
Journal of Hydrology 617 (2023) 128991

Available online 16 December 2022
0022-1694/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Research papers 

Grid-based calibration of the WRF-Hydro with Noah-MP model with 
improved groundwater and transpiration process equations 

Ioannis Sofokleous a,*, Adriana Bruggeman a, Corrado Camera b, Marinos Eliades a 

a Energy, Environment and Water Research Center (EEWRC), The Cyprus Institute, Nicosia, Cyprus 
b Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, Milan, Italy   
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A B S T R A C T   

The physically-based distributed WRF-Hydro modelling system, including the Noah land surface model with 
multiple parameterization options (Noah-MP) and the hydrological extension of the WRF atmospheric model 
(Weather Research and Forecasting model), has recently been widely used for water balance investigations, 
streamflow and coupled land–atmosphere simulations. Despite the multiple available physical parameterizations 
in the model, equations for simulating particular losses from the water balance are missing, and a grid-based 
calibration of distributed parameters across multiple watersheds has not been studied. To fill these gaps, this 
study aims: (i) to analyze the impact of soil, runoff, groundwater and vegetation parameters on water balance 
components; (ii) to improve baseflow and transpiration equations; and (iii) to test a grid-based calibration 
approach for distributed model parameters, using streamflow observations. The WRF-Hydro groundwater model 
was improved through the introduction of a groundwater loss factor and the Jarvis stomatal conductance model 
was modified to account for nocturnal transpiration. The grid-based calibration was performed for three pa-
rameters (infiltration, hydraulic conductivity and percolation) for 19 spatially-distributed classes, with the 
Parameter Estimation (PEST) software. The study area includes 31 small mountainous watersheds (5–115 km2) 
in Cyprus, in the Eastern Mediterranean. A two-year period (2011–2013) was used for calibration and a five-year 
period (2013–2018) for the evaluation. The baseline model set-up overestimated streamflow, on average, by 50 
% in 2011–2012 and more than 100 % in 2012–2013. Overall, streamflow and evapotranspiration (ET) could 
vary by about ±30 % from the baseline simulation, using different model parameters and model options. The 
simulation of groundwater losses as a function of groundwater level reduced total streamflow, on average, by 30 
%. The use of the proposed Jarvis equation for nocturnal transpiration increased the total ET, on average, by 25 
%. The grid-based approach facilitated the calibration of the distributed parameters over the area of the 31 
watersheds. The median Nash-Sutcliff Efficiency (NSE) was 0.49 during calibration, but 0.02 in the drier eval-
uation period. The calibrated WRF-Hydro model reproduced the annual variability of ET and the improved 
groundwater and transpiration equations reduced the substantial streamflow overestimation of WRF-Hydro. The 
model performance during dry years demonstrated the need for representation of more processes that occur in 
semi-arid environments with ephemeral streams and are not included in WRF-Hydro and Noah-MP. The grid- 
based WRF-Hydro parameterization can be applied to the full study area for fully-coupled atmospheric-hydro-
logic simulations.   

1. Introduction 

Physically-based and spatially distributed hydrological models have 
evolved over the last decades to become complex modelling systems that 
can represent the spatial variability of the hydrometeorological pro-
cesses in the environment. These models expand the capabilities of the 
simple lumped or conceptual hydrological models by simulating 

hydrological variables in the three-dimensional land-surface and sub-
surface space, based on physical model formulation (Maxwell et al., 
2007). Distributed models fit in a broad spectrum of applications. They 
are used to simulate streamflow, to reproduce flood events induced by 
extreme weather using spatially variable precipitation datasets (Yucel 
et al., 2015; Sofokleous et al., 2021) and to improve our understanding 
of the interactions and feedbacks between the land surface and 
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subsurface with the atmosphere, through fully coupled atmospheric- 
hydrologic model systems (Maxwell et al., 2011; Arnault et al., 2018; 
Rummler et al., 2019). 

The community WRF-Hydro hydrological model (Gochis et al., 2018) 
is a physically-based, spatially distributed model, which is the core of 
the US National Water Model (NOAA, 2016) and which has gained 
remarkable attention in research in the last few years. Developed as the 
hydrological extension of the widely used Weather and Research Fore-
casting (WRF) model (Skamarock et al., 2019), WRF-Hydro is comprised 
of the Noah Land Surface Model (LSM; Ek et al., 2003) or the Noah-MP 
LSM (Noah LSM with multiple parameterization options; Niu et al., 
2011; Yang et al., 2011), enhanced with lateral terrestrial water flow 
and a baseflow component. It can operate in a fully coupled mode with 
the atmospheric WRF model. WRF-Hydro simulates overland flow, 
lateral subsurface flow, flow in the channel network as well as inflow, 
storage and outflow from surface and groundwater reservoirs (Gochis 
et al., 2018). 

Previous studies identified a number of model parameters to which 
WRF-Hydro simulated streamflow exhibits high sensitivity and which 
should be calibrated. Arnault et al. (2015) and Yucel et al. (2015) 
identified the infiltration parameter REFKDT in the surface runoff 
parameterization as the most impactful for streamflow simulations. 
Yucel et al. (2015) found a significant reduction of simulated peak flow 
with an increase of REFKDT from 1 to 2, with the suggested range of 
REFKDT being from 0.5 to 5, according to the authors. Arnault et al. 
(2015) added that, apart from streamflow, modeled monthly total pre-
cipitation and other water balance components, simulated with the fully 
coupled WRF-Hydro, are also sensitive to REFKDT at the spatial scale of 
~100 × 100 km2. Other authors confirmed the sensitivity of REFKDT, 
highlighting its importance in flood forecasting (Givati et al., 2016; 
Zhang et al., 2020). Due to its impact on the percolation of the soil and 
subsequently on baseflow, particularly over mountain watersheds, the 
parameter that controls percolation to groundwater at the bottom of the 
soil profile (SLOPE) is also among the parameters that have been 
examined by numerous authors (Silver et al., 2017; Camera et al., 2020). 
Other commonly calibrated parameters in WRF-Hydro and related LSMs 
are the vertical and lateral hydraulic conductivities (Senatore et al., 
2015) and the surface and channel roughness coefficients (Yucel et al., 
2015; Arnault et al., 2018). For the roughness parameters, Yucel et al. 
(2015) found a significant impact on peak discharge magnitude and 
timing for flood events. 

Studies focusing only on the LSM component of WRF-Hydro, in 
particular on the Noah-MP LSM, showed that the calibration of param-
eters that describe land surface processes can impact the total runoff 
amounts. Cuntz et al. (2016) suggested that LSM calibration should be 
made against both latent heat and runoff fluxes, as plant and soil 
properties affect both fluxes. Ingwersen et al. (2015) found that daily 
latent heat was underestimated by the Ball-Berry model (Ball et al., 
1987), which is the default stomatal conductance model in Noah-MP. 

Zheng et al. (2019) found that the Jarvis stomatal conductance model 
(Jarvis, 1976) produces more realistic transpiration in arid environ-
ments, compared to Ball-Berry, through simulation of annual and sea-
sonal evapotranspiration (ET) with different configurations of Noah-MP 
for the different climate regions of the conterminous United States. 
These authors also reported that the Jarvis model produced significantly 
higher transpiration, an additional 11 % of total precipitation, compared 
to the Ball-Berry scheme. Whitley et al. (2009) and Wang et al. (2020) 
reported the observation of nocturnal transpiration through sap flow 
measurements for different species. These authors proposed modifica-
tions of the Jarvis formula and calibration of the parameters of the four 
stress functions of the formula to better capture the daily, nocturnal and 
seasonal variability of transpiration. The partitioning of the surface 
energy and water balance to sensible and latent heat fluxes in Noah-MP 
was also found to be sensitive to the particular leaf area index (LAI) and 
green vegetation fraction (GVF) dataset used (Fang et al., 2018). This 
impact of plant parameters and parameterizations has not been 
addressed in the simulation of the water balance in previous WRF-Hydro 
studies. 

WRF-Hydro is often calibrated and used for streamflow simulations 
in semi-arid Mediterranean environments for flood events (e.g. Silver 
et al., 2017; Camera et al., 2020) and for multi-month simulations (e.g. 
Senatore et al., 2015). A process that is not included in WRF-Hydro and 
may impact simulated streamflow through baseflow, particularly in dry 
areas, is groundwater flow across surface watersheds. Schaller and Fan 
(2009) used 30 years of streamflow data across 1555 basins in the 
United States and the Variable Infiltration Capacity model to estimate 
the partitioning of water balance in these basins. These authors found 
that the contribution of groundwater losses or gains in the water balance 
was significant. They suggested that geology plays the most important 
role for groundwater flows across basins, which are larger, in term of 
losses, in more arid regions. The occurrence of groundwater flow across 
watersheds was shown through isotope and hydrogeochemical sampling 
and modelling analyses for the Troodos area in the Eastern Mediterra-
nean island of Cyprus by Christofi et al. (2020). 

Despite the spatially distributed nature of WRF-Hydro, little to no 
attention has been given to a parameter calibration that is consistent 
with the spatial heterogeneity of the environment. The reason for this is 
that previous WRF-Hydro model versions did not easily allow the 
modeler to assign spatially variable values to a number of important 
model parameters. Givati et al. (2016) calibrated the infiltration 
parameter and hydraulic conductivity uniformly for a single watershed 
and then adjusted the calibrated values for subwatersheds. Silver et al. 
(2017) proposed a calibration of REFKDT by solving the model equation 
for infiltration for different soil texture types and observed values of 
hydraulic conductivity, soil moisture, runoff and precipitation. Rumm-
ler et al. (2019) assigned different values to the infiltration parameter, 
hydraulic conductivity and percolation parameter using information 
from land management maps. Yet, most of the WRF-Hydro studies assign 

Fig. 1. The elevation map of Cyprus with the Troodos study domain enclosed with the black box (left) and the boundaries and outlets of the 31 watersheds of the 
study with the stream network and dams (right). 
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parameter values uniformly over entire watersheds. A systematic and 
efficient approach to link the most important model parameters to 
landscape characteristics in a spatially distributed manner, as Hundecha 
and Bárdossy (2004) suggested, is currently missing. 

This study aims to answer the following research question: Can the 
physically-based WRF-Hydro model simulate streamflow of small semi- 
arid mountain watersheds with an automated grid-based calibration 
based on the topography, land use and geology data of the study area, 
considering losses from groundwater and nocturnal transpiration. In 
light of this question, the objectives of this study are: (i) to examine the 
impact of soil, runoff, groundwater and vegetation parameters on 
annual streamflow, peak flows and total ET, (ii) to improve baseflow and 
transpiration equations and (iii) to test a grid-based calibration 
approach for spatially heterogeneous parameters. These objectives are 
implemented in 31 small watersheds in the Troodos Mountains on the 
island of Cyprus, in the Eastern Mediterranean. The changes in 
streamflow and water balance components due to alternative parameter 
values and parameterization options relative to a reference baseline 
model configuration are compared first for the two-year period from 
September 2011 to September 2013 (objective i and ii). The model with 
the modified groundwater and transpiration equations is then calibrated 
with an automated grid-based calibration of distributed parameters for 
the same two-year period. The calibrated model is evaluated for the 
period from October 2013 to September 2018 (objective iii). 

2. Methodology 

2.1. Study area and observational data 

The study geographically focuses on 31 watersheds of Cyprus. 
Cyprus is an island with an area of 9251 km2, located in the eastern part 
of the Mediterranean Sea and it has a Mediterranean climate. The 31 
studied watersheds (st1 – st31) form a radial percolation system around 

Troodos, the main mountain range of the island (Fig. 1). Daily stream-
flow, recorded by the Water Development Department of Cyprus at the 
outlets of the 31 watersheds, is used in this study for the evaluation of 
daily totals of WRF-Hydro streamflow. The areas of the 31 watersheds 
range from 5 to 115 km2. Long-term average precipitation, reference 
evapotranspiration (ETo), runoff coefficients (RC), baseflow indices 
(BFI) and percent coverage of different geological formations of the 31 
watersheds are shown in Table 1. The precipitation over the watershed 
areas was derived from gridded daily precipitation (Camera et al., 2014; 
Sofokleous et al., 2021). The ETO was computed with the Hargreaves’s 
equation (Hargreaves and Samani, 1985) using gridded daily tempera-
ture data for the period 1980–2010 (Camera et al., 2014). The RC was 
computed as the fraction of total annual streamflow to total precipita-
tion. Daily baseflow was extracted from the daily streamflow with the 
PART hydrograph separation method (Rutledge, 1998) and the BFI was 
computed as the fraction of total annual baseflow to total annual 
streamflow. 

Geologically, Troodos is constituted by an ophiolite complex with 
plutonic, intrusive and volcanic rocks and chemical sediments. Most of 
the rocks of the ophiolite, especially the gabbro within the central 
plutonic sequence on the upper hillslope, are faulted, highly fractured 
and brecciated, thus forming fractured aquifers or aquifer systems fa-
voring infiltration (Udluft et al., 2006). Troodos has mostly lithic lep-
tosols with a stony gravelly texture and a high variability in soil depth, 
from very shallow (0–10 cm) up to about 100 cm (Camera et al., 2017). 

The study area is to a large extent covered by natural vegetation (70 
%), comprised mostly by sclerophyllous vegetation and coniferous for-
ests and to a lesser extent by crops cultivated on dry stone bench terraces 
(Zoumides et al., 2017). The annual average ET to precipitation ratio is 
76 %, according to long-term observations (2014–2020) of ET compo-
nents on a pine forest monitoring site near the outlets of two of the 
studied watersheds (st16 and st17) (Eliades et al., 2018a; Eliades, per-
sonal communication). About 15 % of the transpiration is nocturnal 

Table 1 
The streamflow station codes, the area, and long-term (1980–2015) average precipitation (P), reference evapotranspiration (ETo), runoff coefficient (RC), baseflow 
index (BFI) and the percent coverage of different geological types of the 31 watersheds.  

Id Area (km2) P (mm) ETo (mm) RC (-) BFI (-) Sedimentary (%) Vulcanic complex (%) Diabase (%) Ultramafic (%) Gabbro (%) 

st1 38.3 708 1203 0.11 0.79 69 5 22 0 4 
st2 67.5 709 1224 0.22 0.72 0 0 100 0 0 
st3 21.4 724 1163 0.21 0.75 0 0 100 0 0 
st4 63.9 558 1274 0.04 0.65 100 0 0 0 0 
st5 78.6 621 1251 0.13 0.74 29 17 54 0 0 
st6 45.2 595 1222 0.10 0.74 0 4 96 0 0 
st7 15.1 528 1211 0.14 0.89 0 0 100 0 0 
st8 28.4 539 1237 0.14 0.77 0 0 96 0 4 
st9 5.2 549 1233 0.12 0.84 0 0 92 0 8 
st10 38.1 612 1247 0.20 0.82 0 0 100 0 0 
st11 47.9 674 1262 0.24 0.79 0 0 100 0 0 
st12 22.5 783 1096 0.31 0.89 0 0 17 17 67 
st13 15.9 868 968 0.57 0.96 0 0 0 95 5 
st14 10.2 837 1071 0.20 0.90 0 0 0 36 64 
st15 32.7 533 1234 0.06 0.76 0 3 47 0 50 
st16 13.6 710 1167 0.20 0.61 0 0 86 0 14 
st17 78 613 1249 0.23 0.67 0 0 89 1 11 
st18 14.1 526 1340 0.18 0.50 0 9 91 0 0 
st19 74.2 459 1390 0.11 0.56 1 59 39 0 1 
st20 93.8 405 1408 0.06 0.49 20 64 12 0 3 
st21 20 412 1354 0.08 0.55 11 54 34 0 0 
st22 61.2 517 1363 0.04 0.8 5 22 72 0 1 
st23 39 443 1402 0.11 0.51 0 81 19 0 0 
st24 43.3 543 1294 0.07 0.56 32 8 56 0 4 
st25 86.7 559 1314 0.11 0.8 0 11 62 15 12 
st26 109.7 599 1286 0.15 0.74 0 4 53 25 17 
st27 30.5 515 1334 0.07 0.75 29 11 8 42 9 
st28 66.8 534 1346 0.06 0.78 66 4 13 13 4 
st29 67.5 669 1240 0.2 0.63 82 1 5 7 5 
st30 98.9 738 1210 0.14 0.83 35 4 9 18 34 
st31 114.7 657 1255 0.13 0.77 16 11 42 0 31 
Area weighted averages 595 1276 0.14 0.72 20 14 48 7 11  
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transpiration (Eliades et al. 2018b). These long-term annual average ET 
observational data are used to evaluate and adjust modeled ET in Noah- 
MP with WRF-Hydro in this study. 

2.2. Model description and new model equations 

The WRF-Hydro modelling system (Gochis et al., 2018) is a distrib-
uted physically-based hydrologic model developed at the National 
Centre for Atmospheric Research. It simulates terrestrial hydrologic 
processes, i.e., surface, subsurface and channel flow, and enables 
hydrologic-atmospheric coupled modelling. The WRF-Hydro modelling 
system contains the following six components: (i) the land surface pa-
rameterizations of Noah-MP LSM, which control the vertical water and 
energy fluxes in the soil and on the land surface; (ii) an overland flow 
module; (iii) a subsurface flow module; (iv) a channel flow module; (v) a 
reservoir storage and flow module; and (vi) a conceptual baseflow 
module, which controls groundwater storage and fluxes. The WRF- 
Hydro v5.1 model version is used in this study. 

The meteorological forcing data required by WRF-Hydro are 
incoming shortwave and longwave radiation, specific humidity, air 
temperature, surface pressure, near surface wind components and pre-
cipitation rate. In addition to the vegetation (MPTABLE.TBL), soil 
(SOILPARM.TBL) and global parameters (GENPARM.TBL) for the stand- 
alone Noah-MP LSM, Noah-MP with WRF-Hydro require parameters for 
the lateral routing. These include overland roughness, hydraulic con-
ductivity in the lateral direction, as well as parameters for the channel 
and reservoir routing modules and for the groundwater bucket of WRF- 
Hydro. In addition, a number of Noah-MP land use, soil texture depen-
dent and global parameters can be assigned spatially distributed values. 
All parameters are described in detail in Gochis et al. (2018). 

2.2.1. Groundwater bucket loss factor 
The equation for the groundwater bucket baseflow in WRF-Hydro 

v5.1 is: 

Qbucket,out = Coeff •
(

eExpon Z
ZMAX − 1

)

if Z <= ZMAX
(1)  

Qbucket,out = Qbucket,in + Coeff •
(

eExpon Z
ZMAX − 1

)

if Z > ZMAX 

where Qbucket,out (m3s− 1) and Qbucket,in (m3s− 1) are the conceptual 
bucket model outflow and inflow at a given model time step, Z (m) is the 
depth of water stored in the bucket and ZMAX (m) is the maximum 
water depth in the bucket. Parameters Coeff (m3s− 1) and Expon (-) 
control the response of the conceptual bucket. The initial value of Z is set 
at the beginning of the simulation period. The depth of the water in the 
bucket (Z) for a defined gridded domain is adjusted by the total perco-
lation (Qbucket,in) of all grid cells of the gridded domain. The extent of the 
contributing gridded domain to a bucket is defined by the user. In this 
study, the contributing gridded area is defined to be the same as the 
surface watershed, for each of the 31 watersheds. 

One novelty of this study is the incorporation of a loss factor in the 
baseflow routine of WRF-Hydro. The loss factor can represent ground-
water losses from surface watersheds, as observed in the study area, and 
reduce the overestimation of baseflow, as seen in the baseline simulation 
experiments for the studied watersheds (Section 3.1.1). The modified 
equation of the groundwater bucket is: 

Qbucket,out = Coeff •
(
1 − Lfac

)
•
(

eExpon Z
ZMAX − 1

)

if Z <= ZMAX
(2)  

Qbucket,out = Qbucket,in + Coeff •
(
1 − Lfac

)
•
(

eExpon Z
ZMAX − 1

)

if Z > ZMAX 

where Lfac (-) is a dimensionless loss factor, ranging between 0 and 1, 
which quantifies a baseflow reduction from the bucket model, as a 
function of the water level in the bucket. Parameter Lfac represents the 
amount of groundwater losses from the specified surface watershed, 
which can occur in fractured formations or groundwater systems where 
only part of the total percolation contributes to the watershed’s 
baseflow. 

2.2.2. Nocturnal transpiration 
The equations of the Jarvis-based stomatal conductance model in 

WRF-Hydro are based on the empirical stomatal conductance model 
proposed by Jarvis (1976), which is still widely used. The canopy sto-
matal resistance (rs; sm− 1) can be computed at any environmental 
condition, according to Chen et al. (1996), and is given by the following 
equation: 

rs = rsmin • (F1F2F3F4)
− 1 (3) 

where rsmin (sm− 1) is the vegetation-type dependent minimum sto-
matal resistance, corresponding to the value of canopy resistance at 
optimal environmental conditions for transpiration. The value of rsmin is 
defined for different vegetation types in the NOAHMP.TBL model input 
Table. F1, F2, F3 and F4 are four stress functions representing the effects 
of solar radiation, vapor pressure deficit, canopy air temperature and 
soil moisture, respectively, each ranging from 0 to 1. The model equa-
tion of the stress function F1 is: 

F1 =
rsmin/rsmax + f

1 + f
where f = 0.55

Rs

Rgl

2
LAI

(4) 

where rsmax is the maximum canopy resistance, which corresponds to 
the cuticular resistance of the leaves and a value of 5000 sm− 1 is a 
representative value for many trees (Dickinson, 1984), Rs (Wm− 2) is the 
intensity of direct solar radiation and Rgl is a fitting parameter for the 
radiation response (F1), ranging between 30 and 100 Wm− 2 and can be 
vegetation-type specific (Noilhan and Planton, 1989). Appendix A 
contains the full equations for the Jarvis model. 

The incorporation of a nocturnal transpiration component, based on 
Whitley et al. (2009) and Wang et al. (2020), in the Jarvis model in the 
Noah-MP code of WRF-Hydro, is the second novelty of the study. The ET 
underestimation, as seen in initial simulation experiments (Section 
3.1.1), could be reduced by adding the nocturnal transpiration compo-
nent. The equation that replaces Eq. (4) is: 

F1 =

(
Rs + k1kr

Rm

)

•

(
Rm + k1

Rs + k1

)

(5) 

where Rm is the maximum solar radiation intensity at the latitude of 
the study area (~1000 Wm− 2), and k1 (Wm− 2) and kr (-) are two fitting 
parameters that describe the curvature of the radiation response. Trial- 
and-error runs were performed to adjust k1 and kr such that the annual 
magnitude of transpiration increased by 15 %, close to the locally 
observed nocturnal transpiration fraction to total transpiration (Eliades 
et al., 2018b). The increase in transpiration with adjusted parameters 
was examined relative to the transpiration obtained with kr = 0 in Eq. 
(5), which corresponds to zero nocturnal transpiration. The selected 
parameter values were 1 Wm− 2 for k1 and 0.5 for kr. However, further 
calibration should be done on the Jarvis equation and the nocturnal 
component to match the diurnal transpiration patterns. 

2.2.3. LAI and dynamic vegetation 
The average leaf area index over a grid cell (LAIcell) in WRF-Hydro is 

given by: 

LAIcell = GVF • LAI (6) 

where LAI is the prescribed vegetation-type dependent leaf area 
index or the dynamically predicted leaf area index of the vegetation in 
the grid cell and GVF is the green vegetation fraction of the grid cell. The 
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values of LAI and GVF are controlled by the option for Dynamic Vege-
tation (DVEG) of Noah-MP. In WRF-Hydro, six DVEG options are 
available. Three DVEG options (2, 5 and 6) predict LAI dynamically with 
the Ball-Berry stomatal conductance model (Ball et al., 1987) and the 
other three options (1, 3 and 4) use tabulated, vegetation-specific 
monthly LAI values and can be used with any stomatal conductance 
model. The current study compares the performance of the Ball-Berry 
and Jarvis stomatal conductance models and for this reason, the focus 
here is on DVEG options that can be used with both conductance models, 
i.e., 1, 3 and 4. For the three options, the monthly LAI values are read 
from the NOAHMP.TBL model input table for the different land use 
classes. For DVEG option 1, the GVF has prescribed monthly values, 
which are derived from the MODIS dataset. For DVEG option 4, the GVF 
is the maximum of the 12 months of the MODIS-derived data, year- 
round. The equation for GVF for DVEG option 3 is based on Norman 
et al. (1995): 

GVF = 1 − e− b•LAI (7) 

where b is the extinction coefficient and has a value of 0.52 in model 
code. Eq. (7) is part of the gap fraction theory by Larcher (1995), which 
implies that there is a light attenuation following an exponential decay 
with increasing canopy depth (Gigante et al., 2009). According to 
Larcher (1995) different land uses can have different extinction 
coefficients. 

In addition to the above options, satellite-derived monthly LAI values 
of the Copernicus Global Land Service were tested for this study. The 
new LAI values were obtained by extracting the monthly Copernicus LAI 
for the year 2018 at 1-km for each land use type based on the gridded 
land use map (Section 2.3.2). These computed monthly values replaced 
the default monthly LAI in MPTABLE.TBL. Following the update of LAI, 
the GVF was set to a globally constant value equal to 1. The selection of 1 
for GVF was based on the fact that satellite-derived LAI corresponds to 
pixel-average values of the vegetation density, making GVF redundant 
(Gutman and Ignatov, 1998). With the updating of the prescribed LAI 
values, the monthly prescribed stem area index values were replaced by 
10 % of the LAI values, as assumed by the model. Appendix B contains 
the default and updated LAI values. 

2.3. Model set-up and parameterization 

2.3.1. Watershed delineation and atmospheric forcing 
The 31 studied watersheds were delineated on a 100-m routing grid 

using the WRF-Hydro GIS-preprocessor (ArcMap WRF-Hydro GIS pre- 
processor v5.1.1) and the 25 m Digital Elevation Model for Cyprus 
from the Geological Survey Department of Cyprus. The Noah-MP LSM 
grid was generated using the WRF model preprocessing system (WPS; 
Skamarock et al., 2019) with spatial resolution at 1-km. The domain for 
lateral routing of WRF-Hydro and the domain for the simulation of land 
surface vertical fluxes of Noah-MP cover the Troodos mountain range 
(Fig. 1). Nine dams located upstream of eight streamflow stations in the 
study area were incorporated in the routing grid (Appendix D). The 
default MODIS land cover, with USGS land use categories, at approxi-
mately 1-km resolution was replaced by the Corine Land Cover (CLC) 
dataset, at 100-m resolution. The CLC dataset was reclassified to USGS 
land categories, as required by the model, according to Pineda et al. 
(2004), and is presented in Appendix B. 

The meteorological forcing of the Noah-MP LSM in this study con-
sists of the output of the WRF atmospheric model, except precipitation, 
which was obtained from the spatial interpolation and temporal disag-
gregation of precipitation gauge observations based on the methods 
described in Camera et al. (2014) and Sofokleous et al. (2021). The WRF- 
Hydro time step for routing was set to 10 s and the time step for Noah- 
MP was set to 30 min, the same as the temporal resolution of the at-
mospheric forcing and the model output time step. From the model 
output, 30-min streamflow and the annual totals for the water balance 

components of soil evaporation, canopy interception and transpiration 
and soil moisture storage change were extracted for the model 
evaluation. 

2.3.2. Land surface classes 
The values of spatially-distributed model parameters were directly 

related to the physical characteristics (land use, topographic slope and 
geology) of each grid cell. The infiltration parameter REFKDT in the 
surface runoff parameterization of WRF-Hydro was assigned spatially 
variable values based on nine land surface classes, which are a combi-
nation of three land uses and three topographic slope classes. The 
resulting nine land surface classes are shown in Fig. 2. The three land use 
classes were specified from the corresponding three dominant land uses 
in the study area. The three classes are the coniferous forest, the 
shrubland areas and the agricultural land. The remaining classes, each 
covering <3 % of the total area, were integrated in the three classes (see 
Table B1 Appendix B). The three topographic slope classes that were 
considered are flat to nearly flat terrain (<5%), moderate slopes (5–10 
%) and steep slopes (greater than10 %). The three slope classes, cover 
areas of 32 %, 46 % and 22 %, respectively. The assumptions used for 
assigning values to REFKDT for different land surface classes were that 
infiltration capacity increases, and thus REFKDT increases, with 
decreasing topographic slope and with increasing ground cover, such as 
with natural vegetation as opposed to managed agricultural land. 

2.3.3. Geological and soil type classes 
Model parameters relevant to the soil and bedrock properties were 

linked to the geological formations of the study area. For the present 
geological formations over the 31 watersheds, five geological classes are 
defined (Fig. 2). The percolation controlling distributed parameter 
SLOPE was assigned values from 0 to 1 based on the permeability of 
these five classes. According to Udluft et al. (2006), basal group, dia-
base, gabbro and plagiogranite have the highest permeability values of 
all ophiolite rocks, whereas the vulcanic complex, found at the foothills 
of Troodos, has low permeabilites. The spatial distribution of the soil 
texture classes was the same as for the geological classes because the soil 
texture map for the mountainous part of Cyprus is characterized by high 
uncertainty (Camera et al., 2017). 

2.4. Impact of model parameters and parameterization options on model 
outputs 

The impact of model parameters and model parameterization op-
tions on annual total streamflow, annual total ET and peak flow (three- 
day total discharge around the date with annual peak flow) for two 
hydrological years (2011–2013) was examined. This impact was quan-
tified with the relative change of each model output (ΔSIMpar.i), which 
was computed as follows: 

ΔSIMpar.i =
SIMpar.i

SIMbaseline
(8) 

where SIMpar.i is the model output variable computed with a certain 
parameter value or model parameterization option (par.i) and SIMbaseline 
is the same variable obtained with the baseline parameter set. These 
relative changes were computed for all 31 watersheds. 

The parameter values were tested assigning the same parameter 
value across the domain (Test value 1 or Test value 2 in Table 2). The 
parameter values for the impact analysis were selected to be the mini-
mum and maximum of the range of values specified in the model 
parameter tables (Section 2.2). The parameterization options (DVEG, 
LAI, CANRES, RS.noc) were tested for one or two different settings. The 
selected parameters used in the analysis are parameters often reported in 
previous WRF-Hydro studies and vegetation parameters and parame-
terizations. The impact, however, of a larger number of parameters than 
those listed in Table 2 was examined with initial simulation experiments 
(results not shown). For soil texture dependent parameters, these 
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experiments showed that some parameters had similar impact and for 
this reason, their number was reduced for this study. The Ball-Berry 
parameters were found to lead to minor changes in the model outputs 
and they were also omitted. 

The baseline parameterization is the same as the default WRF-Hydro 
configuration, but with the modifications of the parameter values 
described in this section, which were made to represent local environ-
mental conditions. The baseline REFKDT was assigned spatially variable 
values based on the nine land surface classes (Section 2.3.2). REFKDT 
ranged, for the three topographic slope classes, from 2 to 4 for the 
agricultural land use, from 2.5 to 4.5 for shrubland and from 3 to 5 for 
the coniferous forest. The baseline percolation parameter (SLOPE) 
values ranged from 0.1 to 1. The soil physical properties were related to 
the five geological classes (Section 2.3.3). For soil properties, the base-
line values were set as the default values, from SOILPARM.TBL model 
input file. The groundwater bucket baseline parameters are specified in 
Section 2.5. 

Except for the REFKDT and SLOPE parameters, the impact of the soil 
texture properties was examined for the parameters of porosity 
(SMCMAX) and hydraulic conductivity (KSAT). The values tested for the 
soil parameters were set equal to the minimum and maximum of the 
range of values of the 13 soil textures specified in the Noah-MP SOIL-
PARM.TBL file. The parameter for overland roughness (OV_ROUGH2D) 
ranged between the minimum and maximum default values of the 22 
land-use dependent values specified in the HYDRO.TBL model file. The 
default 2-m soil depth in WRF-Hydro was set to the smaller value of 1-m, 
which is more representative of the generally shallow soils on the slopes 
of Troodos Mountains (Camera et al., 2017). The effects of re- 
initialization of the water depth in the GW bucket at the start of the 
second hydrological year (Zini) was examined. The Zini option allows to 
remove excess water from the GW bucket at the end of a hydrologic year. 
The groundwater loss factor in the baseflow bucket model equation (Lfac; 
Section 2.2.1) was tested as an alternative to the Zini option. 

The second half of Table 2 presents the vegetation related model 

parameters and parameterization options. The baseline stomatal 
conductance model used for the study is the Ball-Berry model, which is 
the default in WRF-Hydro. The USGS land-use based monthly LAI values 
and the yearly maximum, MODIS-derived GVF comprise the baseline 
values for the vegetation density. The impact of the various options 
(DVEG) for the description of vegetation density (LAI and GVF), as 
introduced in Section 2.2.3 was examined. The impact of the Jarvis- 
based model for stomatal conductance was also examined, along with 
changes of the values of the Jarvis model parameters and the change of 
the Jarvis radiation component to account for nocturnal transpiration 
(Section 2.2.2). 

2.5. Groundwater bucket parameters 

One major characteristic of baseflow for the majority of the Troodos 
streams, as ephemeral, is the zero baseflow in the summer. Scatterplots 
of the long-term baseflow indices, i.e., the long-term average and 
maximum BFI with the relative coverage of different geological classes 
in each watershed (Table 1) did not show a relation between the two. For 
this reason, the groundwater parameters could not be related to the 
geological characteristics across the model domain and parameters 
ZMAX and Lfac were manually calibrated per watershed. Parameter 
Coeff of the GW bucket model (Section 2.2.1) was set to two times the 
average non-zero watershed baseflow for 28 watersheds, for the baseline 
parameter set. Three watersheds (st12, st13 and st14), which have a BFI 
equal or larger than 0.89 were assigned a value equal to 10 times the 
average non-zero daily baseflow of the watershed. Parameter Expon was 
set equal to 0.693 for the baseline parameterization, which corresponds 
to bucket outflow equal to the Coeff when the bucket is full. 

2.6. Grid-based calibration with PEST 

The spatially distributed model parameters, which were selected 
based on the results of the impact analysis (Section 3.1.2 and Section 

Fig. 2. Map of the WRF-Hydro domain with the boundaries of the 31 watersheds and the nine 1-km land surface classes representing three land uses and three 
topographic slopes (top) and the five geological classes (bottom). The final PEST calibrated values (see Section 3.2.1) for REFKDT for each land surface class are in the 
last column of the legend (top) and for SLOPE and KSAT for each geology class in the last two columns of the legend (bottom). 
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3.1.3), were calibrated for the land surface, soil and geology classes 
using the Parameter Estimation (PEST) calibration software (Doherty 
2020). The calibrated parameter ranges were selected based on the 
ranges of the prescribed values for these parameters in the WRF-Hydro 
and Noah-MP input files. For each land surface class and geology class, 
the calibration range was further confined to a smaller range of values 
representative for the specific class, as described in Section 2.3.2 and 
Section 2.3.3. 

The model parameter optimization, simultaneously for the 31 wa-
tersheds, was based on the minimization of the following objective 
function: 

Φ =
∑Nobs

i
(wiri)

2 (9) 

where Nobs is the total number of observations, i.e., daily streamflow 
of 31 watersheds, w is the weight of each observation i, and r is the 
residual (difference between model value and observation value). The 
observation weights are set equal to zero or one, with the value of zero 
used for missing observations. 

The PEST optimization algorithm is based on the least squares 
function and the Gauss-Marquardt-Levenberg method (Doherty, 2015). 
The PEST “estimation” mode was used with singular value decomposi-
tion, the latter guarantying numerical stability in the calibration process 
(Doherty, 2020). The streamflow observations of the 31 watersheds 
were grouped into 31 groups. The 31 watershed components in the 
objective function were assigned weights, using the PWTADJ1 utility of 
PEST, such that, based on the residuals obtained for the initial parameter 
values, the contribution to the objective function by each observation 
group will be equal. This avoids a dominance of the objective function 
value by the watersheds with the largest errors (Doherty, 2020). The 
automatic calibration with PEST is based on the iterative behavior of the 
PEST algorithm. This means that the calibration is made up of multiple 
PEST iterations, with each iteration comprised of multiple WRF-Hydro 
model runs with different sets of initial parameter values. This attri-
bute of PEST limits the possibilities for selecting a locally optimum so-
lution of calibrated parameter set as a globally optimum. The automatic 
calibration was terminated when PEST failed to lower the objective 
function for three consecutive iterations, as suggested in Doherty 
(2020). 

2.7. Simulation period and evaluation metrics 

The calibration and evaluation period, referred to as 2011–2013 and 
2013–2018, cover the sequence of hydrologic years from October 2011 
to September 2013 and from October 2013 to September 2018, 
respectively. The simulation period for the examination of the param-
eter impact on model outputs is the same as the calibration period. 
Following the adjustment of model parameters and options, based on the 
impact analysis (Section 3.1.2 and Section 3.1.3), and the PEST cali-
bration of the distributed parameters (Section 3.2.1), the model was 
evaluated for both the two-year calibration period and the five-year 
evaluation period with four evaluation metrics (Section 3.2.2). These 
metrics are the Nash-Sutcliffe Efficiency (NSE; Appendix E), the Kling- 
Gupta Efficiency (KGE; Appendix E), the Mean Absolute Error (MAE) 
and the percent total bias. The individual annual water balance com-
ponents of streamflow, ET (soil evaporation, transpiration, intercep-
tion), groundwater storage change, groundwater loss and soil moisture 
change were then assessed as fractions of precipitation for each hydro-
logical year in the calibration and evaluation period (Section 3.2.3). 
Total precipitation, averaged over the area of the 31 watersheds, is 900 
mm for 2011–2012 and 680 mm for 2012–2013. Total annual precipi-
tation in the evaluation period (2013–2018) ranges from 397 mm to 700 
mm. 

Table 2 
Parameters of WRF-Hydro for runoff, soil, groundwater (GW) bucket and 
vegetation used to examine the parameter impact on total streamflow, peak flow 
and total evapotranspiration.  

Parameter 
Name 

Parameter 
description 

Baseline value Test value 1 Test 
value 
2 

Runoff parameters    
REFKDT (-) Infiltration 

parameter 
2–5 0.5 5 

OVROUGH 
(-) 

Manning’s 
roughness for 
overland flow 

0.025–0.2 0.025 0.2 

Soil parameters 
SLOPE (-) Percolation 

parameter 
0.1 – 1 0 1 

KSAT 
(mm⋅h− 1) 

Hydraulic 
conductivity 

9–50 4 168 

SMCMAX 
(m3/m3) 

Soil porosity 0.34–0.48 0.34 0.48 

Soil (cm) Soil column depth 100 125  
GW bucket parameters     

ZMAX (mm) GW bucket 
maximum depth 

Average long 
term baseflow 
per watershed 

Max Qb 

(maximum long 
term baseflow 
per watershed)  

Zini (mm) GW bucket initial 
water depth 

Default (Z not 
re-initialized 
in HY21) 

ON (Z re- 
initialized in 
HY2 as 0 or 0.1 
of the final Z in 
HY11)  

Lfac (-) GW bucket loss 
factor 

0 0.1  

Vegetation parameters     

DVEG Option for 
dynamic 
vegetation (GVF) 

4 (Yearly 
maximum 
GVF) 

1 (Monthly 
GVF) 

3 
(GVF 
= f 
(LAI)) 

LAI Leaf area index monthly USGS 
land-use 
based2 

Copernicus 
(Satellite- 
derived LAI3 

and GVF = 1)  
CANRES Canopy stomatal 

resistance model 
Ball-Berry Jarvis  

CH20P 
(mm) 

Maximum canopy 
interception per 
class LAI 

0.1 0.5  

RS.noc Solar radiation 
stress function in 
Jarvis model with 
nocturnal 
component or not 

Default (no 
nocturnal 
component) 

ON (With 
nocturnal 
component)  

TOPT (̊C) Optimal 
transpiration 
temperature in 
Jarvis model 

25 20  

HS (-) Parameter in vapor 
pressure deficit 
stress function in 
Jarvis model 

35–47 35  

B (-) Parameter in 
temperature stress 
function in Jarvis 
model 

0.0016 0.0004  

1 HY1 and HY2 refer to hydrologic year 1 (Sep 2011 - Oct 2012) and hydrologic 
year 2 (Sep 2012 - Oct 2013). 
2 Monthly land-use dependent LAI specified in NOAHMP.TBL input file of WRF- 
Hydro. 
3 Monthly LAI extracted from Copernicus satellite for different land use classes, 
replacing default values in NOAHMP.TBL. 
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3. Results and discussion 

3.1. Impact of model parameters and parameterization options on model 
outputs 

The baseline simulation results are presented first in Section 3.1.1. 
The change in the output of WRF-Hydro with Noah-MP (total stream-
flow, peak flow and total ET) for simulations based on one parameter 
change at a time in the baseline parameterization (Table 2), relative to 
the output of the baseline parameterization, are described in the 
following sections. 

3.1.1. Baseline simulation results 
The baseline parameterization of the impact analysis (Table 2) 

simulated the fraction of average total ET to average total precipitation 
over two watersheds (st16 and st17) equal to 45 % (4 % interception, 12 
% soil evaporation, 29 % transpiration) for the two years of calibration. 
This fraction is much lower than the observed long-term average ET to 
precipitation fraction of 76 % (17 % interception, 16 % soil evaporation, 
43 % transpiration) for the pine forest monitoring site near the outlets of 
the two watersheds. The underestimation of ET fluxes keeps the soil 
wetter and thereby affects surface runoff and percolation losses from the 
soil column to the groundwater. 

The streamflow of the 31 watersheds for the two years was largely 
overestimated with a median percent bias of 54 % in 2011–2012 and 
139 % in 2012–2013. This streamflow overestimation was linked to 
overestimated baseflow, 30 % in 2011–2012 and 80 % in 2012–2013, 
resulting from soil column percolation losses. The large positive bias in 
baseflow for the second hydrological year was found to be related to the 
contribution of water stored in the groundwater bucket and not released 

during the first year. 

3.1.2. Soil, runoff and groundwater parameters 
Among the tested parameters, SLOPE and KSAT, followed by 

SMCMAX, are the most effective in altering the streamflow amount, as 
seen in Fig. 3. Relative to the baseline parameter set, no percolation 
(SLOPE = 0), very low hydraulic conductivity (KSAT = 4 mm h− 1) and 
high porosity (SMCMAX = 0.48) lead to reduction of median watershed 
streamflow up to 25 %, with SLOPE having the largest effect. Maximum 
percolation rate (SLOPE = 1), very high KSAT (168 mm h− 1) and low 
porosity (SMCMAX = 0.34) lead to an increase in median streamflow of 
similar magnitude. These parameters have a direct impact on soil 
moisture, which in turn affects the available soil water for transpiration. 
For this reason, the change in median ET has an opposite sign and an 
almost similar magnitude with the relative change of streamflow. Within 
the range of possible values of KSAT, the median relative change in total 
ET is from about − 20 % up to + 10 %, which is higher than the change 
resulting from any of the other soil and runoff parameters. 

The same parameters with the addition of REFKDT affect the peak 
flows most strongly. For REFKDT, the relative change in streamflow 
(1–1.25) is smaller than the relative change in peak flow (0.6–2.4). The 
reason for this difference is because REFKDT impacts mainly peak flows, 
due to its regulation of the infiltration rate. The effectiveness of REFKDT 
in infiltration increases with drier soil moisture conditions, as seen in the 
comparison of the relative change in peak flow for the two years in Fig. 3 
and with increasing precipitation rate. For these reasons, previous 
studies (e.g., Yucel et al., 2015; Zhang et al., 2020), which focused on 
short-term extreme events found a strong regulation of REFKDT in 
simulated streamflow. Regarding other parameters, the low values of 
SLOPE (0), and KSAT (4 mm h− 1) result in opposite signs of the relative 

Fig. 3. Boxplots of the change of modeled streamflow (top left), evapotranspiration (ET) (top right) and peak flow (bottom), relative to a baseline scenario, of 31 
watersheds, resulting from changes in soil, runoff and groundwater bucket model parameters (x-axis), for hydrological years 2011–2012 and 2012–2013. The 
description of the parameters can be found in Table 2. 
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change of peak flow in the two hydrological years. These specific 
parameter values lead also to the highest ET increase in both years. The 
decrease of peak flow with no percolation (SLOPE = 0), for instance, in 
the second hydrologic year, may be linked to the enhanced transpiration 
that reduces the soil moisture, impeding the increase in peak flow due to 
saturation excess. In 2011–2012, peak flows are instead enhanced with 
no percolation (SLOPE = 0), probably because of saturation excess in the 
very wet conditions. 

The effect of the GW loss factor (Lfac = 0.1) is a reduction of total 
streamflow up to 30 % in the wet year and in the second drier hydro-
logical year by 15 % to 75 % for the different watersheds. A comparable 
reduction is achieved with Zini in the second hydrological year because 
the water depth in the bucket was set to 0 for the 28 ephemeral wa-
tersheds and to 0.1 times the water depth in the bucket for the contin-
uous flow watersheds (st12, st13, st14) at the beginning of the second 
year (October 2012). Both parameters are useful for the reduction of the 
substantial positive streamflow bias of the baseline parameterization. 
However, Lfac induces groundwater losses and thus reduced baseflow 
throughout the simulation period. Zini creates, instead, a reduction in 
baseflow with a discontinuity in the baseflow component of the 
hydrograph at the time of initialization. Setting the parameter ZMAX 
equal to the maximum long-term annual baseflow per watershed has a 
heterogeneous effect on the total streamflow of the 31 watersheds, in 
contrast to the homogeneous response resulting from changes in the soil 
parameters. Total streamflow is reduced in some watersheds and 
increased in some others up to ±25 % in the wetter 2011–2012, and less 
in 2012–2013. This variable impact of ZMAX on total streamflow among 
watersheds justifies the manual calibration of ZMAX per watershed, as 
described in Section 2.5. 

Considering the high variability of the model outputs to the 

percolation parameter SLOPE, it was selected to be a calibration 
parameter. Among the two soil properties KSAT and SMCMAX, the KSAT 
was selected to be calibrated because of its larger impact and variability 
among watersheds, compared to SMCMAX. The soil depth for the cali-
bration runs was set to 125 cm, because it reduced the streamflow 
amounts that were overestimated by the 100 cm soil depth of the 
baseline parameterization. Further, parameter REFKDT, which impacts 
the magnitude of peak flows, was selected for calibration. 

3.1.3. Vegetation parameters 
The magnitude of the relative change of total streamflow and ET 

resulting from the representation of vegetation density (GVF and LAI) is 
almost the same as the magnitude of the relative change due to the se-
lection of the stomatal conductance model, i.e., the Jarvis model (Fig. 4). 
The option for monthly GVF (DVEG = 1) results in a median reduction in 
ET by 15 % up to 25 % relative to the yearly maximum GVF (DVEG = 4, 
baseline run). The computation of GVF as a function of the prescribed 
monthly LAI (DVEG = 3; Eq. (7)) results in higher GVF values and 20 % 
higher ET than both the monthly prescribed GVF (DVEG = 1) and yearly 
prescribed GVF (DVEG = 4; baseline). The replacement of prescribed 
LAI values with satellite-derived values for different land use categories 
and GVF equal to 1 (LAI = Copernicus) has a small impact on streamflow 
and ET, which are reduced and increased up to 5 %, respectively. 

The Jarvis stomatal conductance model increases the total annual ET 
by 15 % – 20 % compared to the ET obtained by the default option of 
Ball-Berry model. The refinement to the Jarvis model, with the inclusion 
of the description of nocturnal transpiration, increases ET, on average, 
with an additional 10 %–15 %. The adjustment of the parameter con-
trolling the interception of precipitation by canopy (CH2OP) to a value 
equal to 0.5 mm per unit LAI instead of the prescribed 0.1 mm leads to a 

Fig. 4. Boxplots of the relative change of modeled streamflow (top left), evapotranspiration (ET) (top right) and peak flow (bottom) to changes in vegetation model 
parameters (x-axis), relative to a baseline scenario for hydrological years 2011–2012 and 2012–2013. The description of the parameters can be found in Table 2. 
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small increase in ET, due to increased intercepted precipitation. The 
three parameters TOPT, B and HS in the Jarvis model stress functions 
have almost no impact, giving the same results as the baseline parameter 
set. 

The total ET increase by 15 % up to 20 % with the Jarvis model, 
relative to the Ball-Berry, was found to be closer to the values of local ET 
observations (Eliades et al., 2018b). This underestimation of ET by Ball- 
Berry in this semi-arid Mediterranean environment agrees with the re-
sults reported by Zheng et al. (2019) for the suitability of Jarvis in semi- 
arid regions of the conterminous United States. For these reasons, the 
Jarvis model, with the formula for nocturnal transpiration replaced the 
Ball-Berry model in the model code of this study. The Jarvis model 
parameter TOPT was set to 20̊C, despite its negligible impact, because 
the specific value is suggested for Mediterranean vegetation by Larcher 
(1995) and for crops by Wang et al. (2017). For a more realistic repre-
sentation of GVF and LAI, the remote-sensed Copernicus-based LAI was 
used for the calibration model runs of this study. 

The Jarvis stomatal conductance enhanced with the nocturnal 
component leads to increased ET relative to the baseline Ball-Berry (30 
%), which corresponds to a similar reduction in soil moisture. The 
groundwater loss function continuously reduces the groundwater stor-
age in the bucket as a function of the groundwater level and this induces 
reductions in baseflow overall, but also reduction of large baseflow re-
leases during peak flow events. Thus, a new baseline parameterization, 
based on modified Jarvis and groundwater bucket equations, could 
possibly lead to an altered impact of the tested parameters. The differ-
ence in the parameter impact under drier conditions in soil and 
groundwater can be understood by comparing the relative changes of 
streamflow, peak flow and ET in the two hydrological years used in this 
study. These relative changes are mostly similar in both the very wet 
2011–2012 and in the less wet 2012–2013, particularly for the total 
streamflow and total ET. The significance of these findings is also indi-
cated by comparing the relative impact of the same parameters and 
parameterizations for the 31 watersheds. Parameters SLOPE, KSAT and 
Lfac as well as most of the vegetation parameters result in similar relative 
changes in streamflow and ET, in both years as seen in Fig. 3 and Fig. 4 
as well as when each watershed is examined individually. For instance, 
for st1 and SLOPE equal to zero, the relative changes in streamflow (0.92 
in 2011–2012 and 0.87 in 2012–2013) and in ET (1.09 in 2011–2012 
and 1.14 in 2012–2013) have similar magnitude. The same patterns can 
also be observed for KSAT and Lfac and most vegetation parameters and 
for other watersheds. 

The results of this study show that the baseline parameterization of 
WRF-Hydro and particularly of Noah-MP, from the parameterizations of 

which the soil, runoff and vegetation parameters originate, exhibit 
strong biases in ET fluxes in the semi-arid environment of the study area. 
These findings are indicative of potentially strongly biased fluxes to the 
atmosphere, which may affect the modeling of atmospheric variables, 
such as in the WRF atmospheric model, which can be coupled to Noah- 
MP and to WRF-Hydro, as pointed out by Lin and Cheng (2016). In 
addition, through the impact analysis it was seen that soil and vegetation 
parameters and the GW bucket maximum depth ZMAX, as well as both 
the new GW loss factor and the adjustment in Jarvis model equation are 
necessary to reduce the streamflow overestimation. The largest re-
ductions, on average for all watersheds, were up to 25 % for SLOPE, 
KSAT and the adjusted Jarvis equation. Cuntz et al. (2016) reached 
similar conclusions about the sensitivities of soil and vegetation pa-
rameters in a global sensitivity analysis for water balance components 
simulated with Noah-MP for locations in the eastern United States. The 
influence of soil and runoff parameters on simulated surface fluxes with 
Noah-MP was also highlighted by Li et al. (2020). 

3.2. Model calibration and evaluation 

3.2.1. Calibration of distributed and groundwater parameters 
The distributed model parameter calibrated values for REFKDT, 

SLOPE and KSAT for the different land surface and geology classes are 
presented in Table 3 and Fig. 2. The calibration of the 19 parameters 
values was completed after nine PEST iterations with 198 WRF-Hydro 
model runs. The computational cost was 260 CPU hours per WRF- 
Hydro run for two years of simulations. The manually calibrated value 
of ZMAX ranged between the long-term annual average and maximum 
total baseflow for 17 watersheds. For 12 watersheds, ZMAX was set 
below the long-term average baseflow and for two watersheds, ZMAX 
was set above the long-term maximum baseflow. 

Overall, the grid-based calibration of distributed model parameters 
resulted in calibrated parameter values, generally, within the calibration 
range and consistent with the expected hydrological function of water-
shed characteristics. For instance, the REFKDT values were the highest 
and lowest for the topographic slope lower than 5 % and larger than 10 
%, respectively, for the three land use classes. From Table 3, it is also 
seen that some calibrated REFKDT values are equal to the maximum or 
minimum value of the range set for the calibration. The calibrated values 
are most often close to the maximum values for the land surface classes 
with slope<5 %. Low topographic slope is expected to increase infil-
tration, which is simulated with high REFKDT values. These calibration 
results indicate the high infiltration rates, which were correctly assigned 
by PEST, through the REFKDT values for flat or nearly flat areas. 

Table 3 
The WRF-Hydro distributed parameter names, watershed characteristics, area covered per characteristic, parameter estimation range and the PEST calibrated 
parameter values.  

Parameter Unit Watershed characteristic Area (%) Min value Max value Calibrated value 

Land surface classes 1 Coniferous forest slope < 5 % 9 3.0 6.0 6.0 
REFKDT (-) 2 5 % <= slope < 10 % 23 2.5 5.0 3.9  

3 slope >= 10 % 14 1.5 4.0 1.6  
4 Shrubland slope < 5 % 7 3.0 5.5 5.5  
5 5 % <= slope < 10 % 11 2.0 4.5 2.2  
6 slope >= 10 % 6 1.0 4.0 3.4  
7 Agricultural land slope < 5 % 16 1.0 4.0 4.0  
8 5 % <= slope < 10 % 12 0.5 3.5 3.5  
9 slope >= 10 % 2 0.2 3.0 0.2 

Geology classes 1 Vulcanic Complex 12 0.1 1 0.24 
SLOPE (-) 2 Ultramafic Complex 10 0.1 1 0.56  

3 Basal Group, Diabase 46 0.1 1 0.87  
4 Gabbro, Plagiogranite 9 0.1 1 0.96  
5 Sedimentary 23 0.1 1 1.00 

Soil classes 1 Vulcanic Complex Clay loam 12 5 20 13 
KSAT (mm h− 1) 2 Ultramafic Complex Sandy loam 10 10 70 42  

3 Basal Group, Diabase Loam 46 5 20 12  
4 Gabbro, Plagiogranite Loamy sand 9 30 70 56  
5 Sedimentary Clay loam 23 5 20 10  
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Increasing the value of REFKDT above these maxima reached during 
calibration, will only induce, however, minor difference in the simulated 
streamflow, according to Camera et al. (2020). These authors tested 
REFKDT values ranging from 0.3 up to 1000 and showed that the 
REFKDT impact on streamflow is well captured with values up to about 
five, and only small variations in total discharge could be observed with 
REFKDT up to about 100. 

For parameter SLOPE, the gridded areas with sedimentary, gabbro or 
diabase geologies were assigned values higher than 0.85. This result is 
consistent with the high bedrock permeability of these formations 
(Udluft et al., 2006). Parameter SLOPE values close to one lead to 
maximum percolation rate. The calibrated values of KSAT (ranging from 
2.8 × 10-6 and 1.6 × 10-5 m s− 1) are also representative of the soils of 
Troodos. The highest hydraulic conductivities were assigned to soil 
classes of sandy loam and loamy sand, which correspond to the 
geological classes of the uppermost part of Troodos (gabbro, plagiog-
ranite and ultramafic complex). The spatial calibration has also resulted 
in higher value of KSAT for the soil class of clay loam than that of loam, 
despite that clay containing soils are expected to have a lower KSAT than 
loam, for instance. These results are indicative of the high uncertainty of 
soil texture over Troodos, as reported by Camera et al. (2017). 

The grid-based calibration for streamflow can be considered a useful 
method to estimate spatial values of soil properties that have not been 
measured. The advantage, in addition, of the grid-based calibration at 
multiple watersheds, based on watershed characteristics, is that the 
calibrated distributed parameters can be used for ungauged streams. 
One limitation is that GW bucket parameters could not be linked to 
watershed characteristics in this study. For ungauged basins, GW pa-
rameters could instead be estimated from extrapolation of GW 

parameters of neighboring watersheds. Nevertheless, the limitation of 
GW parameters, is only relevant for streamflow and not for any land 
surface processes, which control ET. 

3.2.2. Calibration and evaluation results 
The evaluation results of the model configuration based on the grid- 

based calibration of distributed parameters, are shown in Fig. 5. Positive 
NSE and KGE values were obtained for 28 out of 31 watersheds, with 
median NSE equal to 0.49 in the calibration period. The model efficiency 
in the evaluation period (2013–2018) is lower, with a median NSE of 
0.02 and positive NSE and KGE in 16 and 21 watersheds, respectively. 
The number of watersheds with full streamflow observation time series 
in the evaluation period was, however, also lower (31 watersheds in 
2013–2014 and in 2014–2015, 26 in 2015–2016, 20 in 2016–2017 and 
15 in 2017–2018). Despite this uneven number of watersheds in each 
hydrological year, a positive correlation of NSE and KGE with total 
precipitation per hydrological year (total precipitation shown in Fig. 8), 
with increasing efficiency metrics for increasing precipitation, was 
observed considering all watersheds, but also only considering the 15 
watersheds with full records during the evaluation period. The median 
NSE and KGE for the entire period were 0.24 and 0.55, with positive 
metrics for 28 and 29 watersheds, respectively. 

The mean absolute error (MAE) in the volume of streamflow is, on 
average, <0.5 mm per day in both the calibration and evaluation period, 
and the MAE in the evaluation period is larger than the MAE in the 
calibration period only in one (2014–2015) out of the five evaluation 
years. The relative bias of total streamflow per hydrological year is less 
than ±25 % for 26 watersheds for the calibration period, which is a 
substantial improvement relative to the bias of 50 % − 100 % in the 

Fig. 5. Boxplots of the 31 watersheds for the Nash-Sutcliff efficiency (NSE), Kling-Gupta efficiency (KGE), mean absolute error (MAE) and relative bias, with each 
box representing the variability of the values of each metric for the 31 watersheds for each hydrologic year in the calibration and the evaluation period. 
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same period with the baseline parameterization. An exception is the 
group of five watersheds on the eastern flank of Troodos mountains 
(Fig. 6), which receives less rainfall than the west and central part of the 

mountains. A large overestimation of total streamflow is evident from 
Fig. 5 and Fig. 6 for the evaluation period, particularly for the three 
driest hydrological years (2013–2014, 2015–2017). 

The examination of the simulated and observed hydrographs in Fig. 7 
for three watersheds of different prevailing hydrological conditions, i.e., 
non-ephemeral (st13) and ephemeral (st17 and st21) confirms the re-
sults of Fig. 5. The hydrographs of all 31 watersheds are presented in 
Appendix C. The modeled streamflow follows very well the observed 
streamflow in the calibration period for most watersheds. The most 
profound errors in the evaluation period are linked to baseflow and the 
mismatch between observed and simulated flow during the rising and 
descending limb of the hydrographs in the wetter years. The timing of 
simulated peak flows agrees with the observed peak flows despite some 
errors in the magnitude of peak flows, especially in days with high 
accumulated precipitation, about 50 mm and above. For the wettest 
hydrological year of the evaluation period (2014–2015), the first 
simulated peak flow is delayed for many watersheds, relative to obser-
vations. This delayed peak flow could be attributed to differences in the 
growth of the forest understory and the stream network vegetation, 
which are represented by time-invariant roughness coefficients in the 
model. 

The errors in peak flows in days with high accumulated precipitation 
could be linked to errors in the precipitation because the rain gauge 
network that was used for the generation of the gridded forcing data 
may not sufficiently capture the spatial variability of the rainfall over the 
mountains (Sofokleous et al., 2021). This explanation is even more 
important in small watersheds. The small size of watersheds implies 
potentially large streamflow volume errors, in case of errors of the 
spatially interpolated precipitation. Short concentration times in com-
bination with the uncertainty of precipitation may also lead to errors in 
the timing of peak flows. 

The reduction of performance in the evaluation period is common for 
WRF-Hydro, as seen in other studies as well. For a 3-year simulation 
period and a 1281 km2-sized basin in S. Italy, Senatore et al. (2015) 
reported a reduction in NSE from about 0.9 to about 0.3, moving from 
the calibration to the evaluation period. These authors attributed the 
NSE reduction to the peak flows underestimation, which was related to 
the limitations in simulating the intensity and duration of precipitation. 
For simulation of two extreme precipitation events for 22 watersheds in 
the Troodos mountains, Camera et al. (2020) reported NSE and KGE 
values above 0.5 for most watersheds for the calibration event and a 
reduction of the values of the two efficiency metrics, remaining mostly 

Fig. 6. Maps of the 31 watersheds with the area of each watershed colored according to the Nash-Sutcliff efficiency (NSE; top) and Relative error (bottom) achieved 
by WRF-Hydro for the calibration period (left) and the evaluation period (right). 

Fig. 7. Hydrographs of WRF-Hydro simulated streamflow and observed 
streamflow (m3s− 1) at three watersheds with evaluation metrics for the cali-
bration period (2011–2013) and the evaluation period (2013–2018). 
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positive, for the evaluation event, similar to this study. They attributed 
the performance reduction to overestimation of peak flows, which could 
have been lower with increased roughness coefficients. 

Biases in the baseflow component of the hydrographs, as described 
above, could be partly explained by the findings of previous studies for 
the groundwater processes in Troodos. Boronina et al. (2003) used the 
2D groundwater MODFLOW code to model groundwater processes of 
three Troodos watersheds (st29, st30, st31) and found substantial 
groundwater exploitation. Christofi et al. (2020) showed, with inte-
grated observations and modeling, that groundwater flows across sub-
watersheds. The main reason for the latter is that in the complex, 
fractured Troodos aquifer system, hydrogeological (subsurface) basins 
have a different extent than hydrologic (surface) watersheds. The find-
ings of Boronina et al. (2003) and Christofi et al. (2020) are indicative of 
groundwater losses, simulated by WRF-Hydro here with the new GW 
loss factor. Rummler et al. (2022) found that the implementation of a 
different groundwater parameterization, i.e., a 2D groundwater table 
scheme, with soil moisture and groundwater interaction, improved 
WRF-Hydro streamflow simulations in the upper Danube river basin. 
However, considering that modeling groundwater in fractured aquifers, 
such as those in Troodos, is subject to large uncertainties, the calibrated 
GW bucket model of WRF-Hydro with the groundwater loss factor 
introduced in this study is a useful conceptualization of complex 
groundwater processes. Such processes are groundwater losses beyond 
the watershed boundaries and water use abstractions that cannot be 
observed or modelled individually. 

The low final NSE calculated for the evaluation of WRF-Hydro, can 
be due to the relatively large number of watersheds (31) calibrated 
simultaneously for a relatively small number of parameters (19). The 
consideration of alternative or additional soil parameters to be cali-
brated, e.g. porosity and the exponent in the shape parameter for soil 
resistance, as suggested to be very sensitive parameters by Cuntz et al. 
(2016), could have provided further performance improvements with 
the grid-based calibration. Yet, the assignment of distributed values to 
further soil properties would require additional computational resources 
and data for the spatial distribution of these properties, which is 
currently lacking. Furthermore, the equifinality of the results, i.e., 
similar relative change of total streamflow, ET and peak flow in two 
different hydrological years, with changes in the values of different 
parameters, as discussed in Section 3.1.2 and Section 3.1.3, is another 
limiting factor for adding more parameters in the calibration parameter 
set. An improved WRF-Hydro performance could possibly also be ach-
ieved with a variable soil depth across the simulation domain, as Fersch 
et al. (2020) proposed, which is however unsupported in the latest WRF- 
Hydro version (v5.2). 

The degradation of the model performance in this study could have 
been lower in the evaluation period, if a longer calibration period with 
an additional year of different precipitation conditions would have been 
included. There are, however, certain considerations, which imply that 
the poor model performance in dry years is not just subject to the 
selected period of calibration. WRF-Hydro is a physically-based model 
and the calibration of parameters used in the physically-based model 
equations for two years, with interchanging very wet, wet and dry pe-
riods exposed the calibrated parameters to all of these conditions. The 
aforementioned exploitation of groundwater resources over Troodos, 
not included in the WRF-Hydro code, could be enhanced in drier years 
and this will have a direct impact on baseflow. This study tested, in 
addition to the loss factor, the initialization of the groundwater bucket at 
the beginning of each hydrological year, as a method to resolve the 
overestimation of baseflow in simulations of consecutive hydrological 
years. This example highlights how water resources exploitation is not 
part of the physically-based processes of WRF-Hydro and that the 
groundwater bucket level has to be manually adjusted to account for 
local water use. 

The low performance of semi-arid watersheds with ephemeral 
streams can also be explained by the changing vegetation properties in 

the stream network. Wet conditions in one year promote the develop-
ment of riparian vegetation within the streams during the low flow 
season. These changed stream roughness conditions remain in following 
dry years and hinder flow reaching the watershed outlet. Part of this 
flow becomes ponded water, which eventually becomes ET. The stream 
roughness will decrease when the vegetation flattens during high pre-
cipitation and high flow events. Adding dynamic functions for some 
parameters to account for temporal variation of land surface and 
channel properties (e.g. REFKDT, overland and channel roughness) 
could alter the response of watersheds, particularly for dry years and 
ephemeral streams. The spatial calibration of these time-variant pa-
rameters could in this case be performed for land surface classes based 
on high resolution satellite-derived LAI. 

This study showed that the performance of small semi-arid water-
sheds exhibits high relative change to model soil and vegetation pa-
rameters as well as to the total precipitation in the year of simulation. 
The water-limited environment of semi-arid areas requires improved 
parameterizations reproducing ET in Noah-MP, which is the dominant 
water balance component for the largest part of a hydrological year. At 
the same time, the wet winter period of the year coincides with the 
period when the radiation is relatively low and thus, the soil moisture 
and runoff parameterizations are important for simulating surface and 
subsurface runoff and percolation to the groundwater. For streamflow 
simulations for entire hydrological years, such as for seasonal stream-
flow forecasting, the baseflow parameterization becomes important, 
because baseflow is the dominant component in the hydrograph. For the 
latter, the soil physics parameterization and parameters SLOPE and 
KSAT, which control the inflow into the groundwater bucket are 
important. For the bucket outflow, the size of groundwater bucket 
(ZMAX) and groundwater bucket outflow coefficients are other model 
components that should be considered in the calibration of the model. 

3.2.3. Water balance evaluation 
The simulated watershed area-average water balance components of 

the 31 watersheds are shown in Fig. 8. The partitioning of precipitation 
into the water balance components of soil evaporation, canopy inter-
cepted and evaporated water, canopy transpiration, runoff, soil moisture 
change, groundwater storage change, groundwater loss and dam storage 
change (the last not shown), in each hydrological year, is dominated by 
the losses to the atmosphere. Transpiration accounts for about 40 % of 
the total water balance, on average, for all watersheds. In addition, soil 
evaporation and intercepted water have an average contribution to the 
total water balance of about 30 % and 15 %, respectively. Therefore, ET 
returns about 85 % of the input precipitation to the atmosphere. The 
next most dominant component of the water balance is the total runoff, 
with an average contribution of 15 %. A smaller contribution in the 
water balance, less than ±10 %, is due to the change in the soil and 
groundwater storage, and to a much lesser extent to losses from the 
groundwater and dam storage. Soil and groundwater storage changes 
show positive changes in the wettest years, such as 2011–2012 and 
2014–2015. With these results, the positive impact of the groundwater 
bucket in WRF-Hydro and the GW loss factor introduced here for 
streamflow simulations in semi-arid environments can be seen once 
more. The largely overestimated streamflow by the baseline WRF- 
Hydro, as shown in this study, can be reduced, in order to better 
match the ephemeral behavior of semi-arid streams with the adjustment 
of storage capacity of the GW bucket and the use of the GW loss factor. 
The average water balance closure error was calculated to range within 
±5 %. Possible sources for this figure could be the error in the numerical 
solution of the soil water flow in WRF-Hydro code (maximum water 
balance error allowed per time step = ±0.1 mm) and the mismatch 
between the watershed area of Noah-MP and WRF-Hydro from both of 
which the water balance components were extracted. The watershed 
border in Noah-MP is based on its 1-km grid resolution whereas the 
watershed border in WRF-Hydro was delineated on the 100-m grid. 

The temporal variability of these water balance components seems to 
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be correlated with the total precipitation. For instance, the highest and 
lowest watershed average runoff coefficients are observed in the wettest 
(2011–2012) and driest (2013–2014) years, respectively. The water 
storage changes in soil and groundwater bucket, relative to the total 
precipitation, follow the change in total precipitation from year to year 
and the magnitude of the change is more evident in the transition be-
tween years when one of them is either very wet or very dry. For 
instance, the dry hydrologic year 2013–2014 after the wet 2012–2013, 
with total precipitation 400 mm and 680 mm, respectively, has a soil 
and groundwater storage change equal to − 2% and − 6%, on average, 
for all watersheds. The ratio of evaporation, interception and transpi-
ration to the total precipitation seems to be inversely correlated with the 
total precipitation. During the driest years, the dominance of the three 
components is higher than in the wetter years. Taking into account, 

Fig. 9. Scatterplots of the observed and watershed average simulated fractions of evaporation to precipitation (E/P), interception to precipitation (I/P) and tran-
spiration to precipitation (T/P) for the hydrological years from 2014 to 2018. 

Table 4 
Total transpiration (sum) and percent bias (PBIAS) for the period January 2015 
to December 2017 separated in amounts occurred during day and during night 
from observations at the monitoring site of Eliades et al. (2018a) and model 
results with the Jarvis model and the improved Jarvis model with nocturnal 
transpiration at the corresponding model grid cell.   

Sum (mm) PBIAS (%) 

Day   
Observations 418  
Noah-MP Jarvis 239 − 43 
Noah-MP Jarvis nocturnal 443 6 
Night   
Observations 94  
Noah-MP Jarvis 27 − 71 
Noah-MP Jarvis nocturnal 122 30  

Fig. 8. Boxplots, as in Fig. 3, of the total precipitation (P) and the ratios of the modeled soil evaporation (E), canopy interception (I), transpiration (T), soil moisture 
change (SM ch.), groundwater storage change (GW ch.) and groundwater loss (GW loss) to precipitation and the modeled runoff coefficients (RC) for 31 watersheds 
and seven hydrological years. Crosses represent annual average observed values at the pine forest monitoring site. 
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however, the amount of precipitation per hydrologic year, the total 
amount of evaporated and transpired water is higher during the wet 
years. 

The temporal pattern of the water balance components modeled by 
WRF-Hydro seems to generally follow observations at the pine forest 
monitoring site of Eliades et al. (2018a) (Fig. 8), which is located close to 
the boundary of Peristerona watershed (st17) and just downstream of 
the Lagoudera watershed (st16). The precipitation at the site is in the 
driest 25 % percentile of the long-term average precipitation of the 31 
watersheds (Fig. 8). The four-year average (2014–2018) observed ratio 
of evaporation to precipitation (E/P) was 0.18, whereas the simulated E/ 
P was 0.23 for Peristerona and 0.26 for Lagoudera. The total observed 
interception to precipitation ratio (I/P), according to long-term inter-
ception observations by Eliades et al. (2022) was 0.19, and the modeled 
I/P was 0.09 for Peristerona and 0.10 for Lagoudera. The lower vege-
tation density for coniferous forest in the model (Copernicus LAI = 1.3; 
Table B1, Appendix B) compared to that observed at the monitoring site 
(LAI = 2.38) can explain the lower simulated interception rates and 
higher simulated soil evaporation (Fig. 9). The four-year average ratio of 
transpiration to precipitation (T/P) at the site, about 0.45, is very close 
to the average ratio simulated for the Peristerona watershed (0.42) and 
for the Lagoudera watershed (0.37) for the same years. The partitioning 
of observed and modeled transpiration to day-time and nocturnal 
amounts (Table 4) for the years 2015 to 2017 shows that the improved 
Jarvis model reduces the total period transpiration bias for the location 
of the monitoring site for both day and night time to 25 and 28 mm 
respectively. Despite the improvement in the simulated amounts, the 
Jarvis model and the the parameters of the nocturnal Jarvis radiation 
equation should be further tuned to match the diurnal transpiration 
patterns too. Overall, the partitioning of the three water balance com-
ponents to precipitation is simulated with a maximum difference of 10 % 
of total precipitation relative to observations. 

Zheng et al. (2019) found that for the improvement of annual and 
seasonal modeling of ET through model simulations with Noah-MP, the 
impact of terrestrial water and of vegetation changes during the vege-
tation growing season needs to be considered. To account for the 
vegetation changes, Arsenault et al. (2018) suggested the Ball-Berry 
stomatal conductance model, which is able to simulate dynamic 

vegetation changes, which however underestimates observed ET rela-
tive to the Jarvis model as seen for the semi-arid environment of this 
study, as well as in Ingwersen et al. (2015) and Zheng et al. (2019). For 
these reasons, including the seasonal variation of LAI at high spatial 
resolution, as well as the improvement of Jarvis model for accounting 
for the local ecohydrological processes, as suggested in this study, 
particularly during the growing season need to be considered for the 
simulation of the magnitude and temporal variability of the ET 
components. 

The impact of lateral routing, which is enabled in WRF-Hydro, unlike 
the stand-alone Noah-MP LSM can be seen in Fig. 10. The WRF-Hydro 
runoff coefficients are closer to the 1:1 line with the observed runoff 
coefficients compared to the Noah-MP runoff coefficients. The correla-
tion coefficient of WRF-Hydro runoff coefficient against observed values 
was 0.85, compared to 0.60 for the Noah-MP runoff coefficients. In 
addition, the average WRF-Hydro runoff coefficient was 0.13, very close 
to the observed average of 0.14, whereas the average value obtained 
with Noah-MP was 0.22. The reduced WRF-Hydro runoff amounts are 
related to the process of lateral routing and re-infiltration of routed 
surface water. Zhang et al. (2020) found that the re-infiltration ratio and 
runoff coefficient in WRF-Hydro are two correlated indices. Further-
more, WRF-Hydro here is enhanced with the loss factor introduced in 
the GW bucket model (Section 2.2.1) that contributes to groundwater 
losses and thus reduced baseflow. WRF-Hydro has in some cases, how-
ever, higher runoff coefficients than Noah-MP. This is because there 
might be a baseflow contribution to the total WRF-Hydro streamflow 
from groundwater stored in the bucket in the previous year. Overall, 
these results clearly indicate the added value of using WRF-Hydro for 
water balance investigations. 

4. Conclusions 

In this study, a grid-based approach was tested to calibrate the 
spatially distributed parameters of the WRF-Hydro model using the 
PEST software. The model equations of the groundwater bucket module 
and of the Jarvis stomatal conductance model were improved to 
describe groundwater losses and nocturnal transpiration. An impact 
analysis of different parameters, parameterization options and the 
improved equations on total streamflow, total evapotranspiration (ET) 
and peak flows of 31 Mediterranean mountain watersheds, in a two-year 
period, was performed. The parameter impact was examined relative to 
a baseline WRF-Hydro configuration. For the baseline parameter set, the 
parameters for runoff, soil texture and soil depth were adjusted, relative 
to the default WRF-Hydro and Noah-MP parameterization, to represent 
local conditions. The median bias of streamflow in the baseline 
parameterization was 54 % and 139 %, respectively, in two years of 
calibration. The final model configuration was based on the results of 
the impact analysis and of the grid-based calibration in the two-year 
period, and was evaluated in a five-year period. The main findings of 
this study are:  

• Within the range of change of the soil parameter values or vegetation 
parameterization options, the median streamflow and ET of the 31 
watersheds could be increased or decreased up to about 30 %, rela-
tive to the baseline model parameterization. The largest impact in 
total streamflow, peak flows and total ET was due to three soil pa-
rameters: hydraulic conductivity KSAT, the percolation controlling 
parameter SLOPE and the porosity SMCMAX. The vegetation pa-
rameterizations with the largest impact were the representation of 
vegetation density DVEG option 1 (monthly GVF) and the Jarvis 
stomatal conductance model. The infiltration controlling parameter 
REFKDT, on which many previous studies focused, impacts peak 
flows more than total streamflow, but its effect on peak flow is 
similar or less than the effects of SLOPE, KSAT and SMCMAX in the 
entire simulation period. 

Fig. 10. Scatterplot of the runoff coefficients of 31 watersheds per hydrological 
year for seven years for observed data (RC-OBS) against simulated data (RC- 
SIM) and the correlation coefficient R with Noah-MP and WRF-Hydro models. 
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• The impact analysis revealed that the effect of the most important 
parameters (SLOPE, KSAT, vegetation parameters) on streamflow 
and ET was similar for all 31 watersheds and in two different hy-
drological years, indicating the significance of the parameter impact 
analysis results.  

• The Ball-Berry stomatal conductance model, which is the default in 
Noah-MP LSM, was found to simulate up to 25 % less median tran-
spiration than the Jarvis model. The Jarvis model with the addition 
of a new equation for nocturnal transpiration simulated total, day- 
time and nocturnal transpiration close to locally observed 
amounts. This modification of the Jarvis model was also necessary to 
obtain acceptable results for streamflow.  

• The proposed groundwater loss factor (Lfac) in the groundwater 
bucket component of WRF-Hydro was found to be another useful 
addition in the model code to reduce the streamflow overestimation 
by the reduction of baseflow. On average, the median reduction of 
total streamflow of the 31 watersheds was 30 % in the two calibra-
tion years with Lfac. The groundwater loss factor can be especially 
useful for streamflow simulations of ephemeral streams. The inclu-
sion of groundwater losses can be considered to account for the cu-
mulative losses from the water balance of semi-arid Mediterranean 
watersheds, which are not modeled with WRF-Hydro, such as ex-
tractions from groundwater. The groundwater bucket model with the 
addition of the loss component is useful in simulating an average 
hydrological behavior of groundwater processes in complex frac-
tured geology, where groundwater basins are not aligned with sur-
face watersheds.  

• The grid-based calibration of the distributed model parameters 
KSAT, SLOPE and REFKDT for 19 spatial classes with PEST proved 
useful for the estimation of parameter values. The parameters were 
assigned spatially variable calibrated values in line with their ex-
pected hydrologic function on streamflow and spatial variability of 
land use, topographic slope and geological classes. The advantage of 
the grid-based calibration is that the calibrated distributed parame-
ters can be used for ungauged streams.  

• The final parameterization of WRF-Hydro, based on the results of the 
grid-based calibration and selection of parameters values and model 
options from the parameter impact analysis, yielded positive model 
efficiency (median NSE = 0.49, median KGE = 0.66). The model 
efficiency was lower, however, in the five-year evaluation period 
(median NSE = 0.02, median KGE = 0.10). The total streamflow 
median bias was − 5% in calibration period and around 50 % in the 
evaluation period. The reduction of bias, by about 50 %, is a sub-
stantial improvement relative to the baseline parameterization.  

• The WRF-Hydro model efficiency metrics and the bias metrics were 
highest and lowest, respectively, during wet years. The median NSE 
was about 0.5 for the wettest years, above zero for the medium wet 
years and about − 1 in the driest years. The driest watersheds were 
also simulated with the highest negative relative biases. The MAE 
was, however, nearly the same and<0.5 mm/d in both the calibra-
tion and in four out of five years in the evaluation period. The overall 
results imply that the model performance is degraded in years with 
low total precipitation and dry conditions. Improving the model code 
by making the surface and stream roughness coefficients time- 
variant, could potentially improve the model performance for these 
conditions.  

• The calibrated model captures the patterns of the water balance 
annual partitioning among the components of evaporation, transpi-
ration and interception. The simulated average ET of 31 watersheds 

for seven years agreed with observations and accounted for 85 % of 
the input precipitation, which characterizes semi-arid and Mediter-
ranean ecosystems. The runoff coefficients obtained with the cali-
brated WRF-Hydro model averaged 0.13, whereas those obtained 
with Noah-MP, which does not simulate lateral flow and re- 
infiltration, averaged 0.22, compared with the average observed 
value of 0.14. 

Overall, the PEST-based WRF-Hydro calibration for streamflow at 
multiple watersheds, proved a functional and effective approach for the 
adjustment of model parameters and equations for both runoff and land 
surface processes. Additional to the groundwater loss factor and 
nocturnal transpiration equation, improvements could be made to 
describe other observed hydrological and ecosystems processes for semi- 
arid environments and ephemeral streams. The impact of using the grid- 
based calibrated WRF-Hydro with improved parameterizations on at-
mospheric modeling could be examined with fully coupled hydrological- 
atmospheric simulations. 

5. Model and data availability:  

• The WRF-Hydro model code with the modifications in the Jarvis 
stomatal conductance model and in the groundwater bucket model 
used in this study is publicly available at: https://doi.org/10. 
5281/zenodo.7335585  

• WRF model: https://github.com/wrf-model/WRF  
• WRF-Hydro model: https://github.com/NCAR/wrf_hydro_nw 

m_public  
• ArcGIS preprocessing tool: https://github.com/NCAR/wrf_hydro_ 

arcgis_preprocessor  
• DEM and geology data: https://www.moa.gov.cy/moa/gsd/gsd.nsf  
• Copernicus satellite LAI: https://land.copernicus.eu/  
• Corine Land Cover: https://land.copernicus.eu/ 
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Appendix A. The Jarvis stomatal resistance model 

An empirical formula for the stomatal resistance was proposed by Jarvis (1976), which is still widely used. The formula computes, according to 
Chen et al. (1996), the canopy stomatal resistance rs at any environmental condition. 
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rs = rsmin • (F1F2F3F4)
− 1 (A.1) 

Given the minimum stomatal resistance (rsmin), corresponding to the value of canopy resistance at optimal environmental conditions for tran-
spiration, the Jarvis model suggests four stress functions, F1, F2, F3 and F4, ranging from 0 to 1, to adjust rsmin. The functions represent the effects of 
solar radiation (F1), vapor pressure deficit (F2), canopy air temperature (F3) and soil moisture (F4) on transpiration with the following equations: 

F1 =
rsmin/rsmax + f

1 + f
where f = 0.55

Rs

Rgl

2
LAI

(A.2)  

F2 =
1

1 + b[qsat(T) − q(T) ]
(A.3)  

F3 = 1 − B(Topt − T)2 (A.4)  

F4 =
∑nroot

i

(θi − θw)Δzi
(
θref − θw

)
zroot.i

(A.5)  

where each of the four functions is related to the variables of intensity of direct solar radiation Rs (Wm− 2), the vapor pressure deficit qsat - q (kg/kg), 
the canopy air temperature T (K) and the volumetric soil moisture content θi (m3/m3) in soil layer with depth Δz (m) and with vegetation depth of 
roots zroot (m), for nroot number of soil layers with roots. 

The four stress functions contain parameters that are either measurable or estimated through a fitting process of the Jarvis based stomatal 
resistance against actual measurements. The fitting parameters and the model default values are: the maximum canopy resistance rsmax, which 
corresponds to the cuticular resistance of the leaves and a value of 5000 sm− 1 is a representative value for many trees (Dickinson 1984), the fitting 
parameter Rgl for the radiation response (F1), ranging between 30 and 100 Wm− 2 and can be vegetation specific (Noilhan and Planton, 1989), the 
fitting parameter for the vapor pressure deficit response (F2), ranging from 36 to 56 (Chen et al., 1996), the fitting parameter B for the temperature 
response (F3), suggested to be 0.0016 (Dickinson 1984) and the parameter Topt, the optimal transpiration temperature equal to 298 K (Dickinson 
1984), which is replaced by 293 K in this study for the case of woody Mediterranean vegetation, i.e, trees and shrubs (Larcher 1995) and crops (Wang 
et al., 2017). Other parameters are the vegetation type specific Leaf Area Index (LAI; m2/m2) and the soil texture specific wilting point θw (-) and field 
capacity θref (-). 

Appendix B. Land use classes and leaf area indices  

Table B1 
Noah-MP prescribed monthly Leaf Area Index (LAI), monthly field (pixel) average LAI for the land use categories in 31 watersheds in Cyprus and the corresponding 
land surface class per land use used for the calibration of REFKDT parameter.  

CLC Land use 
category 

Coniferous forest Mixed 
Forests 

Sclerophyllous 
vegetation 

Natural 
grassland 

Annual & 
Permanent 
Crops 

Urban Vineyards, Fruit trees, 
Mixed Agriculture & 
natural vegetation 

Bare rock, 
sparsely vegetated 
areas 

USGS Land use 
category 

1. Evergreen 
needle leaf forest 

5. Mixed 
Forests 

6. Closed shrubland 10. 
Grasslands 

12. Cropland 13. Urban 
and Built- 
Up 

14. Cropland/Natural 
vegetation mosaic 

16. Barren or 
Sparsely Vegetated 

Coverage (%) 46.0 2.7 18.5 2.8 12.1 0.3 16.5 1.2 
Land Surface 

Unit 
1,2,3 1,2,3 4,5,6 4,5,6 7,8,9 7,8,9 7,8,9 7,8,9 

Noah MP prescribed LAI (m2/m2) 
Jan 4 2 0 0.4 0 0 0.2 0 
Feb 4 2 0 0.5 0 0 0.3 0 
Mar 4 2.2 0.3 0.6 0 0 0.3 0 
Apr 4 2.6 0.9 0.7 0 0 0.4 0 
May 4 3.5 2.2 1.2 1 0 1.1 0 
Jun 4 4.3 3.5 3 2 0 2.5 0 
Jul 4 4.3 3.5 3.5 3 0 3.2 0 
Aug 4 3.7 2.5 1.5 3 0 2.2 0 
Sep 4 2.6 0.9 0.7 1.5 0 1.1 0 
Oct 4 2.2 0.3 0.6 0 0 0.3 0 
Nov 4 2 0 0.5 0 0 0.3 0 
Dec 4 2 0 0.4 0 0 0.2 0 
Copernicus Global Land Service LAI (m2/m2) (pixel average) 
Jan 1.3 0.9 1.1 1.3 1.4 0.9 1.1 0.9 
Feb 1.3 1.2 1.2 1.6 1.8 1.2 1.4 1.0 
Mar 1.3 1.1 1.1 1.4 1.2 0.8 1.2 0.8 
Apr 1.2 0.9 0.9 0.8 0.8 0.3 0.9 0.5 
May 1.2 0.8 0.8 0.4 0.6 0.3 0.6 0.4 
Jun 1.2 0.6 0.8 0.4 0.5 0.3 0.6 0.4 
Jul 1.1 0.5 0.7 0.3 0.4 0.2 0.5 0.3 
Aug 1.1 0.5 0.7 0.3 0.3 0.2 0.4 0.3 
Sep 1.1 0.5 0.7 0.3 0.3 0.2 0.4 0.3 
Oct 1.2 0.7 0.8 0.3 0.3 0.2 0.4 0.3 
Nov 1.2 1.0 1.0 0.5 0.5 0.3 0.6 0.5 
Dec 1.2 1.2 1.1 1.0 1.0 0.7 1.1 0.7  
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Appendix C. Hydrographs  

Fig. C1. Hydrographs of WRF-Hydro simulated streamflow and observed streamflow (m3s-1) at 31 watersheds with evaluation metrics for the calibration period 
(2011–2013) and the evaluation period. 
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Appendix D. WRF-Hydro dam parameters  

Appendix E. Model performance evaluation equations 

The Nash-Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970) ranges between -∞ and 1.0 and when NSE equals 1, a perfect fit of the simulated data 
to the observed data is denoted. The equation for NSE is: 

NSE = 1 −

[∑n
i=1

(
Yobs

i − Ysim
i

)2

∑n
i=1

(
Yobs

i − Ȳobs)2

]

(E.1) 

where Yobs and Ysim are the observed and modeled streamflow respectively at time step i and n is the total number of time steps. Kling-Gupta 
Efficiency (KGE; Kling et al., 2012) has the same range as NSE and the perfect fit of simulated to the observed streamflow is achieved when KGE 
equals 1. The equation for KGE is: 

KGE = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (β − 1)2

+ (γ − 1)2
√

(E.2)  

β =
Qsim

Q̄obs  

γ =
σsim/Qsim

σ̄obs/ ¯Qobs 

where r is the linear correlation coefficient between simulated and observed flows, Qsim and Qobs are the mean simulated and observed flow 
respectively and σsim and σobs are the standard deviations of simulated and observed runoff respectively. 
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