
An Intelligent Agent based Approach for Service Discovery in Wireless
Ad-hoc Networks

MINAS PERTSELAKIS AND NICOLAS TSAPATSOULIS

Department of Electrical and Computer Engineering
National Technical University of Athens
9, Iroon Polytechniou, 15773 Zografou,

GREECE

Abstract: - In this paper we propose an architecture for modeling the service discovery functionality of
computing devices operating in pervasive computing environments. Forming wireless ad hoc networks
requires service discovery protocols that support both proximity-based detection and abstract level service
matching. In the proposed architecture, services, provided by sensors and actuators, are indirectly located
through polling while composite service matching is based on the intelligent agent philosophy. In this
way, our service discovery approach exploits the spread of proximity based device detection and the
dynamics of the multi-agent environments.

Key-Words: - Intelligent Agents, Wireless Ad hoc Networks, Service Discovery Architectures

1 Introduction
Pervasive computing aims at the availability of
software applications and multimedia information
anywhere and anytime, and invisibility of computing;
computing modules are hidden in multimedia
information appliances which we use in our everyday
life [1] [2]. Applications conforming to the pervasive
computing paradigm are characterized by interaction
transparency and context-awareness [3].

Interaction transparency means that the human
users are not aware that there is a computing module
embedded in the tool or device that they are using; it
is definitely a non-intrusiveness process.

Context awareness refers to adaptation of the
behavior of an application as a function of its current
environment. This environment can be characterized
as a physical location, an orientation or a user profile.
In a mobile and wireless computing environment,
changes of location and orientation are frequent.
Context-aware applications can sense the
environment and interpret the events that occur
within it. Sensing their owner's identity and location
is very important both for security reasons, since
pervasive computing applications run in physical

devices that human users carry with them, and for
adapting the provided services based on the user
profile and location in an intelligent manner.
Context-aware applications face severe problems
when both the service users and the service devices
are mobile. These problems require dynamic forming
of wireless ad hoc networks and on-the-fly system
configuration. The dynamics of such system are
complex because it requires not only system
reconfiguration and low level configuration, e.g.,
multiple communication and security protocols, but
also service detection and monitoring in order to
provide the best available services [4].

Our proposal is an intelligent agent based
approach for service discovery in wireless ad hoc
networks. We consider that pervasive computing
environments consist of three types of elements:
computing devices (called intelligent artefacts in our
terminology), sensors and actuators. Intelligent
artefacts are devices with general-purpose
computational logic, which allows them to be
programmable by their users. In contrast, sensors and
actuators cannot be programmed to implement
general-purpose communication and service
discovery protocols. Instead they support specific

mailto:mper@cslab.ntua.gr
mailto:ntsap@image.ntua.gr

protocols through which send / receive their data to
and from conforming devices.

However, in the near future more and more
sensors and actuators will support wireless
communication protocols and will be Bluetooth
enabled; this means that they will be detected by
other Bluetooth enabled devices based on radio
proximity. Our service discovery approach utilizes
intelligent agents to implement high-level service
discovery and Bluetooth SDP for device detection
[5]. Thus, it manages to combine the characteristics
of proximity based device detection and the
advantages of the intelligent agent technology.

The paper is organized as follows: In Section 2
we discuss the deficiencies of existing Service
Discovery Protocols, while in Section 3 we present
the proposed architecture of the intelligent artefacts
(our computing devices). In Section 4 we describe
how wireless ad hoc networks, consisting of
intelligent artefacts, sensors and actuators, are set up
using this architecture. Finally implementation
details are given in Section 5.

2 Deficiencies in the existing service
discovery architectures

The most popular Service Discovery Protocols are
Salutation, Service Location Protocol (SLP), Jini
technology, Universal Plug and Play (UPnP) and
Bluetooth Service Discovery Protocol (SDP)
[5],[6],[7],[8],[9]. All the mentioned service
discovery procedures and architectures have been
developed to explore the service discovery issues in
the context of distributed systems. While many of the
architectures provide good base foundations for
developing systems with distributed components in
the networks, they do not adequately solve all the
problems that may arise in a dynamic domain.
Moreover, with the exception of Bluetooth, none of
the others have been specifically designed for mobile
environments.
Lack of rich representation. The existing service
discovery infrastructures lack expressive languages,
representations and tools that are good at
representing a broad range of service descriptions
and at reasoning about the functionalities and the
capabilities of the services.
Lack of inexact matching. Most existing work
supports an attribute-based discovery as well as a
simple name lookup to locate a service. Usually there

are only a set of primitive attribute types, such as
string and integer, to characterize a service. Thus, the
service discovery process is primarily done by type
matching, string comparison, or integer comparison.
For representing real world objects such as network
services, it is necessary to have more complex data
structures to capture richer semantics.

3 The Proposed Architecture
In our consideration pervasive computing elements
fall into three main categories: Intelligent Artefacts,
Sensors and Actuators. These elements must be able
to cooperate efficiently by exchanging data and
services in order to accomplish their individual or
collective tasks and define a place for pervasive
computing applications.
Intelligent Artefact: An Intelligent Artefact is a
mobile computing device able to offer high
complexity services or to make decisions derived
from the computational process and analysis of less
composite services. These intelligent entities, acting
as Clients, must be able to poll Sensors and
Actuators, in order to use their services. The internal
architecture of such an entity is based on the
technology of intelligent agents and is described in
detail later in this paper.
Sensors and Actuators. Sensors and actuators are
considered to be small mobile wireless devices with a
very specific area of operation, acting both as
Primitive Service providers for their Clients
(Artefacts). While Sensors' responsibility is to supply
a computing device with a steady, unceasing flow of
raw data (simple signals or features), Actuators are
responsible for the conversion into action of any
decision taken by the computing device. In other
words, Sensors provide data services, while
Actuators provide action services. If they are
available, both types must be able to be polled by an
Intelligent Artefact, since they cannot advertise
themselves.

3.1 Artefact's Architecture
The proposed artefact agent-based architecture, as
shown in Figure 1, is consisted of two basic
components: the Agent Platform and the
Communication Manager. The Agent Platform
includes the Service Manager(s), which are the
controllers of the system that coordinate the message
passing protocol between Clients and Services, and

Fig.1: Artefact’s Architecture

the Intelligent Unit(s), which perform intelligent
tasks using the Primitive Services provided, acting
also as providers of Composite Services to other
Clients (e.g. other Intelligent Units). The
Communication Manager(s) handle all the lower
level communication with the Sensors and the
Actuators, supporting a number of different
protocols, since Artefacts must be capable of
cooperating with heterogeneous network elements. A
detailed description of each component is presented
thereafter.

3.1.1 The Agent Platform
The Agent Platform (AP) provides an infrastructure
in which agents can be deployed. An agent must be
registered on a platform in order to interact with
other agents on that platform or indeed other
platforms. AP is divided in two basic parts of

operation: the Intelligent Unit and the Service
Manager.
Intelligent Unit. The Intelligent Unit includes all the
operations and the software needed to implement the
intelligence of the artefact.

Its role is to act mainly as a Client requesting
Services (Primitive or Composite) from other
network elements through the Service Manager.
When these Services become available, the IU
processes them and produces other Composite
Services, which can be just conclusions or even
actions. Each Intelligent Unit may be implemented
using intelligent agents and/or algorithms derived
from computational intelligence (e.g. neural
networks, fuzzy logic, etc. or a combination of them),
but this issue is not addressed in this paper.
Service Manager. The Service Manager acts as a
mediator between the Primitive Services or the
Composite Services and the Clients. When a service
starts up, it has to register itself to the SM, sending its
Registration File (RF). This file contains its name, id
and the interfaces it implements. When a new Client
comes along, SM sends to it a Service List Object
(SLO). This SLO changes dynamically, according to
the services registered or deregistered within the
Service Manager. So the Client always has the
updated list of services. The Client can select a
service, which causes the SM to send the appropriate
RF for that service. The SM then updates its database
to reflect that the specific Client is interested in the
requested service. Whenever the Service Manager
gets a status update of the service, it will send it to all
interested Clients. The Client will continue to receive
status reports from SM, until it deregisters itself. The
Client sends the new RF to the Service Manager,
after invoking the interfaces of the service. On
receiving this RF, the SM validates the Client and the
Registration File. If the Service is still available, the
SM sends the Registration File to it; otherwise it is
queued for sometime. Once this timeout expires, an
error is returned to the Client.

In addition, SM is responsible for service
discovery (polling) and leasing. It allows services to
register themselves (in its platform or another) for a
certain amount of time. If it does not receive any
status update within that time, the registration is
deleted. The SM implements an intelligent lookup for
services, enabling the Clients to search for services
that provide a certain kind of, or related function.

3.1.2 Service Manager Architecture
According to FIPA specifications [12], an Agent
Platform should consist of three capability sets: an
Agent Management System, an Agent
Communication Channel and a default Directory
Facilitator. In this architecture these types of agents
are implemented into the Service Manager and their
operations are summarized below:

Agent Management System (AMS). This agent is
unique and mandatory for each Agent Platform. It
controls and manages the AP and agent activities.
More specifically, the AMS performs tasks such as
script interpretation (Note: the AMS is expected to
support multiple agent script languages such as Java
or Tcl/Tk, as agents must be capable of operating in a
heterogeneous network environment), agent
management (e.g. assembly and disassembly of
agents in accordance with the generic agent structure,
registration and deregistration of agents in the
Directory Facilitator), white-pages service (a list of
agents identified by their GUID - the Global Unique
Identifier that locates univocally the agent inside the
community), resource management (i.e. controlling
the system resources that are made available to
individual agents) and handling of external messages
(e.g. delivering incoming messages to the appropriate
user application).
Functions associated with agent migration (e.g.
suspension of script execution at an arbitrary point,
capturing of state variables, etc.) and agent
communications (e.g. establishing a connection to a
remote platform) are implicitly handled as part of the
script interpreter.
Agent Communication Channel (ACC). This agent is
unique and mandatory for each Agent Platform. It
plays the role of message router of its AP using the
information provided by the Agent Management
System. ACC can also be used either for the
communication of agents inside a platform (intra-
platform) or between agents of different platforms
(inter-platform). Each agent must have access to at
least one ACC.
Directory Facilitator (DF). A DF agent offers a
yellow-pages service to other agents. Its key
responsibility is to provide directory services (e.g. a
listing of services and resources available at the
artefact). All the agents registered at a given DF form
an agent domain. Therefore each DF manages a
different agent domain.

3.1.3 The Communication Manager
The Communication Manager (CM) is responsible
for the communication between the Sensors or
Actuators and the Service Manager. It could
implementing a number of different protocols by
having different communication modules, for
example, one that handles IR, another that works
with Bluetooth, one that works with wireless LAN
etc. The Communication Manager talks via a certain
socket (ACC) to the Service Manager. This allows
CMs and SMs to be on different systems.

When the Communication Manager receives
information from a Primitive Service, it sends this
information directly to the Service Manager through
ACC. When it receives data from a Service Manager,
the Communication Manager configures its status,
validates the data and sends them thereafter to the
appropriate network element.

4 Forming Wireless Ad hoc Networks
Using the inter-platform communication protocol and
the agents' properties of mobility and interoperability,
an 'ad hoc' network of Artefacts can be created in
order to achieve more difficult and complex goals.
For this reason an application level network
communications protocol was designed to operate on
top of the TCP/IP protocol stack. Given the
importance of efficiently utilizing network resources,
the protocol supports remote messaging between
agents and platforms (e.g. instead of blindly
transferring agents from one site to another, a “look
before you leap” protocol mechanism is employed
which allows an agent at a platform to query the
status of another platform before migrating to the
new artefact). In this way, mobile agents will only be
transferred across the network if it is known
beforehand that the remote artefact is capable of
providing the desired services. Many of the network
communications protocol messages can be directly
invoked via the agent command language specified
as part of the mobile agent based architecture.

4.1 Usual Operation
The usual operation of an Artefact is to create
Composite Services and to perform specific tasks by
requesting and using the Primitive Services provided
by the Sensors or the Actuators. This operation
includes the following steps Initially, the Intelligent
Unit is assigned with a specific task. According to

Fig.2: Using Primitive Services of other
neighbor Artefacts

this task, IU sends to the Service Manager a message
to ask for the necessary services. The SM then, with
the help of the Communication Manager, returns a
Service List Object with all available Services, ids
and states, thus allowing the IU to choose among the
offered Services and start the Client-Service process.
If the IU needs more services than these available,
then the SM commences a service discovery process.
When a requested not-available-before Service
becomes available the SM updates its Service List
and sends it again to the IU, which reacts
accordingly. If a registered Service for some reason
seize to exist or to function properly, the
Communication Manager becomes aware of it
immediately and informs the SM to update the
registry. Whenever a Service List is updated, it is
sent to all interested Clients, so the Clients always
have the updated list of services.

4.2 Service Discovery Process
In case an Intelligent Artefact needs a Primitive
Service that it is not in its registry, it is able to search
for that service in another Artefact's service deposit.
This is realized through the Inter-Platform
Communication Protocol. In such case the artefact
that requests services acts as a Client Artefact
(representing the request of its Intelligent Unit),
while the artefact that may provide the requesting
services acts as a Server Artefact.

The Client Artefact sends a message to the Service
Manager of the Server Artefact in order to query the
status of the platform and the Services available,
before sending a mobile agent. The Server's Service
Manager responds by sending its Service List Object
and a verification message that the Artefact is able to
accept a new Client. Then, the Client is able to
launch a mobile agent into the Server Artefact
through the Agent Communication Channels,
following the Inter-Platform Communication
Protocol. After the execution of the mobile agent's
script a connection is established in order for the
Client Artefact to use the desired Primitive Service
via the Server's Communication Manager, as it is
shown in Figure 2.

In another case, an Artefact may be in need to use

some of the Composite Services produced by another
Artefact. In the same way, as described above, the
Artefact no.2 can establish a connection through the
Inter-Platform Communication Protocol and thus,
become able to use the Composite Services of
Artefact no.1, as shown in Figure 3.

Fig.3: Using Composite Services of other
neighbor Artefacts

5 Implementation Issues
 For the implementation of the proposed architecture
an ad-hoc network was created using the following
components, as it shown in Figure 4.

 A laptop computer was properly configured to
play the role of the Intelligent Artefact, while one
PDA and one cellular phone (both Bluetooth
enabled) participated as an actuator and a sensor
respectively. Using the Zeus Agent Building Toolkit
[13], a Java-based multi-agent environment was
created as an agent platform to host the Intelligence
Unit and the Service Manager.

In order to integrate Bluetooth capabilities for the
Communication Manager, the XJB 100 Bluetooth
Host Stack Protocol was implemented, which
supports the serial port, generic access and service
discovery application profiles for the host device
[14]. To extend this network, we could place another
laptop as a second Artefact connected to the first one
via a LAN.

References:

[1]. J. Birnbaum, “Pervasive information systems,”

Communications of the ACM, 40(2): 40-41,
February 1997.

[2]. M. Weiser, “Some computer science issues in
ubiquitous computing,” Communications of the
ACM, 36(7): 75 - 84, July 1993.

[3]. G. Abowd, “Software engineering and
programming language considerations for
ubiquitous computing,” ACM Computer Survey,
28(4), December 1996.

[4]. J. Waldo, “Alive and Well: Jini Technology
Today,” IEEE Computer, June 2000

[5]. Bluetooth SIG, Bluetooth Specification Part E:
Service Discovery Protocol (SDP), November
1999, http://www.bluetooth.com

[6]. Salutation Consortium, Salutation Architecture:
Overview, 1998, http://www.saluatation.org

[7]. E. Hughes, D. McCormack, M. Barbeau and F.
Bordeleau, “Service Recommendation using
SLP,” Carleton University, Canada, May 2001

[8]. Sun Microsystems, Technical White Paper: Jini
Architectural Overview, 1999,
http://www.sun.com/jini

[9]. Universal Plug and Play Forum, Universal Plug
and Play Device Architecture, version 0.91,
March 2000

[10]. R. Grimm, T. Anderson, B. Bershad and D.
Wetherall, System Architecture for Pervasive
Computing, University of Washington, Seattle

[11]. M. Panti, L. Penserini, L. Spalazzi, A Critical
Discussion about an Agent Platform based on
FIPA Specification, University of Ancona, Italy,
2000

[12]. Foundation of Intelligent Physical Agents, FIPA
Abstract Architecture Specifications, 2000
http://www.fipa.org

[13]. British Telecom. plc, The Zeus Agent Building
Toolkit, 2000,
http://193.113.209.147/projects/agents/zeus

[14]. Zucotto wireless,Inc. , XJB 100 Bluetooth Host
Stack Protocol, 2000
http://www.zucotto.com/products

Fig.4: Prototype realization

http://www.bluetooth.com/
http://www.saluatation.org/
http://www.sun.com/jini
http://www.fipa.org/
http://193.113.209.147/projects/agents/zeus
http://www.zucotto.com/products

	An Intelligent Agent based Approach for Service Discovery in Wireless Ad-hoc Networks
	Introduction
	Deficiencies in the existing service discovery architectures
	The Proposed Architecture
	3.1 Artefact's Architecture

	Forming Wireless Ad hoc Networks
	4.1 Usual Operation
	4.2 Service Discovery Process

	Implementation Issues

