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Abstract: This study evaluates the accuracy of bathymetric maps generated from multispectral
satellite datasets acquired from different multispectral sensors, namely the Worldview 2, PlanetScope,
and the Sentinel 2, in the bay of Elounda in Crete. Image pre-processing steps were implemented
before the use of the three empirical methods for estimating bathymetry. A dedicated correction and
median filter have been applied to minimize noise from the sun glint and the sea waves. Due to the
spectral complexity of the selected study area, statistical correlation with different numbers of bands
was applied. The analysis indicated that blue and green bands obtained the best results with higher
accuracy. Then, three empirical models, namely the Single Band Linear Algorithm, the Multiband
Linear Algorithm, and the Ratio Transform Algorithm, were applied to the three multispectral images.
Bathymetric and error distribution maps were created and used for the error assessment of results.
The accuracy of the bathymetric maps estimated from different empirical models is compared with
on-site Single beam Echo Sounder measurements. The most accurate bathymetric maps were obtained
using the WorldView 2 and the empirical model of the Ratio Transform algorithm, with the RMSE
reaching 1.01 m.

Keywords: satellite-derived bathymetry; ratio transform algorithm; single linear algorithm; multi-
band linear algorithm; Worldview 2; PlanetScope; Sentinel 2; closed bay; turbidity

1. Introduction

Bathymetry measurements in oceans, rivers, or lakes are essential, especially in coastal
areas with intense use of the coastal zone, heavy sea traffic, and vulnerable natural ecosys-
tems. Monitoring of coastal areas is, thus, of great importance to implement sustainable
coastal development and ecosystem protection strategies [1–3]. High spatiotemporal res-
olution and a vertical accuracy topographic and bathymetric data are also essential not
only for understanding coastal systems evolution [2], but also for other environmental
applications, such as benthic habitat mapping [4], seabed geomorphology [5], underwater
archaeology [6], monitoring of coastal morphological changes, navigation, and fishing [7].

Traditional methods for estimating sea-bottom surface include Single Beam Echo
Sound (SBES) and Multi-Beam Echo Sound (MBES) installed on boats, as well as active
sensor systems—LIDAR installed on aerial platforms, remotely controlled vehicles (RVs)
and autonomous underwater vehicles (AUVs) [4]. These are commonly used for high-
resolution bathymetry retrieval in nearshore areas [8,9]. Although these methods can
provide high accuracy of bathymetrical data, they have specific limitations when it comes
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to cost and time constraints compared to the extensive coverage [10]. In contrast, satellite
remote sensing techniques can provide a cost-effective solution to monitor large coastal
areas, especially in remote areas, as they can provide a continuous and frequent updating
set of data [11]. Indeed, the recent advancement of satellite remote sensors has generated
new space-based methodologies for estimating bathymetry, the so-called Satellite-Derived
Bathymetry (SDB) [12–15].

Nowadays, SDB is one of the leading research areas of Remote Sensing Science,
studying the maritime environment. Associated products are used in many applications,
such as the movement of deposited sediments, the bathymetry monitoring, etc. [11]. Both
active and passive sensors can be used for estimating bathymetry. However, passive
sensors are nowadays the most widespread ones concerning the use of multispectral
and hyperspectral sensors. Over time, several studies were carried out using numerous
sensors, techniques, and algorithms to estimate bathymetry. The estimation of bathymetry
using passive sensors is based on the theory that as depth increases, while the intensity of
electromagnetic energy gradually weakens due to the Inherent Optical Properties (IOPs)
of the water column. The passive sensors provide a wide wavelength range of zones
with predefined models to achieve the bathymetry estimation. However, the visible bands
penetrate the water column differently, i.e., blue band up to 25 m, green band up to 15 m,
and red band up to 5 m, based on respective studies using Landsat images [16].

SDB appeared in the late 1970s, where the extraction of the bathymetric substrate
was achieved in clearwater, using a linear algorithm of multi bands, such as Lyzenga’s
approach [17,18]. This approach was followed by other researchers after modifications to
refine the estimation of the bathymetry [19–21]. Moreover, semi-analytical approaches were
applied using models and methods of deriving bathymetric data [22,23]. Stumpf extended
the approach of Lyzenga, proposing an empirical method for estimating SDB known as
the ratio transform algorithm, which contends that the ratio for two bands at a constant
depth will be the same, independently from the substrate of the seabed [24]. Additionally,
significant potentials of estimating bathymetry were presented by researchers with stereo
techniques [25,26] and more recently with machine learning approaches [27–29].

Thus, fewer constraints are needed with empirical methods [30], where the associated
models are mathematical equations studying the relationship between distance data, e.g.,
reflectance, radiance, and digital numbers, with shallow waters. Masita in [31] summa-
rized twelve different empirical models for estimating bathymetry, including the principal
component analysis (PCA), linear ratio, multiple linear regression polynomial of ratio
transform, least squares boosting fitting ensemble, and support vector regression, among
others. An additional recent review applied a comparative analysis for optical SDB within
and between the methods with shallow water depth. This research indicated that some
of the limitations of bathymetry that pose a significant challenge in assessing bathymetry,
such as turbidity, chlorophyll, etc., were not resolved in recent years based on the SDB
literature [32].

Data quality and pre-processing steps comprise a critical part of the SDB. Special
attention is needed regarding the atmospheric effects, where studies have shown that
a precise atmospheric correction increased the accuracy of the estimated depth using
SDB [33,34]. An additional factor concerns the sun reflection and the ripple at the sea
surface, confounding the properties of the water column and the sea bottoms in remote
sensing. A further pre-processing step for SDB estimation is the sun glint corrections,
where many studies evaluated techniques and bathymetry results, showing significant
improvement in accuracy with sun glint correction [35,36].

The current paper focuses on estimating bathymetry concerning the bay of Elounda
located at the NE part of Crete Island, covering an area of about 10 km2. It is a semi-enclosed
bay with an eastward-facing entrance on the north side. The bathymetric conditions of the
bay are considered challenging in estimating the bathymetry using satellite images, as the
bay is shallow and covered with fine sediments. However, several studies were carried
out to extract bathymetry by applying empirical methods with similar conditions. Casal
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G. et al. carried out a study of SDB in two bays of Ireland, the Dublin Bay and the bay
of Mulroy. This study applied two empirical methods, the Linear band model and Ratio
Transformed Algorithm using Sentinel 2 satellite images. The best bathymetrical results
were estimated in Gulf of Mulroy using the Linear band model with the value correlation
coefficient (R2) set to 0.89 and the Root Mean Square Error (RMSE) 0.78 m, while using
Ratio Transformed Algorithm the R2 reached 0.83 with the RMSE at 0.98 m [37]. One more
study was carried out in the bay Tralee of Ireland, where bathymetry was estimated using
empirical models with three different sensors (Landsat 8, RapidEye, and Pleiades) [38].

The framework of this study is to estimate bathymetry using diverse spatial resolution
of satellite images on a closed bay instead of an open sea. The Worldview 2, PlanetScope,
and Sentinel 2 satellite data were used to extract bathymetrical data in the bay of Elounda
in Crete. The present study is composed of six sections. After to the introduction, Section 2
mentions the in situ data of Single-Beam Echo Sounders and the satellite images. Then,
the pre-processing steps, the three applied empirical models, and the methodology used
in this study are described. The next section concentrates on the results of the applied
methodology providing the bathymetrical maps, comparing the results for each method
and satellite image. The extracted bathymetrical maps combined with the error distribution
maps and the turbidity maps will help analyze the errors concerning turbidity. Finally, the
paper ends with a discussion and the conclusions.

2. Study Area and Materials
2.1. Study Area

The study site is the bay of Elounda, located northeast of the island of Crete in Greece.
The site is located between 35◦15′′25′′–35◦17′7′′ N and 25◦43′17′′–25◦44′35′′ E (WGS 84)
as can be seen in Figure 1. The broader area was an important center and a strategic port
of the island of Crete in ancient periods. According to the archaeological data, the area
exhibited a continuous habitation spanning from the Minoan to Venetian period. The most
relevant architectural constructions, however, were created in the Hellenistic, Roman, and
Early Byzantine periods.
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Figure 1. Closed bay in Elounda village, Crete, Greece.

In this area, the waters are characterized by suspended sediment due to fine grain
sediments, hydrodynamic conditions, and marine traffic. Consequently, a high volume of
suspended sediments regularly noted is an important factor that can alter the results in the
estimation of satellite bathymetry.
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2.2. In Situ Depth Data

In situ bathymetric data were obtained using hydroacoustic sounding and the GPS/RTK
satellite positioning technique, with the use of a single beam echo sounder (Hi-target hd370)
combined with two TOPCON RTK receivers using the Real Time Kinematic technique. The
local RTK/DGPS base station was set up only for the dedicated project. One served as base
station and the other was in the vertical pole together with the echosounder. Before the ini-
tiation of bathymetric surveys, local geodetic control points were established that included
an RTK/DGPS reference station. The error in the field measurements was less than 0.1 m
for the position (x, y), while for the depth (z), the error ranged from 0.1 m in shallow to
0.2 m in deep waters, but without considering the pitch, roll, and yaw. Additionally, it is
worth noting that wave height corrections were not made for this package of in situ data.

To increase the accuracy of the depth measurement conducted using single beam echo
sounder, tests of water parameters were conducted to determine the sound propagation
speed in water, which included conductivity and temperature with the use of an ONSER
HOBO sensor. For the sea level corrections, a base station of water level measurements
was established by deploying another ONSER HOBO sensor that was able to measure
the water level, including tide oscillations and temperature per minute. Postprocessing of
the measurements by considering all the above information formed the database for the
development of the Elounda bay bathymetry.

For this study, 7500 in situ measurements ranging from 0 to 8.50 m depth were collected
from the campaigns. After filtering and denoising the data, this number was estimated
at 5665 points. Since the satellite sensors refer to a spatial resolution of 2 × 2 or 3 × 3 or
10 × 10 m areas, an extrapolation of the points, based on their mean value per pixel, was
estimated. A similar approach has been already reported in the literature [34,38]. This has
been processed for each bathymetric equations and method. These data were used for:
(a) the calibration of bathymetric results with absolute depths and (b) the estimation of
errors. It is worth noting that 20% of the points (i.e., 1145) were kept as validation points.
Figure 2 shows the distribution of the calibration (green color) and validation points (red
color) for the area of study.
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2.3. Optical Satellite Images

The current study aims to compare SDB maps of different optical sensor spatial
resolutions. Three optical satellite images were used to analyze and estimate bathymetry.
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These images comprise three high-resolution Worldview 2 and PlanetScope images and
one medium-resolution Sentinel 2 satellite image.

The high-resolution multispectral images of Worldview 2 have eight spectral bands
with a spatial resolution of 2 m (b1—Coastal, b2—Blue, b3—Green, b4—Yellow, b5—Red,
b6—Red-Edge, b7—NIR 1, b8—NIR 2). The PlanetScope high-resolution sensor has four
bands with 3 m of resolution (b1—Blue, b2—Green, b3—Red, b4—Red Edge, b5—NIR).
The medium-resolution multispectral images of Sentinel 2 have 12 spectral bands with
three different resolutions (bands/resolution: b1—Coastal aerosol/60 m, b2—Blue/10 m,
b3—Green/10 m, b4—Red/10 m, b5—Vegetation Red Edge/20 m, b6—Vegetation Red
Edge/20 m, b7—Vegetation Red Edge/20 m, b8—NIR/10 m, b8A—Vegetation Red Edge/20 m,
b9—Water vapour/60 m, b10—SWIR/60 m, b11—SWIR/60 m, b12—SWIR/60 m). Table 1
shows the general information of the acquired images used in the study.

Table 1. Details of the optical satellite images.

A/A Satellite Product Name Resolution Date Ac-
quisition

Sensing
Time

Sun
Zenith

Angle—º

Sun Azimuth
Angle—º

Cloud
Coverage

%

1 Worldview 2 19MAY25091947-M2AS-
012814699010_01_P001 2 m 19/05/2019 09:19 18.50 136.40 0

2 PlanetScope 20190518_074518_1048_3B_udm2 3 m 18/05/2019 07:45 53.88 105.85 1.35

3 Sentinel 2 S2A_MSIL2A_20190513T085601_
N0212_R007_T35SLV_20190513T112941 10 m 13/05/2019 08:56 22.36 136.42 1.66

3. Methodology

In contrast to the traditional depth measurement methods, satellite bathymetry is
a “passive” technology and measures the intensity of solar radiation. The results from
satellite bathymetry are influenced by many uncontrollable environmental factors that
reinforce the uncertainties of the results. Limitations are that the accuracy of calculating the
bathymetry with passive receivers is affected by the water quality (Turbidity), cloud cover,
weather conditions, and sun glint.

Seven basic steps of estimating bathymetry were acknowledged to this challenging
study area. The pre-processing steps are a crucial component of the methodology for
estimating bathymetry. The first pre-processing step concerns the geometric, radiometric,
and atmospheric correction of satellite images. The provider of the Worldview 2 and
PlanetScope images gave calibrated the satellite images, while the medium resolution
Sentinel 2 image was downloaded as the bottom of the atmosphere product. In addition,
for the Sentinel-2 image, the resampling of all Sentinel 2 bands using a referenced band
with a 10 m spatial resolution was applied in the Sentinel Application Platform (SNAP)
software (Figure 3—i).
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The second step (Figure 3—ii) concerns the correct distribution of calibration/validation
of in situ data. The in situ depth was divided into two packages, in situ depth data for
calibration purposes (80%) and in situ depth data for validation purposes (20%).

The third step (Figure 3—iii) was the sun glint correction to all images. Sun glint
can be directly reflected on the sensor due to the water’s surface and the sun’s position
often displayed as scattered bright spots or white stripes along the edge of the wave. A
significant obstacle to the estimation of satellite bathymetry is that the sun glint effect may
present an error in SDB maps of up to 30% in high-resolution images [39]. The algorithm
of Hedley was used in this study (Equation (1)). This technique is based on sun glint
elimination, which assumes that the radiation of infrared bands (NIR) in deep water is
negligible. Consequently, the NIR bands indicate the amount of glint in the received signal.

R′ i = Ri − bi(RNIR −MinNIR) (1)
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where R′ i is the sun glint-corrected pixel, Ri is the pixel value in all bands, bi is the regression
slope, and RNIR−MinNIR is the difference between the NIR pixel (infrared radiation) value
and the minimum pixel value in the infrared.

As this study focuses on the watery parts of the study area, masks were created. The
masks focus mainly on land/sea separation, cloud removal, and cloud shading. The cloud
removal and shading masks were not required and, therefore, not created. The Normalized
Difference Water Index (NDWI) was used for land/sea separation (Figure 3—iv). This
index uses the green and NIR band to enhance only the water features. Equation (2) shows
the NDWI used in the fourth step:

NDWI =
Bgreen − BNIR

Bgreen + BNIR
(2)

where Bgreen is the green band and BNIR represents the band values of the reflected Near-
Infrared Radiation.

Turbidity can influence the accuracy of estimated bathymetry from satellite images,
since it can produce suspended sediments that can contribute to the higher radiation in
the water during the visible and near-infrared (NIR) bands. The depths in the shallow
water are overestimated and underestimated in the deeper regions [37,40]. Lacaux in 2007
have developed the Normalized Difference Turbidity Index (NDTI), which can quantify the
levels of turbidity in coastal waters [41]. Subsequently, using the ArcGIS Pro environment,
nine error distribution maps were created by linearly interpolating the difference of in situ
depth data and satellite bathymetry’s depth values. Equation (3) shows the NDTI:

NDTI =
Bred − Bgreen

Bred + Bgreen
(3)

where Bgreen and Bred represent the band values of the reflected green and red band,
respectively.

Then, a median filter (window) of 3 × 3 was applied (Figure 3—v) to reduce the noise.
The median filter is often used to remove “sensing” noise, interrupted pixels and other
false pixel features while maintaining the overall quality. The main disadvantage of other
filters (low pass) instead of median filters is that only blur is corrected instead of removing
noise [42].

This research used the most common methods (Ratio Transform Algorithm and Linear
Method) to produce depth using satellite images (Figure 3—vi). Lyzenga followed the
fundamental principle derived from the Beer–Lambert law. Lyzenga developed a linear
method which assumes that the reflection at the bottom is a linear function of the reflectance
of the seabed with the exponential function of the depth of water [5,6,30,43]. The estimation
of the depth from a single band depends on the albedo and can be made using the following
equation:

ZSDB = α0 ∗ log L(λi) + bo (4)

where ZSDB is the estimated depth from optical images, α0 and bo are constants, and L(λi)
is the sun glint-corrected value of a band.

However, by assuming that the bottom reflection ratio between two spectral bands is
constant for all albedo types, Lyzenga showed that multi-bands could provide a correction
for albedo in finding the depth, using the equation below:

ZSDB = α0 + b0 ∑N
i=1 log[L(lι)− L∞(li)] (5)

where ZSDB is the estimated depth from optical images, L(lι) is the sun glint-corrected
value of a band (e.g., green), L∞(li) is the deepwater sun glint-corrected value of a band
for spectral band lι, α0 and b0 are constants, and N(i = 0, 1, . . . , N) is the number of spectral
bands used.
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Subsequently, Stumpf in 2003 [24] stated that the difference in solar attenuation for
two zones could be used to extract water depth. This method argues that the ratio for
two zones at a constant depth will be the same, regardless of the difference in the shade
of the bottom and can be calculated using actual depths on clear shallow water. In this
method, the approach of Beer’s law was accepted, which considers that the attenuation of
light in the water column increases exponentiation as the depth increases [30]. Thus, the
ratio transform algorithm is related to the logarithm of the two-zone reflectance and the
actual depths. The bands used in the transformation algorithm to estimate bathymetry are
the blue, green, red, and infrared zones. Penetration into the blue and green spectrum is
higher, while the absorption of electromagnetic radiation increases in the red part of the
spectrum. The ratio conversion algorithm can be applied with zones that have different
water absorption and can be applied to appropriate wavelengths of any sensor. Because
the blue and green zones have a lower absorption, the ratio of the two zones remains the
same despite the different shading of the bottom at a constant depth. The red and infrared
channels are used to separate land and sea. The values of these zones were applied to the
following equation to estimate bathymetry:

ZSDB = mi
ln(nR(li))
ln(nR(l j))

−m0 (6)

where ZSDB is the depth of bathymetry, m0 is a constant displacement value of the results
at a depth of 0 m, mi is the depths from in situ measurements for calibration purposes, n is
a fixed constant, and R(li) and R(l j) are the zones li and l j, respectively.

The following step (Figure 3—viii) is the creation of the error distribution maps using
the validation points and the extracted bathymetry results. The error distribution maps
evaluated the obtained SDB errors by comparing it with the NDTI maps. In this step, the
absolute errors are calculated using the equation below:

Eabsolute = |ZSDB − ZIDD| (7)

where Eabsolute is the absolute error, ZSDB is the satellite-derived bathymetry depth, and
ZIDD is the in situ depth data. The final step (Figure 3—ix) is the comparison of the accuracy
of the used algorithms, estimating the correlation coefficient R2 and the assessment of the
statistical parameter Root Mean Square Error (RMSE):

RMSE =

√
∑n

j=1
(ZSDB − ZIDD)

2

n
(8)

where n is the number of the field points, ZSDB is the satellite-derived bathymetry depth,
and ZIDD is the in situ depth data.

Figure 3 presents the basic steps of SDB using optical sensors for this study.

4. Results

This section presents the overall results generated from the different methods and
datasets described above. The Equations (4)–(6) were implemented to all different multi-
spectral datasets. Due to the specificity of the study area, the combinations of all visible
bands with all algorithms mentioned above were analyzed using the three optical images.
This step was implemented because, as Vahtmäe and Kutser have stated, in turbid waters,
the optimal bands that are shifted to higher wavelengths, such as the green-yellow spectral
zones and not to the blue zone, have greater penetration in the water column of clear
waters [44].

A table was created showing the correlation coefficients of in situ depth data between
the Single Band Linear Algorithm (SBLA), Multi-Band Linear Algorithm (MBLA), and
Ratio Transform Algorithm (RTA), using all visible bands for each optical sensor. Table 2
aims to select the best bands for each algorithm for the best derived bathymetrical results.
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Table 2. Correlation coefficients of the satellite images of WV2, Sentinel 2, and Planescope using
SBLA, MBLA, and RTA.
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Table 2 states the correlation coefficients using the three algorithms for all satellite
images. Comparing the correlation coefficients for each algorithm and satellite image
noted the low values with red cells, mean levels with yellow cells, and high values with
green cells. As observed in Table 2, the correlation coefficient with the highest value
reaches up to 0.74. This observation is mainly due to the conditions of the study area
(high suspended sediments), which is a critical component to the accuracy of SDBs. The
highest correlation coefficients value in SBLA was observed in the green band for all three
sensors. However, using the MBLA, the best fit values of the correlation coefficients differ
for each image. The best fit value of R2 was noted in the sum of the logarithm of the
Green/Yellow band for WV2 sensor, Coastal/Green in Sentinel 2 image, and Green/Red
in PlanetScope image using MBLA. Finally, using RTA resulted in the highest correlation
coefficients value in Green/Blue bands for all three sensors. Subsequently, the bathymetric
maps were created using the SBLA, MBLA, and RTA equations and bands with the highest
correlation coefficients, noted in Table 2. Figure 4 presents the results of SDB.

A regression analysis was performed to estimate the correspondence of the satellite
bathymetric outcomes against the in situ data. Each bathymetrical map, validation points,
regression analyses, and the coefficient of determination (R2) were calculated for the differ-
ent satellite images. The overall results are presented in Figure 5. Nine scatterplots were
designed with the x-axis representing the validation points, while the y-axis represented the
estimated bathymetry points derived from the Worldview 2, Sentinel 2, and PlanetScope
images.
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Figure 5. Correlation between observed depths (validation points) and extracted depths ob-
tained by each algorithm/sensor, listed as: (a) SBLA/Worldview 2; (b) MBLA/Worldview
2; (c) RTA/Worldview 2; (d) SBLA/Sentinel 2; (e) MBLA/Sentinel 2; (f) RTA/Sentinel 2;
(g) SBLA/PlanetScope; (h) MBLA/PlanetScope; (i) RTA/PlanetScope.

In addition, the RMSE, using Equation (7), was calculated for each pair. The overall
results are shown in Table 3. According to these results, the highest correlation is observed
using the RTA for Worldview 2 and Sentinel 2 and MBLA for PlanetScope. The bathymetric
map derived by WV2 using the Ratio Transform Algorithm marked the best results of
RMSE to be 1.01 m. The highest value of RMSE can be found on Sentinel 2 images using the
MBLA algorithm. For PlanetScope, the variation of the RMSE in all three empirical models
is relatively small, and the RMSE ranges from 1.08 to 1.13 m for all three algorithms, with
the best results observed in the MBLA.
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Table 3. R2 and RMSE of the estimated depths for each sensor and algorithm.

no Algorithm Satellite SDB
Points Equations Validation

Points RMSE (m) R2

1

SBLA

WV2

4521

y = 41.865x − 92.059

1145

1.08 0.67

2 S2A y = 12.095x − 38.316 1.46 0.42

3 PlanetScope y = 33.417x − 97.458 1.11 0.65

4

MBLA

WV2 y = 23.033x − 107.45 1.03 0.70

5 S2A y = 6.4394x − 40.255 1.52 0.37

6 PlanetScope y = 14.885x − 83.271 1.08 0.67

7
Ratio Transform

algorithm

WV2 y = −149.97x + 142.89 1.01 0.76

8 S2A y = −145x + 140.8 1.06 0.68

9 PlanetScope y = −280.12x + 276.64 1.13 0.64

The following results present the areas of water turbidity and evaluate the bathymetri-
cal results using the validation points and the error distribution maps. Consequently, the
areas with turbidity for each satellite image were identified and classified using the NDTI
indices. The water areas with extreme turbidity levels may have more radiation response
of red light than green light. A prediction of an indicator of water quality was determined
by classifying the NDTI values into five equal intervals categories. The results applying the
NDTI indices for each satellite image are presented in Figure 6.
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(c) PlanetScope.

The red color shows the areas with the highest NDTI values, the yellow areas with
high NDTI values, the green areas for moderate NDTI values, light blue areas with low
NDTI values, and blue areas with the lowest NDTI values.
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The results of the waters’ turbidity in each satellite image differs as the sensing dates
of the satellite images are different. For example, in the shallow waters in the satellite image
of Sentinel 2, the high turbidity of the water was noted northeast of the bay compared
to the other two, which had a medium to high level of turbidity. This may be due to the
conditions prevailing in the bay of Elounda at the acquisition date.

Subsequently, based on the SDB results, error distribution maps were created to study
the depth and areas with the highest errors presented on bathymetric maps. Subsequently,
using the ArcGIS Pro environment, nine error distribution maps were created by linear
interpolation of the difference of in situ depth data and satellite bathymetry’s depth val-
ues, as shown in Figure 7. Each error distribution map refers to the use of a different
algorithm/sensor.
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5. Discussion

In the current study, three different satellite sensors, with the acquisition date being
the same month, were used to estimate the bathymetry. The study area concerns the bay of
Elounda, located northeast of the island of Crete in Greece. A relatively large number of
calibration and validation points used in this study allowed us to assign the complexity of
the model better and be utilized in the regression models with a satisfactory assessment
performance of the models [45]. During the analysis, the overall results show an error
ranging from 1.01 m to 1.52 m. The best SDB accuracy was obtained using the RTA on the
Worldview 2 sensor. The correlation coefficient reached 0.76 and the RMSE at 1.01 m.

However, the correlation coefficient (R2) in all algorithms and satellite images is not
high, and this can be due to several sources of errors. These possible sources of error may be
led to the effect of the significant differences in the accuracy of the bathymetric maps. The
source of error concerns the weather conditions and the activities carried out in the study
area, as well as the specific date of the satellite image. The three algorithms operate by
assuming that the water column and the substrate do not alter the radiance values. All three
algorithms applied are based on the principle of exponential attenuation of depth, which
considers that the depth in clear waters above a homogeneous substrate can be calculated
using a single band by solving the Beer–Lambert law. However, high suspension of the
fine-grained sediments of the sea floor and the turbidity observed seasonally depending
on hydrodynamic conditions but also marine traffic increases the error in the estimation
of satellite bathymetry. Furthermore, another possible source of error is the atmospheric
corrections made to the satellite images used. Accurate atmospheric correction is essential
and has a significant impact on the bathymetry results [39,46].

The error distribution maps show significant systematic errors appearing in the center,
the deepest point of the south part of the bay, with 8.50 m depth. Additionally, systematic
noise was observed in the shallow water in all models with all sensors. As identified in
the bathymetric results with the RTA algorithm, we observed that the errors are visibly
less in shallow and deeper areas of the bay. This can be linked with weather conditions or
navigation prevailing in the study area at the specific time of the satellite sensing data or
sensor resolution.

Concerning the study area’s conditions of satellite images, images without clouds and
winds are ideal to avoid phenomena of the sea surface reflections. These phenomena could
not be avoided in satellite images where a median filter and sun glint corrections were
used, which were necessary to estimate bathymetry. In addition to the intense activity of
the study area, the bay waters are not clear because of turbidity and suspended fine-grain
sediments. These phenomena reduce the accuracy of bathymetry results with diverse
spatial resolutions.

Many factors could alter the bathymetric results, running into three different satellite
images with different resolution and sensing dates. In this research, basic corrections were
made to estimate bathymetry without considering the dynamic nature of the confounding
variable, such as turbidity.

The next step of this research was the evaluation of the bathymetric results considering
the three methods and turbidity. Subsequently, a comparison of the error about turbidity
and depth for each method and satellite was achieved by creating graphs, as shown in
Figure 8. The diagrams were created, distributed by two meters depth using the validation
points and extracting the errors of Error Distribution Maps and the Turbidity maps. The
x-axis of the diagram presents the type of satellite image, and the y-axis presents the values
of mean errors by each method (meters) and the level of turbidity.
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Figure 8. Diagrams presenting the relation of the error of turbidity and actual depth for each method
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The diagrams of Figure 8 present the variation of turbidity levels in relation to the
depth and the satellite images. This may be due to the activities that may take place at
the sensing time, e.g., ship routes or even wind waves. It can be noticed that errors of all
methods and satellite images have less than one meter for depths from four to six meters.

Comparing the diagrams separately, we noted importance results regarding the turbid-
ity and errors for the depth per two meters. The first diagram in Figure 8 refers to the depth
varying between 0–2 m. The turbidity level of the PlaneScope images has the lowest value,
with the errors being smaller in contrast to the other two satellites and the three methods.
Comparing Worldview 2 and Sentinel 2 results, Worldview 2 has a higher turbidity level
with smaller errors using the methods of LDM, MBLA, and higher errors using the RTA
method than Sentinel 2. The diagram with a depth of 0–2 m observed better results, with a
lower turbidity level than the results derived with the highest resolution image.
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The next diagram refers to the depth results between 2–4 m and is presented in Figure 8.
This diagram shows smaller errors at the PlanetScope for all three methods and the smallest
turbidity level. The other two satellite images results are noteworthy as the turbidity level
is the same. The diagram shows smaller errors for all three methods on WordView 2 in
contrast to Sentinel 2. This may mainly be due to the resolution of the satellite image.

The same turbidity level is also spotted for all three satellite images for a depth of
4–6 m (Figure 8). This diagram shows smaller errors in the bathymetric results for all
methods with higher resolution images. More specifically, WorldView 2 errors are smaller
than PlanetScope’s, while the errors of PlanetScope are smaller than Sentinel 2 for all three
methods.

In continuation, the results for depth 6–8 m are shown in diagram (d) of Figure 8. The
lowest errors for all methods are observed in WorldView 2, having the lowest turbidity
level. Comparing the PlanetScope and Sentinel 2 results, the same turbidity level is spotted.
The LBM and MBLA methods have a smaller error derived with Planetscope’s image, while
the results derived from the method RTA are slightly better in Sentinel 2.

In the last diagram (Figure 8), that presents the results for a depth of 8–10 m, a
significant error is observed for all the methods for all three satellite images. However,
the lowest turbidity’s level is spotted on WorldView 2, giving better results only for the
methods of MBLA and RTA, as similar results are derived from the LBM method for all
three satellite images.

To sum up, turbidity could affect bathymetric results regardless of the resolution
of the satellite image. Additionally, smaller errors were noted in the bathymetric maps
derived with higher resolution images, comparing areas with the same turbidity level.
Moreover, concerning the sensor spatial resolution, similar studies show better bathymetry
results with high-resolution sensors [47,48]. The main reason is that low-resolution satellite
image causes mixed pixels, because of the decrease reducing the accuracy of bathymetric
maps, mainly on the coastal waters. That explains the higher RMSE shown in the Sentinel
2 images than the WV 2 and PlanetScope satellite images.

6. Conclusions

This paper compares the derived bathymetric results obtained with three different
satellite sensors using three different algorithms. The study was carried out expecting
differences in the accuracy of SDB calculation due to the resolution of the satellite’s sensors
and the different sensing dates. The visible bands were evaluated, applying to the three
empirical methods and all satellite images, due to the turbidity observing in the study area.
This step was implemented to select the best bands for each algorithm for the best derived
bathymetrical results, with the green and blue to better respond to all three methods. The
pre-processing steps were followed in addition to the sun glint corrections, and median
filters were applied. Subsequently, empirical methods were applied to satellite images
to estimate bathymetry in the study area. Regarding Table 3 and the RMSE results, it
was noted that the bathymetrical models of the study area have significant errors. Better
accuracy was reached using the RTA for WV2 and Sentinel 2 images. The PlanetScope
images noted better accuracy with the MBLA. Expressly, the lowest RMSE on the Worldview
2 image indicated 1.01 m (RTA), while this was 1.06 m for Sentinel 2 (RTA) and 1.08 m
for PlanetScope (MBLA). As the Sentinel’s 2 SDB errors were lower than PlanetScope’s, a
further analysis was performed, producing the error distribution and turbidity maps.

The creation of error distribution and turbidity maps helped statistically analyze the
error in relation to depth and turbidity. The results show that satellite images with higher
resolution have better accuracy in the bathymetric maps in areas with the same depth and
the same level of turbidity. However, significant errors in bathymetric maps were observed
in the same areas with different turbidity levels, regardless of the image’s resolution for
all three methods. This evaluation and comparison of SDB maps show that water quality
plays an essential role in in-depth estimation using empirical methods and multispectral
images of different spatial resolutions. Future work regarding the sensitivity of the spatial
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resolution of satellite sensors against in situ bathymetric campaigns is foreseen by the
authors. Additionally, the authors will further elaborate on the impact of spatial resolution
and turbidity with bathymetric accuracy.
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