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Abstract: Over the past four decades the dietary needs of the global population have been elevated,
with increased consumption of animal products predominately due to the advancing economies
of South America and Asia. As a result, livestock production systems have expanded in size, with
considerable changes to the animals’ management. As grazing animals are commonly grown in herds,
economic and labour constraints limit the ability of the producer to individually assess every animal.
Precision Livestock Farming refers to the real-time continuous monitoring and control systems using
sensors and computer algorithms for early problem detection, while simultaneously increasing
producer awareness concerning individual animal needs. These technologies include automatic
weighing systems, Radio Frequency Identification (RFID) sensors for individual animal detection
and behaviour monitoring, body temperature monitoring, geographic information systems (GIS) for
pasture evaluation and optimization, unmanned aerial vehicles (UAVs) for herd management, and
virtual fencing for herd and grazing management. Although some commercial products are available,
mainly for cattle, the adoption of these systems is limited due to economic and cultural constraints
and poor technological infrastructure. This review presents and discusses PLF applications and
systems for grazing animals and proposes future research and strategies to improve PLF adoption
and utilization in today’s extensive livestock systems.

Keywords: precision livestock farming; grazing animals; technology; sensors; livestock applications

1. Introduction

The need for the improved quantity and higher quality of animal products, especially
in developing countries [1], has led to the increase in size of animal herds, whereas the
number of farmers has declined [2–4] and the availability of grasslands has been reduced
because of cropping [1]. As a result, farmers have less time to assess individual animal needs
and the grazing animal’s feed resources are shrinking, resulting in welfare impairment [5,6]
and health-related and performance concerns [7]. Precision Livestock Farming (PLF)
techniques have shown great potential in solving such problems, since they represent
a unique opportunity to convert herd management from manual to automated or semi-
automated systems. They can potentially contribute to an amelioration of health and
welfare status, minimize of on-farm labour and veterinary costs, improve farm waste
management, and increase environmental and economical sustainability [8–14].

Grazing land represents 60% of the world’s agricultural land, and is used by nearly
360 million cattle and over 600 million sheep and goats [15]. Grazing animals represent 10%
of beef and about 30% of sheep and goat meat consumption globally [15]. Furthermore,
it is estimated that grazing animals are the only source of livestock for over 200 million
people [15]. A major advantage of grazing animals is that they utilize by-products that
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otherwise would be wasted, improve the diversity of grasses by dispersing seeds with
their hooves, and ensure soil health with their manure. In addition, as the animals trample
the soil, they break up the crust and increase the stimulation of grass growth and soil
regeneration [15]. However, many of the world’s grazing areas are threatened, as policies
are contributing to the conversion of pasture into cropland. When the land is exhausted
and returned to fallow, it does not revert to good pasture and, therefore, it is deserted.
Thus, optimal utilization of the lands through improved grazing techniques where the
animals continuously change allocated areas can lead to more sustainable farming and
grazing systems [1,16].

PLF systems focus on managing any variable that interferes with the production
process and trigger a series of alarm signals whenever a problem is detected [4]. The
animals will express their discomfort due to lack of feed or undesirable environmental
conditions, using bio-responses (i.e., changes in behaviour) that the system detects. There-
fore, the first step in creating a PLF model is behavioural analysis through animal-based
observations [17]. The development and analysis of large behavioural datasets produce
models and algorithms that will be used as the “golden rule”—code for the automatic
classification and identification process [9,18]. Detected behavioural changes will be auto-
matically classified by the controller as normal or non-normal according to the behavioural
pattern of best fit. After the classification process, the system’s output will either assess the
problem automatically or produce a series of alarm signals and provide possible sugges-
tions, assisting the farmer in the decision-making process [19]. The bio-responses analysis
may include both steady-state and dynamic component modelling methods [20]. Therefore,
the resulting model should include at least one relationship between the variable of interest
and the behaviour, and it should be able to predict future behaviour from previously
recorded data. The comparison between the predicted and the actual measured behaviour
(i.e., prediction error) will indicate if the animals’ status has changed [4]. This information
is used as an input for the controller in making the necessary adjustments to return the
animals to their “normal state”. In other words, the animals’ bio-responses are used as
indicators for the system and, in a sense, they represent the feedback sensor in a closed-loop
control system [7].

Various PLF applications have been developed over the past two decades, including
precision grazing technologies and management software support tools [21–23], image anal-
ysis methods for grazing measurements [24], electronic identification systems such as RFID
tags [25,26], movement detection systems including accelerometers [27,28] and GPS [29],
audio analysis systems [30], flock management systems such as virtual fencing [31], and
drones [32] and health detection and welfare assessment systems with the use of implanted
sensors [33]. This paper illustrates a variety of PLF applications for grazing livestock,
pointing out potential improvements and providing ideas for further research in the area.
All studies presented were retrieved through Google Scholar, ScienceDirect, MDPI, Re-
searchGate and Web of Science. For better understanding, the term grazing livestock
refers to herbivores, such as cattle, sheep and goats, and omnivores such as poultry and
pigs, both domesticated and wild, that are fed mainly or partially through forage. Some
keywords that were used for the research were: “Precision Livestock Farming or PLF”,
“technology”, “camera-based”, “audio analysis”, “RFID”, “GPS”, “GIS”, “collars”, “data
loggers”, “environmental conditions”, “virtual fence or VF”, “robots”, “electronic drinker or
feeder”, “IoT”, “convolutional neural network or CNN”, “applications”, “advancements”,
“grazing”, “free ranging”, “cattle or cow”, “sheep or lamp or ewes”, “goat”, “ruminant”,
“poultry”, “chicken or chic”, “pigs” and “duck”. General research was conducted, and in
each case that a positive technological application or study was retrieved, specific research
was performed separately. The research period we used was 1991–2022 as we wanted to
include as many publications as possible. As a result, a total of 173 articles were included
in our database presenting applications and related research in PLF for grazing animals.
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2. PLF in Grazing Cattle

The average milk and dairy consumption has been constantly increasing over the past
four decades, and it is expected that by 2050 it will increase by 50% compared with that of
2010 [34]. The increase in animal numbers per herd and the introduction of the high milk
yield breeds of cows in the production process during the past century improved yield,
while the farmers’ ability to assess individual animal needs decreased [7,35,36]. Therefore,
the relationship between animals and humans, animal health and welfare status along
with the consumers’ increasing need for food safety in quality products and the units’
sustainability are production elements that have been affected [36]. PLF technologies have
demonstrated great potential in assessing or even solving these problems. The farmer can
monitor the animals’ everyday lives noninvasively, no matter the size of the herd, and
assess farming practices from their computer [36,37]. Therefore, PLF systems can potentially
improve the animals’ well-being, enhance soil health, pasture utilization and management,
while simultaneously improving animal performance (i.e., quality and quantity of the
end-product) and enhance farmers’ annual income.

Various PLF technologies have been developed for grazing cattle, including RFID
tags, boluses, collars, and noseband sensors for grazing behaviour measurement [38], in
addition to monitoring cardiovascular and respiratory patterns (i.e., heart and breathing
rates and oxygen saturation) for health and welfare assessment [39]. Ear tags and injectable
glass tags are used for individual identification [40–42], individual data documentation
(e.g., maternal pedigree), and disease trajectory monitoring [43]. Other PLF systems are
walk-over-weight platforms and electronic scales, thermal analysis systems for body tem-
perature assessment, camera analysis models for position detection and methane emissions
estimation [44], sound analysis systems for rumination classification and analysis [45],
video analysis for early disease detection, behavioural patterns classification and mating
behaviour [46], GPS, GIS and accelerometers for individual animal location detection, theft
prevention, feeding and ruminating behaviour detection [47], feed intake and reproduction
monitoring [48]. It should be noted that PLF applications as such collect large amounts of
data depending on the sensor type used and therefore large storage devices are mandatory.
However, Bhargava et al. [49] presented a useful method to overcome this issue by using
Wireless Sensor Networks combined with Edge Mining for data compression, memory
usage optimization, and assessing future real-time PLF application models. However,
internet access in most farms in the Mediterranean is limited; therefore, a LAN-based
system could be more useful.

2.1. RFID Technologies

Radio Frequency Identification (RFID) technology has been widely applied in grazing
cattle, as it offers an affordable solution for remote, non-contact, continuous identification,
and monitoring of animals with high credibility [48,50]. RFID tags store large amounts
of valuable information, such as age, sex, breed, weight, and health status [40]. RFID
technologies can be divided into two categories with respect to operating frequency [40]:
low-frequency, primarily used for animal identification, and high-frequency, primarily
used to track populations and not individuals [41]. RFID tags can be further classified
as active or passive tags that emit (or not) radio waves, respectively. Active tags emit
high frequencies varying between 455 MHz, 2.45 GHz, and 5.8 GHz, with a reading range
between 20–100 m, whereas passive tags offer a reading range of no more than 3 m [40].
Managerial software has been developed based on data collected from the ear tags, where
individual characteristics such as medical treatments, growth performance, pedigree, and
reproductive traits are automatically recorded and stored [25,50].

As shown in Table 1, various applications can be found in the literature, including
individual identification [51], detecting and monitoring watering behaviour under different
environmental conditions [52], monitoring drinking behaviour and water intake [53,54],
licking behaviour [55,56], individual supplement intake [57], feed intake and grazing
activity [58], individual mineral intake, feeding behaviour and growth performance [59],
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movement tracking [60], estrus detection [61], heat stress detection and automatic artificial
shading [62]. It is evident that RFID technologies have shown great potential towards
the automation of the production process due to their ease of use, highly accurate mea-
surements, and precise sensor readings [25]. It should be noted that their main disad-
vantages are the increased labour effort for configuration and installation and their high
operational costs [40,63].

2.2. GPS and GIS Systems

Most of the literature regarding the activity of grazing animals and grazing strategies
adopted by farmers is primarily focused on economically oriented pasture systems [64–66].
This lack of information on more holistic approaches in grazing systems is attributed to the
difficulty of data collection and storage [67]. Animals often graze under harsh conditions
in rangelands, making the conventional animal tracking methods challenging and labour
intensive [68]. It should be noted that a considerable portion of foraging and grazing
activity takes place at night, making data collection even more difficult [69,70]. GPS and
GIS technologies could potentially help overcome this problem. This kind of technology is
a low-cost tool used for monitoring grazing animals during long periods [67]. Additionally,
as grazelands become more intensified and biodiversity is under threat of extinction [71],
these technologies could help farmers manage the herd’s grazing behaviour in a more
environmentally friendly manner. Furthermore, they can be easily combined with other
low-cost methods such as RFID technology for welfare assessment and health-related
problem detection [68].

Turner et al. [72] developed a combined GPS-GIS system for cattle behaviour mon-
itoring and pasture use. Lightweight GPS collar receivers were used to map the area
mostly used by the animals. Additional information regarding the system’s development
is provided by Turner et al. [73]. Within approximately 8 m, the system showed an accu-
racy of 95% for location detection and a classification of 94.8% for active grazing activity.
As indicated, a combination of GPS collars and accelerometers can potentially track the
animals during grazing and drinking [68]. Hassan-Vásquez et al. [74] used GPS technology
to monitor animals’ field distribution and behaviour. They reported that their method
can potentially improve grazing management, grazeland utilization and reduce the en-
vironmental footprint of the production process. Riaboff et al. [75] combined GPS and
accelerometers to monitor cattle grazing, walking, ruminating, resting, lying behaviours,
and preferred pasture site characteristics. Two different pastures of 1.6 and 2.3 ha were
available for grazing. The preferred area for lying and ruminating was under the trees. The
preferred grazing areas of pasture for the first paddock (i.e., permanent grassland) were
directly related to the pasture characteristics. However, for the second paddock, the cows
showed more socializing behaviours rather than pasture characteristics-oriented behaviour,
probably due to the presence of heifers in the nearby fields. It should be noted that no
information concerning the PLF evaluation parameters was reported. Brosh et al. [70] used
a combined GPS and motion sensors system to monitor standing, locomotion, grazing and
lying behaviours. They reported that cows’ intake preferences and plot biomass variations
could affect the quality and quantity of the end-product and the reproductive status of
the animals (p < 0.001). This was the first study in which the animals’ behaviour and
incremental energy expenditure were measured simultaneously throughout the day. There-
fore, some findings, such as the late-night grazing frequency, cannot be compared with
previous studies. It should be noted that the total activity costs accounted for 5.8 to 11.4%
of the daily energy affected only by herbage quality (i.e., the proportion increased when
the quality dropped). However, no information was provided concerning the system’s PLF
evaluation parameters. Spedener et al. [76] used a similar combination of GPS collars and
activity sensors and successfully monitored the activity of 16 cows during grazing, resting
and pasture preference with a precision of 94.1%. Larson-Praplan et al. [77] used GPS
collars embedded with temperature and movement sensors and successfully (R2 = 0.81)
monitored grazing activity during seasonal changes for four years. They found that during
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the warmer months grazing activity was mainly concentrated around the trees and shade,
while in winter and early spring, grazing activity was widely distributed. Resting sites act
as beginnings and endings of grazing bouts; thus, shade distribution could potentially be
used as an additional grazing management technique. The system was able to detect indi-
vidual grazing behaviour only and failed to detect group or herd behaviours due to limited
pasture size and the lack of analysis of the spatial distribution of the herds. Furthermore, a
thorough economic analysis of the system’s estimation costs and profits could be drawn
towards convincing farmers to adopt such technologies.

The studies suggest that GPS-GIS technology could potentially aid in identifying
animal-environment interactions, monitoring the animals’ activity, detecting behavioural
changes associated with diseases and welfare impairment, and pasture design according
to the animals’ preferences and needs. Furthermore, they could potentially improve both
pasture management and pasture design. However, commercial applications are still under
development and lack economically viable solutions for the farmers.

2.3. Other Multi-Sensors PLF Applications

PLF consists of various combinations of sensors and mathematical models for welfare
assessment and management improvement techniques. Complex systems are comprised of
multiple sensors used in conjunction for data collection under a single dedicated analysis
system. For example, automatic milking robots are utilized as a data collection source for
multiple variables including daily milk production, milk temperature, quantity, and quality
(i.e., somatic cell count, milk fat and protein percentage), body weight, and concentrate intake.

Osei-Amponsah et al. [62] used infrared and thermal cameras to monitor body tem-
perature, and successfully identified cows under heat stress. The automatic milking ma-
chine recorded and documented individual traits using the RFID ear tags. The stage of
lactation significantly affected (p ≤ 0.05) the average daily milk yield, fat %, protein %
and concentrate feed intake, while the reverse relationship was documented between
Temperature-Humidity Index (THI) and milk yield, feed intake and rumination time.
McCarthy et al. [59] used electronic feeders and successfully monitored individual min-
eral intake, feeding behaviour, and performance in terms of growth in 28 grazing Angus
cow-calf pairs. PLF technology could be used as a management decision making tool for
welfare assessment, but no information concerning the systems’ economic viability (i.e.,
economic analysis) and evaluation parameters, such as accuracy, precision, specificity, or
sensitivity was provided [56,59]. Simanungkalit et al. [56] used tri-axial accelerometers
embedded in ear tags, RFID sensors, automatic weight scales and automatic supplement
blocks, and successfully identified the licking behaviour of Angus and Brahman cattle.
Williams et al. [53] used RFID ear tag readers, motion sensing accelerometer collars, and
two cameras installed at the water point for model evaluation. The drinking behaviour
and water intake of Brahman and Droughtmaster grazing beef heifers was successfully
monitored for approximately two consecutive months. The water flow meter demonstrated
an accuracy of 99%, but no information was provided concerning the overall accuracy of
the system. Simanungkalit et al. [78] developed a model to evaluate a walk-over weigh-
ing (WoW) system for individual body weight estimation and supplement intake. WoW
systems could potentially provide useful information on the body weight of grazing cows
with sufficient accuracy. The system overpredicted the body weight of calves and cows by
3.2% and 3.4%, respectively. However, the model needs further long-term validation under
various environmental conditions and herd sizes, whereas an economic analysis for the
total costs is essential for the development of a commercial application. Durst et al. [57]
used a portable, self-contained individual feeding unit and cameras, and successfully mon-
itored cow presence and feed intake (p<0.01, r2 = 0.95). The system demonstrated a high
sensitivity of 97% for true positive results (i.e., feeder attendance and usage) and 99% for
true negative results (i.e., feeder attendance only). Further research is needed to examine
the individual animal feeding behaviour and preferences under different environmental
conditions, breeds, stocking rates, herd sizes, and field topography. Chelotti et al. [79]
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developed an online dynamic model for grazing behaviour, foraging activity recognition,
and rumination estimation using audio analysis. Although the system showed improved
efficiency compared with other commercial systems, further research is needed with regard
to improving the recognition performance and total system cost. It should be noted that no
information concerning the evaluation parameters (i.e., precision, specificity, accuracy and
sensitivity) of the system was provided. Finally, a model consisting of an accelerometer, a
magnetometer and a gyroscope was used for monitoring cattle’s lying activity and ruminat-
ing behaviour in different environments (i.e., outdoors, or indoors) [80]. The system was
validated using camera recordings in both environments, showing an average of 95.6%,
80.5% and 87.4% for sensitivity, specificity, and accuracy, respectively. Furthermore, the
system accuracy for outdoors and indoors was 93.2 and 81.4%, respectively. However, fur-
ther research is needed to improve the prediction model for in-barn usage and commercial
application development.

Other systems include Internet of Things (IoT) sensors that have shown promising
data collection and transfer for farmers. Park and Park [81] used an existing system that
was primarily used in tracking wildlife activity (i.e., ZebraNet). This system consists of
a Wireless Sensor Network (WSN), a Cloud platform which processes the collected data,
and a digital user interface. The WSN refers to the GPS sensors attached to the collars and
transfers position data using 3G/4G cellular communication transmission. To avoid data
losses due to loss of connection, the animals’ collars were equipped with 3G communication
modules. The data was stored on an online database to minimize the system’s costs and a
Graphical User Interface (GUI) screen displayed all the information collected in a digital
format utilizing the Google Maps software. It should be noted that this system is under
development towards a commercial application that estimates and predicts the health
status of the animals. Martinez-Rau et al. [82] developed a processor that analyzes real time
data collected from a wearable acoustic sensor to identify jaw movement in grazing cattle
for noiseless and noisy conditions with a recognition rate of 91.4% and 90.2%, respectively.
Although the system is still under development, it could potentially identify the efficiency
of rumination and, thus, the total feed efficiency. However, further research is needed under
different managerial techniques, genotypes, and environmental conditions, along with an
economic analysis index for the development of a commercial application. Wang et al. [83]
developed an IoT-based behavioural classification system using data collected from water-
proofed leg tags with embedded tri-axial accelerometers. The model exceeded 90% accuracy
for all behavioural categories, and specificity was 96.98% for normal walking behaviour.
However, further research is needed to improve the classification algorithm parameters to
effectively identify behavioural patterns. Natori et al. [84] developed a system for cattle
activity monitoring and position detection using a combination of a GPS module and an
acceleration sensor consisting of a tri-axial accelerometer, a tri-axial gyroscope, and an
electromagnetic compass in a single package. The data was transferred and stored wire-
lessly. Furthermore, the system used an environmentally friendly monocrystalline silicon
solar panel as a power source for the IoT module. The system could potentially be used
in behavioural analysis, welfare assessment, and health-related problems detection, but
further research and validation is needed for the development of a commercial application.
Barbedo et al. [85] developed a convolutional neural network (CNN) and deep learning
model for animal detection from aerial images for non-ideal environmental conditions such
as low illumination, excessive brightness, blur presence and low visibility. The model is
described as a “remarkably robust system” since it could achieve accuracy rates close to
100%. However, this system is under development, as new breeds, other than Canchim,
and new image datasets from different landscapes should be included. Li et al. [86] devel-
oped a neural-network-based monitoring model to emulate different rotating states of an
accelerometer implanted on the collar. Their method was able to verify behaviours such as
feeding, walking, drinking, rumination and resting, with an average accuracy of over 98%.
Moreover, this system could potentially be used for early detection of disease or estrus. An
interesting concept regarding powering energy sensors was presented by Blažević et al. [87],
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in which IoT technologies and energy wearable harvesters convert the kinetic energy of
the animals (i.e., the motion of the ear or general locomotion of the animals) into electrical
energy. However, this technology needs further research under various environmental
conditions and with different breeds, as well as full economic analysis for the development
of a commercialized product.

Virtual fencing (VF) is another commercial application introduced as an alternative
grazing management method over the past two decades. A VF system consists of a collar
equipped with audio signal reproduction mounted on every animal and a GPS-based
virtual fence created in various locations within the limits of the grazing area [88–90].
When the animal approaches the boundaries of the virtual fence that may be stationary
or moving, either an electrical stimulus, audio signal, or both are delivered by the collar.
The stimuli stops when the animal stops walking or turns back [91,92]. This system re-
places the traditional methods of herd management such as temporary fences and electric
fences at considerably lower costs as the construction materials and labour installation
costs are minimized [90,91,93,94]. Furthermore, it does not affect the animals’ health and
performance [90,92], while at the same time it may be used to protect biotopes and main-
tain biodiversity [95]. Various studies that demonstrate the potential of this technology
as a commercial application can be found in the literature [89,90,92,96–109]. However,
Boyd et al. [96] developed a Virtual Fencing (VF) system for burned land grazing protec-
tion based on GPS collars with a success rate of 96% (p < 0.0001). The system successfully
prevented the cows from grazing in the burned land, compared with a normal fence. It
should be noted that in the case of a conventional fence, the cows spent more than 40% of
their time within the burned area and foraging was nearly 70%. The main problem of the
VF system was the topographic barriers that limited the radio and cellular communications
between the collars and the base station, and the base station and the data storage. This
resulted in data loss concerning the animal locations and limited the user’s ability to change
input parameters such as frequency of animal data location storage and electrical/auditory
stimulus parameters. The system total costs for a single fence solar-powered base were
approximately $12,500 and the number of stations needed depended on the topography
of the fenced area. In addition, every collar used was leased at an annual cost of $40.
Therefore, the VF demonstrates considerably higher purchase and installation costs com-
pared with a barbed wire fence with an annual cost of approximately $8,000 (USD/km).
Aaser et al. [109] reported that personality and herd structure should be considered when
selecting individuals for the VF grazing management method. In the 139-day period, the
system successfully kept the cattle herd within the specified area and only four breakouts
were reported due to poor fence placement. However, no evaluation parameters such
as accuracy, efficiency, specificity or precision, and no economic analysis concerning the
installation, the operational and the total costs of the system were provided. Furthermore,
this technology is still under investigation regarding its impact on animal behaviour and
welfare, which may be an important factor resulting in its limited adoption by farmers.

Table 1. Application of precision livestock farming advancements and their evaluation in grazing cattle.

Applied Technology Parameter of Interest PLF Evaluation Parameters Reference

RFID

MooMonitor+ Grazing behaviour and rumination Accuracy: 94 and 97%, respectively
[38]RumiWatch Accuracy: 96 and 98%, respectively

Handheld Movement tracking Efficiency: >98.1%
[60]Walk through device Efficiency: 89.5–98.5%

RFID and Licking behaviour monitoring Efficiency: 98%
[55]Accelerometer Efficiency: 89%
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Table 1. Cont.

Applied Technology Parameter of Interest PLF Evaluation Parameters Reference

RFID

Welfare assessment Accuracy: 93.12% [39]

Individual identification
Not provided

[41,42]

Individual data documentation
[43]Disease detection

Detecting and monitoring watering
behaviour and water intake Efficiency: 100% [52]

Feed intake monitoring

Not provided

[58]Grazing activity monitoring

Individual mineral
intake monitoring

[59]Feeding behaviour monitoring
Growth performance monitoring

Oestrus detection Sensitivity: 65% and Specificity: 60% [61]

Individual identification Not provided [62]

RFID and Cameras Individual identification Precision: 89% [51]

Cameras

Position detection
Precision: 84.6–99.9% (depending on

the distance between the cameras
and the observation) [44]

Methane emissions estimation Accuracy: 97%

Disease detection
Not provided [46]Behavioural patterns classification

Mating behaviour detection

Behaviour monitoring Efficiency: 91% [92]

Thermal cameras and
infrared sensors

Body temperature monitoring Not provided [62]Heat stress detection

Sound analysis systems Rumination detection Precision (R2): 87% (n = 51) [45]

GPS and GIS
Behaviour monitoring Classification Accuracy: 91.7% [72]

Pasture usage monitoring Classification Accuracy: 94.8% [73]

GPS and accelerometers

Grazing behaviour monitoring

Accuracy: 98% [75]

Movement tracking
Ruminating behaviour monitoring

Resting detection
Lying behaviour detection

Feeding behaviour monitoring

GPS
Location detection

Precision: 82.8% [74]Field distribution behaviour
monitoring

GPS and motion sensors

Standing detection
Locomotion monitoring Not provided [70]Grazing behaviour monitoring

Lying behaviour detection
Grazing behaviour monitoring

Precision: 94.1% [76]Resting behaviour monitoring
Pasture preference classification

IoT system (GPS, WSN,
Cloud platform) Health status prediction Not provided [81]

GPS, temperature and
movement sensors Grazing activity monitoring Accurate classification (R2): 81% [77]
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Table 1. Cont.

Applied Technology Parameter of Interest PLF Evaluation Parameters Reference

GPS, GIS and accelerometers

Individual animal location detection

Accuracy > 90% [47]
Theft prevention

Feeding behaviour detection
Ruminating behaviour detection

RFID, accelerometers, automatic
weight scales, automatic

supplement blocks
Licking behaviour monitoring Licking and non-licking detection

accuracy: 81 and 94%, respectively [56]

RFID, motion sensors,
flow meter, cameras

Drinking behaviour monitoring Flow meters accuracy: 99% [53]Water intake monitoring

Walk-over-weighing
(WoW) system

Individual weight estimation Prediction error for calves and cows:
3.2 and 3.4%, respectively [78]Supplement intake monitoring

Electronic feeder, cameras
Feed intake monitoring True positive and true negative

sensitivity: 97 and 99%, respectively [57]Feeding behaviour monitoring

Sound analysis systems

Grazing behaviour detection
Not provided [79]Foraging activity recognition

Rumination estimation

Rumination efficiency monitoring Grazing detection accuracy in
noiseless and noisy conditions: 91.4

and 90.2%, respectively
[82]

Total feed efficiency monitoring

Accelerometer, gyroscope,
magnometer

Lying activity monitoring Sensitivity: 95.6%
[80]Rumination detection Specificity: 80.5% and

accuracy: 87.4%

IoT system, gyroscope,
accelerometer, electromagnetic

compass, solar panel
power source

Activity monitoring
Not provided [84]

Position detection

IoT system, accelerometers Behavioural patterns classification Accuracy: >90% and specificity
(walking behaviour): 96.98% [83]

CNN, image analysis Animal detection Accuracy ~ 100% [85]

CNN, accelerometers

Feeding behaviour detection

Accuracy >98% [86]
Walking behaviour detection
Drinking behaviour detection

Rumination detection

IoT system, energy
wearable harvesters

Kinetic into electrical
energy conversion Not provided [87]

Virtual fencing

Prevent access to certain VF
protected area Efficiency: 99.8% [108]

Biotopes protection Not provided [99]

Grazing activity control

Efficiency: 95–96% [89,90,96,98]

Not provided [99,102,107,
109]

Reliability: 100% [105]

Efficiency: 100% [106]

Activity control
Efficiency: 97% [101]

Efficiency: 100% [100,103,106]

3. PLF in Small Ruminants

Extensive grazing-based systems are of particular interest for small ruminants, since
they require low input costs and offer improved resilience against market fluctuations.
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Sheep and/or goat farms are often of small scale and their owners are generally conserva-
tive, and reserved towards new technologies, parameters that hinder the adoption of PLF
on a regular basis within the production process [110], although variations exist around
the world (e.g., Mediterranean dairy farms versus meat production systems in Australia or
New Zealand). Moreover, poor technological infrastructure (e.g., electricity, telephone, and
internet networks) and other financial barriers also limit PLF’s regular use [111].

Various PLF technologies have been developed over the previous decades in pasture-
based farming systems of small ruminants (Figure 1). Electronic identification (EID) sys-
tems, such as ear tags, ruminal boluses, and subcutaneous transponders are the applications
that are more frequently used, since they are mandatory in the European Union (EU). Inno-
vative technologies that simplify flock management based on on-animal sensors are also
employed and include global positioning systems (GPS), accelerometers, gyroscopes and
social activity loggers that can provide data regarding several behavioural parameters,
health, and welfare status. Furthermore, robots that identify wildlife and classify it as
dangerous (i.e., predators) or harmless for added herd protection are under development.
Finally, there are also other commercially available management systems that assist farmers,
namely virtual fencing, flock monitoring using drones, and image analysis techniques,
automatic weight monitoring using walk-over-weighing, or weighting crates and other
milking parlour-related technologies [48,111].
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3.1. Electronic Identification (EID) Systems

Electronic identification is mandatory in the EU and is generally ensured through
radio frequency identification (RFID) tags that transmit information on different radio
frequency levels (low, high, or ultra-high) to the tag reader. RFID is a cost-effective way
to track and monitor individual animals and in combination with other PLF applications
could automatically provide records for growth performance, milk yield, reproductive
efficiency, and medical treatments [25,26]. Ear tags are the cheapest EID method, but its
application to the ear increases the possibility of its loss, especially in outdoor paddocks.
On the other hand, ceramic boluses ensure permanence after their insertion in the rumen
of small ruminants [112]. Finally, subcutaneous temperature transponders inserted under
the skin can potentially be used [113], but their migration and difficulty of removal in
meat-producing sheep and goats should be considered [40,114].

3.2. On-Animal Sensors

Wearable sensors such as tri-axial accelerometer loggers, GPS systems, microphones,
and acoustic and pressure sensors are applied on each animal and collect data referring to
body position, locomotion, temperature, estrus detection, etc., which are then correlated
with specific grazing or locomotion patterns [115] or physiological conditions, such as
estrus or lameness [2].

The accelerometers record movement in a three-dimensional pattern and provide informa-
tion for several animal behaviors such as resting, grazing, ruminating, or moving [27,28,116,117].
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They can also contribute to welfare assessment [118], lameness detection [119], or mating
score measurement [120].

The GPS systems provide data related to animal movement and spatial distribu-
tion in pasture [29], but the relatively high cost of application hinders its regular use in
small ruminants [121]. Moreover, a GPS system coupled with a thermistor below the
vulva could also provide information regarding urination frequency and consequently
liquid and nitrogen emissions and their spatial distribution patterns by recording uri-
nation events as ambient temperature changes [122]. However, concerns are frequently
raised regarding energy supply—battery lifespan in the field, lack of wireless data trans-
mission and the accuracy, interpretation, and contribution of these measurements to the
decision-making process [123].

Acoustic signals collected by a microphone mounted on the foreheads of sheep resulted
in an accurate estimation of feed intake [30], while acoustic and pressure sensors placed
on the head of the animal make possible the discrimination between grazing and ruminat-
ing, since jaw movements can be classified into chew, bite, or chew-bite events [124,125].
An Alpha-D detector (AD) is also an example of a system aiming at electronic estrus
detection in sheep. In detail, rams are equipped with a harness where a custom RFID
reader is fixed and triggered at the time of mounting to read the caudal transponder
tagged in ewes [126,127].

Finally, subcutaneously implanted sensors could provide reliable measurements for
heart rate and body temperature, two indicators that can be used for the early detection of
diseases and stress [33]. Caudal data-loggers programmed to record temperature could
also be applied for lambing time identification in sheep [128].

3.3. Virtual Fencing and Flock Monitoring Using Drones, Robots and Image Analysis Techniques

VF can be used to alter the animal distribution within large, fenced areas, although they
cannot replace conventional fences for absolute control of small ruminants [129]. Animals
understand the limits of their area through the receiving of an electric shock if they ignore
the acoustic cue [31,130]. However, there are several parameters that limit VF application
on a commercial basis, such as its high cost, the lack of technological infrastructure in
farms, the difficulty in developing a sufficient learning protocol and welfare concerns due
to the electric shocks [131–134]. At the same time, flock size could influence the success of
training, namely the reaction of each animal because of the acoustic cue, and may not be
economically feasible for large flocks [135,136].

Low-cost time-lapse cameras, machine learning, and image registration could be
combined to monitor the location of goats with great precision and sensitivity. It should be
noted that for such a system to work, no objects, other than animals, are present inside the
pasture, there is no background with a colour that could be confused with the colour of an
animal, and the camera does not face the sun, among others [137].

Unmanned aerial vehicles (UAVs) also offer a feasible solution for the monitoring
of small ruminants in pasture-based systems [32,138]. Whether sheep are frightened by
drones flying above them requires further research, but a small, quiet drone that maintained
a minimum altitude might not even be detected by the animal [139].

Del Castillo et al. [140] introduced a camera-based system that automatically detects
dangerous animals such as the Iberian wolf, and distinguishes them from prey such as dogs
in real time. They reported that the YOLOv5m archives proved to be the most accurate
for the requirements of pasture-based systems, with a processing power of 64 FPS and
achieving a mean average precision of 99.49%. This system could be an additional tool for
farmers for the protection of the herd.

3.4. Walk-Over-Weighting or Weighting Crates and Automatic Drafter

Accurate body weight measurement is crucial in pasture-based systems since it de-
termines stocking density per paddock and the necessary supplementary feeding. The
traditional use of a scale may provide reliable measurements but is time-consuming and
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induces stress to the animals. However, walk-over-weight (WoW) platforms and weighting
crates (WC) can be used as alternatives. For accurate results the WoW platforms require
the isolation and the immobilization of the animal in a passage corridor that is closed by
the operator when each animal enters. They are coupled with solar-powered batteries
and data transmission systems that enable automatic weight data collection and storage in
pasture-based systems [141,142]. They communicate with the EID tags of animals and are
placed in a one-way corridor that leads to the waterer or trough and as a result animals are
forced to pass through. Data regarding each animal is stored and compared daily, resulting
in more accurate management. In general, 3 weeks are required to obtain consistent weight
records [141], since problems related with data reliability may occur if more than one
animal stands on the platform at once, or if the animal is running or standing with only
two legs on the platform [143].

Drafting systems are based on automated drafters (AD) which rely on the combined
use of other PLF, such as WoW and/or RFID, and assist in sorting the animals and allocating
them into different groups according to the parameter of interest such as body weight [144],
pregnancy level, medical treatment [145], or milk yield [146]. As a result, manual labour is
reduced, and supplementary feeding control is more effective [139].

3.5. Other Milking Parlour-Related Technologies

The longest interaction of the farmers with their animals occurs during the milking
period, which lasts from 140 to 240 days a year [111]. It is therefore the most critical aspect
of dairy systems, even of pasture-based production, and could contribute significantly to
proper herd management.

Criteria such as time limitation (2–3 min activity) and milk flow measurement (a level
between 100 and 250 g/min) can be used for the automatic vacuum shut off, thus allowing
the farmer to manage a greater number of clusters and avoid the risk of overmilking [147].
One of the most important milk parameters is somatic cell counts, which correlate with
udder health and mastitis incidence, and can be assessed by electric conductivity [148] or
light scattering [149]. The latter technology in combination with mid-infrared spectroscopy
can also be applied for the measurement of milk coagulation properties and acidity [150].

4. PLF in Other Species
4.1. Pigs

Extensively housed (i.e., semi-free and free-range) pigs provide meat products of high
quality that generally enjoy increased prices in the market [151,152]. Due to the nature of
the managerial techniques and the limited number of extensive pig farms, there has been
little commercial demand for implementation of PLF in this sector [152]. However, PLF
technologies could be proved beneficial, as they provide security against theft, wildlife [153]
and records concerning animals’ health status and overall performance [7]. Furthermore,
PLF could positively affect breeding, fattening performance and health status through
monitoring and control, and strengthen consumer confidence by collecting data that refer
to the characteristics of both the animal and farm [2]. Some PLF applications for free-
ranging pigs are presented in the next paragraph.

Alexy and Horváth [152] presented results from the development of a continuous
monitoring PLF tool for sows of the Mangalica breed that were extensively housed on a
total area of 2.5 ha. RFID ear tags were attached to each sow and a monitoring area was
designated. The extensive breeding site consisted of a tank drinker, a wooden feeder, the
wallowing area (mostly created by the sows themselves), a wooden building used by the
sows for resting, and five individual farrowing cottages. Four reading units were installed
on a fence close to the wallowing area. A weather station recorded the climate data on
an hourly basis. The system successfully recorded the hourly activity of the sows. They
reported that the environment and the weather affected the activity of the wallowing site, as
the sows tended to use it most in a temperature range between 0 to 4◦C. Furthermore, it was
stated that this particular activity was strongly connected with the animals’ welfare status.
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With regard to social behaviour, the sows tended to create small groups that visited and
left the wallowing site simultaneously. However, the system’s evaluation parameters such
as accuracy, precision, specificity, or efficiency were not provided. The researchers stated
that additional reading units need to be installed in the pasture area and that additional
sows will be marked with RFID ear tags. Aubé et al. [154] used hand-controlled video
cameras and recorded and analysed sows’ posture (i.e., standing, sitting, kneeling or
lying) and activity (i.e., grazing, rooting or any other behaviour). Furthermore, a GPS
receiver was fixed between each sow’s shoulders and an accelerometer was installed on
the lower part of one back leg for general activity assessment. An open-source geographic
information system was used for GPS data processing, and they managed to successfully
record frequency, duration, and the location of the foraging and resting behaviors of the
sows, time spent on the pasture, and distance travelled. The authors reported that the
applied method in their study was firstly used by Ringgenberg et al. [155], implying that
simple systems used for indoor housing can potentially be used for free ranging animals.
Van Damme et al. [156] used GPS receivers and successfully (p = 0.014) monitored the
foraging and exploratory behaviours of free roaming pigs in Zambia. It should be noted
that in both studies the authors only addressed the animal behaviour point of view and no
PLF evaluation parameters for the systems were provided.

4.2. Poultry

In January 2012, the European Union issued the Council Directive 1999/74/EC ban-
ning battery cages for egg production in the poultry sector. By 2019, hens housed in
alternative systems including floor, aviary, free-range and organic reached 50% of their total
population in Europe, as indicated by the European Commission Eggs Market Situation
Dashboard. Such systems provide additional behavioural freedom for the everyday activ-
ities of poultry, resulting in improved welfare status [157,158]. Furthermore, it has been
reported that free-range laying hens demonstrate improved plumage condition, final body
weight and egg weight compared with their counterparts that are housed indoors [157–161].
It should be noted that even after switching to non-cage systems, welfare challenges such
as keel bone damage [162] and damaging behaviours such as feather, toe and vent/cloacal
pecking and cannibalism still persist [158,163–165]. Furthermore, in free range systems,
the higher exposure to parasites, pathogens and predation contribute to poultry welfare
impairment [161,166]. Wild animals can cause severe damage in free ranging systems. For
example, red foxes, which are a common predator of chickens, can eliminate the whole flock
within a single night, resulting in severe losses [167]. PLF technologies could potentially
minimize these negative effects and improve welfare and performance status.

As reported by Rowe et al. [168], more than 42% of the PLF systems use image
analysis to assess welfare in poultry. This phenomenon is mainly attributed to the fact that
image and video analysis and processing are inexpensive ways to record and analyse the
behaviour of the birds without disturbing them [158]. Similarly, Campbell et al. [169] used
a series of cameras to capture the indoor rearing pens and range area of each pen, and
successfully classified the dust bathing and foraging behaviours, as well as the time the
birds spent interacting with enrichment materials and the time the chicks spent expressing
play behaviours with each other. Unfortunately, no information concerning the precision,
efficiency, accuracy, or specificity of the system was provided. Montalcini et al. [170]
developed a combined camera-based and RFID tracking system that automatically monitors
individual bird movement over long periods of time for free-ranging commercial farms
with an accuracy of 99%. The system overestimated the number of transitions carried out
by the birds per zone (i.e., three stacked tiers of a commercial aviary, a littered floor and
the winter garden), explaining only 23% of the actual variation, hence further research is
needed to improve the performance of this application. Various camera-based methods
can be found in the literature including wildlife interactions with free-ranging ducks [171]
and chickens [172,173], activity [174,175] and ranging behaviour [176–178] monitoring,
counting, or detecting of dead chickens [179], weight estimation [180], shelter preference
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behaviour monitoring [181], enrichment utilization monitoring [182], and meat colour
and quality classification [183,184]. All of the methods are still under development and
therefore further research is needed for the development of a commercial application.

Another widely spread PLF application in poultry is RFID systems. A variety of
different sizes and settings have been developed, and they are available for commercial
use, focusing on individual behaviour recording [185–187], feed intake monitoring [188],
individual range use [186,189–193], range behaviour tracking [160,169,194–196], response
to stressors monitoring [197], welfare assessment [198], range behaviour and health status
evaluation [199], individual identification [200], individual movement parameters monitor-
ing such as speed, ability to snatch feed and resting behaviour for disease detection [201],
body weight, feed intake, egg production and quality evaluation [202], behavioural pref-
erences, and indoor and outdoor resource utilization monitoring [192,203]. It should be
noted that an alternative system to RFID technology consisting of a small, light-based mon-
itoring system was developed by Buijs et al. [204]. The system demonstrated 89% or better
accuracy for hens’ position detection. Hedman et al. [205] developed a GPS-based system
for individual chickens’ position and movement monitoring but did not provide any PLF
evaluation parameters. Finally, Stadig et al. [206] developed an automated Ultra-Wideband
positioning system for location monitoring with an accuracy of 68%. Further research is
needed for the improvement of the system’s internal characteristics and accuracy.

More complex systems have been introduced during the previous decade, including
automatic egg collection robots [207,208], behaviour monitoring [209], dead chicken re-
moval robots [210], and guardian dog monitoring using a combination of GPS and camera
equipment for auto-guidance for the repulsion of wildlife such as red foxes [167]. Gils-
dorf et al. [153] also reviewed a variety of different technologies concerning the use of
frightening devices for wildlife repulsion and therefore wildlife damage management.
They reported that today’s ultrasonic devices are ineffective at repelling birds and mam-
mals. However, the potential of a combination of frightening devices could provide a
cost-effective integrated system that considerably reduces wildlife damage. However, only
a few commercial applications have been released due to their complexity and limited field
testing. Furthermore, a thorough economic analysis for the systems’ total costs is essential
for the development of commercial products [4].

5. Conclusions

The constantly increasing global need for higher quality food and improved animal
welfare status based on sustainable farming systems highlights the necessity of high-quality
livestock management. PLF technologies have shown great potential in addressing this
issue in an animal-friendly manner, while simultaneously providing the farmers with infor-
mation that further assists them in decision making. The application of such technologies is
directed towards the automatization of simple procedures, the minimization of labour and
environmental impact, and the improvement of animal welfare. PLF applications can only
serve as decision making support tools for farmers, since automatic decisions for efficient
handling and critical health and welfare issues are not feasible at present. Furthermore,
although various PLF applications for grazing animals are available commercially, their use
is limited and can be found mainly in cattle production rather than in small ruminants or
other species. This is likely attributed to individual animal value and producers’ reluctance
due to financial constraints, unresolved welfare concerns, lack of specialized nearby service,
and complexity in using the technologies. The limited testing and the lack of cost-benefit
evaluation make these technologies undesirable for farmers. Future PLF research should
focus on improving the systems’ evaluation parameters and should be based on realistic
and thorough economic analysis, emphasizing their beneficial impact. In parallel, "friendly"
software and effective marketing techniques should be applied to persuade more farmers
to adopt the technologies.
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179. Čakić, S.; Popović, T.; Krčo, S.; Nedić, D.; Babić, D. Developing object detection models for camera applications in smart poultry
farms. In Proceedings of the IEEE International Conference on Omni-Layer Intelligent Systems (COINS), Barcelona, Spain,
1–3 August 2022; pp. 1–5. [CrossRef]

180. Szabo, S.; Alexy, M. Practical aspects of weight measurement using umage processing methods in waterfowl production.
Agriculture 2022, 12, 1869. [CrossRef]

181. Rana, M.S.; Lee, C.; Lea, J.M.; Campbell, D.L.M. Commercial free-range laying hens’ preferences for shelters with different
sunlight filtering percentages. Animals 2022, 12, 344. [CrossRef]

182. De Koning, C.; Kitessa, S.M.; Barekatain, R.; Drake, K. Determination of range enrichment for improved hen welfare on
commercial fixed-range free-range layer farms. Anim. Prod Sci. 2018, 59, 1336–1348. [CrossRef]

183. Jin, S.; Yang, L.; Zang, H.; Xu, Y.; Chen, X.; Chen, X.; Liu, P.; Geng, Z. Influence of free-range days on growth performance, carcass
traits, meat quality, lymphoid organ indices, and blood biochemistry of Wannan Yellow chickens. Poult. Sci. 2019, 98, 6602–6610.
[CrossRef]

184. Cerolini, S.; Vasconi, M.; Sayed, A.A.; Iaffaldano, N.; Mangiagalli, M.G.; Pastorelli, G.; Moretti, V.M.; Zaniboni, L.; Mosca, F.
Free-range rearing density for male and female Milanino chickens: Carcass yield and qualitative meat traits. J. Appl. Poult. Res.
2019, 28, 1349–1358. [CrossRef]

185. Sibanda, T.Z.; Walkden-Brown, S.W.; Kolakshyapati, M.; Dawson, B.; Schneider, D.; Welch, M.; Iqbal, Z.; Cohen-Barnhouse, A.;
Morgan, N.K.; Boshoff, J.; et al. Flock use of the range is associated with the use of different components of a multi-tier aviary
system in commecial free-range laying hens. Br. Poult. Sci. 2019, 61, 97–106. [CrossRef]

186. Taylor, P.S.; Hemsworth, P.H.; Groves, P.J.; Gebhardt-Henrich, S.G.; Rault, J.L. Frequent range visits further from the shed relate
positively to free-range broiler chicken welfare. Animal. 2020, 14, 138–149. [CrossRef]

187. Kolakshyapati, M.; Taylor, P.S.; Hamlin, A.; Sibanda, T.Z.; de Vilela, J.S.; Ruhnke, I. Frequent visits to an outdoor range and lower
areas of an aviary system is related to curiosity in commercial free-range laying hens. . 2020. Animals 2020, 10, 1706. [CrossRef]

188. Sriharee, G.; Khongban, P.; Wongpipan, K. Toward IoT and data analytics for the chicken welfare using RFID technology. In
Proceedings of the 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON). Prachuap Khiri Khan, Thailand, 6 June 2022; pp. 1–4. [CrossRef]

189. Gebhardt-Henrich, S.G.; Toscano, M.J.; Fröhlich, E.K.F. Use of outdoor ranges by laying hens in different sized flocks. Appl. Anim.
Behav. Sci. 2014, 155, 74–81. [CrossRef]

190. Hartcher, K.M.; Hickey, K.A.; Hemsworth, P.H.; Cronin, G.M.; Wilkinson, S.J.; Singh, M. Relationships between range access as
monitored by radio frequency identification technology, fearfulness, and plumage damage in free-range laying hens. Animals
2016, 10, 847–853. [CrossRef]

191. Larsen, H.; Cronin, G.M.; Gebhardt-Henrich, S.G.; Smith, C.L.; Hemsworth, P.H.; Rault, J.L. Individual ranging behaviour patterns
in commercial free-range layers as observed through RFID tracking. Animals 2017, 7, 1–16. [CrossRef]

192. Sibanda, T.Z.; Kolakshyapati, M.; Welch, M.; Schneider, D.; Boshoff, J.; Ruhnke, I. Managing free-range laying hens-Part A:
Frequent and non-frequent range users differ in laying performance but not egg quality. Animals 2020, 10, 991. [CrossRef]

193. Bari, M.S.; Allen, S.S.; Mesken, J.; Cohen-Barnhouse, A.; Campbell, D.L.M. Relationship between range use and fearfulness in
free-range hens from different rearing enrichments. Animals 2021, 11, 300. [CrossRef]

194. Taylor, P.S.; Hemsworth, P.H.; Groves, P.J.; Gebhardt-Henrich, S.G.; Rault, J.L. Ranging behavior relates to welfare indicators pre-
and post- range access in commercial free-range broilers. Poult. Sci. 2018, 97(6), 1861–1871. [CrossRef] [PubMed]

195. Campbell, D.L.M.; Horton, B.J.; Hinch, G.N. Using radio-frequency identification technology to measure synchronised ranging of
free-range laying hens. Animals 2018, 8, 210. [CrossRef] [PubMed]

196. Göransson, L.; Gunnarsson, S.; Wallenbeck, A.; Yngvesson, J. Behaviour in slower-growing broilers and free-range access on
organic farms in Sweden. Animals 2021, 11, 2967. [CrossRef] [PubMed]

197. Campbell, D.L.M.; Hinch, G.N.; Dowing, J.A.; Lee, C. Early enrichment in free-range laying hens: Effects ranging behaviour,
welfare and response to stressors. Animals 2017, 12, 575–584. [CrossRef]

198. Sibanda, T.Z.; O’Shea, C.J.; de Vilela, J.S.; Kolakshyapati, M.; Welch, M.; Scneider, D.; Courtice, J.; Ruhnke, I. Managing free-range
laying hens-Part B: Ealry range users have more pathology findings at the end of lay but have a significantly higher chance of
survival – An indicative study. Animals 2020, 10, 1911. [CrossRef]

http://doi.org/10.1007/s10071-020-01389-w
http://www.ncbi.nlm.nih.gov/pubmed/32335766
http://doi.org/10.1016/j.measurement.2022.110819
http://doi.org/10.3389/fvets.2020.00446
http://doi.org/10.1016/j.beproc.2019.103888
http://doi.org/10.1038/s41598-021-85867-2
http://doi.org/10.1109/COINS54846.2022.9854975
http://doi.org/10.3390/agriculture12111869
http://doi.org/10.3390/ani12030344
http://doi.org/10.1071/AN17757
http://doi.org/10.3382/ps/pez504
http://doi.org/10.3382/japr/pfz058
http://doi.org/10.1080/00071668.2019.1686123
http://doi.org/10.1017/S1751731119001514
http://doi.org/10.3390/ani10091706
http://doi.org/10.1109/ECTI-CON54298.2022.9795547
http://doi.org/10.1016/j.applanim.2014.03.010
http://doi.org/10.1017/S1751731115002463
http://doi.org/10.3390/ani7030021
http://doi.org/10.3390/ani10060991
http://doi.org/10.3390/ani11020300
http://doi.org/10.3382/ps/pey060
http://www.ncbi.nlm.nih.gov/pubmed/29528464
http://doi.org/10.3390/ani8110210
http://www.ncbi.nlm.nih.gov/pubmed/30453521
http://doi.org/10.3390/ani11102967
http://www.ncbi.nlm.nih.gov/pubmed/34679986
http://doi.org/10.1017/S1751731117001859
http://doi.org/10.3390/ani10101911


Agriculture 2023, 13, 288 23 of 23

199. Kolakshyapati, M.; Flavel, R.J.; Schneider, D.; Welch, M.C.; Ruhnke, I. Various bone parameters are positively correlated with
hen body weight while range access has no beneficial effect on tibia health of free-range layers. Poult. Sci. 2019, 98, 6241–6250.
[CrossRef]

200. Park, J.K.; Park, E.Y. Real-time monitoring system for tracking and identification of poultry based on RFID. MSEA. 2022. MSEA
2022, 71, 446.

201. Zhang, F.; Hu, Y.; Chen, L.; Guo, L.; Dua, W.; Wang, L. Monitoring behavior of poultry based on RFID radio frequency network.
Int. J. Agric. Biol. 2016, 9, 139–147. [CrossRef]

202. Ruhnke, I.; Normant, C.; Campbell, D.L.M.; Iqbal, Z.; Lee, C.; Hinch, G.N.; Roberts, J. Impact of on-range choice feeding with
black soldier fly larvae (Hermetia illucens) on flock performance, egg quality, and range use of free-range laying hens. Anim.
Nutr. 2018, 4, 452–460. [CrossRef]

203. Sibanda, T.Z.; Welch, M.; Schneider, D.; Kolakshyapati, M.; Ruhnke, I. Characterising free-range layer flocks using unsupervised
cluster analysis. Animals 2020, 10, 855. [CrossRef]

204. Buijs, S.; Nicol, C.J.; Booth, F.; Richards, G.; Tarlton, J.F. Light-based monitoring devices to assess range use by laying hens.
Animals 2020, 14, 814–823. [CrossRef]

205. Hedman, H.D.; Zhang, L.; Trueba, G.; Rivera, D.L.V.; Herrera, R.A.Z.; Barrazueta, J.J.V.; Rodriguez, G.I.G.; Butt, B.; Foufopoulos,
J.; Berrocal, V.J.; et al. Spatial exposure of agricultural antimicrobial resistance in relation to free-ranging domestic chicken
movement patterns among agricultural communities in Ecuador. Am. J. Trop. Med. 2020, 103, 1803–1809. [CrossRef]

206. Stadig, L.M.; Ampe, B.; Rodenburg, T.B.; Reubens, B.; Maselyne, J.; Zhuang, S.; Criel, J.; Tuyttens, F.A.M. An automated
positioning system for monitoring chickens’ location: Accuracy and resistration success in a free-range area. Appl. Anim. Behav.
Sci. 2018, 201, 31–39. [CrossRef]

207. Chang, C.-L.; Xie, B.-X.; Wang, C.H. Visual guidance and egg collection scheme for a smart poultry robot for free-range farms.
Sensors 2020, 20, 6624. [CrossRef]

208. Li, G.; Hui, X.; Zhao, Y.; Zhai, W.; Purswell, J.L.; Porter, Z.; Poudel, S.; Jia, L.; Zhang, B.; Chesser, G.D. Effects of groud robot
manipulation on hen floor egg reduction, production performance, stress response, bone quality, and behaviour. PLoS ONE 2022,
17, e0267568. [CrossRef]

209. Liang, X.; Kou, D.; Wen, L. An improved Chicken swarm optimization algorithm and its application in robot path planning. IEEE
Access 2020, 8, 49543–49550. [CrossRef]

210. Liu, H.-W.; Chen, C.-H.; Tsai, Y.-C.; Hsieh, K.-W.; Lin, H.-T. Identifying images of dead chickens with a chicken removal system
integrated with deep learning algorithm. Sensors 2021, 21, 3579. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3382/ps/pez487
http://doi.org/10.3965/j.ijabe.20160906.1568
http://doi.org/10.1016/j.aninu.2018.03.005
http://doi.org/10.3390/ani10050855
http://doi.org/10.1017/S1751731119002830
http://doi.org/10.4269/ajtmh.20-0076
http://doi.org/10.1016/j.applanim.2017.12.010
http://doi.org/10.3390/s20226624
http://doi.org/10.1371/journal.pone.0267568
http://doi.org/10.1109/ACCESS.2020.2974498
http://doi.org/10.3390/s21113579

	Introduction 
	PLF in Grazing Cattle 
	RFID Technologies 
	GPS and GIS Systems 
	Other Multi-Sensors PLF Applications 

	PLF in Small Ruminants 
	Electronic Identification (EID) Systems 
	On-Animal Sensors 
	Virtual Fencing and Flock Monitoring Using Drones, Robots and Image Analysis Techniques 
	Walk-Over-Weighting or Weighting Crates and Automatic Drafter 
	Other Milking Parlour-Related Technologies 

	PLF in Other Species 
	Pigs 
	Poultry 

	Conclusions 
	References

