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Abstract

Recent progress in bulk heterojunction organic photovoltaics (OPVs) is approaching the mile-

stone of 20% in power conversion efficiency (PCE) by utilising novel non-fullerene acceptors

(NFAs). In comparison to the traditional fullerene acceptors, the NFA acceptors have simpler

synthetic methods, a suitable band gap that increases the overall active layer absorption, and

tunable energy levels that favour the open-circuit voltage.

Organic solar cells based on NFAs have boosted the efficiency of OPVs to over 17%, while

significant improvements in device stability have also been reported. The progress of NFAs

provides commercialization opportunities for printed and highly transparent and efficient OPVs,

which enables the application of this technology in various niche markets.

This thesis focuses on the progress of energy-efficient buildings, the importance of conventional

Si-based photovoltaics for energy-efficient buildings, and finally, the potential of emerging semi-

transparent OPVs for building-integrated photovoltaics (BIPVs) and other applications. The

experimental work presented in this thesis involves the development and fabrication of semi-

transparent OPVs and the evaluation of their electrical and optical performance for BIPV ap-

plications. The design of semitransparent OPVs is challenging due to the requirement for high

transparency and efficiency. The thesis demonstrates the use of high-performance NFAs in a

ternary fullerene blend and evaluates their efficiency on the basis of BIPV applications.

Finally, the thesis concludes with a discussion of the potential applications of semitransparent

OPVs. The literature and the experimental results suggest that semitransparent OPVs have the

potential to provide a viable solution for energy-efficient buildings and other sectors where both

visible light transmission and electricity generation are required. Overall, this study contributes

to the field of semitransparent OPVs and provides a foundation for future research in this area.
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Nomenclature

Acronyms

ADR Aperiodic Dielectric Reflectors

Agri-PV Agrivoltaics: Photovoltaics applicable in agriculture

AM1.5G Air-mass 1.5 Global Tilted Irradiance

ARC Antireflection Coatings

AVT Average Visible Transmittance

BIPVs Building Integrated Photovoltaics

BM Black Matte

CCT Correlated Colour Temperature

CIE Commission Internationale de l’Eclairage

CRI Colour Rendering Index

CVD Chemical Vapour Deposition

DMD Dielectric/ Metal/ Dielectric Electrode

DSSCs Dye-Sensitised Solar Cells

EEB Energy Efficient Buildings

EED Energy Efficiency Directive

EQE External Quantum Efficiency

ETL Electron Transport Layer

GHG Greenhouse Gas

HOMO Highest Occupied Molecular Orbit

HTL Hole Transport Layer

IEA International Energy Agency

IoT Internet of Things

LUE Light-Utilization Efficiency

LUMO Lowest Unoccupied Molecular Orbit

NFAs Non-fullerene Acceptors

NIR Near-Infrared Electromagnetic Radiation

NREL The National Renewable Energy Laboratory
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nZEB Nearly-Zero Energy Buildings

OPVs Organic Photovoltaics

PCE Power Conversion Efficiency

PVs Photovoltaics

QUE Quantum-Utilization Efficiency

R2R Roll-to-Roll

R&D Research and Development

ST-OPVs Semi-transparent Organic Photovoltaics

TF-PVs Thin-film Photovoltaics

TPVs Transparent Photovoltaics

UV Ultraviolet Electromagnetic Radiation

Chemical Compounds

a-Si Amorphous Silicon

ACS8 Indacenodithiophene (IDT) as core, alkylthio-substituted thiophene as π-bridge and elec-
tron withdrawing 3-(1,1-dicyanomethylene)-5,6-difluoro-1-indanone (IC2F) as end groups

Ag Silver

AgNWs Silver Nanowires

AZO Aluminium-doped ZnO

BT-CIC (4,4,10,10-tetrakis (4-hexylphenyl)-5,11-(2-ethylhexyloxy)-4,10-dihydro-dithienyl[1,2-b:4,5b’]
benzodi-thiophene-2,8-diyl)bis(2-(3-oxo-2,3-dihydroinden-5,6-dichloro-1-ylidene)malononitrile))

C60-SAM 4-(1’,5’-Dihydro-1’-methyl-2’H-[5,6]fullereno-C60-Ih-[1,9-c]pyrrol-2’-yl)benzoic acid

CB Chlorobenzene

CdTe Cadmium Telluride

CF Chloroform

CIGS Copper Indium Gallium Selenide

CN 1-chloronaphthalene

CNT Carbon Nanotubes

DTY6 2,2’-((2Z,2’Z)-((12,13-bis(2-decylteradecyl)-3,9-diundecyl-12,13-dihydro-[1,2,5] thiadiazolo[3,4-
e]thieno[2”,3”:4’,5’]thieno[2’,3’:4,5]pyrrolo[3,2-g]thieno[2’,3’:4,5]thieno[3,2-b]indole-2,10-diyl)
bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile
(BTP-4F-24)

FNIC1 Benzo[1,2-b:4,5-b’]dithieno[3,2-b]thiophene

FNIC2 Thieno[3,2-b]thiophene-fused benzo-[1,2-b:4,5-b’]dithiophene

FTO Fluorine doped Tin Oxide

GO Graphene Oxide

GZO Gallium-doped ZnO

IEICO-4F 2,2’-((2Z,2’Z)-(((4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro-sindaceno[1,2-b:5,6-b’]dithiophene-
2,7-diyl)bis(4-((2-ethylhexyl)oxy)thiophene-5,2-diyl))bis(methanylylidene))bis(5,6-difluoro-
3-oxo-2,3-dihydro-1H-indene-2,1- diylidene))dimalononitrile
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IHIC 2,2’-[[4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydrothieno[3’,2’:4,5]cyclopenta[1,2-b]thieno[2”,3”:3’,4’]
cyclopenta[1’,2’:4,5]thieno[2,3- d]thiophene-2,7-diyl]bis [methylidyne(3-oxo-1H-indene-2,1(3H)-
diylidene)]]bis

IPA Isopropanol

IT-4F 3,9-bis(2-methylene-((3-(1,1-dicyanomethylene)-6,7-difluoro)-indanone))-5,5,11,11-tetrakis(4-
hexylphenyl)-dithieno[2,3-d:2’,3’-d’]-s-indaceno[1,2-b:5,6-b’]dithiophene

ITIC 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)indanone))-5,5,11,11-tetrakis(4-hexylphenyl)
dithieno[2,3-d:2’,3’-d’]-s-indaceno[1,2-b:5,6-b’]-dithiophene

ITO Indium Tin Oxide

J52 Poly[4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b:4,5-b’]dithiophene-5,5’-diyl-alt-4,7-bis(thien-
2-yl)-5,6-difluoro-2-(2-hexyldecyl)-2H-benzo[d][1,2,3]triazole]

J71 Poly[[5,6-difluoro-2-(2-hexyldecyl)-2H-benzotriazole-4,7-diyl]-2,5-thiophenediyl[4,8-bis[5-(tripro-
pylsilyl)-2-thienyl]benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl]-2,5-thiophenediyl]

LiF/Al Lithium Fluoride/ Aluminum

MoO3 Molybdenum Trioxide

NSM 2-[4-(carboxyl)benzylidene]-1H-indene-1,3(2H)-dione

p-Si Polycrystalline Silicon

P3HT Poly(3-hexylthiophene)

PBDB-T Poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b’]-dithiophene))-alt-(5,5-(1’,3’-
di-2-thienyl-5’,7’-bis(2-ethylhexyl)benzo[1’,2’-c:4’,5’-c’]dithiophene-4,8-dione))]

PBDTT-DPP Poly(2,60-4,8-bis(5-ethylhexylthienyl)benzo-[1,2-b;3,4-b]dithiophene-alt-5-dibutyloctyl-3,6-
bis(5-bromothiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4-dione)

PBDTTT-EFT Poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b0]dithiophene-2,6-diyl-alt-(4-(2-
ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]

PC61BM [6,6]-phenyl-C61-butyric acid methyl ester

PC71BM [6,6]-Phenyl-C71-butyric acid methyl ester

PCDTBT Poly[N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)

PDIN N,N’-bis(3-(dimethylamino)propyl)perylene-3,4,9,10-tetracarboxylic diimide

PDINO N,N’-bis(N,N-dimethylpropan-1-amine oxide)perylene-3,4,9,10-tetracarboxylic diimide

PDMS Polydimethylsiloxane

PEDOT Poly(3,4-ethylenedioxythiophene)

PFN Poly[(9,9-bis(3’-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]

PFN-Br Poly(9,9-bis(3’-(N,N-dimethyl)-N-ethylammoinium-propyl-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene))
dibromide

PIDT-PhanQ Poly(indacenodithiophene-co-phenanthro[9,10-b]quinoxaline)

PM6 Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b’]dithiophene))-alt-
(5,5-(1’,3’-di-2-thienyl-5’,7’-bis(2-ethylhexyl)benzo[1’,2’-c:4’,5’-c’]dithiophene-4,8-dione)]

PM7 Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-chloro)thiophen-2-yl)-benzo[1,2-b:4,5-b’]dithiophene))-
alt-(5,5-(1’,3’-di-2-thienyl-5’,7’-bis(2-ethylhexyl)benzo[1’,2’-c:4’,5’-c’]dithiophene-4,8-dione)]

PMA Phosphomolybdic acid
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PMMA Poly(methyl methacrylate)

PN 1-phenylnaphthalene

PSBTBT Poly[(4,4-bis(2-ethylhexyl)-dithieno[3,2-b:2’,3’-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-
4,7-diyl]

PSS Polystyrene sulfonate

PTB7 Polythieno[3,4-b]-thiophene/benzodithiophene

PTB7-Th Poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b’]dithiophene-2,6-diyl-alt-(4-(2-
ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]

PtNP Platinum Nanoparticles

SnO2 Tin Oxide

T1 Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b’]dithiophene))-alt-
(5,5-(1’,3’-di-2-thienyl-5’,7’-bis(2-ethylhexyl)benzo[1’,2’-c:4’,5’-c’]dithiophene-4,8-dione)]-ran-
poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b’]dithiophene))-alt-(2,2-ethyl-
3(or4)-carboxylate-thiophene)](PBDB-TF-T1)

TT-FIC (4,4,10,10-tetrakis(4-hexylphenyl)-4,10-dihydrothieno [2”,3”:4’,5’] thieno[3’,2’:4,5]cyclopenta[1,2-
b]thieno[2,3-d]thiophene-2,8-diyl)bis(2-(3-oxo-2,3-dihydroinden-5,6-difluoro-1-ylidene)malononitrile)

WO3 Tungsten Trioxide

Y6 2,2’-((2Z,2’Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]
thieno[2”,3”:4’,5’]thieno[2’,3’:4,5]pyrrolo[3,2-g]thieno[2’,3’:4,5]thieno[3,2-b]indole-2,10-diyl)
bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile

ZnO Zinc Oxide

Symbols

α(λ) Action Spectrum

γ Photon

λ Wavelength

x, y, z Colour-Matching Functions

A(λ) Absorbance

G Crops Growth Factor

JMP Current Density at Maximum Power

JSC Short-circuit Current Density

R(λ) Reflectance

S(λ) Solar Irradiance

T (λ) Transmittance

V (λ) Photopic Response

VMP Voltage at Maximum Power

VOC Open-circuit Voltage

FF Fill Factor
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Chapter 1

Introduction

As a looming crisis, global warming is expected to worsen the challenges humanity is currently

facing with the rapid and appalling climatic changes around the globe. Generally, one of the

major energy-consuming industries is the building and construction industry. The building

sector, which is also responsible for up to 40% of the total carbon emissions, accounts for about

36% of the total energy consumed globally [7].

Energy has a significant and direct impact on the socioeconomic aspects of emerging and

developing countries. Rising energy prices have recently increased pressure on consumers.

Unfairly, the cost of energy falls heaviest on those who can least afford it. The poorest 20% of

households in developed nations use only a third of the energy compared to the richest 20%,

but they allocate a much larger percentage of their income to cover their basic needs. As a

result, energy poverty has become a major issue in many developing countries in recent years

[8].

However, over the last two decades, the average efficiency of the building stock has increased,

causing residential energy density demand to drop. More specifically, according to the IEA

2022 report, despite the overall increase in residential energy use, the energy consumption per

floor space recorded a reduction from 0.83 GJ/m2 in 2000 to 0.59 GJ/m2 in 2019 [8]. Even

though the amount of floor space in developing countries is increasing, it is evident that the

improvement in the efficiency of buildings counters the amount of excess energy demand [8].

1
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The world is making significant efforts to speed up investments in building efficiency and in-

crease the deployment rate of building retrofits, but much more innovation will be required to

create more efficient and cost-effective clean energy technologies and bring us closer to achiev-

ing net zero emissions by 2050. R&D is becoming more crucial in both the private and public

sectors [8]. This is especially true when it comes to developing energy projects and technologies

that have lower initial costs than their conventional counterparts.

In 2022, at the Annual Global Conference on Energy Efficiency, IEA members and govern-

ments around the world acknowledged the implications of import dependence, addressed the

high cost of energy, and pledged new funding to help combat the energy crisis by implement-

ing new action plans focusing on energy efficiency policies. Regarding the regulations of the

building industry, targeted funding models were set to achieve the milestones for 2030, which

include the retrofitting of 2.5% of the existing building stock each year and ensuring the carbon

neutrality of new buildings. The electrification of buildings through the necessary energy effi-

ciency measures is a long-term target with the objective of further reducing residential carbon

emissions, assuming that the supply should be provided by renewable energy sources by 2050

[9].

As a result of the aforementioned consequences, alternative energy sources will need to be

gradually adapted into the global energy mix due to the foreseeable rapid increase in energy

consumption among the growing population. Incorporating and expanding access to affordable

and reliable technologies can help accomplish the desired sustainable development goals and

counter socioeconomic inequality [7].

1.1 Problem Statement

With photovoltaic technology, sunlight can be converted directly into electricity, which has been

considered a viable and long-term answer to the population’s growing energy needs. However,

despite the advantages of photovoltaic technology, the implementation of traditional opaque

solar panels in the building sector has been limited by aesthetic and practical concerns, which
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have hindered their widespread adoption. To address these concerns, researchers have been

developing transparent solar cells that can be integrated into windows and other building

materials, allowing for a more seamless and visually appealing integration of solar technology

into buildings. This could potentially increase the adoption of solar energy in the building

sector.

1.2 Purpose and Scope

The aim of this thesis is twofold. Firstly, as introduced above, it aims to analyse the current

challenges facing the building energy sector in reducing the energy demand of buildings to

acceptable levels during the electrification process. This includes examining the limitations

of traditional energy-efficient building design and retrofitting measures as well as exploring

potential technological solutions that could increase and further support the on-site generation

of renewable energy supply. By doing so, this thesis seeks to contribute to the broader goal of

achieving a more sustainable and carbon-neutral built environment.

Secondly, the thesis research continues with laboratory trials for the fabrication and evaluation

of semi-transparent photovoltaics, predominantly for window applications in the building sector.

Building-integrated photovoltaic (BIPV) systems have emerged as a promising solution to the

challenge of seamlessly integrating solar cells into building façades, roofs, and windows. Among

the various types of BIPV technologies, semi-transparent organic photovoltaics (ST-OPVs)

have garnered attention for their potential to combine high efficiency with attractive visual

properties. However, the development of semi-transparent OPVs for building applications is

still in its early stages, and there are several technical and practical challenges that need to be

addressed.

Therefore, this thesis will focus on the fabrication and characterization of semi-transparent

OPVs and the evaluation of their performance for BIPV applications. The research will involve

the optimisation of materials, device architecture, and processing techniques to achieve high

power conversion efficiency while maintaining reasonably high levels of transparency. Overall,


