by banks. As the empirical results show, the choice of an appropriate model can considerably improve the accu-

racy of risk forecasts, even during periods of financial crisis. Our regulation recommendation is that the BCBS should

restrict the scope of internal modeling to riskmodels, which are likely to pass some kind of statistical adequacy test.

Even though much of the discussion in this paper is centered around the market risk regulatory framework of

BCBS, our results apply equally to financial institutions not regulated by the Basel Accords, including pension funds,

insurance companies, mutual funds, and hedge funds, among others. Applications may include, but are not limited

to, risk budgeting, economic capital, survival analysis, long-term risk analysis for pension plans, risk management on

 15406288, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/fire.12368 by C

yprus U
niversity O

f, W
iley O

nline L
ibrary on [17/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 MICHAELIDES AND POUDYAL

the trading floor, and risk reporting (Danielsson, 2011). Hence, we also provide recommendations to the average

practitioner, whomay ormay not have access to sophisticated expertise, such asmodel development and validation.

The remaining of the paper is organized as follows. Section 2 defines the concepts of VaR and ES, by paying partic-

ular attention to the delineation of the underlying differences between the perspectives of theory and probability.

Section 3 presents the risk models used to forecast volatility, while Section 4 lays out the data and methodology

employed in the analysis. Section 5 presents and discusses the empirical results. Section 6 concludes the study, and

makes recommendations to regulators and practitioners.

2 VALUE-AT-RISK AND EXPECTED SHORTFALL

The VaR analysis was formally introduced as a market risk management tool in the technical document Riskmetrics,

published by J.P.Morgan. However, it was the endorsement of the use of VaR for regulatory purposes byBCBS in 1996

that established VaR as themost commonly used risk measure.

VaR. Given some confidence level 𝛼 ∈ (0,1), the VaR of a portfolio with loss L at the confidence level 𝛼 is given by

the smallest number l, such that the probability of loss L exceeding l is no larger than (1 − 𝛼):

VaR𝛼 = inf
{
l ∈ ℝ : Pr(L > l) ≤ (1 − 𝛼)

}
,

= inf
{
l ∈ ℝ : FL(l) ≥ 𝛼

}
,

(1)

where FL(l) = Pr(L ≤ l) is the loss distribution function.

Despite its simple appearance, VaR has been subject of sustained criticism, with Artzner et al. (1997, 1999) being

themost noticeable. In their seminal papers, they identified twomajor weaknesses of VaR. The first weakness is asso-

ciated with the inability of VaR to capture “tail risk.” More specifically, VaR does not provide any information beyond

what is the most optimistic of the worst case scenarios. The second weakness of VaR is that it is not a coherent risk

measure (Artzner et al., 1999) because it does not always satisfy the axiomof subadditivity. The violation of this axiom

is of particular concern since it contradicts with the principle of diversification. For instance, if the regulator uses a

non-subadditive risk measure in determining the regulatory capital for banks, then banks have an incentive to legally

break up into various subsidiaries in order to reduce their regulatory capital requirements (McNeil et al., 2005).

Undoubtedly, the two weaknesses of VaR influenced the decision of BCBS to propose a shift from VaR to ES. This

is clearly noted in Basel Committee on Banking Supervision (2011): “ES avoids the major flaws of VaR” (Basel Com-

mittee on Banking Supervision, 2011, p. 25) because it “does account for the severity of losses beyond the confidence

threshold” and “is always subadditive and coherent” (Basel Committee on Banking Supervision, 2011, p. 20). Accord-

ing to Basel Committee on Banking Supervision (2013, 2016), the use of ES will “strengthen model standards” (Basel

Committee on Banking Supervision, 2013, p. 5) and “help to ensure . . . capital adequacy during periods of significant

financial market stress” (Basel Committee on Banking Supervision, 2016, p. 1).

The risk measure of ES has been proposed by Artzner et al. (1997) to overcome the tail risk and lack of coherence

weaknesses inherent in VaR.

ES. Given some confidence level 𝛼 ∈ (0,1), the ES of a portfolio with loss L at the confidence level 𝛼 is defined as

ES𝛼 = E(L ∣ L ≥ VaR𝛼), (2)

where VaR𝛼 is the VaR of a portfolio as defined in Equation (1).

whereas VaR does not account for the tail of the distribution, ES is the expected loss conditional on VaR being

violated; thus, ES is larger or equal to VaR. Moreover, ES is a coherent risk measure since it satisfies the axiom of

subadditivity (Artzner et al., 1999).Nevertheless, EShasbeenprovennot tobeelicitable (Gneiting, 2011),whichmakes
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MICHAELIDES AND POUDYAL 5

ESdifficult tobacktest, as opposed toVaR. For this reason,BCBSkeptVaRas the riskmeasure forbacktestingpurposes

(Basel Committee on Banking Supervision, 2019a).2

2.1 Theory versus probability

In practice, the calculation of VaR3

VaR𝛼,t = −𝜎t × F−1
1−𝛼

×Wt−1 , (3)

and ES4

ES𝛼,t = −𝜎t ×
f(F−1

1−𝛼
)

1−𝛼
g(.) ×Wt−1, (4)

involve the estimated volatility forecast, 𝜎t .
5

As it is clear from Equations (3) and (4), the calculations of both VaR and ES are severely affected by the estimated

volatility forecast, 𝜎t . This estimation depends crucially on the validity of the statistical assumptions underlying the

model used to forecast risk. Hence, model risk is a source of risk that arises solely from the use of inappropriate risk

forecast models.

On the other hand, the theoretical weaknesses of VaR and ES are stemming from the very nature of their defini-

tions. In fact, there is very little to be done from the perspective of probability that could address such theoretical

weaknesses. First, the tail risk weakness of VaR and lack of elicitability weakness of ES will remain for any under-

lying distribution. Second, although the axiom of subadditivity is only violated for fat-tailed distributions (Artzner

et al., 1999; Danielsson et al., 2013), employing the normal or another thin-tailed distribution in an attempt to satisfy

subadditivity will falsely assume less risk than actually is present.6

Therefore, even thoughES is superior toVaR froma theoretical perspective, fromapurely probabilistic perspective

both risk measures can yield equally inaccurate risk forecasts. On the whole, model risk, which is purely probabilistic

in nature, is a major source of risk in the process of risk measurement, and can be far more crucial than any of the

theoretical weaknesses associated with the risk measures of VaR and ES.

2 For additional information on the concepts and definitions, see (McNeil et al., 2005, Chapter 2).

3 The definition of VaR can be expressed as

Pr(rtWt−1 ≤ −VaR𝛼,t) = 1 − 𝛼,

where rt =
Wt−Wt−1
Wt−1

is the change in the value of the portfolio. Thus,

1 − 𝛼 = Pr

(
rt
𝜎t

≤ −
VaR𝛼,t
𝜎tWt−1

)
,

F−1
1−𝛼

= −
VaR𝛼,t
𝜎tWt−1

,

VaR𝛼,t = −𝜎t × F−1
1−𝛼

×Wt−1 .

4 The ES for a given distribution is calculated by direct integration. It involves the general term,
f(F−1

1−𝛼
)

1−𝛼
g(.), where f(.) and F(.) denote the probability density

function and cumulative distribution function of the underlying distribution, respectively, and g(.) is a non-negative function that depends on the underlying

distribution. For the normal standard distribution, g(.) = 1. For other standard distributions, g(.) > 1; seeMcNeil et al. (2005) for details.

5 In the two equations, F(.) and f(.) denote the cumulative distribution function and probability density function of the underlying distribution, respectively,

g(.) is a non-negative function that depends on the underlying distribution, andWt−1 is the value of the portfolio at time t − 1. Thus, unlike 𝜎t , which must be

estimated, the rest of the components in the equations are known.

6 The trade-off between coherence and underestimation of risk occurs because the tails of financial return distributions aremuch thicker than for the normal;

see, for example, Mandelbrot (1963).
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6 MICHAELIDES AND POUDYAL

3 RISK FORECAST MODELS

3.1 Commonly used models

In this paper,we first consider themost commonlyused risk forecastmodels (Danielssonet al., 2016): historical simula-

tion (HS),moving average (MA), exponentiallyweightedmoving average (EWMA)7, normal generalized autoregressive

conditional heteroskedasticity (NGARCH), and Student’s t GARCH (StGARCH). These models are commonly used by

various financial institutions, including banks regulated by the Basel Accords. The conditional variances of the most

commonly used risk forecast models (except HS, which is nonparametric) are stated below8; for a detailed description

of thesemodels, see Danielsson (2011).

HS. The VaR at confidence level 𝛼 is defined as the negative (T × (1 − 𝛼)) th value in the sorted return vector,

multiplied be themonetary value of the portfolio.

MA. The conditional variance ofMA is given by

𝜎2t =
1
WE

WE∑
i=1

r2t−i , (5)

where rt is the return for day t, andWE denotes the length of the estimation window.

EWMA. The conditional variance of EWMA is given by

𝜎2t = (1 − 𝜆)r2t−1 + 𝜆𝜎2t−1, (6)

where 0 < 𝜆 < 1 denotes a decay factor.

NGARCH. The conditional variance of NGARCH(p, q) is given by

𝜎2t = 𝜔 +
∑p

i=1𝛼ir
2
t−i +

∑q
j=1𝛽j𝜎

2
t−j , (7)

where 𝜔, {𝛼i , i = 1,2,… , p}, and {𝛽j , j = 1,2,… , q} are estimable parameters. Restrictions imposed on parameters are

necessary to ensure positive volatility forecasts.

StGARCH. The residuals of StGARCH(p, q; 𝜈) are Student’s t distributed with 𝜈 degrees of freedom. The degrees

of freedom, 𝜈, is estimated as an extra parameter along with the NGARCH model parameters. Similar to NGARCH,

restrictions imposed on parameters are necessary to ensure positive volatility forecasts.

3.2 The proposed model

In addition to themost commonly usedmodels,we also consider the proposed t-StARmodel. Thismodel is a traditional

autoregressivemodel that assumes the Student’s t distribution and incorporates orthogonal trend polynomials.

The conditional variance of t-StAR(p; 𝜈) is given by

𝜎2t =

(
𝜈𝜔2

𝜈 + p − 2

)[
1 +

1
𝜈

[∑p
i=1

(
rt−i − 𝜇t−i(t)

)
Σ−1

(
rt−i − 𝜇t−i(t)

)]]
, (8)

7 EWMA is not permitted under theBasel Accords for the purpose of calculatingVaRbecause its exponentialweights decline to zero very quickly (Danielsson,

2011). However, this model is an option for nonregulatory financial institutions.

8 For all parametric models, the volatility forecast for day t (see Equation 3) is calculated as the square root of the conditional variance forecast for day t, that

is, 𝜎t =
√
𝜎2t .
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MICHAELIDES AND POUDYAL 7

where 𝜔2 is a scaling variance constant, Σ is the variance–covariance matrix, and 𝜇t−i(t) is the time-varying uncondi-

tionalmeanof rt−i , for i = 1,2,… , p. The degrees of freedomof the Student’s tdistribution, 𝜈, is an estimable parameter.

The degrees of freedom for the conditional Student’s tdistribution is equal to 𝜈 plus the number of lagged conditioning

variables, p.9

The proposed model has several advantages. First, it does not assume that returns are normally distributed. Going

back at least to Mandelbrot (1963), many studies argue that the peak of the return distribution is much higher and

the tails aremuch thicker than for the normal distribution. This non-normal behavior of returns suggests replacing the

normal distribution with another distribution from the elliptically symmetric family (Fang et al., 1990). Distributions

within the elliptical family allow for a heteroskedastic conditional variance while retaining the bell-shaped symmetry

and linearity of the conditional mean (Kelker, 1970). Among the members of the elliptical family, the Student’s t is the

most commonly used non-normal distribution formodeling financial returns (Bollerslev, 1987) and for forecasting risk

(Danielsson, 2011).

Second, the conditional variance of the model ensures positive definiteness of the variance–covariance matrix

estimate without requiring complicated and unverifiable parameter restrictions (Heracleous, 2006), which often

cause computational problems such as singularities. Third, the model incorporates orthogonal trend polynomials10

to capture the time-varying volatility exhibited by returns (Michaelides & Spanos, 2020). Therefore, the conditional

variance of the model is not only a function of the conditioning variables (heteroskedastic), but also a function of time

(time-heterogeneous) via the unconditional mean 𝜇(t).

4 DATA AND METHODOLOGY

4.1 Data

The data used in this paper are a sample from the major assets classes, and includes equities, fixed income, com-

modities, and currencies.We present results for nine individual assets (see Table 1)11, which are treated as univariate

portfolios. In order to determine the relative change in the price of the assets over trading days, asset prices are con-

verted to log returns using adjusted daily closing prices.12 While we only present results for nine assets treated as

univariate portfolios, we have also examined other assets, as well as bivariate and multivariate portfolios containing

assets from various asset classes. Reasonable variations in the definitions of portfolios do not seem to particularly

affect the overall picture of the empirical results, and thus do not alter themain conclusions of this paper.

4.2 Sample period

The sample period consists of the estimationwindow, {WEi , i = 1,2,… , m}, and the testing window, {WTi , i = 1,2,… , n}.

Therefore, the entire sample period has a length of m + n trading days, with m being the length of the estimation

9 For additional information about the (conditional) Student’s t distribution, see Fang et al. (1990). For additional information regarding the conditional

variance of Student’s t regression and autoregressionmodels, see Spanos (1994) andHeracleous (2006).

10 In the analysis, we use the Gram–Schmidt orthonormal trend polynomials. These polynomials offer the flexibility of extending them to higher orders

without giving rise to collinearity problems; seeMichaelides and Spanos (2020) for details.

11 Six of the nine assets are the same as the ones used by (Danielsson, 2002, tab. I).

12 OnApril 20, 2020, the front-monthWest Texas Intermediate (WTI) crude oil contract dropped306% for the session, to settle at negative $37.63 (−$37.63)

a barrel on the New YorkMercantile Exchange. To determine the relative change in the price of crude oil on April 20 and April 21, 2020, simple returns were

used instead of log returns.
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8 MICHAELIDES AND POUDYAL

TABLE 1 Dataset information.

Asset Asset class Description Ticker

S&P 500 Equity U.S. equity index SPX

Nikkei Equity Japan equity index NKY

Hang Seng Equity Hong Kong equity index HSI

Microsoft Equity Microsoft Corporation stock price MSFTUS

U.S. bond Fixed Income S&PU.S. treasury bond total return index SPBDUSBT

Oil Commodity Crude oil,West Texas Intermediate, price CL1

Gold Commodity Gold, 100 oz., price GC1

GBP/USD Currency British pound/U.S. dollar cross rate GBPUSD

MYR/GBP Currency Malaysian ringgit/British pound cross rate MYRGBP

Note: The table lists the assets used in the analysis of this paper. These assets include equities, fixed income, commodities,

and currencies. Asset prices are obtained from Bloomberg. The table provides descriptions of the assets and their Bloomberg

ticker symbols. In the analysis, these assets are treated as univariate portfolios.

window and n being the length of the testing window. The forecasting of daily volatility across the testing window is

carried out over different estimation windows; specifically, five different estimation windows of 100, 250, 500, 1000,

and 2000 days. The testing window starts on the first trading day after the detected structural break of the Great

Recession, and runs through the last trading day of May 2021. As discussed below, the structural break point date of

the Great Recession varies from one portfolio to another; thus the length of the testing window is not the same for

all portfolios.

4.3 Structural breaks and testing periods

For each of the portfolios considered, we divide the testing window into four testing periods: the entire roughly 14-

year period starting at the beginning of the Great Recession and ending on the last trading day of May 2021, the two

volatile subperiods of theGreat Recession andCOVID-19 recessions, and the relatively stable subperiod from the end

of the Great Recession to the start of the COVID-19 recession. To detect the volatility structural breaks associated

with the Great Recession and COVID-19 recessions, we use the sup MZ test13 of Ahmed et al. (2017). The rationale

for using this test is that it has been shown to have better empirical performance in detecting structural changes in the

presence of heteroskedasticity (typical of financial time series) than other widely used tests, such as the sup F test of

Quandt (1960); see Ahmed et al. (2017).

Figure 1 plots the daily log returns of the S&P500 (blue line). The red line illustrates the supMZ statistics produced

by the sup MZ test. The positions of the maxima of the sup MZ function are used to locate the structural breaks in

volatility associated with the Great Recession and COVID-19 recessions. As shown in Figure 1, the structural break

point dates for the S&P 500 are determined as July 19, 2007, June 22, 2009, and February 21, 2020. For the purpose

of our analysis, these dates represent the baseline of the start of the Great Recession, the end of the Great Recession

(or, equivalently, the start of the post-Great Recession/pre-COVID-19 subperiod), and the start of COVID-19 reces-

sion, respectively. Comparing these dates with the National Bureau of Economic Research (NBER) official recession

13 The supMZtest is anatural extensionof theMZtest ofMaasoumiet al. (2010).While the latter tests for structural changesat a fixedandknownbreakpoint,

the supMZ test extends it to the case of the unknown breakpoint.
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MICHAELIDES AND POUDYAL 9

F IGURE 1 Structural breaks for the S&P 500 returns. The figure is used as an illustrative example to show how
the supMZ test of Ahmed et al. (2017) is employed to identify the structural break point dates for the S&P 500. The
blue line represents the S&P 500 returns. The red line represents the supMZ statistics produced by the supMZ test.
The structural break point dates for the S&P 500 are determined as July 19, 2007, June 22, 2009, and February 21,
2020. These three dates represent the baseline of the start of the Great Recession, the end of the Great Recession
(or, equivalently, the start of the post-Great Recession/pre-COVID-19 subperiod), and the start of the COVID-19
recession, respectively.

dates,14 it seems that the supMZ test identifies volatility structural breaks rather accurately.15 The supMZ test does

not detect a structural change in volatility to determine the location of the structural break date associated with the

end of the COVID-19 recession. This implies that the impact of the COVID-19 pandemic on the volatility of finan-

cial markets was ongoing at the time we performed our analysis. The last day in our sample is the last trading day of

May 2021.

As canbe seen inFigure1, the supMZtest identifies additional structural changes in volatilitywithin thepost-Great

Recession/pre-COVID-19 subperiod. For instance, the test identified two structural breaks inmid-2010and late2011.

These short periods of market turbulence are, for simplicity, ignored. Therefore, we assume that the subperiod from

the end of the Great Recession to the start of COVID-19 recession is a stable period.

Similar figures to Figure 1 are not presented for the rest of the portfolios. The structural break dates identified

by the sup MZ test, and thus the four testing periods, do not vary significantly from one portfolio to another. Panel

A of Table 2 reports the structural break point dates for each portfolio, as identified by the sup MZ test. These dates

represent the baseline start dates of the three testing subperiods. The date ranges of these testing subperiods are

reported in Panel B of Table 2. Each subperiod begins on the first trading day after the corresponding structural break

point date, and ends on the next identified structural break point date. The end date of the COVID-19 subperiod is the

14 The NBER’s Business Cycle Dating Committee (BCDC) maintains a chronology of U.S. business cycles. The chronology identifies the months of peaks

and troughs that frame economic expansions and recessions based on a range of monthly measures of aggregate real economic activity, including real

personal income less transfers, nonfarm payroll employment, employment as measured by the household survey, real personal consumption expenditures,

wholesale-retail sales adjusted for price changes, and industrial production. According to the NBER’s BCDC, the official beginning and ending dates of

the Great Recession and COVID-19 recessions in the United States are December 2007 to June 2009 (18 months) and February 2020 to April 2020 (2

months), respectively.

15 Though financial markets and the real economy do not move together at the same time, it seems that the structural break point dates detected by the sup

MZ test are similar to theNBERofficial recessiondates. Thebaseline enddate of theGreatRecession (June22, 2009) andbaseline start date of theCOVID-19

(February 21, 2020) recessions detected by the supMZ test are about identical to theNBERofficial dates (June 2009 and February 2020). On the other hand,

the baseline start date of theGreat Recession detected by the supMZ test (July 19, 2007) is about 6months prior to theNBERofficial date (December 2007).

This baseline date does not seem unreasonable. Halfway through 2007, United States publicly traded companies filed for bankruptcy at a record base. The

latter was almost immediately reflected in theUnited States andworld financial markets. Moreover, this baseline date is in support of the belief that financial

markets oftenmove in anticipation of the real economy (see, for example, Stock &Watson, 2003).
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10 MICHAELIDES AND POUDYAL

TABLE 2 Structural breaks and testing periods.

Panel A: Structural break point dates

Post-GR/pre-COVID-19

Great Recession (GR) (stable period) COVID-19

S&P 500 2007-07-19 2009-06-22 2020-02-21

Nikkei 2007-08-16 2009-05-19 2020-02-28

Hang Seng 2007-07-26 2009-06-10 2020-03-06

Microsoft 2007-07-31 2009-07-28 2020-02-19

U.S. bond 2007-06-12 2009-07-31 2020-02-20

Oil 2007-08-15 2009-07-08 2020-03-05

Gold 2007-08-02 2009-04-06 2020-02-27

GBP/USD 2007-07-24 2009-06-02 2020-03-13

MYR/GBP 2007-07-26 2009-06-02 2020-03-02

Panel B: Testing subperiods

Post-GR/pre-COVID-19

Great Recession (GR) (stable period) COVID-19

S&P 500 2007-07-20 − 2009-06-22
(485 days)

2009-06-23 − 2020-02-21
(2685 days)

2020-02-24 − 2021-05-28
(320 days)

Nikkei 2007-08-17 − 2009-05-19
(426 days)

2009-05-20 − 2020-02-28
(2639 days)

2020-03-02 − 2021-05-31
(305 days)

Hang Seng 2007-07-27 − 2009-06-10
(459 days)

2009-06-11 − 2020-03-06
(2650 days)

2020-03-09 − 2021-05-31
(303 days)

Microsoft 2007-08-01 − 2009-07-28
(502 days)

2009-07-29 − 2020-02-19
(2658 days)

2020-02-20 − 2021-05-28
(322 days)

U.S. bond 2007-06-13 − 2009-07-31
(535 days)

2009-08-03 − 2020-02-20
(2638 days)

2020-02-21 − 2021-05-28
(319 days)

Oil 2007-08-16 − 2009-07-08
(477 days)

2009-07-09 − 2020-03-05
(2686 days)

2020-03-06 − 2021-05-28
(312 days)

Gold 2007-08-03 − 2009-04-06
(422 days)

2009-04-07 − 2020-02-27
(2745 days)

2020-02-28 − 2021-05-28
(317 days)

GBP/USD 2007-07-25 − 2009-06-02
(485 days)

2009-06-03 − 2020-03-13
(2813 days)

2020-03-16 − 2021-05-31
(316 days)

MYR/GBP 2007-07-27 − 2009-06-02
(483 days)

2009-06-03 − 2020-03-02
(2804 days)

2020-03-03 − 2021-05-31
(324 days)

Note: Panel A of the table reports the structural break point dates. These dates are identified by the sup MZ test of Ahmed

et al. (2017), and represent the baseline start dates of the three testing subperiods. Panel B of the table reports the date range

of the three subperiods within the entire testing period. Each subperiod begins on the first trading day after the correspond-

ing structural break point date, and ends on the next identified structural break point date. The end date of the COVID-19

subperiod is the last trading day of May 2021. The number of trading days contained in each testing subperiod is reported

in parentheses. The entire testing period (testing window) is determined by the first date of the Great Recession subperiod

and the last date of the COVID-19 subperiod. Thus, the number of trading days contained in the entire testing period is the

summed number of days of the three testing subperiods.

last trading day of May 2021. The entire testing period (testing window) is determined by the first date of the Great

Recession subperiod and the last date of the COVID-19 subperiod.

4.4 Descriptive statistics

Table 3 provides basic descriptive statistics for each portfolio over the four testing periods. The reported descrip-

tive statistics are not surprising or out of the ordinary. For instance, certain asset classes, such as equities and
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12 MICHAELIDES AND POUDYAL

F IGURE 2 VaR calculation process. The figure graphically summarizes the VaR calculation process.WE denotes a
moving estimation window of lengthm.WT denotes a testing window of length n. The entire sample period has a
length ofm + n trading days. (𝜎m+1,𝜎m+2,… ,𝜎m+n) denote n 1-day-ahead volatilities forecasted bymovingWE

throughoutWT . The n 1-day-ahead volatilities are subsequently used to calculate n daily VaR forecasts, denoted as
(VaR1, VaR2,… , VaRn).

commodities, are on average more volatile than others, such as fixed income and currencies.16 These more volatile

asset classes exhibit larger price swings in either direction over a period of time. Besides, it is apparent that the

volatility of returns increases during periods of financial crisis. Moreover, the descriptive statistics indicate clear

deviations from the normal distribution. More specifically, the positive excess kurtoses indicate strong evidence of

leptokurticity of returns, while the skewnesses suggest possible deviations from symmetry of returns.

4.5 VaR calculation

The logical starting point when calculating daily VaR forecasts is to use an estimationwindow (WE) of lengthm to fore-

cast the one-day-ahead volatility (𝜎m+1). This one-day-ahead volatility is the forecasted volatility of the first trading

day in the testingwindow (WT ). The process is repeated bymoving the estimationwindow throughout the testingwin-

dow. Assuming the length of the testing window is equal to n, then n number of one-day-ahead volatilities, denoted

as (𝜎m+1,𝜎m+2,… ,𝜎m+n), are forecasted; that is, one volatility for each trading day within the testing window. Using

Equation (3), the n forecasted volatilities are subsequently used to calculate n number of daily VaR forecasts, denoted

as (VaR1, VaR2,… , VaRn). Figure 2 graphically summarizes the VaR calculation process.

In our analysis, we forecast the one-day-ahead volatilities using estimation windows of 100, 250, 500, 1000, and

2000 days, while the daily VaR forecasts are calculated for the regulatory confidence level of 99%. The latter implies

16 The two currency pairs used in the analysis are not particularly volatile. Other, less stable currency pairs, are likely to exhibit higher volatility.
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MICHAELIDES AND POUDYAL 13

that there is a 1% chance of having a realized percentage loss that exceeds theVaR forecast on a particular trading day.

The VaR calculation process is performed for each portfolio using different risk forecast models (see Section 3).

4.6 Backtesting and violation ratios

To assess and compare the forecasting performance of the various risk models, we use the procedure of backtesting;

seeDanielsson (2011) for details. This procedure is similar to the one employed by bankswhen calculating backtesting

multipliers, which are used when determining market risk capital requirements. Backtesting involves the comparison

of thedailyVaR forecasts, (VaR1 , VaR2,… , VaRn), to the realized returns, (r1 , r2,… , rn).When the realized return exceeds

the VaR forecast on a particular trading day t, a violation, denoted as 𝜂t = 1, is recorded. The repeated procedure of

comparing ex ante VaR forecasts to ex post returns generates a sequence of violations:

𝜂 := (𝜂1, 𝜂2,… , 𝜂n),

where 𝜂t =

{
1 if rt ≤ −VaRt
0 if rt > −VaRt

, ∀t = 1,2,… , n.
(9)

The sequence of violations, which is simply a sequence of 0’s and 1’s, is subsequently used to calculate violation

ratios. A violation ratio is calculated as the total number of violations divided by the expected number of violations

within a testing period. For instance, the violation ratio for the entire testing period is calculated as

VR =
∑
𝜂

(1 − 𝛼) × n
, (10)

where
∑
𝜂 is the total number of violations within the entire testing period, 𝛼 denotes the confidence level (99% in our

analysis), n denotes the length of the entire testing period, and ((1 − 𝛼) × n) is the expected number of violationswithin

the entire testing period.

In our analysis, we calculate violation ratios for the four testing periods considered; these are, the three testing sub-

periods of the Great Recession, post-Great Recession/pre-COVID-19, and COVID-19, and the entire testing period.

In general, violation ratios close to 1 are considered to be the greatest, reflecting adequate forecasting performance

of a risk model, whereas ratios below and above 1 are indicative of over- and under-forecasting performance of a risk

model, respectively. Of course, it is important to take into consideration that violation ratios are quite sensitive to the

length of the testing period, which makes the ratios not interpretable in an absolute sense but only relative to other

ratios. Table 4 presents the best possible violation ratios achievable for each portfolio over the four testing periods.

As can be seen, the best possible violation ratios are close to but not exactly equal to 1. Hence, the violation ratios

reported in the analysis are used for comparative purposes in order to identify the best performing model among the

risk forecast models considered.

5 EMPIRICAL RESULTS

Table 5 presents the 99% VaR violation ratios for the risk forecast models considered in this paper. Violation ratios

are reported for the two volatile testing subperiods of the Great Recession and COVID-19, the stable post-Great

Recession/pre-COVID-19 testing subperiod, and the entire testing period. These violation ratios are calculated using

Equation (10). Violation ratios in bold indicate the best performing risk forecast model. These violation ratios are the

ratios closest to 1. Violation ratios below and above 1 are indicative of over- and under-forecasting performance of a

risk model, respectively. An asterisk (∗) denotes whether a violation ratio is the best possible violation ratio. Numbers

inparentheses refer to thenumberof singularities encounteredduring theVaRcalculationprocess.When singularities

are encountered, they are removed from the calculation of the violation ratios.

 15406288, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/fire.12368 by C

yprus U
niversity O

f, W
iley O

nline L
ibrary on [17/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 MICHAELIDES AND POUDYAL

TABLE 4 Best possible violation ratios.

Post-GR/pre-COVID-19

Great Recession (GR) (stable period) COVID-19 Entire period

Obs Under Over Obs Under Over Obs Under Over Obs Under Over

S&P 500 485 0.82 1.03 2685 0.97 1.01 320 0.94 1.25 3490 0.97 1.00

Nikkei 426 0.94 1.17 2639 0.99 1.02 305 0.98 1.31 3370 0.98 1.01

Hang Seng 459 0.87 1.09 2650 0.98 1.02 303 0.99 1.32 3412 1.00 1.03

Microsoft 502 1.00 1.20 2658 0.98 1.02 322 0.93 1.24 3482 0.98 1.01

U.S. bond 535 0.93 1.12 2638 0.99 1.02 319 0.94 1.25 3492 0.97 1.00

Oil 477 0.84 1.05 2686 0.97 1.01 312 0.96 1.28 3475 0.98 1.01

Gold 422 0.95 1.18 2745 0.98 1.02 317 0.95 1.26 3484 0.98 1.00

GBP/USD 485 0.82 1.03 2813 1.00 1.03 316 0.95 1.27 3614 1.00 1.02

MYR/GBP 483 0.83 1.04 2804 1.00 1.03 324 0.93 1.23 3611 1.00 1.02

Note: The table reports the best possible violation ratios achievable for each portfolio. The best possible violation ratios are

provided for the two volatile testing subperiods of the Great Recession and COVID-19, the stable post-Great Recession/pre-

COVID-19 testing subperiod, and the entire testing period. Obs is the number of return observations in each period. Under

andOver represent the best possible violation ratios below and above 1, respectively. For instance, the best possible violation

ratios for S&P 500 for the testing subperiod of the Great Recession are calculated as 4/(0.01×485) and 5/(0.01×485). The

violation ratios reported in this table are calculated under the assumption that no singularities are encountered during the

VaR calculation process.

5.1 HS, MA, and EWMA

HS, MA, and EWMA17 are the simplest among the risk forecast models considered, in the sense that they are com-

putationally easy to implement. It is worth mentioning that HS is the most common risk forecast model preferred in

the industry (O’Brien & Szerszen, 2017; Danielsson et al., 2016); it is commonly used by banks regulated by the Basel

Accords,18 while it is perhaps almost exclusively used by nonregulatory financial institutions.

It is clear from the violation ratios that the forecasting performance of the three models is not satisfactory. The

violation ratios for portfolios that exhibit relatively high volatility (e.g., S&P 500) are consistently way above 1. This

indicates that these simple models underestimate risk for volatile portfolios in times of both financial crisis and sta-

bility. The only exception is the violation ratios of HS for the stable post-Great Recession/pre-COVID- 19 subperiod.

These ratios are closer to 1, yet they appear to be quite sensitive to the length of the estimation window. The three

models seem to have a slightly better forecasting ability for the more stable portfolios (e.g., U.S. Bond) whose returns

are not particularly volatile. However, those violation ratios are not consistent across different testing periods and

estimation windows.

5.2 NGARCH and StGARCH

The violation ratios reported in Table 5 are for the most common specifications of the NGARCH(p, q) and

StGARCH(p, q; 𝜈) models that employ only one lag (see Danielsson, 2011), resulting in the NGARCH(1,1) and

StGARCH(1,1;𝜈) with 𝜈 degrees of freedom.

17 In the analysis, the decay factor, 𝜆, in EWMA is set at 0.94, as suggested by Riskmetrics.

18 For instance, many large banks, such as Bank of America and J.P. Morgan, calculate trading risk via HS for their annual reports (Danielsson et al., 2016).
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MICHAELIDES AND POUDYAL 15

TABLE 5 99%VaR violation ratios.

Testing period WE HS MA EWMA NGARCH StGARCH t-StAR

Panel A: S&P500

Great Recession (GR) 100 1.65 4.33 3.30 3.51 0.41 (1) 1.03∗

250 2.68 7.63 3.30 3.92 0.41 0.82∗

500 5.36 8.66 3.30 4.33 0.21 1.03∗

1000 7.63 11.55 3.30 4.54 1.65 1.24

2000 6.39 8.66 3.30 3.71 1.03∗ 0.82∗

Post-GR/pre-COVID-19 100 1.04 2.46 2.38 2.50 1.08 (11) 0.89

(stable period) 250 0.56 2.42 2.38 2.46 0.67 1.01∗

500 0.78 2.20 2.38 2.12 0.60 1.01∗

1000 0.74 1.38 2.38 2.09 0.56 0.97∗

2000 0.48 0.97∗ 2.38 2.12 0.74 0.93

COVID-19 100 1.56 4.06 4.06 2.81 1.56 1.25∗

250 2.50 4.06 4.06 3.12 1.25∗ 1.25∗

500 3.12 4.06 4.06 3.44 1.56 0.94∗

1000 3.75 5.62 4.06 3.44 1.25∗ 0.94∗

2000 5.31 6.88 4.06 3.75 1.56 0.94∗

Entire period 100 1.17 2.87 2.66 2.66 1.04 (12) 0.95

250 1.03 3.30 2.66 2.72 0.69 0.97∗

500 1.63 3.27 2.66 2.55 0.63 1.00∗

1000 1.98 3.18 2.66 2.55 0.77 1.03

2000 1.75 2.58 2.66 2.49 0.86 0.92

Panel B: Nikkei

Great Recession (GR) 100 1.41 3.52 1.88 2.58 1.17∗ 1.17∗

250 1.64 4.93 1.88 1.64 0.94∗ 0.94∗

500 3.52 6.34 1.88 1.64 1.17∗ 0.94∗

1000 5.16 7.51 1.88 1.88 1.41 1.41

2000 5.40 7.75 1.88 1.41 1.41 0.94∗

Post-GR/pre-COVID-19 100 1.10 2.12 2.31 2.39 0.84 (7) 1.06

(stable period) 250 0.91 1.93 2.31 2.12 0.61 0.99∗

500 1.02∗ 1.52 2.31 2.01 0.68 0.95

1000 0.87 1.29 2.31 2.08 0.64 0.99∗

2000 0.49 0.99∗ 2.31 2.08 0.80 0.95

COVID-19 100 1.64 2.62 1.97 2.30 0.98∗ 0.98∗

250 0.98∗ 2.62 1.97 3.28 0.66 0.98∗

500 1.31 2.95 1.97 2.62 0.00 0.98∗

1000 1.97 3.61 1.97 2.62 0.00 0.98∗

2000 1.97 2.62 1.97 2.62 0.00 0.98∗

(Continues)
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16 MICHAELIDES AND POUDYAL

TABLE 5 (Continued)

Panel B: Nikkei

Entire period 100 1.19 2.34 2.23 2.40 0.89 (7) 1.07

250 1.01∗ 2.37 2.23 2.17 0.65 1.04

500 1.36 2.26 2.23 2.02 0.68 1.01∗

1000 1.51 2.28 2.23 2.11 0.68 0.98∗

2000 1.25 1.99 2.23 2.05 0.80 0.98∗

Panel C: Hang Seng

Great Recession (GR) 100 2.18 3.70 2.18 2.40 0.87∗ 0.87∗

250 2.40 5.23 2.18 2.61 0.87∗ 1.09∗

500 4.58 7.19 2.18 2.40 0.87∗ 0.87∗

1000 6.97 11.33 2.18 2.40 0.44 1.31

2000 6.54 10.68 2.18 2.40 0.65 0.87∗

Post-GR/pre-COVID-19 100 1.09 2.15 2.26 2.45 0.64 (9) 0.98∗

(stable period) 250 0.64 1.92 2.26 2.19 0.57 (13) 1.06

500 0.98∗ 1.92 2.26 2.04 0.64 1.02∗

1000 0.45 1.17 2.26 1.92 0.49 0.94

2000 0.34 0.87 2.26 1.85 0.68 0.91

COVID-19 100 2.31 3.36 2.31 1.98 0.66 0.99∗

250 1.98 2.64 2.31 2.64 0.66 1.32∗

500 2.31 2.97 2.31 2.64 0.99∗ 1.32∗

1000 2.64 3.30 2.31 2.97 0.66 0.99∗

2000 2.97 3.30 2.31 2.64 0.66 0.99∗

Entire period 100 1.35 2.49 2.26 2.40 0.68 (9) 1.03∗

250 1.00∗ 2.43 2.26 2.29 0.62 (13) 1.03∗

500 1.58 2.73 2.26 2.14 0.70 1.00∗

1000 1.52 2.73 2.26 2.08 0.50 1.00∗

2000 1.41 2.40 2.26 1.99 0.67 0.97

Panel D:Microsoft

Great Recession (GR) 100 1.20∗ 2.39 1.79 2.39 1.20∗ 1.00∗

250 1.59 3.78 1.79 2.79 1.00∗ 1.00∗

500 3.59 5.58 1.79 2.79 1.00∗ 1.00∗

1000 5.38 6.97 1.79 3.19 0.60 1.00∗

2000 2.59 4.58 1.79 2.19 0.80 1.20∗

Post-GR/pre-COVID -19 100 1.39 1.69 1.73 1.69 0.60 0.98∗

(stable period) 250 0.79 1.47 1.73 1.54 0.45 1.02∗

500 0.83 1.58 1.73 1.43 0.26 0.98∗

1000 0.75 1.17 1.73 1.32 0.23 0.94

2000 0.45 0.75 1.73 1.35 0.19 0.90

(Continues)
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MICHAELIDES AND POUDYAL 17

TABLE 5 (Continued)

Panel D:Microsoft

COVID-19 100 2.17 3.42 2.48 1.86 0.62 1.24∗

250 1.86 2.80 2.48 2.17 0.62 1.24∗

500 2.17 3.11 2.48 2.48 0.93∗ 1.24∗

1000 3.11 4.97 2.48 2.80 0.31 0.93∗

2000 4.35 4.97 2.48 3.11 0.31 1.24∗

Entire period 100 1.44 1.95 1.81 1.81 0.69 1.01∗

250 1.01∗ 1.92 1.81 1.78 0.55 1.01∗

500 1.35 2.30 1.81 1.72 0.43 0.98∗

1000 1.64 2.35 1.81 1.72 0.29 0.95

2000 1.12 1.69 1.81 1.64 0.29 1.01∗

Panel E: U.S. Bond

Great Recession (GR) 100 1.12∗ 1.12∗ 1.12∗ 0.75 0.29 (196) 0.75

250 1.87 2.06 1.12∗ 1.12∗ 0.37 (266) 0.93∗

500 3.36 4.30 1.12∗ 1.50 0.72 (397) 1.12∗

1000 4.67 5.79 1.12∗ 0.93∗ 0.00 (535) 1.12∗

2000 2.06 3.74 1.12∗ 0.56 0.00 (535) 0.93∗

Post-GR/pre-COVID-19 100 1.10 1.44 1.25 1.33 (4) 0.26 (716) 0.76

(stable period) 250 0.91 1.25 1.25 1.22 (5) 0.33 (1126) 0.72

500 0.91 1.29 1.25 1.06 (1) 0.00 (1528) 0.68

1000 0.80 1.14 1.25 1.02∗ 0.00 (2521) 0.61

2000 0.53 0.76 1.25 1.02∗ 0.00 (2638) 0.57

COVID-19 100 1.25∗ 2.51 2.51 2.19 1.00 (19) 0.94∗

250 0.94∗ 0.94∗ 2.51 1.88 0.97 (9) 0.94∗

500 1.57 1.57 2.51 1.88 1.03 (27) 1.25∗

1000 2.19 1.57 2.51 2.19 0.00 (285) 0.94∗

2000 3.45 3.45 2.51 2.51 0.00 (319) 0.94∗

Entire period 100 1.12 1.49 1.35 1.32 (4) 0.35 (931) 0.66

250 1.06 1.35 1.35 1.26 (5) 0.43 (1401) 0.80

500 1.35 1.78 1.35 1.20 (1) 0.26 (1952) 0.83

1000 1.52 1.89 1.35 1.12 0.00 (3341) 0.83

2000 1.03 1.46 1.35 1.09 0.00 (3492) 0.60

Panel F: Oil

Great Recession (GR) 100 1.05∗ 1.26 0.63 0.84∗ 0.42 1.05∗

250 1.68 3.56 0.63 1.26 0.42 1.05∗

500 3.98 5.87 0.63 0.84∗ 0.00 0.84∗

1000 6.29 6.92 0.63 1.05∗ 0.21 0.84∗

2000 5.45 6.08 0.63 1.05∗ 0.21 0.84∗

(Continues)
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18 MICHAELIDES AND POUDYAL

TABLE 5 (Continued)

Panel F: Oil

Post-GR/pre-COVID-19 100 0.86 2.23 2.23 2.08 0.67 1.04

(stable period) 250 0.86 2.08 2.23 1.94 0.78 1.01∗

500 1.27 2.35 2.23 1.71 0.86 1.01∗

1000 0.86 1.79 2.23 1.71 0.86 0.97∗

2000 0.48 1.30 2.23 1.82 0.78 0.93

COVID -19 100 1.28∗ 2.24 1.92 2.88 1.28∗ 1.28∗

250 1.28∗ 2.24 1.92 1.28 0.96∗ 1.28∗

500 2.56 4.17 1.92 1.60 0.96∗ 1.28∗

1000 4.49 4.81 1.92 1.92 1.28∗ 0.96∗

2000 5.13 4.81 1.92 12.90 (281) 1.92 1.28∗

Entire period 100 0.92 2.10 1.99 1.99 0.69 1.01∗

250 1.01∗ 2.30 1.99 1.78 0.75 0.95

500 1.76 2.99 1.99 1.58 0.75 1.01∗

1000 1.93 2.76 1.99 1.64 0.81 0.98∗

2000 1.58 2.27 1.99 1.82 (281) 0.81 1.01∗

Panel G: Gold

Great Recession (GR) 100 1.42 2.37 1.90 2.37 0.95∗ 1.18∗

250 1.66 3.79 1.90 1.90 1.18∗ 1.18∗

500 2.13 3.55 1.90 1.66 0.95∗ 1.18∗

1000 2.61 4.74 1.90 1.90 0.95∗ 1.18∗

2000 3.08 6.64 1.90 1.90 0.71 1.18∗

Post-GR/pre-COVID-19 100 0.91 1.97 2.15 2.22 0.59 (16) 1.02∗

(stable period) 250 0.73 1.93 2.15 1.93 0.59 (23) 1.06

500 0.84 1.60 2.15 1.86 (1) 0.51 (17) 1.02∗

1000 0.51 0.84 2.15 1.79 0.47 0.95

2000 0.44 0.87 2.15 1.46 0.51 0.91

COVID-19 100 1.26∗ 2.52 2.21 1.89 1.58 1.26∗

250 1.26∗ 2.21 2.21 2.21 0.95∗ 0.95∗

500 2.84 3.79 2.21 3.15 0.95∗ 1.26∗

1000 3.79 5.36 2.21 3.47 1.26∗ 0.95∗

2000 2.84 4.10 2.21 2.52 1.26∗ 1.26∗

Entire period 100 1.00∗ 2.07 2.12 2.21 0.72 (16) 0.95

250 0.89 2.18 2.12 1.95 0.69 (23) 0.98∗

500 1.18 2.04 2.12 1.95 (1) 0.61 (17) 1.00∗

1000 1.06 1.72 2.12 1.95 0.60 1.03

2000 0.98∗ 1.87 2.12 1.61 0.60 1.00∗

(Continues)
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MICHAELIDES AND POUDYAL 19

TABLE 5 (Continued)

Panel H: GBP/USD

Great Recession (GR) 100 2.27 4.12 2.68 2.68 0.66 (31) 0.82∗

250 2.06 5.57 2.68 2.47 0.67 (35) 0.82∗

500 3.71 7.42 2.68 2.47 0.73 (76) 0.82∗

1000 4.95 6.60 2.68 2.47 1.25 (5) 1.03∗

2000 5.77 6.60 2.68 2.47 1.24 1.03∗

Post-GR/pre-COVID-19 100 1.03∗ 1.64 1.81 1.56 0.50 (203) 1.03∗

(stable period) 250 0.78 1.49 1.81 1.49 0.48 (119) 1.00∗

500 0.96 1.24 1.81 1.56 0.52 (111) 0.92

1000 0.92 1.39 1.81 1.64 0.38 (184) 0.96

2000 0.60 1.07 1.81 1.64 0.52 (112) 0.92

COVID-19 100 0.95∗ 1.27∗ 1.27∗ 1.27∗ 0.32 (5) 0.95∗

250 0.32 0.63 1.27∗ 0.63 0.00 (3) 0.63

500 0.63 0.95∗ 1.27∗ 0.95∗ 0.32 0.95∗

1000 0.95∗ 1.27∗ 1.27∗ 1.27∗ 0.32 0.95∗

2000 0.95∗ 1.27∗ 1.27∗ 0.63 0.32 0.95∗

Entire period 100 1.19 1.94 1.88 1.69 0.50 (239) 0.94

250 0.91 1.96 1.88 1.55 0.46 (157) 1.02∗

500 1.30 2.05 1.88 1.63 0.53 (187) 1.02∗

1000 1.47 2.08 1.88 1.72 0.50 (189) 1.05

2000 1.33 1.83 1.88 1.66 0.60 (112) 1.00∗

Panel I: MYR/GBP

Great Recession (GR) 100 1.45 1.04∗ 0.83∗ 0.83∗ 0.24 (58) 0.83∗

250 2.07 1.66 0.83∗ 0.83∗ 0.49 (74) 0.83∗

500 3.52 3.93 0.83∗ 1.04∗ 0.21 (2) 1.04∗

1000 3.52 4.14 0.83∗ 0.83∗ 0.41 1.04∗

2000 4.14 4.76 0.83∗ 0.83∗ 0.41 0.83∗

Post-GR/pre-COVID-19 100 1.00∗ 1.32 1.50 1.53 0.55 (52) 1.00∗

(stable period) 250 1.03∗ 1.60 1.50 1.28 0.36 (14) 1.03∗

500 0.96 1.32 1.50 1.07 0.36 0.89

1000 1.00∗ 1.50 1.50 1.39 0.39 0.96

2000 0.96 1.36 1.50 1.50 0.46 0.93

COVID-19 100 1.23∗ 0.62 0.93∗ 1.85 0.64 (10) 0.62

250 0.62 1.23∗ 0.93∗ 1.23∗ 0.00 0.93∗

500 0.93∗ 1.23∗ 0.93∗ 1.23∗ 0.00 0.93∗

1000 0.31 0.93∗ 0.93∗ 0.93∗ 0.00 0.62

2000 0.31 0.93∗ 0.93∗ 0.62 0.00 0.62

(Continues)
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20 MICHAELIDES AND POUDYAL

TABLE 5 (Continued)

Panel I: MYR/GBP

Entire period 100 1.08 1.22 1.36 1.47 0.52 (120) 0.97

250 1.14 1.58 1.36 1.22 0.34 (88) 1.00∗

500 1.30 1.66 1.36 1.08 0.30 (2) 1.00∗

1000 1.27 1.80 1.36 1.27 0.36 0.97

2000 1.33 1.77 1.36 1.33 0.42 1.00∗

Note: The table presents the 99% VaR violation ratios for the risk forecast models considered in this paper. Panels A–I of

the table report the violation ratios for each of the nine portfolios employed in this paper. In each panel, violation ratios

are independently reported for the two volatile testing subperiods of the Great Recession and COVID-19, the stable post-

Great Recession/pre-COVID-19 testing subperiod, and the entire testing period. Furthermore, violation ratios are individually

reported for estimation windows (WE) of 100, 250, 500, 1000, and 2000 days. Each column of each panel presents viola-

tion ratios for each of the risk forecast models considered. These models are the Historical Simulation (HS), Moving Average

(MA), Exponentially Weighted Moving Average (EWMA), Normal Generalized Autoregressive Heteroskedastic (NGARCH),

Student’s t GARCH (StGARCH), and the proposed time-heterogeneous Student’s t Autoregressive (t-StAR). The reported

99%VaR violation ratios are calculated using Equation (10). Violation ratios in bold indicate the best performing risk forecast

model. These violation ratios are the ratios closest to 1. Violation ratios below and above 1 are indicative of over- and under-

forecasting performance of a risk model, respectively. An asterisk (∗) denotes whether a violation ratio is the best possible

violation ratio. Numbers in parentheses refer to the number of singularities encountered during the VaR calculation process.

When singularities are encountered, they are removed from the calculation of the violation ratios.

The violation ratios of the two GARCHmodels are fairly different. First, the ratios of NGARCH are comparable to

the ones of HS,MA, and EWMA. Specifically, the NGARCHmodel consistently underestimates risk for volatile portfo-

lios, whereas its forecasting performance appears to be slightly better for stable portfolios. In contrast, the violation

ratios of the StGARCH model are mainly below 1. This indicates that StGARCH consistently overestimates risk. The

only exception is the relatively good performance of the model for extremely volatile situations, that is, when risk is

forecasted for volatile portfolios across volatile periods.

One concern regarding these GARCH models, especially StGARCH, is the occurrence of singularities due to the

parameter restrictions imposed to ensure positive volatility. Tables A1 and A2 in Appendix A present the violation

ratios for estimations of the NGARCH(p, q) and StGARCH(p, q; 𝜈) models containing different lag polynomial degrees.

As can be seen from this table, the violation ratios do not seem to improve when the models contain additional

lags, while it is particularly noteworthy that the number of singularities encountered during the estimation process

increases with the number of lags.

5.3 t-StAR

For consistency purposes, the violation ratios reported in Table 5 are for the t-StAR(p; 𝜈) model that employs only

one lag, resulting in the t-StAR(1; 𝜈) with 𝜈 degrees of freedom. The violation ratios of t-StAR indicate clearly

that this model performs well for all portfolios and testing periods, whether volatile or not. Moreover, the ratios

are not sensitive to the length of the estimation window, while no singularities were encountered during the

estimation process.

Table A3 in Appendix A presents the violation ratios for estimations of the t-StAR(p; 𝜈) model containing differ-

ent lag polynomial degrees while keeping the degrees of freedom parameter constant. Similar to the NGARCH(p, q)

and StGARCH(p, q; 𝜈) models, the violation ratios are not particularly sensitive to the number of lags. The interesting

observation here is the direct relationship between degrees of freedom and violation ratios. In times of financial cri-

sis (i.e., times of high volatility), the best violation ratios are obtained for the lower degrees of freedom in the model.

Conversely, in times of financial stability (i.e., times of low volatility), the best violation ratios are obtained for the
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MICHAELIDES AND POUDYAL 21

TABLE 6 Model comparison.

Cases HS MA EWMA NGARCH StGARCH t-StAR

Volatile portfolios 90 10 (9) 2 (2) 0 4 (4) 28 (27) 86 (72)

Stable portfolios 45 18 (12) 12 (11) 20 (20) 15 (15) 0 30 (29)

Volatile periods 90 15 (15) 11 (11) 20 (20) 17 (17) 28 (27) 85 (82)

Stable periods 45 13 (6) 3 (2) 0 2 (2) 0 31 (19)

Volatile×Volatile 60 7 (7) 0 0 4 (4) 28 (27) 60 (57)

Volatile× Stable 30 3 (2) 2 (2) 0 0 0 26 (15)

Stable×Volatile 30 8 (8) 11 (11) 20 (20) 13 (13) 0 25 (25)

Stable× Stable 15 10 (4) 1 (0) 0 2 (2) 0 5 (4)

Volatile and stable 135 28 (21) 14 (13) 20 (20) 19 (19) 28 (27) 116 (101)

Entire period 45 9 (6) 0 0 1 (0) 0 38 (26)

All 180 37 (27) 14 (13) 20 (20) 20 (19) 28 (27) 154 (127)

Note: The table reports the number of times each risk forecast model is selected as the best performing model. Numbers

in parentheses refer to the number of times the best possible violation ratios are achieved. Cases is the total number of

model evaluations (portfolios × testing periods × estimation windows). The groups are as follows. Volatile portfolios: S&P

500, Nikkei, Hang Seng,Microsoft, Oil, Gold; Stable portfolios: U.S. Bond, GBP/USD,MYR/GBP; Volatile periods: Great Reces-

sion, COVID-19; Stable periods: post-Great Recession/pre-COVID-19. The interaction groups are groups of interacting cases

within volatile/stable portfolios and volatile/stable periods. The entire testing period is not included in the grouping; it is

reported separately and included in the “all” cases combined group. The sumof the reported numbersmay exceed the number

of cases becausemore than onemodels may simultaneously be selected as the best performingmodel.

higher degrees of freedom in the model. The latter is not as surprising because the area in the tails of the Student’s t

distribution gets smaller with increasing degrees of freedom.

5.4 Model comparison

Table 6 reports the number of times each risk forecast model is selected as the best performing model. Numbers

in parentheses refer to the number of times the best possible violation ratios are achieved. The numbers are inde-

pendently reported for volatile and stable portfolios, volatile and stable periods, interactions within volatile/stable

portfolios and volatile/stable periods, the entire testing period, and all cases combined.

Themodel evaluation results indicate clearly that the proposed t-StARmodel has the best forecasting performance

among the models considered. The model seems to provide accurate risk forecasts across different portfolios, testing

periods, and estimation windows. Specifically, the model provided more accurate risk forecasts than the rest of the

models in more than 85% of the times, while of those only in less than 20% of the times it did not achieve the best

possible violation ratios.

The model evaluation numbers in Table 6 also show clearly that models with simple probabilistic structure and

models that assume thenormal distribution cannot be considered reliable. The forecasting performance of thosemod-

els is in general poor, as well as inconsistent and unstable across different portfolios, testing periods, and estimation

windows. Such models seem to provide comparatively better accurate risk forecasts for stable portfolios that

exhibit low volatility of returns, yet even for those portfolios their performance is not good enough. The forecasting

performance of t-StAR is at least four times as good as that of models with simple probabilistic structure and models

that assume the normal distribution. Hence, such models should be avoided in practice as they tend to consistently

underestimate risk.

An interesting observation is thatHShas the best performance (better than t-StAR) for extremely stable situations,

that is, when risk is forecasted for stable portfolios across stable periods. This result indicates that the main problem

 15406288, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/fire.12368 by C

yprus U
niversity O

f, W
iley O

nline L
ibrary on [17/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



22 MICHAELIDES AND POUDYAL

with HS is its slow adjustment to volatility movements (O’Brien & Szerszen, 2017). Hence, even though HS does not

seem to be a goodmodel for forecasting risk of portfolios that exhibit high volatility, it appears to be a very goodoption

for forecasting risk of stable portfolios.

The StGARCH model is the only one among the commonly used models considered that appears to forecast risk

relatively well for portfolios that exhibit high volatility of returns. However, themodel consistently overestimates risk

for stable portfolios, aswell as for volatile portfolios evaluated across stable periods. Actually, StGARCHhas theworst

forecasting performance among all models for such portfolios. Overall, the forecasting performance of StGARCH is at

least five times worse than that of t-StAR.

By comparing the results of StGARCH to the ones of the proposed t-StAR model, it is apparent that the latter has

at least two crucial advantages over the former. First, as argued by Heracleous (2007), the StGARCHmodel provides

biasedand inconsistent estimatesof thedegreesof freedom.Asobservedduring theestimationprocess, theestimated

degrees of freedomparameter in StGARCHremains relatively constant across portfolios andperiods. Thismayexplain

why the performance of the model differs significantly between portfolios and periods. When adopting the Student’s

t distribution, it is important to choose the most appropriate degrees of freedom. In this regard, the proposed t-StAR

model seems to reach a higher standard than StGARCH. Second, the conditional variance of t-StAR does not rely on

any parameter restrictions, thus naturally avoids singularity problems. This is a clear advantage over StGARCH, which

commonly encounters singularities.

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Concluding remarks

Froma theoretical perspective, ES has been generally viewed as being superior toVaR. This theoretical superiority has

substantially affected the decision of BCBS to replace VaR with ES. However, the ability of ES to capture tail risk and

its coherence neither guarantees accuracy of risk forecasts nor adequacy of risk capital requirements. This is because

the process of risk forecasting relies heavily on the validity of the statistical assumptions underlying the internal risk

forecast models used by banks.

In general, a risk model is expected to have good forecasting performance when its actual error probabilities

approximate closely the nominal ones. One may think of the violation ratio in Equation (10) as a post-comparison of

actual and nominal error probabilities, where the former is directly related to the actual number of violations and the

latter to the expected number of violations. In order for the actual and expected number of violations to approximate

closely each other, the actual error probabilitiesmust approximate closely the nominal ones at the outset. This approx-

imation is solely related to the statistical assumptions underlying the models used to forecast risk, and has very little

to dowith the choice of the risk measure for computing risk.

The results in this paper suggest that an appropriate choice of risk models can considerably improve risk forecasts,

even in times of financial crisis. The model proposed in this paper seems to have sufficient forecasting performance,

primarily because its richprobabilistic structure candescribe relevant features of financial data that arenot accounted

for by other commonly used models. This indicates that it is of crucial importance to formally assess the validity of

the statistical assumptions underlying the risk forecast models used by banks and other financial institutions on a

regular basis.

6.2 Recommendations to regulators

Recent reports of the BCBS state that banks must “ensure that their internal models have been adequately validated”

when “initially developed and when any significant changes are made to the model[s].” In addition, the reports state

that “models must be periodically revalidated, particularly when there have been significant structural changes in

the market or changes to the composition of the portfolio which might lead to the model no longer being adequate.”
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MICHAELIDES AND POUDYAL 23

It is emphasized that model validation must include “tests to demonstrate that any assumptions made within the

internal model are appropriate and do not underestimate risk.” These reports, however, do not provide any specific

information regarding the assumptions to be tested and the testing approaches to be utilized. The only explicit

recommendation the Committee has made is to suggest that model validation “may include the assumption of the

normal distribution” ((Basel Committee on Banking Supervision, 2016, p. 55); see also (Basel Committee on Banking

Supervision, 2019a, p. 69)).

Our regulation recommendation is that BCBS should address model risk separately from the choice of risk mea-

sures because the two are distinct sources of risk. Therefore, we recommend the Committee consider providing

clearer guidelines for model validation procedures. These guidelinesmay include the following:

∙ potential alternatives to the normal distribution;

∙ key nondistributional statistical assumptions to be examined;

∙ formal and graphical test procedures for distributional and nondistributional assumptions;

∙ diagnostic tests for estimating and determining appropriate parameters; and

∙ tests for structural breaks.19

Beyond providing clear guidelines for model validation, we recommend that BCBS consider restricting the scope

of internal modeling to risk forecast models, which are likely to pass some kind of statistical adequacy test. The intro-

duction of a formal statistical adequacy test to be monitored by regulatory agencies can serve as an important tool in

determining themost appropriate risk forecast model for any given situation.

It is important to emphasize that the proposed recommendations to regulators are neither intended nor expected

to universally “penalize” banks by increasing their capital requirements; they are rather intended to help better deter-

mine the appropriate level of capital for each bank. During times of financial stability, the proposed recommendations

are expected to significantly increase capital requirements only for banks holding riskier positions than are natural for

them. An increase in their capital requirements can provide many benefits for those banks, including enhancing their

protection against risk, increasing their probability of survival, and improving their efficiency, profitability, and perfor-

mance (Berger&Bouwman, 2013; Bitar et al., 2016).Moreover, the proposed recommendations are not only expected

to benefit individual banks themselves, but also the entire financial system by helping to reduce the overall systemic

risk (Laeven et al., 2016), which often contributes to the probability of failure of banks and poses a threat to the entire

financial system.

Furthermore, during periods of financial crisis, the proposed recommendations are expected to help banks deter-

mine their appropriate levels of capital earlier than is currently possible. This is because most banks currently use the

HS method, which is very slow to adjust to the crisis period conditions (O’Brien & Szerszen, 2017). This leads to the

underestimation of risk in the early stages of a financial crisis, consequently increasing overall systemic risk. Hence,

during periods of financial crisis, the proposed recommendations can help to mitigate systemic risk, stabilize the

financial system earlier in order to avoid deep recessions, and offer better prospects for bank efficiency, profitability,

and performance improvements.

6.3 Recommendations to practitioners

The results in the paper apply equally to financial institutions not regulated by theBasel Accords. Therefore, the afore-

mentioned recommendations to regulators can be extended to the average practitioner who may or may not have

access to sophisticated expertise, such asmodel development and validation. First, financial institutionswith access to

19 Becausewe do notwish to single out any particular assumption or test, we do not provide specific references herein.We refer the interested reader to the

voluminous econometrics and statistics literatures onmisspecification testing.
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24 MICHAELIDES AND POUDYAL

sophisticated expertise should pay more attention to model risk, including enhancing practices around model review

andvalidation. Second, financial institutionswithmoderate to limited access to sophisticatedexpertise shoulddevelop

internal rules of thumb to help them identifying the most appropriate risk forecast model to be used for a particular

situation. For example, one rule of thumb might be using the HS method during periods of financial stability, but dur-

ing periods of financial crisis replacing HS with a richer risk forecast model. One such model is the one proposed in

this paper (R code is provided in Appendix B). Third, financial institutions with limited to no access to sophisticated

expertise may use universally the HS method. However, when considered necessary in terms of risk and during peri-

ods of financial crisis, it would be wise to multiply potential risk by a factor greater than 1 before using risk forecasts

for decision-making in order to account for the fact that risk is being underestimated. These factors should be cho-

sen on the basis of specific risks andmarket conditions. All in all, these recommendations are expected to improve the

decision-making process in risk management.
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