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Abstract: Recent improvements in low-altitude remote sensors and image processing analysis can be
utilised to support archaeological research. Over the last decade, the increased use of remote sensing
sensors and their products for archaeological science and cultural heritage studies has been reported
in the literature. Therefore, different spatial and spectral analysis datasets have been applied to
recognise archaeological remains or map environmental changes over time. Recently, more thorough
object detection approaches have been adopted by researchers for the automated detection of surface
ceramics. In this study, we applied several supervised machine learning classifiers using red-green-
blue (RGB) and multispectral high-resolution drone imageries over a simulated archaeological area
to evaluate their performance towards semi-automatic surface ceramic detection. The overall results
indicated that low-altitude remote sensing sensors and advanced image processing techniques can
be innovative in archaeological research. Nevertheless, the study results also pointed out existing
research limitations in the detection of surface ceramics, which affect the detection accuracy. The
development of a novel, robust methodology aimed to address the “accuracy paradox” of imbalanced
data samples for optimising archaeological surface ceramic detection. At the same time, this study
attempted to fill a gap in the literature by blending AI methodologies for non-uniformly distributed
classes. Indeed, detecting surface ceramics using RGB or multi-spectral drone imageries should be
reconsidered as an ‘imbalanced data distribution’ problem. To address this paradox, novel approaches
need to be developed.

Keywords: ceramic detection; archaeology; remote sensing archaeology; artificial intelligence;
machine learning; imbalanced data distribution; drone data; UAV

1. Introduction

Archaeological remains, such as ceramics, can be either below the ground or on the
surface. These remains are evidence of historic and pre-historic activities [1]. As stated by
Orengo H.A. and Garcia-Molsosa A. (2019) [2], the dispersion analysis of surface remains
provides researchers with information related to potential changes in land use or the
destruction of sites.

The surface survey is a straightforward method for discerning settlement patterns
and forms of past human behaviour in the landscape. In addition, this method can study
the interactions between past populations and their natural environment and discover
archaeological heritage for protection and management purposes in the rapidly developing
and changing modern landscape. Nevertheless, traditional ground surface surveys have
several limitations, including the following: (a) they are considered time-consuming,
(b) their use requires training, (c) they are based on sampling mainly conducted using grids,
(d) only the parts of the archaeological record, that are exposed to the land surface can be
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detected, (e) methodological decisions may not be sufficient to reach the goals of the survey,
and (f) certain areas cannot be surveyed due to their surface conditions, accessibility and
other environmental conditions (lighting, weather, flora, fauna, etc.) [2]

In recent years, remote sensing science has been increasingly applied to support archae-
ological research [3,4]. The ever-increasing use of space-based remote sensing applications
has been supported by the technological development and improvement of space-based
sensors, spatial and spectral resolution, and the implementation of open access and the free
distribution of satellite datasets (Landsat and Sentinel products) [5]. However, the tradi-
tional pattern recognition methods such as photo interpretation may prove inapplicable in
archaeological research covering large areas or even searching an extensive archival dataset.
A crucial factor determining surface research’s success is the research methodology, which
may need to be revised or more reliable. Consequently, it is difficult to accurately evaluate
the results and their interpretation’s validity, which affects whether the research objectives
can be considered successful.

The development of remote sensing over the last 20 years has incentivised the explo-
ration of new possibilities in archaeological research [6–23]. Archaeological research using
remote sensing approaches has been prompted to exploit geospatial data systematically. In
addition, the democratisation of low-altitude systems, with drones at relatively low costs,
has been broadly implemented in archaeological research in the last decade, primarily for
documentation cases [24]. Concurrently, archaeological computational approaches and
advanced artificial intelligence (AI) algorithms, rather than desktop-based approaches, are
increasingly applied in cloud-based systems [2]. AI is increasingly attracting widespread
interest across various scientific disciplines due to its increasingly powerful predictive ca-
pabilities [1]. Therefore, archaeologists can more fully exploit the knowledge gathered from
extensive archaeological data through AI [25–50]. This enables them to make informed deci-
sions about conservation and protection procedures for archaeological elements. Moreover,
AI helps determine the most suitable excavation points in a complex cultural landscape.

An evolution of the analytical tools used to support archaeological research occurred
during the last decade. This evolution includes techniques like machine learning (ML)
combined with geometric morphometry. Machine learning can make detecting archaeo-
logical remains more accurate without requiring explicit programming. Lately, artificial
intelligence has also been used through deep learning (DL) [49], which processes these ar-
chaeological data based on artificial neural networks with representation learning. A recent
study (2002) [51] indicated that most of the ML and DL algorithms used in archaeology
are for object classification and detection. Nevertheless, the detection of archaeological
structures using DL algorithms still needs to be improved, specifically when employing
aerial/drone imaging. One could argue that we are relatively at the beginning of a new era
of so-called “remote sensing archaeology” if we consider that all the changes mentioned
above occurred in a relatively short period.

Overall, the findings of Agapiou et al. [26], together with the results presented by
Orengo and Garcia-Molsosa [2], showed that the application of deep learning algorithms to
Unmanned Aerial Vehicles (UAV) images can be a ground-breaking innovation in the field
of archaeological research, supporting future archaeological field projects. Additionally, it
offers a cost-effective option that provides faster results when applied under favourable
conditions, mainly in cases where the research time is restricted. However, its success and
accuracy are influenced by multiple factors. To improve both the survey design and the
results, we can combine additional complementary procedures like observation methods,
remote sensing and AI techniques. Consequently, archaeological remains will be accurately
detected by combining remote sensing, machine learning, and deep learning techniques.
This will lead to a better understanding of the close relationship and interaction between
man and the environment. By studying the environment of the past, we can better approach
the study of man and culture and their potential interactions with the landscape in the past.

Our study aimed to investigate the feasibility of developing a semi-automatic ar-
chaeological feature detection using artificial intelligence in UAV images (multi-spectral
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and RGB). The research work of this study was implemented in a simulated field where
low-altitude flights were carried out using UAV sensors. The simulated field was an area
where no indication of archaeological remains existed. It was given the appearance of a
real archaeological field, investigating synthetic elements with known properties like rocks,
crops, slopes, soil, and ceramics. We used RGB and multispectral images in the developed
methodology, applying artificial intelligence techniques to identify surface archaeological
ceramics. The methodology initially included using supervised machine learning classifiers
like Random Forest, Support Vector Machines, etc. Then, in a second step, improvement
techniques for both data and classifiers were applied. Finally, various evaluation metrics
were implemented to assess the classification performance and guide the classifier mod-
elling. The initial results proved the existence of the “accuracy paradox” in the dataset,
with an imbalanced class distribution between the archaeological ceramics and the field.

Furthermore, we aimed to answer research questions more efficiently in terms of time
and accuracy of the process, compared to traditional archaeological fieldwork. The overall
objective of this study was to evaluate whether using low-altitude and relatively low-cost
remote sensing sensors can be efficient in detecting surface ceramics through artificial
intelligence and image post-processing techniques. It is important to note that the method
presented in this paper does not intend to replace archaeological surface surveys but rather
to ensure that more time and resources can be allocated to automated or semi-automated
technical procedures necessary for the survey.

2. Case Study

A simulation processing was implemented over a plot of approximately 90 m2 in
Alambra village in the Lefkosia District of the Republic of Cyprus (Figure 1). The survey
was conducted in May 2022, during a good period of visibility for archaeological material,
as the fields in Cyprus had recently been ploughed.
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Figure 1. Location of Alambra village in the Lefkosia District of the Republic of Cyprus.

The field selected for the pilot study was chosen as it represented ideal field conditions
during a fieldwork period in Cyprus. The area had recently been ploughed, which would
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increase the visibility of ceramics, compared to fields with a extensive flora, rocks, and
shadows, which can reduce the detection efficiency and cause false identifications, as
soil shades resemble those of ceramics. The periodically cultivated plot corresponded to
scenarios with appropriate soil visibility and offered an ideal ground for detecting ceramics
(Figure 2a). This approach allowed for the evaluation of the technique’s performance under
the best conditions.
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Figure 2. (a) The field selected for the pilot study (Photos: A. Argyrou, Earth Observation Cultural 
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Earth Observation Cultural Heritage Research Lab©). 

3. Materials and Methods 
A combination of several recent independent technological developments was ap-

plied to the workflow upon which the research was based: 
• Low-altitude and low-cost UAS have significantly improved their features and have 

become considerably more affordable to researchers, offering autonomy in flight time 
for surveying. 

• Digital photogrammetry is now more user-friendly and accessible by implementing 
semi-automated workflows that have been integrated into many archaeological work-
flows [2]. 

• Machine learning (ML) is an element of artificial intelligence that allows software ap-
plications to be more accurate for outcome predictions, without requiring explicit pro-
gramming. Machine learning applications have significantly increased in recent years 
and have become a usable choice for data mining, analysis, and object detection in 
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techniques like machine learning and deep learning algorithms were tested to detect and 
classify ceramic fragments through photomosaic. In the following paragraphs, this work-
flow is presented in detail (Figure 3). 

Figure 2. (a) The field selected for the pilot study (Photos: A. Argyrou, Earth Observation Cultural
Heritage Research Lab©); (b) example of surface ceramics scattered in the field (Photos: A. Argyrou,
Earth Observation Cultural Heritage Research Lab©).

The field was almost flat, with a 2% slope; no ceramic was present. For the simulation
research, 365 pieces of ceramics were scattered in the field. The size of the pottery fragments
ranged from 3 cm to 6 cm. The colour of the ceramics varied, from reddish-orange to brown,
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depending on their firing (Figure 2b). The selected area contained no other ceramic remains
than those that were placed be us explicitly for this simulation.

3. Materials and Methods

A combination of several recent independent technological developments was applied
to the workflow upon which the research was based:

• Low-altitude and low-cost UAS have significantly improved their features and have
become considerably more affordable to researchers, offering autonomy in flight time
for surveying.

• Digital photogrammetry is now more user-friendly and accessible by implement-
ing semi-automated workflows that have been integrated into many archaeological
workflows [2].

• Machine learning (ML) is an element of artificial intelligence that allows software
applications to be more accurate for outcome predictions, without requiring explicit
programming. Machine learning applications have significantly increased in recent
years and have become a usable choice for data mining, analysis, and object detection
in archaeological research [1].

• Deep learning (DL), as a subset of ML learning, computers simulate human behaviour
by managing data using artificial neural networks incorporating representation learn-
ing. Significant growth in this research has also occurred in recent years [1].

• Finally, various evaluation metrics were implemented to assess the performance of the
classification and guide the classifier modelling.

As previously mentioned, the simulation study presented here aimed to investigate
whether we could develop a semi-automatic ceramic detection methodology to answer
the research questions. These questions are related to the time-consuming data processing
and detection accuracy in a typical field condition. To this end, a workflow incorporated
low-altitude and low-cost drone imaging for the detailed recording of the surveyed fields,
as well as photogrammetry to merge all these images into one orthoimage. Finally, AI
techniques like machine learning and deep learning algorithms were tested to detect
and classify ceramic fragments through photomosaic. In the following paragraphs, this
workflow is presented in detail (Figure 3).
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Figure 3. Workflow implemented in this study.

3.1. UAV Image Acquisition

We used two drones to acquire drone-based images of the selected area of interest.
Two flight campaigns were performed on the same day using first the DJI Phantom 4
Pro system (spectral bands: Blue (B): 468 nm ± 47 nm; Green (G): 532 nm ± 58 nm;
Red (R): 594 nm ± 32.5 nm), while for the second campaign, we used the DJI P4 Multi-
spectral system(spectral bands: Blue (B): 450 nm ± 16 nm; Green (G): 560 nm ± 16 nm;
Red (R): 650 nm ± 16 nm; Red edge (RE): 730 nm ± 16 nm and Near-infrared (NIR):
840 nm ± 26 nm). For both flights, the height was 20 m above ground level (AGL). The
selected height provided orthophotos with a ground sample distance of approximately
2 cm/px, considered sufficient to detect ceramics on the field under survey. The flight time
for each campaign was about 20 min.
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3.2. Photogrammetric Processing and Computational Processing

The final step included computational processing (AI techniques) to identify and
isolate ceramic fragments using the orthophoto mosaic of the captured images. The pho-
togrammetric processing of the photos involved the orthorectification of all photographs
and combining them into a single orthophoto mosaic using the Terra software. Orthorecti-
fying the image involves ensuring that the images are geometrically accurate and corrected
from lens distortion, camera tilt, perspective, and topographic relief. Therefore, the images
were orthorectified and merged into an orthomosaic map using the photos’ metadata,
which contained information like drone model, types of camera sensor and lens, and
GPS coordinates. After the mosaics were produced (Figure 4), image-processing tech-
niques were applied to detect surface ceramics. The same approach was followed for both
UAV flights.
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ArcGIS Image Analyst tools of the ArcGIS Pro software were used for computational
processing. Within the ArcGIS Pro environment, a training model was created using the
Training Samples Manager in the Classification Tools, consisting of three classes: ‘ceramics’
(class 1), ‘soil’ (class 2), and ‘crops’ (class 3). The training sample file included a class
name indicating the name of the class category and a class value containing the integer
value for each class category (class 1 = 1, class 2 = 2 and class 3 = 3). The initial training
data were selected by drawing polygons on top of visible ceramic fragments, bare soil,
and crops. The creation of the training data consisted of assigning to each class the
values of the pixels delimited by the polygons in each composite band. Four supervised
classifiers (K-Nearest Neighbour (KNN), Random Forest (RF), Support Vector Machine
(SVM), and the Maximum Likelihood algorithm) were applied. We set 500 samples to the
SVM, RF, and KNN classifiers as the maximum number of samples per class, considering
this was a high enough number to ensure optimal results. The composite images were
then classified using the trained classifier. This produced the first classification output.
The classification was compared to the orthomosaic to evaluate how it fitted. This step
included randomly sampled points creation for post-classification accuracy assessment.
The Accuracy Assessment Points tool of the Image Analyst tools was then applied to all
classification results. Randomly distributed samples were created in each class, each with an
equivalent number of samples. These samples were then compared with the classification
results. Based on the confusion matrix per classifier, we then calculated the user’s and
producer’s accuracy for each class, as well as the overall kappa index. This procedure
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was performed for both drones’ images (RGB and multispectral), while all results were
extracted and evaluated on a local computer.

3.3. Supervised Machine Learning Classifiers

This section briefly introduces the most well-developed supervised machine-learning
classifiers for detecting archaeological ceramics.

The Random Forest algorithm is a viral supervised machine learning algorithm used
in many archaeological classification cases. It is based on ensemble learning and is a set of
individual decision trees. Each tree combines different samples and subsets of the training
data [52].

The Maximum Likelihood classifier is used for image classification. Its technique
is based on two principles: the normal distribution of the pixels in each class sample in
the multidimensional space and decision making using the Bayes’ theorem. Assuming a
normal distribution of the class sample, then each class can be indicated by a mean vector
and a covariance matrix. Considering these two characteristics for each cell value, the
statistical probability for each class can be assessed to define the cell’s membership in the
class [53].

Another supervised classifier, the Support Vector Machine (SVM), is a powerful classi-
fication method that can also process a standard image or a segmented raster input. This
classification method is widely used among researchers and is trained to classify everything
as the prevalent class, minimising the error and increasing the margin [54].

Finally, the K-Nearest Neighbor is another supervised classifier that can classify a
pixel or segment using a plurality vote of its K neighbours. The data points in each category
among these k neighbours can be counted if the Euclidean distance of the K number of
neighbours is calculated [55].

The final result was compared with the number of scattered ceramics placed at the
beginning of the archaeological campaign. An evaluation of the classification was also
made for all classes. The results are presented in the next Section.

4. Results
4.1. Detection of Ceramics in an RGB High-Resolution Mosaic

As mentioned above, all classifiers were trained using image samples for three classes,
i.e., ‘ceramics’ (class 1), ‘soil’ (class 2), and ‘crops’ (class 3). The overall accuracy was
estimated to summarise the performance of each classification model using randomly
distributed testing pixels. Accuracy is defined as the proportion of correctly predicted
samples in the test set divided by the total predictions made on the test set.

Accuracy = Correct Predictions/Total Predictions

The accuracy for class 2 and class 3 (soil and crop) was estimated at approximately 80%,
while for class 1 (ceramics), a relatively low accuracy was reported for all four classifiers.
The question arising at this point was how many testing pixels should be chosen to ensure
that the assessed accuracy was a reliable estimate of the actual accuracy. Would a larger
sample of testing pixels give a more realistic estimate? What should the appropriate number
of samples be? According to John A. Richards (2021) [56], the number of samples required
for an accuracy of 90% is 225 testing pixels, while 119 testing pixels are required for a 95%
accuracy. These numbers proposed by Richards assume that the classes follow a normal
distribution (for each class, a set of measurements, for instance, the mean, is distributed
around the centre of these measurements).

Considering the above numbers and using 225 testing samples, the accuracy of all
classifiers was estimated again. ArcGIS Pro randomly created 225 sampled points for
post-classification accuracy assessment using the Image Analyst Toolbox. The sampling
scheme was set to randomly distributed points, in which each class had the same number
of points. A “Ground Truth” field and a “Classified” field were created in the final attribute
table. Finally, we manually updated the Ground Truth field by changing or identifying the
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set of points, and compared these fields using the Compute Confusion Matrix tool. The
results for the ceramics class varied between 12 and 24% for the RGB images, as presented
in Tables 1–4.

Table 1. Accuracy Assessment of KNN.

Class Value Ceramics Soil Crop Total User Accuracy Kappa

ceramics 10 4 61 75 0.13

soil 0 57 18 75 0.76
crop 1 12 62 75 0.83
total 11 73 141 225 0

producer accuracy 0.91 0.78 0.44 0.57
0.36

Table 2. Accuracy Assessment of the Maximum Likelihood Classifier.

Class Value Ceramics Soil Crop Total User Accuracy Kappa

ceramics 9 12 54 75 0.12
soil 0 57 18 75 0.76
crop 0 8 67 75 0.89
total 9 77 139 225 0

producer accuracy 1 0.74 0.48 0.59
0.39

Table 3. Accuracy Assessment of Support Vector Machine Classifier (SVM).

Class Value Ceramics Soil Crop Total User Accuracy Kappa

ceramics 18 12 53 75 0.24
soil 1 54 20 75 0.72
crop 0 5 70 75 0.93
total 19 63 143 225 0

producer accuracy 0.95 0.86 0.49 0.63
0.45

Table 4. Accuracy Assessment of the Random Forest Classifier.

Class Value Ceramics Soil Crop Total User Accuracy Kappa

ceramics 11 7 57 75 0.15
soil 0 56 19 75 0.75
crop 1 4 70 75 0.93
total 12 67 146 225 0

producer accuracy 0.92 0.84 0.48 0.61
0.41

The distribution of the ceramics and the overall classification of all three classes
(ceramics, soil, and crops) across the simulated area are depicted in Figure 5. The detected
ceramics are indicated in red, while the soil is shown in green, and the crops in yellow, after
implementing the supervised machine-learning classifiers referred to in Section 3.3 above.

4.2. Detection of Ceramics in a Multispectral High-Resolution Mosaic

Working with the multispectral dataset, the accuracy results indicated similar patterns
as in the RGB datasets. For classes 2 and 3 (soil and crop), the accuracy was estimated to be
approximately 90%, while for class 1 (ceramics), the accuracy was again lower. Following
the same methodology as for RGB and considering the above number of 225 testing pixels,
the accuracy of all classifiers was estimated. The results varied between 23% and 61% for
the multispectral images (Tables 5–8), showing once more a significant decline but a better



Drones 2023, 7, 578 9 of 16

performance compared to the classification with the RGB images. The distribution of the
ceramics and the overall classification of the three classes across the simulated area are
illustrated in Figure 6. The detected ceramics are indicated in red, while the soil is shown
in green, and the crops in yellow.
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Table 5. Accuracy Assessment of the KNN classifier.

Class Value Ceramics Soil Crop Total User Accuracy Kappa

ceramics 17 39 19 75 0.23
soil 0 65 10 75 0.87
crop 0 14 61 75 0.81
total 17 118 90 225 0

producer accuracy 1 0.55 0.68 0.64
0.45
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Table 6. Accuracy Assessment of the Maximum Likelihood Classifier.

Class Value Ceramics Soil Crop Total User Accuracy Kappa

ceramics 39 20 16 75 0.52
soil 0 70 5 75 0.93
crop 1 15 59 75 0.79
total 40 105 80 225 0

producer accuracy 0.975 0.67 0.74 0.75
0.62

Table 7. Accuracy Assessment of the Support Vector Machine Classifier (SVM).

Class Value Ceramics Soil Crop Total User Accuracy Kappa

ceramics 46 12 17 75 0.61
soil 0 62 13 75 0.83
crop 0 7 68 75 0.93
total 46 81 98 225 0

producer accuracy 1 0.77 0.49 0.78
0.67

Table 8. Accuracy Assessment of Random Forest Classifier.

Class Value Ceramics Soil Crop Total User Accuracy Kappa

ceramics 23 23 29 75 0.31
soil 0 65 10 75 0.87
crop 1 6 68 75 0.93
total 24 94 107 225 0

producer accuracy 0.96 0.69 0.64 0.69
0.54

A final vector point layer was then exported and incorporated into ArcGIS Pro software
for visualisation and further analysis. This layer provided the number of ceramics detected
automatically through the supervised classification procedure. Table 9 summarises these
results (detection of the ceramics) per type of camera sensor (RGB and multispectral),
underlining the spectral confusion concerning the ceramics and the ground (soil and crops).
This is a common phenomenon in archaeological research. The results showed a significant
divergence in ceramic detection, and the number of detected elements was not near the
actual number of 365 pieces, except for the Maximum Likelihood and Support Vector
Machine classifiers using multispectral images. This was also directly related to the highest
number of false positive ceramic detections in all cases.

Table 9. Detection of ceramics with supervised machine learning algorithms using RGB and multi-
spectral images.

Class Ceramics Ceramic Detection Using RGB Ceramic Detection Using Multispectral

KNN 845 1573
Max Likelihood 1276 286

SVM 794 250
Random Forest 548 705

An interesting observation emerges when comparing the results of all the accuracy
assessments (Tables 1–8). The automated detection method that detected the higher number
of ceramic fragments was the Support Vector Machine classifier, with a detection rate of
24% and a Kappa coefficient of 45% using RGB images. Additionally, 61% of the ceramic
fragments were detected, with a Kappa coefficient of 67%, when using multispectral images
and a Support Vector Machine classifier (Figure 7).
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5. Discussion

Previous results indicated that low-altitude sensors can provide significant detection
results but also point out existing research limitations for detecting surface ceramics. These
limitations restrict the accuracy of the detection of the minority class of ceramics. To
overcome this ‘accuracy paradox’, future studies need to (re)consider ceramic surface
detection as an ‘imbalanced data distribution’ problem.

Indeed, in previous studies, a problem with the misclassification of minority classes
(i.e., archaeological ceramics) was found. Therefore, despite the high accuracy level, the
actual detection rate for the ceramic class remained low. Classifiers tend to predict with
higher accuracy classes with extensive data compared to those with few data.

Most classifiers assume a relatively balanced normal class distribution and equal mis-
classification costs. But when these classifiers are used to classify data with an imbalanced
class distribution (skewed class proportions), their performance encounters significant
drawbacks (Figure 8). In these datasets, classes with a large proportion of the dataset are
called majority classes. In contrast, those with a smaller proportion are minority classes.
Sun et al. indicated in 2009 [57] that the modelling can be influenced by factors besides
skewed data, like a small sample size, separability, and sub-concepts within a class.
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Similarly, widely used accuracy assessments need to be adopted. Traditionally, the
most widespread metric to evaluate the performance of a classification model is accuracy.
In the remote sensing community, the kappa coefficient has been considered an advanced
evaluation metric in comparison to overall accuracy (Congalton et al., 1983 [58]; Fitzgerald
and Lees, 1994 [59]). Nevertheless, Foody [60] explained that the Kappa coefficient is
unsuitable for assessing and comparing the accuracy of thematic maps obtained by image
classification. This suggests that researchers should abandon the use of the Kappa coef-
ficient in accuracy assessments. In addition, the author encouraged them to use a set of
simple evaluation metrics and associated outputs, like estimating accuracy per class and a
confusion matrix for evaluation and comparison of the classification accuracy.

As presented in all the above case studies, these metrics are widely adopted but are
not reliable for imbalanced data classification. Joshi et al. in 2001 [61] and Weiss in 2004 [62]
reported that accuracy is no longer a proper evaluation metric for classification cases with
imbalanced data, since the minority class has an insignificant impact on accuracy compared
to the majority class. The preliminary results of accuracy presented in this study confirmed
the 2009 study of Prati et al. [63], which stated that it is easy to achieve an accuracy of
99.9% in a domain where the majority class has a 99.9% prevalence. All these observations
indicate that archaeological ceramics detection is characterized by imbalanced data related
to surface ceramics, soil, and crops, where ceramics represent the minority class, and soil
and crops represent the majority classes.

Improved classification results would be valuable for further analyses and the develop-
ment of tools and a workflow to treat imbalanced data or to re-design learning algorithms.
At the data level, a possible solution would be rebalancing the class distribution by re-
sampling the data space. Meanwhile, at the algorithm level, a solution would be to adapt
existing classifier learning algorithms to strengthen learning regarding the small ceramics
class. Furthermore, boosting algorithms are considered for future work facing the problem
of imbalanced data.
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6. Conclusions

Our study aimed to investigate whether it is possible to detect archaeological ceramics
in an automated way by applying artificial intelligence techniques to high-resolution images
captured with UAVs. In addition, we aimed to provide answers regarding the development
of a methodology that will perform efficiently in terms of time and accuracy compared to
traditional archaeological field surveys. Thus, supervised machine learning algorithms
were implemented using RGB and multispectral UAV images.

The overall findings of this study in a simulated environment, utilising the method-
ology presented by Orengo and Garcia-Molsosa [2], showcased that low-altitude remote
sensing sensors can be innovative in archaeological research. The classifiers tend to predict
majority classes with high accuracy, while they are useless for predicting minority classes.
In our study, a methodology was proposed to overcome this problem and detect surface
ceramics using RGB and multispectral drone images.

In this paper, the detection of ceramics was limited to a single cluster of ceramics (one
type), as this was the current archaeological record. Nevertheless, the authors expect to
investigate the detection of different clusters of ceramics in the same area, i.e., archaeological
findings of different chronological periods with different typologies and spectral behaviours.
Of course, the detection of various classes of ceramics during the same flight requires a
(statistically) significant spectral separability of the different types of ceramics. Controlled
and laboratory spectral measurements may provide further insights into this direction (e.g.,
spectral windows to optimise and enhance the separability of the ceramics).

Future work will include new drone survey campaigns with surface ceramics in the
same simulated and known archaeological area. These campaigns will increase the data
available for training the algorithms and apply all the methodologies to evaluate and
compare the results. Further applications include flights at different heights and further
analyses using deep learning algorithms. Other classification improvements will include
eliminating random noise, filtering noise, and separability or a combination of all of them,
obtaining a combination of new data, modifications of the supervised classifiers that were
used, and implementing other boosting algorithms. Evaluating imbalanced ceramics data
will also assess the sensitivity of such data using other evaluation measures like F-measure,
G-mean, and ROC analysis. These types of measures are ideal evaluation measures because
they consider only the positive classes in the performance (True Positive Rate (TPrate) and
Positive Predictive Value (PPvalue)). The basic steps of the future research methodology
are illustrated in Figure 9.
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