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Abstract
The growing need to identify patterns in data and automate decisions based on them 
in near-real time, has stimulated the development of new machine learning (ML) 
applications processing continuous data streams. However, the deployment of ML 
applications over distributed stream processing engines (DSPEs) such as Apache 
Spark Streaming is a complex procedure that requires extensive tuning along two 
dimensions. First, DSPEs have a plethora of system configuration parameters, like 
degree of parallelism, memory buffer sizes, etc., that have a direct impact on appli-
cation throughput and/or latency, and need to be optimized. Second, ML models 
have their own set of hyperparameters that require tuning as they can affect the over-
all prediction accuracy of the trained model significantly. These two forms of tun-
ing have been studied extensively in the literature but only in isolation from each 
other. This manuscript presents a comprehensive experimental study that combines 
system configuration and hyperparameter tuning of ML applications over DSPEs. 
The experimental results reveal unexpected and complex interactions between the 
choices of system configurations and hyperparameters, and their impact on both 
application and model performance. These insights motivate the need for new com-
bined system and ML model tuning approaches, and open up new research direc-
tions in the field of self-managing distributed stream processing systems.
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1 Introduction

Distributed stream processing engines (DSPEs) such as Apache Storm, Heron, 
and Spark Streaming [1] are now widely used for the extraction of insights in 
near-real time from large scale data streams. At the same time, new streaming 
machine learning (ML) algorithms for classification, regression, clustering, and 
concept drift detection have been developed to facilitate more advanced types of 
processing and data mining, required by modern data-driven applications [2, 3]. 
Examples of such applications are found in a variety of domains, such as recom-
mending personalized content in social media, identifying credit fraud in bank-
ing, recognizing trading signals in financial markets, and more.

The deployment of ML applications over DSPEs is a complex procedure, 
characterized by two key challenges: (1) how to process the data efficiently and 
achieve good system performance, and (2) how to process the data effectively and 
achieve good ML model performance. A DSPE’s system performance is affected 
by a large number of system configuration parameters such as the number of par-
allel tasks to execute, the amount of memory for each task, the use of compres-
sion, etc. Correspondingly, the ML model performance is affected by an array of 
model parameters, known as hyperparameters, that depend on the type of the ML 
model. Therefore, extensive tuning is typically required in order to achieve, on 
the one hand, good system performance in terms of latency and/or throughput, 
and on the other hand, good ML model performance in terms of prediction accu-
racy, precision, recall, etc.

The main challenges in effectively tuning the system parameters are the large 
and complex parameter space, the increased system scale and complexity, as 
well as the lack of input data statistics from previously executed experiments in 
a streaming setting [1, 4]. Numerous research studies address this problem by 
automating the process of finding near-optimal parameter values for execut-
ing applications in DSPEs. A wide range of methodologies have been employed 
in the past, including cost modeling, simulation-based, experiment-driven, and 
machine learning-based approaches [5–7]. More recently, some adaptive tuning 
approaches have also been proposed for changing system parameters at runtime 
based on real-time observations [8].

Automated hyperparameter tuning (or optimization) is another large area of 
research, primarily of the ML community, that strives to set the hyperparameters 
of the underlying ML model to values that optimize the model’s performance. 
The grid search method is the most basic approach that can exhaustively explore 
the space of hyperparameter options, but it is unavoidably expensive [9]. A sim-
ple alternative is random search, which samples settings from the hyperparam-
eter space randomly, until a certain budget for the search is exhausted [10]. More 
advanced methodologies have also been proposed, such as Bayesian optimization, 
surrogate-based collaborative tuning, and population-based methods (e.g., genetic 
algorithms, particle swarm optimization) [11, 12].

These two aforementioned forms of tuning have only been studied in isolation 
from each other, without considering potential interactions among them. To the 
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best of our knowledge, this work performs the first experimental study that blends 
system parameter and hyperparameter tuning to identify their combined impact 
on both system and ML model performance, with some surprising results. Spe-
cifically, our experimental results revealed that the choice of system configuration 
parameters can actually impact the prediction accuracy of the ML model, even 
when the same hyperparameters and data are used for training. Similarly, some 
hyperparameter settings can influence the application latency or throughput. Vari-
ous tradeoffs were also identified, where system parameters that improve system 
performance can reduce model performance and vice versa. Therefore, the typical 
approach of first tuning the system parameters and then tuning the hyperparam-
eters (or vice versa) can lead to sub-optimal (or even bad) system and/or model 
performance. Overall, these findings motivate the need for the development of 
new automated tuning approaches that combine system parameter and hyperpa-
rameter tuning, opening up new research directions.

The main contributions of this work include:

• An experimental analysis of the impact of system parameters to the prediction 
accuracy of ML models (in addition to DSPE system performance);

• An experimental analysis of the impact of hyperparameters to DSPE system per-
formance (in addition to ML model performance);

• New insights into the combined effect of system parameter and hyperparameter 
tuning;

• A multi-objective optimization problem formulation for the combined tuning 
problem.

Some preliminary findings from this study were presented in [13]. Compared to the 
previous paper, this manuscript presents experimental results from a second ML 
model, more detailed results from two different applications and three deployment 
modes, an in-depth discussion of the combined impact of system and model parame-
ters, as well as a new multi-objective optimization problem formulation for the com-
bined tuning problem.

The remaining paper is organized as follows. Section 2 discusses the related work 
for both tuning problems. Section 3 describes the experimental methodology while 
Sect.  4 presents the key results. Section 5 further discusses our findings and pro-
poses a new formulation for the combined tuning problem. Section 6 concludes this 
paper.

2  Related work

2.1  System parameter tuning

Effectively tuning system parameters is a complex procedure that highly impacts 
the performance of the underlying DSPE. There is a lot of work done on how to 
efficiently tune system parameters to their (near) optimal values, which can be 
organized into five categories  [1, 14]. The first category is cost modeling, where 
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performance prediction models are utilized through analytical cost functions [5, 
15]. This methodology, however, requires deep understanding of the system inter-
nals in order to be applied, since the cost functions need to be developed and evalu-
ated. Simulation-based approaches perform either a modular or a complete system 
simulation with combinations of different system parameters in order to explore the 
search space [16, 17]. This method does not tune the system parameters directly, but 
is rather used to explore the system performance under various system parameter 
configurations.

Experiment-driven methods are expensive approaches that repeatedly execute 
workloads or jobs with varying system parameters in order to collect output statistics 
through logs, which are then assessed to determine the best parameter values [6, 18]. 
One main challenge of this approach is how to accurately predict the performance of 
the DSPE when different applications and/or data as used. A more recent trend is to 
employ a machine learning approach, where information from workload execution 
logs is gathered in order to train machine learning models to predict relevant system 
performance under various parameter configuration settings [7, 19]. This method 
does not require any knowledge of the system internals since the underlying DSPE is 
treated as a black box. The most ambitious category is adaptive tuning, which aims 
at dynamically changing the system parameter values while the system is still run-
ning, assessing the performance improvement (if any), and adapting the new system 
parameter values [8, 20]. This method is ideal for long-running applications, which 
may require multiple system parameter tweaks depending on the workload, rather 
than tuning them once prior to execution.

2.2  Hyperparameter tuning

Respectively, hyperparameter (HP) tuning plays an important role to applications of 
machine learning models, when prediction accuracy needs to be as high as possible. 
A decent amount of research has been done in this area and a variety of methods 
are widely available. The popular grid search method is unavoidably expensive, but 
it is able to completely and exhaustively explore the HP space as long as there are 
enough resources to explore the HP space and other computational restrictions or 
limitations are not applicable [9]. Random search is another common method, which 
randomly samples hyperparameter values between each applicable range, but it can 
suffer from unexplored parameters, causing it to miss the optimal values. Past stud-
ies have shown that the Random search method can be as effective as other more 
sophisticated methods and even faster than them [10]. This is typically applicable 
when the number of hyperparameters to be tuned is limited in the HP space, such as 
in the case of Support Vector Machines (SVMs).

Surrogate-based collaborative tuning (SCoT) seems to be outperforming the 
random search method in finding the best hyperparameters but requires an expert 
user in order to be applied [11]. Another expensive, yet effective framework is the 
Sequential model-based optimization (SMBO), which requires an increased num-
ber of trials for a given dataset to complete. SMBO also tries to optimize a rather 
expensive target evaluation function [21]. One of the most promising and recent 
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frameworks is AutoML, which enables effective model selection and hyperparam-
eter tuning to inexperienced ML users by utilizing a variety of meta-learning and 
greedy algorithms to optimize performance towards a given optimization budget, 
performance metric, and configuration space [22–24]. One example application of 
the AutoML framework is Auto-sklearn [12, 22], which was developed on top of the 
scikit-learn [25] library, a Python module that enables the use of ML models and 
methods. Another AutoML framework is Auto-WEKA [23, 24, 26], which is based 
on WEKA, a collection of ML algorithms for data mining tasks implemented in Java 
[27, 28].

In the streaming setting, MOA (Massive Online Analysis) is an ML software that 
enables inexperienced users to run (single-threaded) machine learning tasks in live 
data streams [2]. MOA does not support any automated hyperparameter tuning tasks 
at the moment. Despite its effectiveness, AutoML suffers from expensive function 
evaluations, the high dimensional hyperparameter space, and lack of generalization 
as it tunes the hyperparameters of the model according to specific training datasets. 
Surrogate models like Bayesian optimization and Tree Parzen Estimator show good 
performance in hyperparameter tuning tasks but require special treatment in integer 
and categorical hyperparameters. Other methods include multi-objective optimiza-
tion and genetic algorithms, which can be costly [29, 30]. There are also hyperpa-
rameter tuning approaches that concern live data streaming environments where the 
tuning happens online, as the data flows are being processed [31, 32].

3  Methodology

This section starts by discussing the selection of the DSPE, along with its various 
deployment modes and system configuration options. Two distinct applications 
and datasets are used from two different application domains in order to assess the 
impact of application type. Two different ML algorithms and, consequently, differ-
ent sets of hyperparameter settings, are also employed to study the impact of the 
ML model type. Finally, we present the experimental setup and the key performance 
metrics used to evaluate the results.

3.1  DSPE selection

Regarding stream processing, there are two types of DSPEs. Some DSPEs, such 
as Apache Storm and Heron, employ a record-based model that processes input 
data one record at a time. Other DSPEs, on the other hand, such as Apache Spark 
Streaming and Trident, employ a batch-based model that processes input data in 
micro-batches, whose size is configurable by the user [33]. In this study, we focus 
on micro-batching systems and more specifically on Spark Streaming, a well-
matured product that enables high processing throughput of data streams in pro-
duction environments. The processing happens in-memory, which enables small 
batches of live-streamed data to be processed efficiently while using the Resilient 
Distributed Datasets (RDDs) abstraction [34]. Spark Streaming has a large system 
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configuration space with over 200 parameter settings, many of which can have a 
drastic impact on system performance [1]. These parameters mainly affect some 
aspects of execution and allocation of computing resources, such as the number of 
cores and memory to use for task execution, the number of records processed per 
data partition, the use of compression, and more. Table 1 lists a small subset of 
the system parameters that were involved in the tuning process of this study and 
their respective space of values. The parameters and values were selected from a 
super set of experiments we conducted and match the list of parameters typically 
used in past parameter tuning studies [1]. In addition, most of the selected param-
eters are core system parameters that have not changed throughout the newest 
versions of Spark. Therefore, we expect the findings of our study to be applicable 
to multiple versions of Spark.

All other DSPEs have very similar configuration parameters that affect the 
same corresponding aspects of execution, including task parallelism and mem-
ory allocation. Past benchmarking studies [35, 36] offer interesting experimen-
tal comparisons between the different DSPEs. For example, even though Spark 
Streaming can scale up very well due to its partitioning feature of the RDDs, it 
can experience higher latency times than other DSPEs such as Apache Storm and 
Flink because of additional coordination and scheduling overheads introduced 
across different RDDs [35]. On the contrary, the latency variation seems to be 
more robust in Spark Streaming, meaning that it will not fluctuate as much as 
compared to the other DSPEs. Nonetheless, the impact of configuration param-
eters is fairly consistent across the DSPEs; for instance, increasing parallelism 
will increase throughput in a parallelizable application. Overall, we anticipate 
our results with Spark Streaming to hold for the other DSPEs as well, albeit with 
perhaps different levels of magnitude. We leave this verification for future work.

3.2  Spark streaming deployment modes

When an application is submitted to Spark for execution, a process called the 
Driver is responsible for handling the application lifecycle. Specifically, the 
Driver is responsible for scheduling jobs, which consist of tasks to be executed in 
parallel on the system. Spark Streaming is an extension of Spark, which receives 
live data streams and divides them into micro batches. Each batch is then pro-
cessed by the Spark Engine as a set of jobs to generate a live stream of results in 
batches. Spark (and Spark Streaming) can be deployed in three different modes 
that have the same working principle as described above but with different 
resource allocation schemes. The three modes are: 

1. Local mode: Runs the application locally in a single process with a configured 
number of worker threads to handle task execution;

2. Pseudo-distributed mode: Runs the application and the main Spark components 
(i.e., Master and Worker) on the same machine, while the tasks are executed in 
parallel in a separate Executor process;
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3. Cluster mode: The application is submitted for execution on the Cluster Manager, 
which is responsible for allocating cluster resources to the application, while the 
tasks are executed in parallel in Executor processes managed by the Workers;

In Cluster mode,1 Spark supports several Cluster Managers, including the Spark 
Standalone Master, Apache Mesos, and Apache YARN. The main difference 
between them is the way cluster resources are allocated to each application, while 
the execution process is exactly the same. For our experiments, we used Spark Stan-
dalone for our cluster-based experiments, as it is widely used in practice [37]. The 
reason we introduced three different deployment modes in our experiments is that 
we were not only interested in studying the interactions between system parameters 
and hyperparameters, but we also wanted to study how different deployment modes 
might affect the system and ML model performance.

3.3  Applications and data

For the experiments, we used two applications along with their datasets from two 
very different domains. The first application comes from the social media domain 
and employs machine learning techniques to detect aggressive behavior in tweets 
[38]. In particular, this application processes a real Twitter dataset of size 330 MB 
provided by [39], containing 86k tweets classified as either normal (54k), abusive 
(27k), or hateful (5k). To avoid working with an imbalanced classification problem, 
we group abusive and hateful tweets together, and label them as aggressive, thereby 
creating a fairly balanced (63%/37%) binary classification problem. The applica-
tion parses the incoming tweets and their metadata, and performs preprocessing, 
extraction of 16 features, normalization, and training and prediction with prequential 
evaluation [38].

To ensure that our results are application and data agnostic (i.e., generalizable), 
we employed a second application and dataset from the banking sector. The bank-
ing application determines whether a loan should be approved by the bank given 
various characteristics of the bank customer, such as age, salary, education level, 
etc. For this purpose, we generated synthetic data using the Agrawal stream genera-
tor, provided by the MOA framework [40]. The data generator takes a loan function 
as input (1–10) along with other parameters to generate banking data for bank cus-
tomers. The loan function works as a heuristic function to determine how the target 
class is calculated. Specifically, we have used loan function 6 with perturbation 0 to 
generate 100k loan application records with size 40 MB, forming again a balanced 
(60%/40%) binary classification problem [40]. The banking application parses the 
incoming records directly into 9 features and then performs training and prediction 
with prequential evaluation.

1 “Cluster mode” in this study refers to running Spark on a cluster of machines as opposed to only 
one machine. It does not refer to the driver’s “cluster” deploy mode, which indicates that the driver is 
launched inside the cluster (recall Table 1). In our experiments, we run the driver using both “cluster” 
and “client” deploy modes.
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3.4  Machine learning models

Several streaming ML algorithms are currently available for addressing classifica-
tion problems. We have selected two well-performing and popular classifiers that are 
widely used in steaming environments, each having its own hyperparameter space 
[41]. The first one is the Hoeffding Tree (HT), a decision tree specifically designed 
for large data streams [42]. During processing, a tree node in a HT is split into two 
nodes once there is sufficient statistical evidence that an optimal splitting feature 
exists, based on the distribution-independent Hoeffding bound. The second learner 
is the Stochastic Gradient Descent (SGD) optimizer used for learning various lin-
ear models, including logistic regression, linear regression, binary class SVM, and 
perceptron classifier [41]. To perform hyperparameter tuning for both models, we 
used the popular grid search method, thus capturing the full space of choices in each 
case. Tables 2 and 3 list the hyperparameters tuned for HT and SGD, respectively, 
along with the space of values/options considered for each hyperparameter during 
the grid search, which captures a wide spread of each parameter domain.

3.5  Streaming ML application processing

Figure  1 shows how a streaming ML application is executed on Apache Spark 
Streaming. The input stream data source can be a file, a database table, a sensor 
emitting data, a web API endpoint (e.g., Twitter Firehose API), or some other 
upstream system (e.g., Kafka, Flume). Spark Streaming receives live input data 
from the input stream through a set of input receivers, which generate input data 
partitions. Each input receiver streams some maximum number of records per sec-
ond and creates partitions according to the settings of the spark.streaming.
receiver.maxRate and spark.streaming.blockInterval parameters 

Table 2  Hoeffding Tree (HT) 
hyperparameters and their space 
of values/options

Hyperparameter Space

Split confidence (c) [0.001, 0.01, 0.1]
Tie threshold (t) [0.001, 0.05, 0.1]
Grace period (g) [50, 800, 1500]
Split criterion (s) [InfoGain, Gini]
Max tree depth (h) [20, 30]

Table 3  Stochastic gradient descent (SGD) hyperparameters and their space of values/options

Hyperparameter Space

Lambda (l) [0.001, 0.01, 0.05, 0.1]
Loss function (o) [Logistic, Squared, Hinge, Perceptron]
Regularizer (r) [ZeroRegularizer, L2Regularizer]
Regularization parameter (p) [0.001, 0.01]
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(see Table 1). Spark then processes a fixed number of partitions per batch, where 
each partition is processed by one task. The total number of tasks executed dur-
ing a batch is upper-bounded by the total number of cores available, which equals 
the number of Executor processes (spark.executor.instances) times the 
number of cores per executor (spark.executor.cores). Hence, the batch size 
equals the total number of records processed by all tasks during a batch.

In a distributed streaming environment, an ML model is trained and updated in 
real time in parallel. In particular, each task starts with its own local copy of the 
global ML model. Hence, the total number of local models equals the number of 
tasks, which in turn equals the number of partitions processed within a batch. The 
task’s input records are then used to train the local ML model independently from 
the other tasks. At the end of each batch, the local models are collected by the Spark 
Driver, which is responsible for merging the local models together in order to derive 
one global ML model. In a production environment, input records that contain a 
label will be used to train and update the local models, while input records without 
a label will probe the model for a prediction. For our experimental evaluation, we 
used the popular prequential evaluation method, based on which the input records 
are first tested against the predictions of the model and then used to train the model 
[2].

The key difference between application processing in a batch-based DSPE like 
Spark Streaming and a record-based DSPE (e.g., Apache Storm, Flink) is the group-
ing of records into micro-batches. In record-based DSPEs, the input records flow 
directly from the input receivers into the long-running tasks for processing. How-
ever, when a task implements an ML application, the local models still need to 
periodically merge to create an updated global model, otherwise the individual task 
models can diverge. Thus, the frequency of merges becomes analogous to the batch 

Input
Stream

partitions

prequential evaluation
(test & train)

stream of 
records

partitioning

micro-batching

global model

merge and update
models

Driver
input

receivers

micro-batches local models

Task

Node

Fig. 1  Execution flow diagram for a streaming ML application on Apache Spark Streaming
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interval in a batch-based DSPE. This is another key reason for expecting the findings 
of this study to be applicable in record-based DSPEs.

3.6  Experimental setup

For carrying out the experiments, we have used three different environments, one for 
each deployment mode, all running Apache Spark Streaming v2.3.2. The applica-
tions were implemented using streamDM v0.2, an ML library for mining big data 
streams using Spark Streaming [41].

Local and Pseudo-distributed Mode: For these modes, we used a server with a 
24-core 3.2GHz CPU, 128GB of RAM, and 1.7TB of disk storage space. The main 
system parameters we varied were (i) the number of cores available for the worker 
threads (in local mode) or the Executor process (in pseudo-distributed mode), rang-
ing from 4-12 cores; (ii) the amount of allocated memory available for task execu-
tion, ranging from 8GB-16GB; (iii) the batch size, ranging from 2k-5k records. In 
the pseudo-distributed mode, the Spark Driver was allocated 4 cores and 4GB of 
memory. The input records were streamed through a file reader, which read file data 
in batches (based on the batch size). The files were physically located on the same 
machine as the Spark Driver process.

Cluster Mode: In this mode, we used a cluster consisting of 5 machines, 1 run-
ning the Spark Master and the Driver process (when in “client” deploy mode), and 
4 running the Spark Workers. The master machine has an 8-core 3.2GHz CPU, 
64GB of RAM and 1.7TB of disk storage space, while the workers have an 8-core 
2.4GHz CPU, 24GB of RAM and 3 SAS hard disk drives with 500GB of storage 
each. The Driver is allocated 4 logical cores and 16GB of memory. Each Worker 
node is set up to use one Executor process, each using up to 12 logical cores for task 
execution. In contrast with the other modes, the input data was streamed with input 
receivers from files stored on a Hadoop Distributed File System (HDFS), running 
on the same 5 machines. To generate the distributed data stream, we ran one input 
receiver on each worker, generating input data partitions to the micro batches. Each 
input receiver streams a maximum number of records per partition (r) and Spark 
processes a fixed number of partitions per second (p) as explained in Sect. 3.5. This 
strategy enabled us to control the data ingestion rate in order to avoid large latency 
fluctuations between batches and achieve sustainable throughput [35]. In addition, 
by varying these two values (records per partition and partitions per second), we 
vary the degree of parallelism in the cluster and the batch size. We also varied the 
amount of allocated memory available for task execution and to the Driver, ranging 
from 8GB-16GB, but memory size did not seem to have a significant impact on per-
formance. For ease of presentation, Table 4 lists 9 distinct configurations we used in 
our experiment, which can be divided into three logical groups:

• In group g1, we fix partitions per second and vary records per partition (s1, s2, 
s3, s4)

• In group g2, we fix records per partition and vary partitions per second (s5, s2, 
s6, s7)



 Distributed and Parallel Databases

1 3

• In group g3, we vary both records per partition and partitions per second but fix the 
total records per second, i.e., batch size to 4800 (s8, s6, s3, s9)

Overall, for each deployment mode, for each application and dataset, and for each ML 
model, we executed all possible combinations of system configuration settings and 
hyperparameter settings.

3.7  Performance metrics

For evaluating the results, we computed a variety of ML and system metrics. Regarding 
the ML model evaluation, we recorded all typical ML classification metrics, including 
prediction accuracy, precision, recall, and F1-score. As the overall trends of accuracy 
were very similar with the F1-score, we present overall prediction accuracy, which 
shows the percentage of correctly predicted and classified data samples into the appro-
priate target classes. For the purpose of evaluating the system performance, we used the 
two most important metrics in distributed stream processing, namely throughput and 
latency. Throughput denotes the number of ingested and processed records per second 
of each executed experiment (with a fixed set of hyperparameter settings). Latency, on 
the other hand, denotes the time difference between the moment a record is ingested in 
the system and the moment it produces an output. In stream processing, the goal is to 
maximize throughput and/or minimize latency.

Table 4  Cluster mode system 
configurations with selected 
parameters

Group Setup Records per Partitions per Batch
ID ID Partition (r) Second (p) Size

g1 s1 100 16 1600
s2 200 16 3200
s3 300 16 4800
s4 400 16 6400

g2 s5 200 8 1600
s2 200 16 3200
s6 200 24 4800
s7 200 32 6400

g3 s8 100 48 4800
s6 200 24 4800
s3 300 16 4800
s9 400 12 4800
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4  Experimental results

This section presents the key findings of our experimental study for several selected 
Spark cluster mode experiments (with the Driver running in “client” deploy mode) 
due to space constrains. However, the results from the local, pseudo-distributed, and 
other Cluster mode experiments are similar and lead to the same conclusions.

4.1  Impact of system configurations

For the experiments in this section, we systematically vary two system configura-
tions, namely the records/partition (r) and the partitions/second (p) as shown in 
Table 4. As frequently reported in the literature, system configurations can signifi-
cantly impact the system performance in terms of latency and/or throughput. Fig-
ure 2 shows the average latency per system configuration, grouped into three log-
ical groups for ease of presentation, when executing the social media application 
with HT model on Spark cluster mode. Each dot corresponds to the average latency 
when executing with a distinct set of system configuration and hyperparameter set-
tings. Our first observation is that as we increase r and fix p, the latency increases 
almost linearly. This is to be expected since a large r means that more records are 
now batched together and processed within each task, forcing latency, i.e., the time 
needed from the moment a record is fed into the system until the moment it gets 
processed, to increase. Fixing r and increasing p also increases latency but to a much 
lower extend. As the degree of parallelism increases, so are interactions among the 
tasks as well as shuffling times for exchanging model information between the tasks. 
Finally, latency increases as r increases but p decreases (while maintaining a fixed 
batch size). The effect of batching more records into each task is much stronger than 
the impact of parallelism (as evident from the results from the first two groups), 
leading to higher overall latencies.

Regarding throughput, increasing either records/partition (r) or partitions/sec-
ond (p) leads to a general increase of throughput, as shown in Fig. 3 for the same 
experiments as the ones presented in Fig.  2. This is also expected as in either 

Fig. 2  Average latency per 
system configuration when 
executing the social media 
application with HT model. The 
black dot corresponds to the 
hyperparameter settings with the 
lowest latency of s1
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case, more records are processed overall within a unit of time. However, as indi-
cated by the results of the first group of system configurations, increasing r past 
200 records/partition does not yield benefits in terms of throughput as the system 
has reached its limit for this degree of parallelism ( p = 16 ). Opposite to latency, 
the impact of p is much greater to throughput compared to the impact of r. Hence, 
in the third group, as p decreases so does the overall throughput, even though the 
batch size remains constant.

Surprisingly, the prediction accuracy of the machine learning model being 
trained is also greatly affected by the various system configurations as seen in 
Fig.  4 for the social media application using the HT model. Specifically, we 
have noticed significant drops in accuracy (ranging between 11% and 23% ) while 
increasing either the records/partition r or the partitions/second p (and keeping 
the same hyperparameter settings). As explained in Sect.  3.5, in batch-based 
streaming ML, each task has its own local ML model that gets updated during 
each batch in isolation from the other tasks. At the end of the batch, all task mod-
els are merged together and the new global model is distributed to the tasks of the 
next batch iteration. Hence, by increasing r, more records are used for training 

Fig. 3  Average throughput per 
system configuration when 
executing the social media 
application with HT model. The 
black dot corresponds to the 
hyperparameter settings with the 
highest throughput of s1

Fig. 4  Prediction accuracy per 
system configuration when 
executing the social media 
application with HT model. The 
black dot corresponds to the 
hyperparameter settings with the 
highest accuracy of s1
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the individual local task models during each batch. Similarly, by increasing the 
degree of parallelism p, the global model is updated less frequently in terms of 
the total number of processed records. This means that instead of training the 
global model with small and frequent updates, we have less updates that are 
larger and rarer, causing the model to miss its optimal weights. This is a very 
important finding that has not been recorded in the literature, with various practi-
cal implications. In particular, a trade-off has been observed between the degree 
of parallelism and prediction accuracy, where by increasing the former we sacri-
fice the latter and vice versa.

Another interesting observation in Fig. 4 is that the hyperparameter settings used 
in the best execution in terms of accuracy is not necessarily leading to the best (or 
even a good) execution with other system configurations, as indicated by the black 
dots in the figure. For instance, the highest accuracy for system configuration s1 is 
89% . When the same hyperparameters are used with system configuration s2 (where 
the only change comes from increasing records/partition), the achieved accuracy is 
only 78% , while different hyperparameters yield 84% accuracy for s2. Therefore, 
optimal hyperparameters can vary according to each system configuration.

Effect of ML model: We have already demonstrated that different system config-
urations have an impact on latency, throughput, and accuracy for a particular appli-
cation and ML model as shown in Figs. 2, 3, 4. Next, we repeated the experiments 
using a different ML model, namely SGD. Figure 5 shows the same three metrics 
when using the SGD model for the first two groups of system configurations (due 
to space constraints). For latency and throughput, the trends are identical with the 
case of the HT model, while for accuracy we observe a very peculiar behavior. In 
particular, with the SGD model, prediction accuracy values tend to be grouped into 
two discrete categories, generated from two groups of hyperparameter settings. The 
first group of settings tends to achieve high accuracy values, ranging from 85% to 
91% , which is slightly impacted by the choice of system configurations. For exam-
ple, fixing records/partition and increasing partitions/second, increases the spread of 
the accuracy from 0.2% to 4.1% . The second group of hyperparameter settings leads 
to lower accuracy values, which are strongly impacted by system configurations. In 
fact, the range of accuracy values varies widely between 62% and 85% (similar to the 
HT model). Therefore, some hyperparameters of specific models seem to be more 
sensitive to system configurations than others. In the case of the SGD model, the 
culprit is the learning parameter l, which controls the rate of update for the gradi-
ent descent. When the value of l ranges below 0.01 (note that the default value of l 
is 0.001 for SGD), then the overall model accuracy is greatly affected by the degree 
of parallelism, with a clear inverse relationship. In conlcusion, the level of impact 
of system parameters to ML model performance depends on the ML model, and in 
some cases to specific hyperparameter settings, revealing the complex interactions 
between system and hyperparameter settings.

Effect of application: In order to generalize our findings, we repeated the experi-
ments using a very different application from the banking domain. Figure 6 shows 
the average latency, average throughput, and prediction accuracy for the banking 
application with HT model when using the first four system configurations listed in 
Table 4. The banking application requires much simpler processing for extracting 
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Fig. 5  Average latency, average throughput, and prediction accuracy per system configuration for the first 
two configuration groups when executing the social media application with SGD model. The black dot 
corresponds to the hyperparameter settings with the lowest latency, highest throughput, and highest accu-
racy of s1, respectively

Fig. 6  Average latency, average 
throughput, and prediction accu-
racy per the first four system 
configurations when executing 
the banking application with 
HT model. The black dot cor-
responds to the hyperparameter 
settings with the lowest latency, 
highest throughput, and highest 
accuracy of s1, respectively
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the feature vector compared to the social media one, and as such, is able to achieve 
lower latency and higher throughput. The trends, however, are the same as the ones 
observed in Figs.  2, 3; as records/partition increase, so does the latency and the 
throughput. With regards to prediction accuracy, varying the system configuration 
while maintaining the same hyperparameter settings lead to big variations in accu-
racy of up to 21% . This is evident from the black dots shown in the rightmost plot 
of Fig.  6, which represent runs with the same hyperparameter settings but differ-
ent records/partition. This observation will become more clear from the results pre-
sented in Sect. 4.2 and Fig. 7. Thus, we conclude that our insights do not apply only 
to a specific application but rather are applicable to other applications as well.

4.2  Impact of hyperparameters

While it is widely known that hyperparameters can have a strong impact on a mod-
el’s prediction accuracy, our results clearly indicate that they can also have a large 
effect on system performance. This is clearly visible in Figs. 7a, b, where the aver-
age latency is shown as a function of the hyperparameter settings, across all three 
groups of system configurations used for the banking application using the HT 
model. Consider the latency observed for each experiment when using the second 
system configuration s2 ( r = 200, p = 16 ). As we vary the hyperparameter settings, 
average latency varies between 67ms and 145ms, indicating a difference of up to 
2.1x between the highest and lowest achievable latency. The trends are similar for all 
other system configurations, with the difference ranging from 1.6x to 2.5x between 
the highest and lowest latency. It is interesting to note that some system configura-
tions seem to be more “robust” to latency variations caused by hyperparameter set-
tings, such as s5 ( r = 200, p = 8 ), with latency ranging between 59ms–95ms. These 
are typically associated with lower degrees of parallelism, where fewer individual 
task models are merged during each batch. The above observation makes identify-
ing which hyperparameters can impact system performance the most a challenging 
tasks. In the case of the HT, the main case that stands out is when the maximum 
tree depth (h) is set high (e.g., h > 20 ) and the grace period (g), i.e., the number of 
records a leaf should observe before a split attempt, is set low (e.g., g < 200 ). In this 
scenario, the HT can grow faster and bigger, negatively impacting system perfor-
mance. The observed trends are the same for throughput (see Figs. 7d–f), showing 
that hyperparameter tuning has a complex impact on system performance that has 
not been studied in the past.

Likewise, Fig. 8 shows the latency as a function of the hyperparameter set across 
the three groups of system configurations used for the social media application when 
also using the HT model. For each system configuration, we still notice variations in 
latency as we vary the hyperparameter settings across our experiments, but to a much 
lower extend compared to the variations we observed above for the banking applica-
tion in Figs. 7a, b. The reason for this effect is that the social media application is a 
much more CPU-intensive application compared to the banking application, thereby 
dampening the impact of hyperparameter setting changes to system performance. 
This dampening is more noticeable for system configurations with a relatively low 
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degree of parallelism, for which latency fluctuations seem to be restricted. For 
example, notice configuration s1 with the blue line in group g1 ( r = 100, p = 16 ) or 
configuration s5 with the purple line in group g2 ( r = 200, p = 8 ), which have the 
lowest degree of parallelism in our experiments. These two configurations seem to 
trivially affect latency across their hyperparameter space, in contrary with the rest 
configurations that tend to fluctuate latency more. Specifically, the standard devia-
tion of latency for s1 and s5 is 11ms and 13ms for HT, and 10ms and 17ms for SGD, 
respectively. In contrary, configurations with a higher degree of parallelism, such 
as s6 ( r = 200, p = 24 ) and s7 ( r = 200, p = 32 ), have a latency standard deviation 
of 37ms and 44ms for HT, and 36ms and 48ms for SGD, respectively. Overall, an 
increased degree of parallelism tends to cause larger latency fluctuations across the 
hyperparameter space, irrespective of the ML model.

4.3  Combined impact

In the previous sections we have seen that both system parameters and hyperparam-
eters can impact both system and ML model performance. To further study their 
interactions, we needed a way of associating prediction accuracy with system perfor-
mance and at the same time include all system configurations across all the hyperpa-
rameters in their space. This is depicted in Fig. 9, where we show the throughput as 
a function of accuracy for all experiments ran with (a) the social media application 
and (b) the banking application using the HT model. First, we note that there is no 
point on either figure that is able to achieve both a very high throughput and a high 
accuracy. For example, for the social media application, no combination of system 
configuration and hyperparameters can simultaneously yield throughput greater than 
6k records per second and accuracy greater that 85% . In addition, there seems to be 
a trade-off between the two metrics: settings that lead to high throughput typically 
achieve lower accuracy and vice versa.

Another interesting behavior can also be observed in Fig. 9a. For some system 
configurations in the social media application, there is a clear clustering of data 

(a) Social media application (b) Banking application

Fig. 9  Average throughput as a function of prediction accuracy for all system configurations and hyper-
parameter settings when executing (a) the social media and b the banking application with HT model
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points achieving similar throughput and accuracy. This is particularly true for set-
tings with low degree of parallelism such as s1 ( r = 100, p = 16 ) with the blue color 
or s5 ( r = 200, p = 8 ) with the purple color. As the degree of parallelism increases, 
so does the range of expected values in both accuracy and throughput. However, 
this observation does not hold for the banking application, where the data points for 
s1 and s5 are widely spread across the accuracy dimension, ranging between 73% 
and 96% . Specifically, it seems that the combination of a high grace period (e.g., 
g > 800 ) and the use of the “InfoGain” as the split criterion (as opposed to “Gini”) 
when the micro-batch size is small (as in the case with s1 and s5), leads to a signifi-
cant decrease in accuracy for the banking application. Therefore, the type of appli-
cation can play a crucial role into how the different complex interactions between 
system parameters and hyperparameters are manifested and thereby impact both 
throughput and accuracy.

5  Discussion and future work

Our work includes experiments conducted with different Spark Streaming deploy 
modes, applications and datasets, machine learning models, hyperparameters, and 
system parameters; all revealing complex performance interactions between system 
configuration and hyperparameter settings. Specifically, we have shown that as the 
total batch size increases, either due to increases of the degree of parallelism (p) or 
the number of records processed per task (r), so is latency and throughput but typi-
cally in the expense of declining prediction accuracy. Even when the total batch size 
( p × r ) is fixed, there are still significant accuracy deviations observed (up to 23% ). 
From our results, it is also clear that the best hyperparameters are not actually the 
best across all system configurations. In other words, each system configuration has 
its own locally optimized set of hyperparameters. Beyond that, the magnitude of the 
degree of parallelism seems to increase the variation range of all the metrics, caus-
ing values to be grouped together more sparsely.

A specific impact of micro-batch size on the ML model performance in a streaming 
environment has been shown in the past, revealing that a relatively decreased batch size 
allows ML models to train better and thus, achieve higher prediction accuracy values 
[43, 44]. Conversely, larger micro-batch sizes suffer from a worse model generalization 
ability, leading to restricted prediction performance [45, 46]. According to a past exper-
imental study, it was empirically proven that, on average, during each training iteration 
the model’s loss function, and thus its generalization ability, is a decreasing function 
of the batch size [47]. Smaller batch sizes bring the advantage of offering better gen-
eralization but at the expense of higher training times. This introduces a trade-off that 
we also observed in many of our experiments. However, our experimental study has 
revealed much more complex interactions between batch size and ML model perfor-
mance. For example, in the case of the banking application, system configurations that 
induced small batch sizes also experienced some of the lower accuracy values across 
all experiments, while other configurations with larger batch sizes yielded very high 
accuracy values (recall Sect. 4.3). In addition, several experiments with the same batch 
size (namely group g3) led to large variations of accuracy values for both applications, 
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depending on the settings of both system parameters and hyperparameters. In con-
clusion, while batch size can significantly impact both system and ML model perfor-
mance, other variables (e.g., type of application, other parameter settings, hyperparam-
eters) can have equal, if not greater, impact.

Furthermore, our experimental analysis shows that hyperparameters do not only 
affect the model’s prediction accuracy, but they also cause an impact to the system’s 
overall performance as well, causing significant variations in both throughput (up to 
2.4x) and latency (up to 2.5x). The level of impact depends on the system configura-
tions and the type of application. These are all important lessons that need to be taken 
into consideration when performing either system parameter tuning or hyperparameter 
tuning. Our findings show that it is vital to orchestrate the optimization process of both 
tuning types simultaneously in order to address the variations and trade-offs that arise. 
The combination of system parameter and hyperparameter tuning introduces new chal-
lenges, including a much larger search space as well as complex, non-convex interac-
tions between parameters that affect different aspects of application performance and 
different evaluation metrics.

5.1  Proposed problem formulation

In this experimental study, we focused on three important and commonly-used objec-
tives that need to be optimized simultaneously, namely latency, throughput, and pre-
diction accuracy. The tradeoffs and intricacies of these objectives have led us to for-
mulate the streaming ML tuning problem as a multi-objective optimization problem 
(MOOP). Under MOOP, each objective is expressed with an objective function as well 
as an upper-bound function associated with the optimal solution. The three objectives 
are then combined to define the vector-valued objective function f ∶ ��⃗ℂ × ��⃗ℙ → ℝ

3 as:

where flat(�⃗c, �⃗p) , fthru(�⃗c, �⃗p) , and facc(�⃗c, �⃗p) represent the objective functions for 
latency, throughput, and accuracy, respectively, that take as input a specific set of sys-
tem configuration settings �⃗c and hyperparameter settings �⃗p . The set ��⃗ℂ × ��⃗ℙ represents 
the feasible decision space and corresponds to the Cartesian product of the system con-
figuration parameter space ℂ and the hyperparameter space ℙ.

Given the conflicting nature of the objectives, there does not exist a feasible solution 
that maximizes all objective functions simultaneously. Hence, we focus on the Pareto 
optimal solutions, which are bounded by the ideal objective vector z∗ defined as:

where f ∗
lat
(�⃗c, �⃗p) , f ∗

thru
(�⃗c, �⃗p) , and f ∗

acc
(�⃗c, �⃗p) represent the upper-bound functions for 

latency, throughput, and accuracy, respectively Even though solution z∗ does not 
exist, it denotes the theoretical upper bounds of all objective functions. Hence, 
we can define the Pareto Distance metric D for computing the percent differ-
ence of a data point in the feasible decision space from the ideal objective (i.e., the 

(1)f (�⃗c, �⃗p) =
(
flat(�⃗c, �⃗p), fthru(�⃗c, �⃗p), facc(�⃗c, �⃗p)

)T

(2)z∗(�⃗c, �⃗p) =
(
f ∗
lat
(�⃗c, �⃗p), f ∗

thru
(�⃗c, �⃗p), f ∗

acc
(�⃗c, �⃗p)

)T
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theoretical data point that achieves the best latency and the best throughput and the 
best accuracy):

To solve the MOOP, our new objective is to find the solution ( �⃗c, �⃗p ) that minimizes 
the Pareto Distance D.

Note that other distance metrics could be used in the above formulation such as 
the weighted sum method, which combines all the multi-objective functions into 
one scalar and then computes the difference from the ideal solution. The main 
benefit from our formulation is avoiding the use of weight parameters, whose set-
tings typically fall to the hands of system administrators with little knowledge on 
how to set them effectively.

Figure 10 shows the computed Pareto distance that combines latency, through-
put, and prediction accuracy for all system configurations and hyperparameter set-
tings for the HT model on the social media application. According to the results, 
the solution that minimizes the Pareto distance uses the system configuration s8 
( r = 100 , p = 48 ) and is able to achieve the second best latency (see Fig. 2), the 
second best throughput (see Fig. 3), and a relatively high prediction accuracy at 
83% (see Fig. 4). Similarly, it is apparent from Fig. 10 that system configuration 
s4 ( r = 400 , p = 16 ) yields the worse overall performance, which can be easily 
verified from Figs. 2, 3, 4.

Note that in the above calculations, we are using two objectives related to sys-
tem performance and one objective related to ML model performance; therefore, 
the outcome is biased towards system performance. However, our formulation is 
easily adjustable as objective functions can be simply added or removed from 
the objective vector in Eq.  1. We repeated the calculations for the Pareto dis-
tance using only throughput and prediction accuracy. In this case, the best perfor-
mance data point comes from the system configuration s7 ( r = 200 , p = 32 ) and 
corresponds to the top right pink dot in Fig. 9a. Hence, an additional benefit of 

(3)D =
‖
‖‖
z∗(�⃗c, �⃗p) − f (�⃗c, �⃗p)

z∗(�⃗c, �⃗p)

‖
‖‖
, s.t. �⃗c, �⃗p ∈ ��⃗ℂ × ��⃗ℙ

Fig. 10  Pareto distance that 
combines latency, throughput, 
and prediction accuracy for 
all system configurations and 
hyperparameter settings when 
executing the social media 
application with HT model (the 
lower the better)
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our formulation is the added flexibility to the users, who can adjust the objective 
functions based on which performance metrics they want to optimize.

The use of multi-objective optimization has recently been proposed within the 
context of hyperparameter tuning for traditional batch-based ML models. One 
work focused on simultaneously tuning hyperparameters and selecting appropriate 
features in order to (a) minimize the estimated generalization error (analogous to 
maximizing prediction accuracy), and (b) maximize feature sparsity to yield bet-
ter model interpretability [29]. Horn et al. [30] performed a comparative study on 
Kernelized support vector machines (SVMs), investigating the use of subsampling 
during training in order to reduce training time, while at the same time minimizing 
prediction error. Finally, EMORL is a multi-objective reinforcement learning-based 
hyperparameter tuning method for simultaneously optimizing accuracy and infer-
ence latency for eXtreme Gradient Boosting (XGBoost) [48]. The aforementioned 
approaches only apply to specific batch-based ML models and have a fairly narrow 
scope. For instance, they attempt to minimize either training time or inference time. 
However, distributed streaming ML models have vastly different requirements and 
processing styles since both training and inference can happen at the same time and 
across parallel tasks. Thus, more general multi-objective approaches must be devel-
oped to comprehensively address the combined system parameter and hyperparam-
eter tuning problem in DSPEs.

5.2  Future work

The proposed problem formulation is amenable to various tuning methodologies for 
finding (near) optimal system parameters and hyperparameter settings for streaming 
ML applications. For example, the individual objective functions can be treated as 
black-box, whose values are obtained through experimentation. Hence, an experi-
ment-driven approach can be devised that executes the (or part of the) application 
multiple times with different configuration and hyperparameter settings each time. 
The key challenge here is how to develop a search algorithm that will utilize the 
feedback provided after each execution in order to guide the sequence of executions 
and converge to optimal settings as quickly as possible. While the experiment-driven 
methodology has been shown to provide near-optimal settings, it is characterized by 
long tuning times [6, 18].

An alternative methodology would be to develop white-box models for the indi-
vidual objective functions and follow a cost modeling approach to tuning. These 
approaches are computationally very efficient and can yield highly accurate mod-
els. With regards to modeling system performance (such as latency and throughput), 
there is some past work in the area of system parameter tuning that can be taken 
advantage of [5, 15]. Equivalently, Bayesian optimization can be used to fit a cheap 
surrogate model to capture the relationship between hyperparameters and predic-
tion accuracy [29]. However, capturing cross interactions (i.e., how hyperparameters 
impact system performance and how system parameters impact prediction accuracy) 
have not been explored yet in cost modeling approaches.
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Finally, one of the most promising yet challenging methodologies to employ is 
an adaptive approach that can change system parameters and hyperparameters adap-
tively while an application is running, based on online performance metrics com-
puted on-the-fly. These approaches enable the performance tuning of ad-hoc appli-
cations without assuming any prior knowledge. However, multiple open challenges 
arise, including how to make the decision for changing any settings, what mecha-
nisms to use for the changes to guarantee application correctness, and how to ensure 
that changes will not cause any performance or stability issues.

6  Conclusion

This manuscript has performed an extensive experimental analysis of how system 
parameters and hyperparameter settings can impact both system performance and 
prediction accuracy of streaming ML applications executed on DSPEs. The results 
revealed several unexpected and complex interactions, including the impact of sys-
tem parameters on prediction accuracy, the impact of hyperparameters on system 
performance, as well as various tradeoffs that are affected by the type of applica-
tion and ML model used. These results motivate the need for new combined sys-
tem parameter and hyperparameter automated tuning approaches. Further, given the 
identified tradeoffs, we formulate the combined tuning problem as a multi-objec-
tive optimization problem for finding pareto optimal solutions. Overall, we expect 
these findings and our generalized problem formulation to open up new research 
directions in the field of self-managing stream processing systems in the context of 
streaming machine learning applications.
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