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Abstract: Observing phenological changes are important for evaluating the natural regeneration
process of forests, especially in Mediterranean areas where the regeneration of coniferous forests
depends on seeds and the changes in blossoming time are influenced by climate change. The high
temporal resolution of Sentinel-1 data allows the time series analysis of synthetic aperture radar
(SAR) data, but it is still unknown how these data could be utilised for better understanding forest
phenology and climate-related alternations. This study investigates the phenological cycle of Paphos
forest, Cyprus using SAR data from 1992 to 2021, acquired by ERS-1/2, Envisat and Sentinel-1. An
average phenological diagram was created for each space mission and a more detailed analysis was
performed from October 2014 to November 2021, using the higher temporal resolution of Sentinel-1
data. Meteorological data were used to better understand the drivers of blooming alternations.
Using the interquartile range (IQR), outliers were detected and replaced using the Kalman filter
imputation. Forecasting trend lines were used to estimate the amplitude of the summer peaks and
the annual mean. The observation of the average phenology from each satellite mission showed
that there were two main blooming peaks each year: the winter and the summer peak. We argue
that the winter peak relates to increased foliage, water content and/or increased soil moisture. The
winter peak was followed by a fall in February reaching the lower point around March, due to the
act of pine processionary (Thaumetopoea pityocampa). The summer peak should relate to the annual
regeneration of needles and the drop of the old ones. A delay in the summer peak—in August
2018—was associated with increased high temperatures in May 2018. Simultaneously, the appearance
of one peak instead of two in the σVH time series during the period November 2014–October 2015
may be linked to a reduced act of the pine processionary associated with low November temperatures.
Furthermore, there was an outlier in February 2016 with very low backscattering coefficients and
it was associated with a drought year. Finally, predicting the amplitude of July 2020 returned high
relevant Root Mean Square Error (rRMSE). Seven years of time series data are limiting for predicting
using trend lines and many parameters need to be taken into consideration, including the increased
rainfall between November 2018 and March 2020.

Keywords: Sentinel-1; time series; phenology; blooming time; SAR; forestry; Mediterranean

1. Introduction

Climate change modifies species composition and extended drought increases fire risk
and pests/diseases attacks [1,2]. Climate change is a significant factor contributing to the in-
crease of forest fires [3] and tree species being unable to adapt to the severity and frequency
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of droughts during the summer period. The possibility of pest attacks and tree diseases gets
higher because trees are weakened by the extreme weather conditions [4]. According to
Shoukri and Zachariadis [5], in comparison to other European regions, the Mediterranean
region will be more affected by climate change [5]. Cyprus is the third largest island of
the Mediterranean sea [6] and it lies in its north-eastern end (33◦ east of Greenwich and
35◦ north of the Equator) [7]. The island has a diversity of microclimates [6] and diverse
landscapes [7] that are sufficiently isolated to support a high number of species leading
to the formation of endemic biota [7]. According to ancient statements written by historic
authors including Eratosthenes (275-195 B.C), Cyprus was rich in forests. The forests in
plains were too dense for inhabitation [8,9]. According to a statement provided by A. K.
Bovill and D.E Hutchins (1909), the demarcated forests in Cyprus were 10.7% and 19% if
scrub-forests were also included [9]. According to Delipetrou et al. [7] (2008), 18.7% of the
island is forested. A recent quantitative study showed that 65.62% participants, Cypriot
residents, noticed a moderate to very large degradation of Cypriot coniferous forests [10].
The Department of Forests, Cyprus, (2018) also claimed that Cypriot forests are negatively
influenced by prolonged droughts occurrences due to climate change. The consequences
of the prolonged droughts include high temperatures and a lack of soil moisture leading
to intense forest species stress in Cypriot forest ecosystems (Department of Forests, 2018).
The impacts of climate change may include alternations in the distribution of forest species,
increased forest mortality events, higher fire risk and species extinction [5].

Another potential threat that Cypriot and Mediterranean forests may face due to
climate change is the increased attacks from pests. The pine processionary (Thaumetopoea
pityocampa) eats the needles of Scots pines (Pinus sylvestris L.) and it is responsible for
seasonal defoliation. According to Hódar et al. [11], the attacks of pine processionary
(Thaumetopoea pityocampa) to Scots pines (Pinus sylvestris L.) has increased in the Mediter-
ranean region due to climate change. This causes a significant reduction of pine growth
as well as some deaths [11]. For example, Toffolo et al. [12] reported significant intense
defoliation events and an expansion of the action of the pine processionary in Northern
Italy [12]. If there are no extreme weather conditions, the infected pine trees produce new
needles and survive [13]. When the pest builds nests on the same tree for 3–4 continuous
years, then the tree is negatively influenced, and tree mortality may occur [13]. Pine pro-
cessionary did not exist in higher elevation areas of the Troodos mountain range, but it is
expanding, and its action is strengthened by the persistent drought and warmer weather
conditions [13], posing a potential threat to forest species that exist at higher elevations.

According to the “report on the future climate change impact, vulnerability and
adaptation assessment for the case of Cyprus”, published in 2016, there are two important
climate change threats for Cypriot forests: fires and “dieback of tree species, insect attacks
and diseases” [14]. Forest fires are usually the priority of the Department of Forests since
they have an immediate effect on the forests. Nevertheless, according to Lemesios et al. [14],
both threats have the same vulnerability scores: a very high sensitivity, very high exposure
and moderate adaptive capacity. It is, therefore, of crucial importance to study, monitor,
model forest health and its resilience, as well as to introduce policies using scientific
evidence for preserving forests and a healthy ecosystem. According to Stenlid et al. [15],
many anthropogenic factors strengthen forest diseases in Europe, but there is no adequate
legislation to limit those factors [15]. For that reason, there is a need to create forecasting
models and derive concrete measurements that will add on and improve current knowledge
of our forests. These models and the concrete results could be used as scientific evidence
for promoting environmentally friendly policies aiming to mitigate the effects of climate
change, preserve a healthy ecosystem and consequently maintain social stability and
stimulate economic growth.

Phenology is “the study of the timing of recurring biological events, the causes of
their timing with regard to biotic and abiotic forces and the interactions among phases
of the same or different species”, as defined by the US committee on phenology [16,17].
Phenology observes both plants and animals, as well as seasonal characteristic of natural
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phenomena [17]. For example, Gittings et al. [18] assessed the phenological indices of
phytoplankton blooms in relation to regional ocean warming and showed that warmer
conditions were associated with significantly weaker phytoplankton blooms during the
winter season [18]. Similar work exists on observing the phenology of various plants and
it was shown that climate change conferred shifts to plants’ blooming time [19]. There
are also efforts to predict how plants react to warmer conditions and it was shown that
plants with higher temperature sensitivity bloomed earlier, but overall, the phenological
responses to climate changes were unpredicted [20]. Recently, Wolf et al. [21] showed that
a reduction of plant biodiversity caused the shifting of flowering time, thus demonstrating
the significance of biotic interactions.

Satellite sensors have been widely used for observing the phenological stages of plants.
Gupta et al. [22] showed that apple growth was highly correlated with the Normalized
Difference Snow Index (NDSI). Aragones et al. [23] proved that pine species could be
classified using phenology-derived classes using the Normalised Difference Vegetation
Index (NDVI) in Mediterranean forest. Touhami et al. [24] compared time series NDVI
data with precipitation data and showed that land surface phenology was mostly affected
by climate parameters during autumn and spring. Frison et al. [25] investigated the
potentials of Sentinel-1 synthetic aperture radar (SAR) data for monitoring forest phenology
and claimed that phenology could be estimated with a higher accuracy using SAR than
optical data.

SAR sensors emit microwave energy and record the backscattered signal. Remote
sensing is advancing, offering a higher and higher temporal resolution. The Sentinel-1
constellation offers a high temporal resolution of a 6-day repeat cycle making time series
analysis of SAR data possible, while previous freely available data included ERS1/2 and
Envisat with a repeat cycle of 35 days. Microwave remote sensing is important since
microwave radiation can penetrate through objects and can record information, e.g., below
a forest canopy, that cannot be acquired by traditional optical remote sensing sensors.
The backscattered energy for a particular wavelength is proportional to structure and
moisture [26]. While NDVI provides information about the greenness of the plants [26],
the values of interferometry coherence can detect vegetation density [27]. Due to the ability
of SAR data to derive forest-density-related parameters, the C-band (used in this paper) has
been exploited for biomass estimations [28]. Seasonal changes (i.e., phenological changes)
observed in evergreen forests using SAR data are hypothesised to be linked to tree foliage
and the dielectric constant of the woody component of the trees [29]. If the precipitation
is removed or reduced to a minimum, then the tree foliage, water content of the trees
and dielectric constant of the wood are the most likely information contained within the
backscattering coefficient of the C-band. A time series of C-band SAR data could reveal
how these parameters change seasonally and over time. Within a time series of SAR data,
the recurrence of phases (i.e., phenology) is measurable as shown in this paper. SAR data
were, therefore, selected for observing how the density and water content (e.g., foliage,
needles regeneration, fruition) of the forest changes seasonally and over the years [30].

Furthermore, it is important to understand and predict the impacts of climate on
forests since the acquired knowledge can be incorporated into decision making [31]. SAR
data have been available since 1992 and these data could be used to study climate change
effects within a period of 30 years. This study interprets all the available SAR data for the
study area but predominantly focuses on the period between November 2014 and October
2021. Within this time period, Sentinel-1 data are available. Sentinel-1 provides a higher
temporal resolution [32] while previous missions (ERS1/2, Envisat) present many gaps
within the available datasets for the study area. This paper aimed to provide an in-depth
understanding of the strengths and limitations of analysing time series SAR data for finding
the drivers causing density-, foliage- and/or moisture-related phenological changes in
Paphos forest, Cyprus. This was achieved by accomplishing the following objectives:

• Study and understand the average annual phenological cycle of Paphos forest and how
the time series diagrams could be improved by reducing the effect of precipitation.
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• Detect outliers and justify their importance. Outliers may appear at unusual forest
changes that may occur at important events (e.g., a pest attack). They need to be
removed before creating predictive models.

• Measure the initiation, duration and termination of detected peaks and link them
with the relevant literature to understand the physical parameters that each peak may
relate to.

• Investigate the connections between unusual changes in the SAR time series and
meteorological thermal and precipitation data.

• Create and evaluate the prediction models and trend lines.
• Investigate the applicability of existing SAR vegetation indexes for time series analysis

of data.
• Experiment with filtering approaches and their applicability for removing noise in the

SAR data time series diagrams.

2. Material
2.1. SAR Data

Table 1 shows a summary of the quantity of acquired data interpreted per satellite
mission. As shown, there is a limited availability of data from missions ERS-1/2 and
Envisat, but there are adequate data to create a time series from Sentinel-1 data. It is
worth noting that the data acquired from Sentinel 1A/B were joint since the instruments
are identical but since Sentinel-1B was launched on the 25th of April 2016 [33], less data
were available during the first year of investigation. The data were downloaded from the
following platforms:

1. EO CAT-ESA data services: <https://eocat.esa.int/sec/#data-services-area>
2. ASF-Alaska Satellite Facility: <https://asf.alaska.edu/>

Table 1. A summary of the data used in this study showing how many dates were available per
mission and how many dates were left after filtering out the dates with high precipitation.

Satellite
Mission

Pixel
Resolution (m) Time-Frame No. of

Images
No. of Images

per Year
No. of Images
after Filtering

No. of Images per
Year after Filtering

ERS-1 30 1991–2000 15 1.5 14 1.4

ERS-2 30 1995–2011 79 4.6 66 3.9

Envisat 30 2002–2012 48 4.4 40 3.6

Sentinel1A/B 10 2014–2021 337 50.7 276 39.43

As a recall from radar remote sensing, polarization refers to the direction that a
microwave signal is oscillating at: vertical (V) or horizontal (H). If the transmitted signal is
vertical and the received signal is vertical, the notation VV is used. Similarly, a vertically
transmitted signal and horizontally received signal is abbreviated by VH and so forth.
ERS-1/2 were single-polarised and only VV was available. Envisat had an alternating
polarisation, but for our study area mostly VV data were available and only a few HH
images. Sentinel-1 transmits either vertically or horizontally and receives both vertical
and horizontal signals. Nevertheless, horizontal-related transmissions (HV and HH) are
primarily acquired over wide coastal areas. Therefore, in this study Sentinel-1 data with
VV and VH polarisations and ESR1/2 and Envisat data with VV polarisation were used.

2.2. Meteorological Data

In this study, we used daily precipitation data to reduce the effect of moisture in the
SAR data and meteorological thermal data to understand whether a change in phenology
may relate to the annual act of Thaumetopoea pityocampa and/or drought. According
to the Department of Meteorology, Cyprus, a day with precipitation greater than 0.2 is
considered a rainy day. Data from four meteorological stations were used for the years

https://eocat.esa.int/sec/#data-services-area
https://asf.alaska.edu/
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2014 to 2019: three (Finokli-108, Dodeka Anemoi-164, Alonoudi-171) well-distributed
within the study area in terms of coverage and elevation changes, and one (Archeleia-81)
at the nearby city of Paphos. For 2020 and 2021, data from an additional station (Stavros
Psokas-130) were used because the Finokli-108 and Dodeka Anemoi-164 stations had
many gaps while acquiring precipitation measurements. The daily precipitation data
are not open, but they were provided by the Department of Meteorology, Cyprus upon
request. Open data of daily temperatures, that are available from 2010 to 2018, were
also used. These open data contain daily temperature measurements from three stations
spread around Cyprus (Paphos airport, Larnaka airport and Athalassa) and are available
at: <https://www.data.gov.cy/node/1645?language=en>, accessed on 14 October 2021.
The locations of the meteorological stations used in this study are given in Figure 1.

Figure 1. The map on the left depicts Paphos forest, Cyprus. The map on the right depicts in blue
the final selected study area. The blue segments are aligned with the nonshaded areas scanned by
the SAR system in descending orbit. The total selected area is 196.36 km2. The red bullets show the
locations of four meteorological stations, where temperature and precipitation related data were
acquired by the Department of Meteorology, Cyprus.

2.3. Digital Elevation Model and Aspect Maps

Last but not least, the ASTER Global Digital Elevation Model (GDEM) was used for
creating aspect maps, since it has appropriate spatial resolution (30 m). The aspects maps
were derived by the digital elevation model and show the steepness and direction of each
slope. The aspect maps were required for the definition of the study area (Section 4.1).

3. Study Area

The study area was the state forest “Paphos forest” in Cyprus that lies on the Troodos
mountain range and covers around 600 km2 (Figure 1). According to the maps generated
by A. K. Bovilli for the distribution of forests in Cyprus around 1900 [9], the selected
study area was forested at that time. Nevertheless, Paphos forest contains old plantations
of Calabrian pine (Pinus brutia) dated over 30 years old. These plantations are dense
and lack of diversity making the forest more prone to pest attacks. Furthermore, lower
elevation areas below (600 m) are defoliated fully annually due to the pine processionary
(Thaumetopoea pityocampa). Calabrian pine is the dominant tree species in Paphos forest [7,9].
An important part of this forest ecosystem are smaller trees and shrubs such as Quercus
alnifolia, Arbutus andrachne, Olea europaea, Cistus creticus, Ramnus alaternus and Quercus
coccifera. There are also some broad-leaved trees, such as the Platanus orientalis, Alnus
orientalis, Laurus nobilis, Myrtus communis and bushes, Rubus sanctus [34].

https://www.data.gov.cy/node/1645?language=en
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4. Methodology
4.1. Definition of Active Study Area

As aforementioned the study area was Paphos forest, Cyprus. The shapefile defining
the boundaries of the forest was provided by the Department of Forest, Cyprus. We chose to
work with Paphos forest only since it is the denser and older forest in Cyprus [9], despite the
plantations. If we had extended the study area to the entire Troodos mountain range then
we would have had noise from villages and constructions. Within Paphos forest, Cyprus,
any area that was burnt between 1992 and 2020 was removed, since the forest stands under
regeneration are identifiable by remote sensing imagery [35] and could, therefore, produce
noise in the time series analysis. Shapefiles about most burnt areas were provided by the
Department of Forests, while one fire that occurred on the 6th of March 2003 (north-west of
the study area) was mapped and removed utilising the NDVI [36] and normalised burned
ratio (NBR) [37] derived from a Landsat image.

Aspects maps were used to select the nonshaded areas in the SAR images. SAR
systems emit their signal sidewise and as a result slopes facing away from the radar beam
appear as shadows. The shadows are more intense in mountainous areas sometimes
making it impossible to analyse the data in the shaded areas. SAR systems observe from
the west when the orbit of the satellite is ascending (northward) and from the east when the
orbit of the satellite is descending (southward). In the ascending data the nonshaded areas
include the north-east, east and south-east slopes (22.5◦–157.5◦) and in the descending data
the nonshaded areas include the south-west, west and north-west slopes (202.5◦–337.5◦).
For continuity in the observations, the descending SAR data were used in this study.
The nonshaded slopes that were aligned with the descending nonshaded data shaped the
boundaries of the study area; they are depicted in blue colour in Figure 1. The final active
study area is depicted in blue in Figure 1 and its size is 196.36 km2.

4.2. Preprocessing of SAR Data
4.2.1. SNAP Preprocessing

The data were preprocessed using the ESA SNAP toolbox and a customised python
script to ease the massive batch processing. The SNAP graph builder was used for producing
three preprocessing pipelines dedicated to each type of satellite image imported (Sentinel-1,
Envisat, ERS-1/2). For Sentinel-1, we used “Read -> ThermalNoiseRemoval -> Apply-Orbit-
File -> Calibration -> Speckle-Filter -> Terrain-Correction-Write”. For Envisat, we used
“ Read -> Apply-OrbitFile-Calibration -> Speckle-Filter -> Terrain-Correction -> Write”.
For ERS-1/2, we used “Read -> Apply-Orbit-File -> RemoveAntennaPattern -> Calibration
-> Speckle-Filter -> Terrain-Correction -> Write”. The digital numbers (DN) were then
converted to decibel (DB) using the formula DB = 10log10(abs(DN)). The speckle filter
selected was a median filter, because forests include high gradient changes and it was,
therefore, considered as an appropriate filter since it is good at removing outliers without
smoothing the image or enhancing edges. The SNAP graphs were exported, and we wrote
a python script that automatically generated a batch file that processed the images in a
queue using the gpt command within Command Prompt (<https://github.com/Art-n-
MathS/SNAPGraphMassiveProcessing>).

4.2.2. Removing Images with High Precipitation

SAR reflects on both moisture and structure. To reduce the impact of increased mois-
ture produced by precipitation, we filtered out images acquired at increased precipitation.
Precipitation data from the meteorological stations (Section 2.2) were used. This was con-
sidered necessary since the backscattering coefficient of the radar data is influenced by
precipitation/rainfall, as it is implied by studies able to estimate rainfall from analysing
radar data [38,39]. Moreover, soil moisture affects a radar signal [40], while in this study,
we were predominantly interested in the volume scattering that relates to forest den-
sity/foliage. Quegan et al. [41] simulated various conditions and investigated the effect
of wet and rough soil in σVV in relation to the biomass content of the forest. For forests

https://github.com/Art-n-MathS/SNAPGraphMassiveProcessing
https://github.com/Art-n-MathS/SNAPGraphMassiveProcessing
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with a lower biomass, the effect of wet and rough soil was bigger than in forests with a
larger biomass (i.e., the reflection was higher when the soil was wet or rough). Considering
that the dominant species of Paphos forest is the medium size tree (Pinus brutia) that grows
at around 20–35 m, and the shrub/small tree golden oak (Quercus alnifolia) that grows up
to 10 m, it is very likely that the coefficients σVV and σVH will be influenced by wet and
rough soil. By performing some tests in the Mediterranean region, where images contain
less gradient changes, we were able to understand the effects of precipitation. We con-
cluded that images were influenced during and up to two days after increased precipitation.
A combined threshold with weights from those three days was used to classify whether
an image should be included into the calculations or removed due to high precipitation.
Table 1 shows the numbers of images per missions before and after filtering.

4.2.3. Normalising Backscattering Coefficients

The probability distribution of each satellite was aligned to make the values of the
backscattering coefficients comparable between different satellites and lie approximately in
the range [0, 1]. Since the backscattering coefficient was normally distributed (see Figure 2),
it implied that around 95% of the values lay within four standard deviations from the
mean. If we subtract the mean and divide by four standard deviations, then the new signal
will have a mean equal to 0 and a standard deviation equal to 1. To increase resilience to
outliers (i.e., data that were different from what was expected and unlike the rest of the
data), the median and interquartile range (IQR) were used for normalisation instead of the
mean and standard deviation [42]. IQR is the difference between the third quartile (Q3, 75th
percentile) and the first quartile (Q1, 25th percentile) [42]. Therefore, the backscattering
coefficients were normalised to lie approximately within the range [0, 1] as follows:

Xn =
X− µ

4× IQR
+ 0.5 (1)

where for each satellite, Xn is the vector of its normalised backscattering coefficients, µ is
its median backscattering coefficients and IQR is the interquartile range.

(a) Sentinel-1 (b) Envisat (c) ERS-2 (d) ERS-1

Figure 2. Histograms of the backscattering coefficient.

4.3. Phenological Graphs per Satellite Mission

Assuming that v(i, j) denotes an average backscattering coefficient of month i and
year j, the average backscattering coefficient of a satellite mission in month i was calculated
as shown in Equation (2), where N is the number of years per satellite mission and each
calendar year has a maximum of 12 month—null numbers were removed. The result was
a vector with 12 elements (A = [A1, A2, . . . , A12]) representing the average phenological
cycle derived from each satellite mission. The average phenological cycles derived for each
mission were also comparable—to some extent as explained in the discussion (Section 6.1)—
since their probability distributions were aligned.

Ai =
∑N

j=1 v(i, j)

N
(2)
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Due to the increased temporal resolution of Sentinel-1, time series between October
2014 and November 2021 (7 phenological cycles) of both VV and VH polarizations were
generated and interpreted deeper than the average phenological graphs.

4.4. Outliers

Outliers are signals that are inconsistent within a dataset. Particular attention should
be given to outliers as they may mark important events, e.g., (pest attacks) or could be
caused by a system fault/noise. In machine learning, it is important to remove the outliers
as they indicate unusual events, and their removal improves predictions. We created the
histograms of the backscattering coefficients and used the interquartile (IQR) range to
detect the outliers. As the data were normalised, the median was equal to 0.5 and IQR was
equal to 0.25 for both σVH and σVV data. According to Verma and Ranga [42], any data that
lie outside the range [Q1− 1.5× IQR, Q3 + 1.5× IQR] should be considered as outliers.

To increase the resilience of the predictions/interpretations of Sentinel-1 data, a big
outlier appearing at both σVH and σVV was removed and a new value was estimated using
a Kalman filter imputation, since, as shown by Saputra et al. [43], it handles better missing
values in comparison to the state-space model ARIMA imputation method. A gap in
January 2020 was also filled using the Kalman filter imputation method. The imputation of
the new values was applied before the normalisation.

4.5. Measuring Initiation, Duration and Termination of Detected Peaks

To better understand the phenological cycles of Paphos Forest, Cyprus, the initiation,
duration and termination of each peak was estimated. We tested two methodologies:
(1) the scipy.signal.peak_widths() function available in python and (2) findpeaks() available
in R. Both methodologies detect the timing of peaks, as well as the initiation, duration
and termination of each peak. Regarding the duration attribute, the first one measures
the prominence width of the pulse at a peak. The prominence width is how much a peak
stands out in relation to the other peaks. This was not relevant to the duration of each
blooming, and it often returned a number greater than 12 months. The second one adds a
border so that the end date of one peak timing is the start date of the next one. Because we
were looking of annual reoccurring events, the second methodology—findpeaks() of R—was
considered appropriate for estimating the duration of each blooming. Attributes were
extracted for both (1) the average phenological graphs and (2) the Sentinel-1 time series.
The attributes extracted were: the peak timing, the amplitude at the peak, initiation of
the peak, termination of the peak, duration and the sum of all the amplitudes between
the initiation and the termination of each peak. The tables containing all the results are
included in Section 5.1.2.

For each peak extracted, the following related parameters were measured: the peak
timings, the normalised backscattering coefficient at the peak, initiation of the peak, termi-
nation of the peak and the sum-normalised backscattering coefficient of all the amplitudes
between the initiation and termination.

4.6. Investigate Connection between Unusual Changes and Temperature/Precipitation

Weather is an important factor that impacts phenological changes. The Mediterranean
climate is warm. Summer is dry. It starts in May and ends in the middle of September.
The winter is rainy but mild and starts from the middle of November and lasts till the
middle of March. East Mediterranean is influenced by Asia and reaches high temperatures
over the summer period, while the summer rainfall does not exceed 5% of the annual
rainfall [44]. Using meteorological data, we tried to understand unusual changes in the
time series. In personal communication with the Department of Forests, November is
considered a critical month in Cyprus for the growth of pine processionary (Thaumetopoea
wilkinsonii). To understand the number of peaks per year and whether they related to
the pest not surviving cold November, we created the histogram of the average daily
temperatures in November and measured their mean and standard deviation. Further, we
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created a time series of precipitation data and a time series of the number of rainy dates per
month in order to understand the effect of drought.

4.7. Prediction and Forecasting

A trend line provides the direction in which the values of a given dataset might move
over time. The aim of the prediction was to estimate the amplitude of the annual summer
peak usually occurring in July, as well as the annual average backscattering coefficient.
The timing of the summer peak was assumed to always be in July as there are limited
quantity of data to write prediction models that understand when the summer peak is
delayed. The trend estimations were simple linear regression models, i.e., the equation of a
straight line that returns the minimum summed, squared Euclidean distance from a given
training dataset. In total, seven years of high temporal Sentinel-1 data were available for
training and evaluation. We also had two time series (σVH and σVV) that were processed
separately. Multiple training-testing cases were created. For each test case, the data were
divided into training and testing periods. Training data varied from 3 to 6 years, while
testing data varied from 1 to 3 years. In some test cases, the first year was discarded,
because as shown in Section 5.1.1 the peak of the first phenological year was an outlier in
σVV . Furthermore, it contained one major peak in σVH instead of the two that most of the
other years had. Despite making some associations with the meteorological thermal data,
we did not have enough data to observe what happens in those cases. The results of the
various tests were evaluated using the root mean square error (RMSE) and the relevant
root mean square error (rRMSE).

4.8. SAR Vegetation Indexes: RVI and RFDI

Vegetation indexes have been widely used for understanding forest health. The Radar
Vegetation Index (RVI) (3) [45] and an adjusted Radar Forest Degradation Index (RFDI) (4)
were tested. They were calculated using the σVV and σVH in decibels and then normalised
as explained in Section 4.2.

RVI =
4σVH

σVV + σVH
(3)

RFDI =
σVV − σVH
σVV + σVH

(4)

4.9. Filtering Experiments

Since SAR data are very sensitive to speckle noise, for the Sentinel-1 high temporal
data, we investigated filtering by applying various convolution filters [46]. Let us assume
that x[n] is the average monthly backscattered signal and h[n] is a discrete convolution
kernel with length L. Simultaneously, n goes from one to the size of x. Then, the convoluted
(in this case smoothed) SAR signal y[n] is calculated as shown in Equation (5) [46]. In
this paper, the convolution kernels { 1

3 [1, 2, 1], 1
3 [1, 3, 1], 1

3 [1, 4, 1], 1
3 [1, 5, 1], 1

5 [1, 2, 3, 2, 1],
1
5 [1, 2, 4, 2, 1], 1

5 [1, 2, 5, 2, 1], 1
5 [1, 2, 6, 2, 1]} were tested on the SAR Sentinel-1 time series data.

y[n] =
L

∑
k=1

h[k]x[n− k] (5)

5. Results
5.1. Average Phenological Graphs

The average phenological graphs created for each satellite mission are presented in
Figures 3 and 4. It is worth noting that the first calendar month of the phenology of
Paphos forest was defined to be November and the last one October. This was decided
by observing the average phenological cycles produced from the various missions (peak
timings), the life cycle of pine processionary (Thaumetopoea pityocampa), the time series of
Calabrian pine and the Mediterranean weather conditions, i.e., the start of the annual rainy
season is November. Figure 3 contains two multiline phenological diagrams generated by
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interpreting ERS-2, Envisat and Sentinel-1 data; the figure on the left-hand side depicts
the average phenological cycles before images with high precipitation were discarded
and the figure on the right-hand side the average phenological cycles after images with
high precipitation were discarded (Section 4.2). Once images with high precipitation were
removed, the diagrams appeared to have similar features. Figure 4 shows the average
phenological graphs and the standard deviation derived by the VV polarization of ERS-1,
ERS-2, Envisat and Sentinel-1 missions before and after filtering out images with high
precipitation. Diagrams in both figures were normalised as explained in Section 4.2.3. Two
main annual peaks were identified using SAR VV-polarization data from three satellite
missions (Figure 3): the first one appears in January and the second one in July. Throughout
the paper, we named those two peaks “winter peak” and “summer peak”.

(a) Including all the available data (b) Noise reduced using meteorological data

Figure 3. Average phenology derived from the VV-polarization of the following satellite missions:
ERS-2 (1995–2011), Envisat (2002–2012) and Sentinel-1 (2014–2021). The values were normalised
using probability distribution alignment. It is clearly shown that after the influence of precipitation is
reduced, the phenology from the three missions becomes similar.

(a) Sentinel 1—not filtered (b) Sentinel 1—filtered

(c) Envisat—not filtered (d) Envisat—filtered

Figure 4. Cont.
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(e) ERS-2—not filtered (f) ERS-2—filtered

(g) ERS-1—not filtered (h) ERS-2—filtered

Figure 4. This figure shows the average and standard deviation of the phenological cycle of Paphos
forest derived from each satellite mission. The left column shows the graphs before the SAR images
with high precipitation are removed.

It is further worth noting that even though the data were normalised, a comparison
between different ages was relatively feasible. For example, according to Figure 3 the
winter peak used to be higher than the summer peak, while nowadays and as shown by
the Sentinel-1 data, both peaks have about the same amplitude. Although Sentinel-1 seems
to have the highest summer peak in comparison to the older data, it has the smallest winter
peak. We cannot assume though that the summer peak has been increased over the years
because this could be the result of the applied normalisation (Section 4.2.3). Similarly, we
cannot assume there are higher values after filtering, but instead there are relatively greater
changes between each month’s backscattering coefficient. Nevertheless, the launched of
Sentinel-1 and the revisit cycle of 6 days makes it possible to observe how the two peaks
have changed over the last 7 years.

5.1.1. Outliers and Kalman Filter Imputation

Using the IQR outlier detection algorithm (Section 4.4), it was derived that February
2016 was a big outlier in both σVH and σVV time series, while April 2016 and July 2015
appeared as outliers only in the σVV time series (Figure 5).

(a) Interquartile distance (IQR) and outlier
detection for VH polarization.

(b) Interquartile distance (IQR) and outlier
detection for VV polarization.

Figure 5. Histograms of the normalised backscattering coefficients σVH and σVV , respectively, indi-
cating the frequency and distribution. Due to normalisation, in both graphs (VH and VV), the median
values are equal to 0.5 and are shown with vertical red lines. Similarly, the IQR values are equal to
0.25 and the first and third quantiles (Q1, Q3) are depicted with black lines. Anything smaller than
Q1− 1.5× IQR or greater than Q3 + 1.5× IQR are considered outliers. The outlier of February 2016
is smaller than Q1− 2.5× IQR for both VH and VV polarizations. The σVV time series contains two
more outliers: July 2015 and April 2016.
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Figure 6 depicts the time series generated using the normalised backscattering co-
efficients σVH and σVV before the Kalman filter imputation was applied, while Figure 7
shows the results of the imputation using the Kalman filter. Two dates were imputed:
the big outlier of February 2016 and the gap in January 2020. Comparing the results of
the imputation with Figure 6 where the time series includes the outlier of February 2016,
the range of the values between November 2016 and November 2019 are stretched after
normalisation since the outlier is not affecting them.

Figure 6. This figure depicts the time series generated using the normalised backscattering coefficients
σVH and σVV .

Figure 7. This figure depicts the time series generated using the normalised backscattering coefficients
σVH and σVV once the outlier of Feb 2016 was removed and the Kalman filter imputation method
was applied to fill the gaps.

Regarding the results in our extended abstract [30], it is worth noting that the mean
and standard deviation were used for normalisation and any value less than zero was
forced to zero. Additionally, meteorological data were available only until the end of 2019.
Therefore, subtle differences may exist.

5.1.2. Measuring Initiation, Duration and Termination of Detected Peaks

We identified peak values for both the average phenological graphs and the Sentinel-1
time series. Table 2 shows the attributes extracted for each peak from the average phenolog-
ical graphs derived from the three missions ERS-2, Envisat and Sentinel-1. Tables 3 and 4
show the peak timings, the amplitudes at the peak timings, the initiations and terminations
of peak timings and their duration in months (widths) of the Sentinel-1 time series for VH
and VV polarisations, respectively.
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Table 2. This table provides the peak timings, the amplitudes at the peak timings, the initiations and
terminations of peak timings and their duration in months (widths). The amplitude is the normalised
backscattering coefficient (σVV) that approximately lies between the range of [0, 1].

Peak
Number Peak Timing σVV Initiation Termination Duration Sum

Sentinel-1
1 Dec 0.671 Nov Feb 3 2.027
2 Mar 0.396 Feb Apr 2 0.967
3 Jul 0.706 Apr Oct 6 3.591

Envisat
1 Jan 0.878 Dec May 5 3.313
2 Jul 0.508 May Sep 4 2.115

ERS-2
1 Feb 0.773 Nov Mar 4 3.187
2 Apr 0.517 Mar Apr 3 1.934
3 Jul 0.578 Jun Aug 2 1.483
4 Sep 0.517 Aug Oct 2 1.468

Table 3. This table contains information derived from Sentinel-1 data with VH. The period of
investigation is Nov 2014 till Oct 2020. For each year, it provides the peak timings, the amplitudes
at the peak timings, the initiation and termination of each peak timing, their duration in months,
as well as the total/sum amplitude corresponding to each peak (start and end both included).
The amplitude is the normalised backscattering coefficient (σVH) that approximately lies in the range
[0, 1]—Section 4.2.

Peak Number Peak Timing σV H Initiation Termination Duration Sum

November 2014–October 2015
1 Jul-15 1.048 Jan-15 Jan-16 12 6.806

November 2015–October 2016
1 Mar-16 0.552 Jan-16 Apr-16 3 1.078
2 Jul-16 0.919 Apr-16 Nov-16 7 4.062

November 2016–October 2017
1 Dec-16 0.755 Nov-16 Feb-17 3 1.487
2 Jul-17 0.948 Feb-17 Nov-17 9 4.756

November 2017–October 2018
1 Jan-18 0.776 Nov-17 Feb-18 3 2.072
2 Mar-18 0.491 Feb-18 Apr-18 2 1.183
3 May-18 0.553 Apr-18 Jun-18 2 1.461
4 Aug-18 0.805 Jun-18 Nov-18 5 3.627

November 2018–October 2019-testing
1 Dec-18 0.762 Nov-18 Jan-19 2 1.627
2 Feb-19 0.55 Jan-19 Mar-19 2 1.296
3 Jul-19 0.69 Mar-19 Oct-19 7 3.743

November 2019–October 2020-testing
1 Jan-20 0.579 Oct-19 Mar-20 5 2.226
2 Aug-20 0.763 Mar-20 Dec-20 9 4.786

November 2020–October 2021-testing
1 Jan-21 0.59 Dec-20 Feb-21 2 1.05
2 Jul-21 0.814 Feb-21 Aug-21 6 3.051
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Table 4. This table contains information derived from Sentinel-1 data with VV. The period of
investigation is Nov 2014 till Oct 2020. For each year, it provides the peak timings, the amplitudes
at the peak timings, the initiation and termination of each peak timing, their duration in months,
as well as the total/sum amplitude corresponding to each peak (start and end both included).
The amplitude is the normalised backscattering coefficient (σVV) that approximately lies in the range
[0, 1]—Section 4.2.

Peak Number Peak Timing σVV Initiation Termination Duration Sum

November 2014–October 2015
1 Jan-15 0.632 Nov-14 Mar-15 4 2.479
2 Jul-15 1.125 Mar-15 Dec-15 9 8.452

November 2015–October 2016
1 Jan-16 0.558 Dec-15 Feb-16 2 1.197
2 Mar-16 0.543 Feb-16 Apr-16 2 0.862
3 Jul-16 0.656 Apr-16 Nov-16 7 2.657

November 2016–October 2017
1 Dec-16 0.834 Nov-16 Feb-17 3 1.754
2 Mar-17 0.373 Feb-17 Apr-17 2 0.497
3 Jul-17 0.753 Apr-17 Oct-17 6 3.296

November 2017–October 2018
1 Jan-18 0.887 Oct-17 Apr-18 6 3.709
2 Aug-18 0.593 Apr-18 Sep-18 5 2.603
3 Oct-18 0.496 Sep-18 Nov-18 2 1.152

November 2018–October 2019-testing
1 Dec-18 0.796 Nov-18 Apr-19 5 3.088
2 Jul-19 0.526 Apr-19 Oct-19 6 2.771

November 2019–October 2020-testing
1 Jan-20 0.638 Oct-19 Mar-20 5 2.334
2 Jul-20 0.658 Mar-20 Nov-20 8 3.885

November 2020–October 2021-testing
1 Jan-21 0.61 Nov-20 Mar-21 4 2.068
2 Jul-21 0.647 Mar-21 Aug-21 5 2.341

5.2. Connections between Unusual Changes and Temperature/Precipitation
5.2.1. Selective Statistical Analysis of Meteorological Thermal Data

The most important times of the year that influence phenological changes are autumn
and spring. Figure 8 is a histogram of the average daily temperatures acquired at the Paphos
airport, Larnaka airport and Athalassa (near Nicosia) meteorological stations at 8 a.m. and
1 p.m. in Novembers. The red horizontal lies depict the mean temperatures recorded each
year over November. Table 5 shows statistics about the temperatures recorded in Cyprus in
November between 2010 and 2018. The lowest value recorded was 13.4 degrees Celsius
on the 25th of November 2014. Even though November 2011 had the lowest average
temperature, we did not have Sentinel-1 data for that year. The second lowest temperature
was recorded in November 2014. The mean temperature in November from all the available
years (2014–2018) was 20.0 degrees Celsius. So, the average temperature of November
2014 was 1.2 degrees Celsius below the average and during that time the lowest average
daily temperature was recorded, which was 6.7 degrees Celsius below the overall average.
Regarding spring, Table 6 shows the mean and standard deviation temperature for the
months of March, April, May and June for 2015–2018.
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Figure 8. This image shows the histogram of the average daily temperatures in November acquired
from 3 stations between 2014 and 2018 included. The average temperature in 2014 is much lower,
indicating a potential reduction of the act of pine processionary starting in spring.

Table 5. This table shows the mean, standard deviation and min temperature of November for each
available year. The daily temperature was calculated by taking the average measurement at 8:00 a.m.
and 1:00 p.m. from three stations: Paphos airport, Larnaka airport and Athalassa.

Year/Temperature Mean Standard Deviation Min

2010 21.9 1.6 18.9
2011 17.2 2.12 14.1
2012 20.7 2.7 17.1
2013 21.1 1.6 17.6
2014 18.8 2.3 13.4
2015 20.8 1.5 16.9
2016 19.5 1.9 16.3
2017 19.4 2.2 15.1
2018 20.4 2.1 16.4

Table 6. This table shows the mean and standard deviation of the months March, April, May and
June for 2015–2018. The daily temperature was calculated by taking the average measurement at
8:00 a.m. and 1:00 p.m. from three stations: Paphos airport, Larnaka airport and Athalassa.

March April May June
Mean Std Mean Std Mean Std Mean Std

2015 17.00 1.65 19.44 2.97 24.74 2.54 26.85 1.39
2016 18.15 1.84 22.97 2.06 24.11 2.11 29.24 2.75
2017 17.00 19.95 20.62 2.32 24.34 1.81 28.29 1.67
2018 19.24 1.73 23.02 2.21 27.04 2.85 28.56 1.77

5.2.2. Precipitation and Rainfall Count Days Time Series

Not to be missed is the drought factor. We used the precipitation data requested
from the Department of Meteorology (Section 2.2), Cyprus, and created a time series of
monthly precipitation data (Figure 9a) and a time series of the number of rainy days per
month (Figure 9b). A day with precipitation greater or equal than 0.2 was considered as a
rainy day.
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(a) Average precipitation per month and each rainy season.

(b) Average number of rainy days per month.

Figure 9. These time series demonstrate the extend of drought years and periods.

5.3. Prediction and Forecasting

Figures 10 and 11 depict the normalised σVH and σVV , respectively, their mean and
standard deviation, as well as the estimated trend lines for (1) the summer peaks and
(2) the annual means. The trend lines included in the graphs were derived using the
period from November 2015 to October 2021 as training datasets. These trend lines were
considered appropriate for the visualisation due to the increased quantity of data used
for training but were not evaluated. Tables 7 and 8 show the results of the predictions
for the VH polarisation and Tables 9 and 10 show the results of the predictions for the VV
polarisation. “NA” appears on these tables when the corresponding year was used for
training a trend line and, therefore, it was not appropriate to use the same dataset for
testing it. The phenological years were labelled from 1 to 7, starting with year “November
2014–October 2015” as number 1. The first year was not included in many tests as it was an
outlier and there were not enough data with a similar behaviour to analyse it separately.
At each test, we used a different range of years for training and evaluating. For example,
if the training range was [2, 4], it implied that the second, third and fourth years were used
for training (for deriving the trend lines) and the fifth, sixth and seventh years were used
for evaluating the prediction, while the first year was not included in the calculations. It is
worth noting that these are preliminary research results since there are many factors to be
taken into consideration for reliably predicting those values (including precipitation and
temperature) but there is a limited number of years of data.
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Figure 10. This figure depicts the normalised σVH , its mean and standard deviation, as well as two
trend lines derived from years 2–5: the trend of the summer peaks and the trend of the annual means.

Figure 11. This figure depicts the normalised σVV , its mean and standard deviation, as well as two
trend lines derived from years 2–5: trend of the summer peaks and the trend of the annual means.

Table 7. This table provides the results of the various tests conducted for predicting the σVH at the
summer peak (amplitude of July) using linear regression. The first column indicates the years used
for training and a and b are the coefficients derived for the best fit. It also includes the predicted
normalised σVH for July 2019, July 2020 and July 2021, respectively. NA exists at places where the
amplitudes at July 2019 and/or July 2021 was/were used for training the trend lines. RMSE and
rRMSE were used to evaluate the prediction.

Training y = ax + b July 2019 July 2020 July 2021
Range a b σV H RMSE rRMSE σV H RMSE rRMSE (%) σV H RMSE rRMSE (%)

[1, 4] −0.0057 1.0914 0.76 0.0701 10.1613 0.6915 0.0703 0.3387 0.6229 0.1911 23.4754
[2, 4] −0.0046 1.0498 0.7809 0.091 13.191 0.7253 0.0364 9.2256 0.6697 0.1443 17.7278
[1, 5] −0.0069 1.1164 NA NA NA 0.6367 0.1251 4.7827 0.5544 0.2595 31.887
[2, 5] −0.0068 1.1158 NA NA NA 0.637 0.1248 16.4197 0.5549 0.2591 31.8306
[1, 6] −0.0054 1.0781 NA NA NA NA NA NA 0.6369 0.1771 21.7547
[2, 6] −0.0048 1.0455 NA NA NA NA NA NA 0.6536 0.1604 19.7002
[3, 6] −0.0057 1.0989 NA NA NA NA NA NA 0.6316 0.1823 22.3988
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Table 8. This table provides the results of the various tests conducted for predicting the mean annual
σVH using linear regression. The first column indicates the years used for training and a and b are the
coefficients derived for the best fit. It also includes the predicted average normalised σVH . NA exists
at places where the year “November 2018–October 2019” and/or “November 2019–October2020
was/were used for training. RMSE and rRMSE were used to evaluate the prediction.

Training y = ax + b November 2018–October 2019 November 2019–October 2020 November 2020–October 2021
Range a b σV H RMSE rRMSE σV H RMSE rRMSE (%) σV H RMSE rRMSE (%)

[1, 4] 0.0025 0.4312 0.5788 0.071 13.9715 0.6094 0.1323 27.7312 0.6399 0.2091 48.5447
[2, 4] 0.0035 0.3985 0.6003 0.0924 18.1974 0.642 0.165 34.5772 0.6838 0.253 58.7255
[1, 5] 0.0015 0.4513 NA NA NA 0.5555 0.0785 16.4492 0.5734 0.1426 33.1106
[2, 5] 0.0014 0.4539 NA NA NA 0.5539 0.0768 16.1033 0.571 0.1402 32.5574
[1, 6] 0.0006 0.4715 NA NA NA NA NA NA 0.5214 0.0907 21.0444
[2, 6] 0.0002 0.4914 NA NA NA NA NA NA 0.5094 0.0786 18.2446
[3, 6] −0.0007 0.5432 NA NA NA NA NA NA 0.4839 0.0532 12.3412

Table 9. This table provides the results of the various tests conducted for predicting the σVV during
the summer peak (amplitude of July) using linear regression. The first column indicates the years
used for training and a and b are the coefficients derived for the best fit. It also includes the predicted
normalised σVV for July 2019 and July 2020, respectively. NA exists at places where the peak at
July 2019 and/or July 2020 was/were used for training. RMSE and rRMSE were used to evaluate
the prediction.

Training y = ax + b July 2019 July 2020 July 2021
Range a b σVV RMSE rRMSE σVV RMSE rRMSE (%) σVV RMSE rRMSE (%)

[1, 4] −0.0121 1.1246 0.4206 0.1056 20.0754 0.2749 0.3835 10.4001 0.1292 0.5173 80.0106
[2, 4] −0.0027 0.7592 0.604 0.0778 14.7819 0.5719 0.0866 58.2492 0.5398 0.1068 16.5178
[1, 5] −0.0104 1.087 NA NA NA 0.3575 0.301 13.147 0.2324 0.4141 64.0539
[2, 5] −0.0046 0.8156 NA NA NA 0.4964 0.1621 45.7083 0.4417 0.2049 31.6919
[1, 6] −0.0069 0.9948 NA NA NA NA NA NA 0.4309 0.2157 33.36
[2, 6] −0.0019 0.7243 NA NA NA NA NA NA 0.5699 0.0767 11.8559
[3, 6] −0.003 0.7905 NA NA NA NA NA NA 0.5427 0.1039 16.0654

Table 10. This table provides the results of the various tests conducted for predicting the mean annual
σVV using linear regression. The first column indicates the years used for training and a and b are the
coefficients derived for the best fit. It also includes the predicted average normalised σVV . NA exists
at places where the year ”November 2018–October 2019“ and/or ”November 2019–October2020
was/were used for training. RMSE and rRMSE were used to evaluate the prediction.

Training y = ax + b November 2018–October 2019 November 2019–October 2020 November 2020–October 2021
Range a b σVV RMSE rRMSE σVV RMSE rRMSE (%) σVV RMSE rRMSE (%)

[1, 4] −0.0056 0.6749 0.348 0.1339 27.7796 0.2804 0.1584 36.0977 0.2127 0.1834 46.2978
[2, 4] 0.0013 0.4314 0.508 0.0262 5.4292 0.5239 0.0851 19.4048 0.5397 0.1436 36.2534
[1, 5] −0.0037 0.6379 NA NA NA 0.3798 0.059 13.4402 0.3355 0.0606 15.2977
[2, 5] 0.0008 0.4464 NA NA NA 0.5 0.0613 13.9655 0.5092 0.1131 28.5476
[1, 6] −0.0031 0.6248 NA NA NA NA NA NA 0.3692 0.0269 6.8034
[2, 6] −0.0002 0.4769 NA NA NA NA NA NA 0.4591 0.063 15.8926
[3, 6] −0.0003 0.4801 NA NA NA NA NA NA 0.4575 0.0614 15.4884

5.4. Applicability of SAR Vegetation Indexes: RVI and RFDI

The radar vegetation indexes, RVI and RFDI are depicted with black along with σVH
and σVV on Figures 12 and 13, respectively.
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Figure 12. The time series derived using the RVI index in comparison with σVH and σVV .

Figure 13. The time series derived using the RFDI index in comparison to σVH and σVV .

5.5. Filtering Experiments

The filtering experiments for the VH-polarization are shown in Figure 14. The kernel
[1, 5, 1] was initially chosen as the best option as it slightly smoothed the signal while
causing the least distortion, preserving the most important peaks of the investigation
period (Figure 14e). Despite the initial idea that convolutional filtering would smooth the
time series and improve the results, it was shown that it may drop important information
so we did not use the filtering approach in the preprocessing steps.

(a) h[1] = [1,2,1] (b) h[1] = [1,3,1]

(c) h[1] = [1,4,1] (d) h[1] = [1,5,1]

Figure 14. Cont.
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(e) h[1] = [1,2,3,2,1] (f) h[1] = [1,2,4,2,1]

(g) h[1] = [1,2,5,2,1] (h) h[1] = [1,2,6,2,1]

Figure 14. This figure shows the tests of the various filtering option on Sentinel-1 data with VH-
polarization. Blue represents the original x[i] signal, while orange is the smoothed signal y[i].
The green dots are the detected peaks of x[i], while the red dots are the detected peaks of y[i]. Please
note that the coefficients of these graphs were normalised using the mean and standard deviation
instead of the median and IQR and therefore they slightly differ from Figure 7.

6. Discussion
6.1. Average Phenological Graphs

The changes observed in the SAR data were seasonal and we believe that the needles
of Calabrian pine played a substantial role in the occurrence of those two peaks. The rainy
season starts in November, so it is likely that Calabrian pines absorb water and their
dielectric properties change (i.e., increased water content in woody structure) resulting
into a higher backscattered SAR signal. Consequently, an increasing trend from around
November till January was observed. Pine processionary (Thaumetopoea wilkinsonii) is
a pest that eats the needles of the conifers and conifers generate new needles annually.
During autumn, the pests are slowly moving their nest upwards so that they can be reached
by direct sunlight. This helps them cope with the colder months during the winter [47].
In February, they have already moved their nest on top of the trees and their action is
intensified as they are fully grown, and in March they start descending to the ground [47].
That is why there was a big drop in the time series around February, reaching the lowest
point in March. According to personal communication with experienced foresters employed
by the Department of Forest of Cyprus, Calabrian pine starts to produce new needles
annually in April and drops the old ones, with a maximum lifelong around three years
old, during the summer. This was aligned with the summer peak. The new needles keep
growing until July and, consequently, we observed an upward trend after the decreased
backscattering coefficient in the springtime. A decline followed, starting in August, when
the Calabrian pine starts dropping the old needles. This was also associated with the annual
drought season (Figure 9), which implied that the water content of the trees may also have
been reduced. Initially, we thought that cones may also have an impact, but according
to [48] the cones ripen between May and June. They may contribute to the increasing trend
after the fall around March, but the growth of needles should play a more important role.
Not only the summer peak occurred at least one month after the cones were ripe (July)
but also warmer spring conditions were associated with a delay of the peak; in contrast
warmer spring conditions cause the cones to ripen earlier.

6.2. SAR Time Series with Sentine-1

By comparing the two Sentinel-1 time series, both σVH and σVV provided useful and
different information. Hansen et al. [49] observed large backscatter values in forested areas
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in both VV and VH. In this study, the mean value of σVH was −10.87 decibels and the mean
value of σVV was −4.32 decibels. Once they were normalised (Equation (1)), they became
comparable. By observing Figure 6, we can see that σVH had a higher amplitude during
the summer peak, while σVV had a higher amplitude during the winter peak. Further,
Malhi et al. [50] compared σVH , σVV and NDVI for estimating above-ground biomass (AGB)
in a tropical Indian forest. Even though standalone VH was proved inefficient in estimating
AGB, the data were acquired on the 30th of September 2018. In September at our study
area the backscattering coefficients in VV and VH were both low, so we recommend a time
series analysis for selecting the best months of the year for forest inventories.

6.3. Outlier

Outliers could be a forest disturbance, so it is important to investigate and understand
the drivers of an unusual change. Andronis et al. [34] studied the same area of interest
and compared an NDVI time series with land surface temperature (LST). A breakpoint
was identified in November 2015 using the bfast algorithm and it was associated with a
locust attack. A severe decline of NDVI was observed after this time [34]. The outlier of
February 2016 and April 2016 may relate to the same attack; they occurred straight after the
breakpoint, and it is likely that the density/foliage-related degradation may have followed
the reduction of live vegetation in the forest. Nevertheless, according to the precipitation
time series, the year that the outliers appeared was a drought year. The composition of
the forest could be destructed during those years and an increased number of pests may
appear. Considering also that Paphos forest contains old dense plantations and it consist
only of one tree species (once small trees and shrubs are excluded), it is more prone to
pest attacks.

6.4. Measuring Initiation, Duration and Termination of Detected Peaks

As defined earlier, a phenological cycle starts in November and ends in October with
two main peaks: the summer peak and the winter peak. According to Tables 3 and 4, those
two peaks occurred in December/January and July/August, respectively. There were
occasions where smaller peaks existed between the winter and the summer peaks, usually
in March, while during the first two phenological years, the winter peaks (January 2015 and
January 2016) were missing in the σVH time series, but they existed with low amplitudes
in the σVV time series. It is worth mentioning that those two years contained the outliers
detected in Sections 4.4, 5.1.1 and 6.3. July 2015 had a very high amplitude in comparison
to the other “summer peaks”. During the year between November 2015 and October 2016
that had the lowest precipitation, the winter peak was missing in σVH and there were two
outliers in Feb 2016 and April 2016. Therefore, all these observations may relate. A potential
relation between the big peak of July 2015 and the pine processionary was discussed in
Section 5.2.1. Section 5.2.1 contained the discussion on the selective statistical analysis of
meteorological thermal data for understanding the drivers of some changes in the observed
phenological changes.

6.5. Connections between Unusual Changes and Temperature/Precipitation
Selective Statistical Analysis of Meteorological Thermal Data

Using meteorological thermal data, we tried to understand why there was one peak
in the time series of the σVH data during the first phenological year (Nov 2014–Oct 2015),
while the following years contained two main peaks (the winter and summer peaks) and
occasionally some weaker ones. Figure 8 and Table 5 were generated to understand whether
temperatures in November 2014 were lower than the average. As shown in Section 5.2.1,
November 2014 was colder in comparison to the other years. Fewer pests survive cold
autumn temperatures relevant to the warm Mediterranean climate. Therefore, the effect
of the pine processionary eating pine needles, which should have shown in the SAR data
with low March backscattering coefficients, was reduced in 2015. This is depicted in the
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graph from Figure 10. Nevertheless, it is also likely that the phenology may have changed
as a result of the drought year in November 2015–March 2016 (Section 5.2.2).

Furthermore, the second main peak, which usually occurs in July, was aligned with
the maturity of the new needles and the start of dropping the old ones. It further occurred
about one month after fruition time (cone-growing period [30]) of the Calabrian pine that
dominates Paphos forest. According to Hawking [51], the blossoming time of Calabrian
pine is between March and May. The cones mature between May and June [51]. According
to Cleland et al. [19], shifts in the phenology of plants are driven by environmental changes.
By analysing the mean and standard deviation of the daily temperatures up to four months
before the expected summer peak, it was shown that May 2018 was around 3 degrees
Celsius above the average with a high standard deviation, followed by warmer than
average March and April (Table 6). This is an indication that the increased temperature
during the spring months may have caused the delay of the summer peak in 2018. Thus,
we believe that the summer peak relates to the regeneration of the needles rather than the
blossoming of the cones since warmer spring conditions make cones mature earlier.

6.6. Precipitation and Rainfall Count Days Time Series

The rainy season is from November to March, and we observed that the drought
year of November 2015 was associated with the outlier detected with the IQR detection
algorithm. Considering that it includes old plantations that are dense and predominantly
consisted of one specie (Pinues Brutia), we suspect that due to the drought, the forest
became more prone to pest attacks. Then, in the VH data, we saw a decline in the peaks
until a year after the increased rainfall, suggesting that when rainfall increases one year,
the benefits of the rain are shown the year after.

6.7. Discussion on Prediction and Forecasting

Overall, for this small dataset, it was not implied that the more SAR data were used
for training the trend lines, the more accurate the prediction was. This occurred because
the phenology of the forest was influenced by various factors including high temperatures
as explained in Section 5.2.1. In parallel, the further away the testing data were from the
training data, the lower the accuracy was (e.g., in test case [1,4], the prediction of July
2019 was better than the prediction of July 2020). In most test cases, the rRMSE was less
than 20% in predicting the σVH and σVH of the mean and July for the adjacent year to
the training data. Nevertheless, a big evaluation error was observed in predicting σVV
of July 2020 in test cases [1,4] and [2,5], where the outlier of July 2015 was not used for
training and, therefore, a better prediction was expected. The rRMSE values for those
two test cases were 45.71% and 58.25%, respectively, while for the test case [1,4], the
rRMSE value for predicting July 2019 was 14.78%. As shown in Figure 9, in contrast to
the Northern Europe drought, in Cyprus, there was increased precipitation (increased
rainfall) between November 2018 and March 2020. We therefore believe that the increased
precipitation that preceded conferred increased fruition and/or foliage during the summer
period of 2020. This increase in the amplitude of the summer peak influenced the evaluation
results. This was also depicted in Figure 10; there was an overall declining trend of the
summer peak amplitudes, but the amplitudes of the summer peak in 2020 were bigger
than in 2019. Sentinel-1 had high probabilities, while the combination of meteorological
data complimented the data and could explain the drivers of phenological alternations.
The results indicated here are preliminary, with many limitations due to the length of the
time series. Weather conditions should be taken into consideration for reliable predictions.
We believe that in the following years, with the availability of longer time series, more
specialised models will emerge.

6.8. Applicability of SAR Vegetation Indexes: RVI and RFDI

By observing Figures 12 and 13 and the equations of RVI and RFDI, those indices
were considered not applicable for the observation of time series phenological changes.
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RVI created some inconsistencies in the high values that did not necessarily imply a high
structure. For example, if the σVH was low and there was a big difference between σVV and
σVH , then RVI took a high value (see December 2014). Vice versa, if σVH was high but there
was a difference between the two, then RVI took a much lower value than both σVH and
σVV . Additionally, RFDI occasionally exaggerated the differences between σVH and σVV .
For instance, July 2015 had a high reflectance at both σVH and σVV and RFDI returned a low
value, not representing the high structural/moisture backscattering information acquired
by the sensor. Similarly, May and July had low values (small denominator) resulting in
high RFDI values; nevertheless, low σVH and σVV implied a low structure and moisture.
Additionally, the phenological repetitions depicted in σVH and σVV seemed to vague when
RVI and RFDI were calculated. For those reasons, we were hesitant about the reliability of
those indexes in observing phenology.

6.9. Filtering

To avoid dropping important details, the filtering step was not included in the final
processing pipeline. The selected filtering kernel was dropping one of the two peaks in
σVH between January 2018 and August 2018. The summer peak usually occurs in July but
there was a delay in summer 2018. During that delay, there were two small peaks between
the winter and the summer peak—something unusual. So, we suspect that those two small
peaks may be associated with the high spring temperatures of the same year (Section 5.2.1)
and the delay of the summer spring. When there are high temperature during or straight
after winter, plants can be confused and start blossoming earlier than expected. When a
cold day follows an unusually hot day, that can be destructive for the plant. Therefore, it is
very important to observe small unusual peaks since their appearance may indicate that
the forest is suffering or altering. Even though we did not include this filtering steps in
the processing chain, it is important to mention it to help future researchers understand
the process.

7. Conclusions

The results of this paper both agree with and adds to the existing literature. As
in [25], who claimed that phenology can be estimated with higher accuracy using SAR
than optical data. It was shown that phenological diagrams derived with spaceborne SAR
data of Paphos forest, Mediterranean sea, Cyprus, contained two major peaks instead of
one identified with optical imagery [34]. After a direct communication with experienced
foresters from the Department of Forests, Cyprus, it was concluded that the most reasonable
explanation for the summer peak was the annual regeneration of the needles and the
drop of the old ones. Furthermore, similarly to [24], we showed that autumn and spring
climatic conditions play a substantial role in changes presented in land surface phenology.
Thus, if the temperature in May is high, then there may be a delay of the summer peak.
Additionally, low temperatures in November may relate to a decreased action of the pine
processionary (Thaumetopoea pityocampa) around February and consequently the appearance
of one major peak, instead of two, over a phenological year (November-October). Equally
important was the association of the rainy season of November 2015–March 2016 that
drought (reduced average precipitation) existed with the outliers of February 2016 and
April 2016. Secondary conclusions of this work include: a preprocessing that includes
smoothing of signals can influence the quality of the results by dropping small peaks that
may be important; the radar vegetation indexes (RVI and RFDI) were considered unreliable
for time series phenological observations of forests, and in contrast to RVI and RFDI, both
σVH and σVV returned high amplitudes and became comparable once normalised; finally,
the detection of peak amplitude and mean backscattering coefficient was possible using
trend lines but the time series was short and the trend was highly sensitive to other factors
(e.g., precipitation) producing high rRMSE values. Overall, the launch of Sentinel-1 brought
new research opportunities for observing the phenological changes of forests. After some
more years of Sentinel-1 operation, when the period of investigation is longer and more
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data are available for the time series analysis, the use of advanced machine/deep learning
techniques [52] and signal processing approaches could improve prediction. Combining
multisensor/multimodal data improves prediction [50,53]. Therefore, combining satellite
multisensor, ground-truth and other spaceborne data in the time series analysis are soon
expected to emerge for a better understanding and modelling of the drivers of phenological
changes. This will further support climate-related research.
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