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Abstract: Geoinformatics plays an essential role during the recovery phase of a post-earthquake
situation. The aim of this paper is to present the methodology followed and the results obtained by the
utilization of Unmanned Aircraft Systems (UASs) 4K-video footage processing and the automation
of geo-information methods targeted at both monitoring the demolition process and mapping the
demolished buildings. The field campaigns took place on the traditional settlement of Vrisa (Lesvos,
Greece), which was heavily damaged by a strong earthquake (Mw=6.3) on June 12th, 2017. For this
purpose, a flight campaign took place on 3rd February 2019 for collecting aerial 4K video footage
using an Unmanned Aircraft. The Structure from Motion (SfM) method was applied on frames
which derived from the 4K video footage, for producing accurate and very detailed 3D point clouds,
as well as the Digital Surface Model (DSM) of the building stock of the Vrisa traditional settlement,
twenty months after the earthquake. This dataset has been compared with the corresponding one
which derived from 25th July 2017, a few days after the earthquake. Two algorithms have been
developed for detecting the demolished buildings of the affected area, based on the DSMs and 3D
point clouds, correspondingly. The results obtained have been tested through field studies and
demonstrate that this methodology is feasible and effective in building demolition detection, giving
very accurate results (97%) and, in parallel, is easily applicable and suit well for rapid demolition
mapping during the recovery phase of a post-earthquake scenario. The significant advantage of the
proposed methodology is its ability to provide reliable results in a very low cost and time-efficient
way and to serve all stakeholders and national and local organizations that are responsible for
post-earthquake management.

Keywords: 3D change mapping; building demolition; post-earthquake management; 4K video; UAS

1. Introduction

An earthquake is a rare event that can have a significant impact on humans and the landscape,
while it can also affect the socio-economic development of a region [1]. The process of disaster
management can affect the severity of the disaster and the duration of the aftermath. Disaster
management consists of four phases: mitigation, preparedness, response, and recovery [2]. The recovery
phase aims to restore the life of the city, at the pre-destructive levels, as well as to reduce vulnerability
in the future [3] and it has a variable time range according to the length of the short-term and long-term
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phases. The flow of the reconstruction phase depends on the characterization of the disaster-stricken
areas by decision-makers, mainly into three types: collective relocation area, rebuilding on original
location area, and non-disaster area [4]. The usefulness of geospatial data and fields for monitoring
changes has been proven thoroughly over the last few years. Geospatial data regarding disaster
management are capable of contributing to a field of research that manages time, spatial, and descriptive
information to such an extent [5]. The issue of scale is critical when discussing geospatial information
needs for disaster management issues. While many capabilities in earth observation have been aimed
at regional to global consideration, the challenge to the research and applications community is to
adapt the techniques and the technology of geospatial analysis for disaster management issues to the
local level [6].

Widespread 3D acquisition techniques have highlighted the usefulness of 3D data, as it
is challenging to understand spatial information using just 2D datasets, such as, for example,
a reconstruction plan [7], especially if the building-height changes over time. The development
of new computer vision algorithms dramatically reduces the time needed and improves the degree of
automation in generating 3D point clouds using photogrammetry techniques. Structure-from-Motion
(SfM) is a computational photogrammetry method where the 3D coordinates of an image point are
derived by analyzing two or more photos collected from different positions that have significant
overlap with each other [8].

Data acquisition techniques using Unmanned Aircraft Systems (UASs) allow for the production
of a complete 3D model with the highest possible resolution, wherein a post-earthquake scenario
UASs can document the state of an area, ensuring the safety of all operators [9]. The European
Commission already assesses the potential role of UASs in emergency situations and in a rapid response
and mapping context as “an alternative and/or complementary source of post-event imagery” [10].
UASs can provide rapid solutions with no infrastructure and they are a complement to larger
manned-aircraft photography and photogrammetry [11]. The combination of using UASs with the
photogrammetric method of SfM has previously been applied for reconnaissance purposes following
the 2009 L’Aquila, Italy earthquake [12,13], the 2016 Kumamoto, Japan earthquake [14], the 2016
Amatrice, Italy earthquake [15], the 2016 Kaikoura, New Zealand earthquake [16], and the 2017 Lesvos,
Greece earthquake [17–19]. In addition to rapid damage assessment, UAS has been used for other
disasters related to earthquakes and geological structure (e.g., landslides [20–22] and for damage
assessment in other type of disasters, such as floods [23]).

One crucial parameter in disaster management is the need for comprehensive imagery acquisition
of an area to support monitoring rather than focusing only on specific structures [24]. The approach
used to monitor and detect changes in residential areas during the relief phase, where the priority
is to identify the most affected areas, differs from that used to detect changes during the recovery
phase, where the purpose is to ascertain the progress being made in the recovery process, and also to
determine the nature of that progress [25]. Especially during the recovery phase, regular mapping of
the urban interface needs to be undertaken using high-resolution geospatial data. The availability of
a detailed representation of a disastrous phenomenon, such as an earthquake using UASs, besides
the support for the first estimation of occurred damages, can be used for the timely monitoring of the
post-disaster situation and recovery process [26]. In [27], the reconstruction process in Bam, Iran after
the 2003 earthquake was tracked and analyzed using three approaches to comprehensively assess the
reconstruction progress and sustainability of long-term disaster recovery projects.

Change detection (CD) or time-series data analysis in 3D have gained great attention due to their
capability of providing volumetric dynamics to facilitate more applications and provide more accurate
results. Different methods have their advantages for different types of 3D data, and it is important to
select an appropriate approach according to the application and data [28]. More analytically, height
differences remain the most straightforward way to compute the geometric differences of two Digital
Surface Models (DSMs) in several studies. Menderes et al. [29] and Turker and Cetinkaya [30] revealed
the effectiveness of exploiting DSM differences between two epochs in order to detect and map
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collapsed buildings after a catastrophic earthquake, with an accuracy of 94% and 84%, respectively.
Both studies are based only on DSMs and not on 3D point clouds, which is the primary 3D dataset
derived from UAS image/video processing. On the other hand, point clouds generated from airborne
oblique images have become a suitable source for detailed building damage assessment after a disaster
event, since they provide the essential geometric and radiometric features of both roof and façades of
the building [31]. The present paper presents the results obtained by processing DSM and 3D Point
Clouds individually, in order to better understand the usefulness of 3D point clouds for building
demolition mapping of a post-earthquake situation.

The aim of this paper is to present the methodology followed and the results obtained
by the exploitation of Unmanned Aircraft Systems (UASs) 4K-video footage processing and the
automation of geo-information methods targeted at monitoring the demolition process and mapping
the demolished buildings during the recovery phase of a post-earthquake situation. More specifically,
this study examines:

a. The usability of UASs 4K video footage in accurately producing 2D and 3D information able
to provide urban and rural landscape changes during the recovery phase of a catastrophic
earthquake event.

b. The automation of geoinformation processing aiming to detect and map the demolished buildings
based on multitemporal 3D information (3D point cloud and DSM).

Even if various studies have been conducted to utilize UASs capabilities for post-earthquake
monitoring, to the best of our knowledge, the usability of 3D point clouds has not yet been fully
examined, especially for mapping the building demolition process during the recovery phase. Previous
studies were mainly focused on using differences of two DSMs, while 3D point clouds were found to
be very promising mainly for building damage assessment. Monitoring the recovery process can help
the authorities to understand the conditions that may have contributed to the disaster and provide the
ability to assist post-earthquake management and reconstruction processes, since such 3D information
and geo-visualization can serve all stakeholders and national and local organizations.

2. Materials and Methods

2.1. Study Area and Data Acquisition

On the 12th of June 2017, a magnitude Mw 6.3 earthquake occurred offshore the SE coast of Lesvos
island, Greece, as shown in Figure 1 [32,33]. A magnitude Mw 6.3 can be characterized as “a moderate”
earthquake, compared to those of other events of the world, such as the 2010 Haiti and 2005 Pakistan
earthquakes [34], but it is a serious seismic event for a European country [35]. However, Vrisa village,
had un-strengthened masonry buildings and this led to the severe damage of the village. A complete
earthquake-induced building damage assessment can be found in [36]. Vrisa was proclaimed by the
Greek state as a “traditional settlement” in 2002, because apart from its overall architectural interest it
had remarkable architectural and morphological features and was an excellent example of local folk
architecture [37].

The geological and geomorphological setting, along with the building characteristics, have been
identified as the main factors controlling the spatial distribution of building damages. Specifically,
the combination of highly vulnerable old masonry structures founded on alluvial deposits and on
slopes in an area bounded by significant faults in combination with probable directivity phenomena
resulted in destruction [33]. More analytically, the geology of Lesvos island can be summarized as a
basement composed of metamorphic rocks overlain by post-Alpine formations, comprising Miocene
volcanic rocks and Neogene marine and lacustrine deposits [38]. As regards the geological setting
of the settlement of Vrisa, its western part is founded on Holocene alluvial deposits comprising gray
and red clays, sands and gravels, while its eastern part is founded on Pleistocene deposits, including
fluvial sand, clays, and conglomerates, with thicknesses of about 100 m [36].
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Figure 1. Simplified map of Greece presenting the location of Lesvos island, the Vrisa traditional
settlement and the 12th of June 2017 (Mw 6.3) earthquake epicenter.

As far as the impact to the built environment of the Vrisa traditional settlement is concerned,
shortly after the earthquake, the local Earthquake Rehabilitation Organization (ERO) performed the
first and second order visual inspections, where 815 buildings were distinguished into “Green—safe
for use”, “Yellow—unsafe for use”, and “Red—dangerous for use”, based on the Earthquake Planning
and Protection Organization (EPPO) guidelines [39], and were marked with the appropriate sign based
on this damage assessment, as shown in Figure 2. According to the legislation, buildings marked Red
should be demolished soon by their owners, while the Yellow and Green ones should be repaired.
Practically, several Yellow-marked buildings may also be demolished by their owners, since the cost
for their reconstruction is very high. It should be noticed that, according to the legislation and for the
purpose of this paper, demolishing a building also includes the transferring of the debris.

After the earthquake, several field campaigns took place for collecting: (a) information concerning
the buildings, such as their ERO damage assessment (red, yellow and green), their geographical
coordinates, their constructed material (i.e., masonry, R/C building), and number of stores; (b) about
150 ground control points (GCPs) using an RTK system; (c) a UAS (hexacopter) flew over the Vrisa
village at 65 m altitude and captured vertical images using a Sony A5100 camera with a fixed lens of
19 mm focal length on 25th July 2017 [17].
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Figure 2. Damage assessment of Vrisa building stock after the final inspection by Greek ERO (black
buildings present uninspected buildings).

In the months after the major earthquake, a number of flights took place in order to capture data for
monitoring the recovering process of the village. That is, the demolition activities ask for novel strategies
for an automated methodology for multitemporal monitoring and mapping of building-changes,
based on UAS video footage. More precisely, the demolition process started, requiring novel strategies
for developing a fully automated methodology for the multitemporal monitoring and mapping of
the changes occurred, based on UAS video footages. For this purpose, one of the flights took place
in February of 2019. The flight mission involved planning and video footage acquisition covering
the monitoring area by means of a UAS—Phantom 4 Pro—which is a small and portable quadcopter
(weight of around 1.4 kg) and is equipped with a custom 4K video camera that has a 1” CMOS sensor,
84-degree field of view, 24 MP images, and a focal length of 35mm format equivalent. Flight planning
is normally performed in the lab with dedicated software (Litchi Hub), starting with the knowledge of
the area of interest (AOI), the required ground sample distance (GSD) or footprint, and the intrinsic
parameters of the on-board digital camera and the main purpose-goal of the data exploitation. The most
crucial flight parameters that are be decided directly affect the quality of the video data and, as such,
the quality of the produced 3D point clouds, the digital surface models and the orthophoto maps.
More analytically:

• Flight height: Directly related to the GSD of the video frames. After several flights at different
heights, ranging from 30 m to 100 m, it was decided that the height of 80m is the most suitable for
the specific study and the GSD was calculated to be approximately 3 cm/pix.

• Flight speed: Directly affects the video quality as it introduces blurring on the video frames if it is
too high and, on the other hand, it requires more time flight and battery energy if it is too slow.
After several test flights, it was decided that the most efficient flight speed for acquiring video
footage was 25 Km/h.

• Flight path: Directly affects the building appearance in the video footage and controls the
side-overlapping of the deriving frames. These two parameters are crucial for the quality and
density of the 3D point clouds, especially for points that represent the facades of the buildings.
For reaching the specific research goals a flight plan was designed, using Litchi Mission hub
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software, taking into consideration the shape of the building blocks by following flight paths that
are parallel to the streets and with a 50 m distance among them, providing 80% side overlapping,
as shown in Figure 3.

Figure 3. The flight path designed for covering the area of interest as it appears on Google Earth
satellite base map.

2.2. Methodology

The methodology of the present research entails three steps: (i) video footage processing and
3D modeling; (ii) development of the geodatabase of Vrisa buildings; (iii) mapping of demolished
buildings by applying two demolition detection algorithms through the exploitation of 3D point
clouds and DSMs on different epochs (03/02/2019 and 25/07/2017). The sequence of the methodology is
portrayed in Figure 4.

Figure 4. Flow chart of the methodology followed for 3D change monitoring and mapping of the
demolition process at Vrisa settlement after the destructive earthquake.
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2.2.1. Geo-Registration

Geo-registration is a very crucial step in order to provide absolute orientation and to assign the
proper scale to the orthorectified aerial high-resolution images and the 3D point cloud. Thus, it was
necessary to add an adequate number of GCPs measured, in the Greek reference system GRS-87,
using the RTK technique. The accuracy of the produced orthophoto and DSM, as shown in Table 1
depicts the values of the total RMS error. More specifically, for the geo-registration of the UAS survey
3rd February 2019, 10 GCP’s were used with a total RMS of 2.2 cm. GCP locations and error estimates
are depicted in Figure 5, and from the geo-registration accuracy achieved, we can conclude that the
precision of the geoinformation produced is of satisfactory accuracy for 3D monitoring and mapping.

Table 1. List of the number and GCPs used and X, Y, Z, and Total RMS.

Number X—Easting
Error (cm)

Y—Northing
Error (cm)

Z—Altitude
Error (cm)

Total RMS
(cm)

GCP 10 1.8 1.2 0.2 2.2

Figure 5. GCP locations and error estimates. Z error is represented by ellipse color. X,Y errors are
represented by ellipse shape. Estimated GCP locations are marked with a dot. (From Photoscan/Agisoft
software report.)

2.2.2. Video Footage Processing for 3D Modelling

Video footage processing aims to produce an accurate 3D model of the Vrisa settlement almost
1.5 year after the destructive earthquake. The processing pipeline involves the following steps:

• Video Frame Extraction—VFE is not a straightforward process since the frames that will be
extracted should meet the prerequisites of further processing that leads to generating accurate 3D
point clouds and digital surface models. For this reason, the wise frame selection (WFS) approach
has been applied, which refers to an elaborated approach that reduces blur-motion effects and
frame redundancy, with the aim of discarding the most redundant (i.e., more than 80% front
overlap) and lowest-quality frames (i.e., an Image Quality Index (IQI) lower than 0.5 frames).
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• The Structure from Motion (SfM) [40] and Multi View Stereo (MVS) [41] algorithms are the most
popular approach in order to create 3D point clouds and digital surface models from a set of 2D
images acquired by UAS. This approach has been extensively implemented in the last decade in
3D mapping in different scales and has been employed in some commercial and free software
packages in different variations.

2.2.3. Mapping of Demolished Buildings

Mapping of demolished buildings by means of (i) 3D point clouds and (ii) DSM derived by
UAS high-resolution images and video footage has been performed using the following two parallel
processing steps:

• Extract the 3D point clouds of each building from the 25th July 2017 and 3rd February 2019
datasets by using the building polygons derived by the photointerpretation of the 25th July
2017 ortho-photomap.

• Extract the DSM values of each building from the 25th July 2017 and 3rd February 2019
datasets by using the building polygons derived by the photointerpretation of the 25th July
2017 ortho-photomap.

• Application of the demolition detection algorithms to above datasets for each building and
evaluation of the results by field data. More analytically, two demolition detection algorithms
have been developed, the first for mapping the demolished buildings by comparing 3D point
clouds on different epochs while the second one by comparing the DSMs on different epochs.

The main methodology for building extraction from point clouds is the filtering for the separation
of ground from non-ground points followed by a segmentation algorithm for the detection of the
building objects [42]. However, in the present monitoring study, building objects are already known
and mapped by interpreting the 25/07/2017 orthophoto map, therefore the main task was to identify
3D change detection within these specific building polygons during a time period. One of the applied
methodologies was to compare the segmented point clouds in order to identify buildings which were
demolished, and their debris was transferred. This comparison was based on point cloud statistics and
specifically on their mean height values. Each building was classified as demolished or non-demolished
by calculating the difference of the above metrics for the point clouds. These differences were compared
with various thresholds (i.e., 0.5 m, 1 m, 1.5 m, 2 m, 2.5 m, 3 m, 3.5 m) to classify them. For each
threshold, the classification confusion matrix, the accuracy, the sensitivity, the specificity, and the
Cohen’s Kappa [43] were computed.

Additionally, the DSMs were also used for the classification of the demolished buildings based
on the two DSM (i.e., T1 (July 2017) and T2 (February 2019)). We used 30 statistical measures for the
mathematical difference between the two DSMs in order to feed the algorithm. In other words, for each
building polygon we produced 30 numerical measures, most of which were related to the cell by cell
differences between the T1 and T2 periods. The spatial multivariate dataset we obtained asks for an
efficient approach of identifying the most suitable variable along with its cut-off thresholds in order to
classify the building polygons into two classes—1: Demolished; 2: Non-Demolished. There is a need
for an unsupervised binary classification method, capable of handling multivariate data.

Recursive partitioning is a well-established classification approach that provides a useful
alternative to the parametric methods [44–46]. This method does not rely on assumptions, regarding
the dependency of the dependent variable, against the predictors. It is a non-parametric method for
classification based on tree structures and rules extraction. The results of such a method include rules
based on thresholds that need to follow in order to classify a case. The tree structure includes nodes
that form mathematical sub-groupings of the learning sample with terminal nodes that cannot be split
further. This partitioning method includes a pruning option that identifies a sub-tree of the saturated
tree that is most “predictive” of the outcome and least vulnerable to the noise of the multivariable data.
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3. Results and Discussion

3.1. Orthophoto Map of 3rd February 2019

The orthophoto map produced by the application of SfM and MVS algorithms comprised 578
frames derived by 4K video footage acquired on 03/02/2019. The total duration of the video footage
was ~34 min and 600 frames were extracted (1 frame every 3 s) and finally, 578 frames were selected
for processing, fulfilling the requirements for 3D modeling. The map size was 25,556 × 19,160 pixels,
having a spatial resolution of 2.98 cm/pix and thus covering an area of 0.281 km2 using coordinate
system GGRS87/Greek Grid (EPSG:2100). This map of Vrisa’s traditional village, almost 20 months after
the destructive earthquake, at a cartographic scale 1:100, clearly presents the changes that occurred at
the village during the recovery phase. A visual interpretation and comparison with the orthophoto
map of 25th July 2017 show that: (i) a large number of buildings have been demolished, changing
dramatically the image of the village; (ii) debris volumes by collapsed buildings or walls have been
removed; (iii) some abandoned damaged buildings further collapsed, as shown in Figure 6.

Figure 6. The top orthophoto map of 3rd February 2019 derived from UAS 4K-video footage presents
the demolished buildings mapped by photo interpretation and fieldwork. The bottom orthophoto map
of 25th July 2017, derived by UAS high resolution images, presents the buildings which have been
approved for demolition by the Greek-EPO.
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3.2. 3D Point Cloud of 3rd February 2019

The 3D point cloud of 03/02/2019 consists of 30,840,291 points for the whole study area. A visual
interpretation and comparison with the 3D point cloud of 25th July 2017 show that a large number
of buildings have been demolished. By visually combining the two points clouds, the damaged
buildings’ point clouds of the oldest dataset appear on top of the grounds’ point clouds of the newest
one, as shown in Figure 7a,b.

Figure 7. (a) Part of the 3D point cloud of 3rd February 2019 derived from UAS 4K-video footage and
(b) combination of two point clouds: (i) top 25th July 2017 presents a damaged building; (ii) bottom 3rd
February 2019 presents the ground after the demolition.

Change detection analysis using UAS data is a demanding process because 3D point clouds
produced by applying the SfM algorithm on images acquired on different temporal epochs and/or by
different UAS sensors need to be comparable. In 3D change detection, both pre- and post-demolition
process point clouds are required, and pair-wise changes emerging from the pre-post comparison are
attributed to their demolition. For comparison purposes, ancillary data for the village blocks were used,
either already available or easily extracted by manual interpretation of orthophoto maps, to further
improve the accuracy of the comparison by discarding unnecessary parts of the scene (roads, ground,
trees, etc.). Thus the point clouds were homogenized to avoid “class merging” effects when measuring
distances in pre and post building stock condition.

A cloud to cloud comparison was realized to describe the height differences between the buildings
that were demolished or collapsed after the first flight due to post-seismic activity. The differences
between the two-point clouds are measured using the least-square best fitting plane calculating
the nearest point and its neighbors. As a reference cloud, the newest (03/02/2019) point cloud was
selected, and the point cloud created from the data acquired on 25/07/2017 was the point cloud
on which the distances will be computed. For the cloud to cloud comparison, the open-source
program CloudCompare was used to calculate the distances of each point relative to the reference
cloud points [47]. The newest point cloud was selected due to the higher point density. The results
showed that the height differences between the two-point clouds have a variation between −3.33 and
10.28 m. In Figure 8, the absolute distance in the z-axis for the total area of building stock is illustrated.
The means and the standard deviations of the calculated cloud to cloud point distances were 0.57 m
and 1.40 m, respectively.
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Figure 8. The absolute distances in z axis for the total area of building stock. Warm colors depict the
demolished buildings.

The positive values were validated from a ground-truth campaign depicting, with high accuracy,
the demolished building stock and its randomness in building silhouette changes. The negative values,
especially the values less than 0.50 m, were miscalculated distances associated with vegetation and
shadows. More specific, the highest negative value corresponds to a demolished house that, in the
post demolition state, had a tree close by its roof, as shown in Figure 9.

Figure 9. Trees over house roofs lead to the biggest negative values and, thus, errors in cloud to cloud
comparison (a) point cloud of the study area and (b) cloud to cloud distance.

The shadow effect in the area around roofs can produce local extrema to the height differences
variation between the two-point clouds. Thus, a confident way to isolate building stock points from all
other point classes is critical for the accurate point to point comparison. The small variance in absolute
height difference between the two-point clouds leads to the conclusion that different survey flights by
means of season and UAS sensors can produce comparable results. Furthermore, the cloud to cloud
comparison between two different aerial acquisition datasets can produce robust change detection
results in anthropogenic structure damage identification.
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3.3. DSM of Difference Map between 3rd February 2019 and 25th July 2017

During the present study, a high resolution (11 cm) DSM has been created, presenting the heights
of Vrisa traditional village almost 20 months after the earthquake. By subtracting this DSM from the
DSM of 25th July 2017, a DSM of difference map was created, showing the depression of height values
(blue colors on map) of the demolished buildings. The DSM of difference map, as shown in Figure 10,
has five classes for the negative values of heights, which refers to areas that lost surface height due
to the demolition process. More analytically, the map-class from −1.5 m to −6 m corresponds to
one-story buildings, while the map-class from −6 m to −9 m refers to two-story buildings, and, finally,
the map-class <−9 m refers to three-story buildings.

Figure 10. DSM of difference map created by subtracting the DSM of 3rd February 2019 with the DSM
of 25th July 2017. Blue colors on map present negative height values, which refer to the demolished
buildings. Three map-classes (i) −1.5 m to −6 m, (ii) −6 m to −9 m, and (iii) <−9 m, refer to one, two,
and three-story buildings, respectively.
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3.4. Demolition Detection Algorithm with 3D Point Cloud

Figure 11 presents the accuracy, sensitivity, and specificity for different thresholds of the difference
between the mean heights of the two point clouds. According to the results, the difference of the mean
height values between the two point clouds can identify the demolished, as shown in Figure A1—case1,
from non-demolished, as shown in Figure A1—case2, buildings with an accuracy of 97.8% when a 1.5 m
threshold is applied for these differences, as shown in Table A1. This threshold was chosen because
of its better performance in the classification of demolished buildings. However, 24 buildings are
misclassified due to various reasons. Eight demolished buildings were classified as non-demolished.
One of them was sited in a parcel where a new building was under construction. Therefore, there was
no significant difference between the heights, as shown in Figure A1—case3. The rest of the buildings
were totally collapsed by the earthquake and the height of the debris was lower than 1.5 m, hence they
were misclassified, as shown in Figure A1—case4. On the other hand, 16 not-collapsed buildings
were classified as collapsed. Most of them were misclassified due to partial collapse between the two
acquisition dates, as shown in Figure A1—case5. Furthermore, some buildings were misclassified
because of the different number of points of the clouds between the two dates. In these cases, in epoch
T1, only the roof and the facade were visible due to neighborhood buildings. In epoch T2, one or more
neighborhood buildings were demolished, and the side walls were then visible, leading to lower mean
height values. Finally, a building was misclassified due to a deciduous tree (plane tree) covering the
roof during the summer acquisition date, as shown in Figure A1—case6.

Figure 11. Accuracy, sensitivity and specificity for various thresholds—1.5 m of the mean height
difference between the two acquisition dates provided the highest accuracy and Kappa coefficient.

3.5. Demolition Detection Algorithm from DSMs

With the use of R programming language [48] and the use of relevant machine learning libraries [44],
we conducted recursive partitioning on the multivariate dataset. The result of this approach is a
partition tree structure, which is depicted in Figure 12.
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Figure 12. Rules tree of the Recursive Partitioning approach for the binary classification of building
structures to two classes: 1—Demolished (red) and 0—Non-Demolished (blue).

According to the resulting tree, the single most important variable for the classification of the
multivariate dataset into two classes is the median of the differences between T1 and T2. The threshold
for this variable, which is used for the most accurate dichotomy of the multivariate dataset in two
classes is −0.37 m. The confusion matrix indicated that most of the building polygons have been
classified accurately. More specifically, out of 1079 total cases, 12 buildings have been erroneously
classified as demolished by the recursive partitioning approach and two erroneously classified as
non-demolished. The overall accuracy of the classification process is 97% and the Kappa is 93%,
while the sensitivity and the specificity are 0.99 and 0.92, respectively.

Based on the statistical knowledge acquired from the multivariate dataset of this geographical
area, building structures with a Median difference of less than −0.37 m have a 97% probability of being
collapsed. It is worth mentioning that the twelve buildings that have been erroneously classified as
demolished by the recursive partitioning approach are standing buildings that lost about 2–3 m height
from the top of their roofs (collapsed roofs and part of their walls) due to their partial collapse, as shown
in Figure A1—case7. The two erroneously classified as non-demolished, as shown in Figure A1—case8,
are one-story buildings (~3 m in height) that were totally collapsed by the earthquake, presenting
1–2 m height on the 25th July 2017 digital surface model, while on the 3rd February 2019, after their
demolition, their height difference was not high enough to be classified as demolished.

Despite the fact that remote sensing and geoinformation provide a wide spectrum of data
acquisition and processing methods, there is no methodology to automatically or semi-automatically
detect and map the demolished buildings of an earthquake-damaged urban area. Accurate 3D point
cloud and DSM produced by UAS high resolution 4K video footage processing permit the development
of algorithms for the detecting and 3D mapping of demolished buildings, as shown in Figure 13,
with an accuracy of approximately 97% compared with field mapping. More analytically, 240 masonry
buildings have been demolished from a total amount of 394 damaged buildings (RED-buildings),
as shown in Table 2. The main reason for the misclassification of demolished buildings is the fact that,
after a destructive earthquake, several buildings totally collapse, and their height is remarkably lower
than standing ones. The comparison of heights after demolition does not differ significantly enough to
be classified as a demolished building.
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Table 2. Statistical information concerning the demolished buildings on 3rd February 2019.

Number of
Buildings

Material Number of Stories

Masonry F/C Mixed 1 2 3

GREEN 427 357 54 11 113 107 2

YELLOW 258 242 9 7 107 149 2

RED 402 394 9 4 203 195 9

Total 1087 993 72 22 623 451 13

Demolished buildings
(3rd February 2019) 245 240 2 3 131 110 4

The results obtained by the present study show that DSM algorithm has fewer erroneously
classified as demolished/non-demolished buildings than the 3D point cloud algorithm. It is evident
that the raster format of the DSM provides the advantage of representing the surface of a parcel or
building with a continuous surface and comparing the surface on a pixel by pixel basis. On the other
hand, the methodology applied on the point clouds, based on a single statistic comparison for the
whole object, does not capture any partial changes within each object (i.e., a partially collapsed building.
Conclusively, both methods presented high overall accuracy in the classification of the demolished
buildings without any significant omission and commission errors.

Figure 13. Three-dimensional map of the Vrisa traditional settlement presenting the result of the
demolition process during the last few months. Color presents the damage category of the remaining
buildings, while demolished buildings are presented as footprints.

4. Conclusions

Spatial data can support both the earthquake-induced damage assessment [49] and recovery phase
monitoring. The present study focused on the exploitation of UAS 4K-video footage to monitor and
3D-map the changes that occurred by the demolition process of a heavily damaged traditional village.
The results proved that 4K-video footage acquired by the low altitude flight of a small UAS over a
demolished area is a very safe, quick, low-cost and efficient method for capturing high-resolution
optical information able to provide accurate 2D and 3D spatial datasets, such as orthophoto map, DSM,
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and 3D Point cloud. These datasets, algorithmically compared with the corresponding ones from
previous flight campaigns (a few days after the destructive earthquake), proved to be efficient enough
to automatically detect and map the demolished buildings among these dates.

By evaluating the results obtained with ground truth data, it can be concluded that the demolition
process during the recovery phase after an earthquake can be monitored and accurately 3D mapped
by taking advantage of geoinformation methods. Additionally, UAS flights that differ in acquisition
date and flight parameters can produce comparable point clouds for change detection and demolition
identification in recovery phase monitoring. These results indicate that the proposed methodology can
assist post-earthquake management and reconstruction processes monitoring, since such 2D and 3D
accurate spatial information can serve all stakeholders and national and local organizations. Future
research will focus on developing a novel algorithm for debris calculation and mapping based on the
same datasets and, more specifically, the 3D point clouds and DSMs on different epochs and debris
weight measurements.

Debris processing plays a significant role in the beginning stages of the recovery process [50] and
emerges as a critical issue in responding to a disaster closely intertwined with the environment [51].
When the damaged buildings are modern, and without significant architectural features, the demolition
and reconstruction of new buildings is the optimal strategy. On the contrary, for heritage/traditional
masonry buildings, such as Vrisa’s building stock, a strategy on the full recovery of the initial building
stock is suggested. The optimal solution in the second case is the “anastylosis” reconstruction technique,
employing a large amount of the original materials [52].
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Figure A1. Different cases of omission and commission errors.
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Table A1. Classification matrix and accuracy results for demolished/non-demolished buildings for
various thresholds of the difference between the mean heights of the two-point clouds. Columns are
those modelled, and rows are the actual values (number of buildings).

Threshold 0.5 1 1.5 2 2.5 3 3.5

0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 546 284 745 85 814 16 826 4 827 3 829 1 829 1
1 1 240 4 237 8 233 24 217 48 193 73 168 97 144
Accuracy 0.734 0.917 0.978 0.974 0.952 0.931 0.908
Sensitivity 0.996 0.983 0.967 0.900 0.801 0.967 0.598
Specificity 0.658 0.898 0.981 0.995 0.996 0.999 0.999
Kappa 0.461 0.787 0.936 0.923 0.854 0.778 0.694
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