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Abstract: Since its introduction in the late 1970s, the non-affine or slip parameter, ξ, has been
routinely employed by numerous constitutive models as a constant parameter. However, the evidence
seems to imply that it should be a function of polymer deformation. In the present work, we
phenomenologically modify a constitutive model for the rheology of unentangled polymer melts
[P. S. Stephanou et al. J. Rheol. 53, 309 (2009)] to account for a non-constant slip parameter. The
revised model predictions are compared against newly accumulated rheological data for a C48

polyethylene melt obtained via direct non-equilibrium molecular dynamics simulations in shear.
We find that the conformation tensor data are very well predicted; however, the predictions of the
material functions are noted to deviate from the NEMD data, especially at large shear rates.

Keywords: unentangled systems; constitutive modeling; materials functions; non-affine parameter;
slip parameter; conformation tensor; NEMD simulations; atomistic simulations; polyethylene

1. Introduction

A fundamental understanding of the rheological and microstructural behavior of
polymeric fluids under flow is essential in practical polymer processing operations [1–3].
Polymers are fluids that exhibit a non-Newtonian rheological character, which stems from
their internal microstructure. The dynamical behavior of the microstructure is usually
challenging to obtain experimentally, leaving ample space for computational simulations.
Nowadays, due to the growth of computational power and the advent of sophisticated
computational algorithms, computationally executed experiments offer the only alternative
to experiments that cannot be conducted physically [4], such as quantifying the key role
of threading events in linear-ring blends [5–8]. This is particularly true for polymeric
materials, even the simplest of all, i.e., linear polyethylene (PE) chains, since one must
span a spectrum of orders of magnitude in both time and space [4]. Today, simulations,
particularly atomistic ones (i.e., simulations in which individual atoms of ensembles of
molecules are tracked in phase space), offer the best avenue to validate theories without
hypotheses. Two such examples are the Rouse theory for cyclic polymers (rings) [9] and
the tube notion in entangled polymeric systems (i.e., systems whose molecular weights
exceed the entanglement molecular weight, and whose dynamics is dictated by a slithering
or snake-like motion within a confining mean-field tube produced by the surrounding
chain molecules) [10]. However, similar success has not been accomplished yet in non-
equilibrium systems, i.e., systems that are perturbed away from equilibrium, such as those
under flow, which is more complicated to simulate [4].

Still, non-equilibrium molecular dynamics simulations (NEMD) have provided invalu-
able insight into the dynamical behavior of polymer chains under flow. Experimentally, it
has been possible to directly visualize individual polymer chains when subjected to flow.
For example, we mention the work of Smith et al. [11] and LeDuc et al. [12], who used
video microscopy to study the dynamics of individual, tagged chains under shear in dilute
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solutions of DNA and noted that these chains exhibit both deformation and tumbling
motions. These experiments, however, can only track a small number of molecules at
any given time. This void has recently been filled by atomistic NEMD simulations since
every single chain can be accurately tracked. Indeed, the rotation or tumbling of polymer
chains has been noted through the execution of NEMD to occur for both unentangled and
entangled chains if the flow field possesses a rotational contribution, such as simple shear
flow [13–22]. Recent research has unambiguously clarified that the tumbling of polymer
chains leads to the appearance of a transient stress undershoot (following the overshoot)
at high shear rates [23,24]. However, how this tumbling behavior can be considered in
constitutive modeling remains unclear.

Since its introduction in the late 1970s by Gordon and Schowalter (GS) [25] and
Johnson and Segalman (JS) [26], the non-affine or slip parameter, ξ, has been routinely
employed by numerous constitutive models. This parameter allows for the slippage of
polymer chains relative to the surrounding medium (either solvent in polymer solutions
or surrounding polymer chains in polymer melts) [27]. This slippage allows for a rotation
of the polymer chain when subjected to shear. When ξ = 0, the chain deforms affinely,
thus no rotation is allowed, whereas when ξ = 1, the chain is completely rigid and does
not allow deformation [27]. Note that in general, ξ is considered to be 0 ≤ ξ ≤ 2: when
ξ = 0, the mixed derivative found in the GS-JS model reduces to the upper-convected
Maxwell derivative, to the corotational derivative when ξ = 1, whereas when ξ = 2, to
the lower-convected Maxwell derivative. However, as pointed out by Öttinger [28], the
inverse of a lower-convected tensor is of an upper-convected type, explaining why the
thermodynamic admissibility condition, i.e., the second law of thermodynamics, limits
the range of ξ to only the first subdomain 0 ≤ ξ ≤ 1 [29]. This can further be justified by
noting that the choice ξ = 0 describes the affine motion of either a flexible polymer chain or
infinite aspect ratio solid ellipsoid, whereas as the aspect ratio decreases, the choice ξ = 1
describes the limit of spherical solid particles, with the elastic contribution to the stress
decreasing to zero [30].

The slip parameter has long been considered a constant, despite numerous indications
that it should increase as the flow field intensifies. Since the rotational contribution in
shear intensifies as the shear rate increases, this rotational or dumping behavior of polymer
chains also intensifies, meaning that the slip parameter should also increase. Furthermore,
since close to equilibrium the field is not strong enough to force chain tumbling (thereby
not resulting in the exhibition of an undershoot in the transient shear viscosity at low
shear rates as noted experimentally [23,24]), we should expect the slip parameter to vanish.
Additionally, since this slip is typically observed with rigid particles due to flow-induced
torque, slip can be considered as a measure of molecular rigidity [27]. This is a strong
function of the particle’s aspect ratio, as can be deduced from the fact that the evolution
equation for the trace-constrained orientation tensor of the rigid ellipsoid includes a mixed-
convected derivative similar to the GS derivative with ξ =

(
p2 − 1

)
/
(

p2 + 1
)
, where p is

the particle’s aspect ratio [27,31].
Possibly the first to consider a variable slip parameter were Hinch [32] and Rallison

and Hinch [33]. They considered a modification of the finite-extensible non-linear elastic
(FENE) dumbbell model by considering a slip parameter given via, using our nomenclature,
ξ = tr(C)/

[
1
3
〈

R2〉
eqβ + tr(C)

]
, where C is the dimensional conformation tensor, tr(C) is

the trace of C, and
〈

R2〉
eq is the average squared end-to-end polymer distance at equilib-

rium (see the next section) [33]. However, as the polymer aspect ratio increases due to
deformation, one would expect that ξ should also be time dependent. Such a consideration
has not been cogitated in the past, with the sole exception being the work of Beris et al. [34],
that introduced a phenomenological kinetic equation for the slip parameter. They also
introduced a limiting value for the non-affine parameter at high shear rates. However, in
their model, the slip parameter was only coupled to the shear rate and not the structure it-
self. To the best of our knowledge, there has not been any other work wherein a (shear-rate-
or time-) dependent slip parameter was considered.
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Although other constitutive models have considered a variety of mechanisms to
accommodate the tumbling of polymer chains under shear, such as the use of a tumbling
function by Costanzo et al. [24] or the explicit consideration of rotational diffusion by
Stephanou et al. [23], the necessity of having a variable slip parameter remains. In this work,
we generalize the constitutive model for unentangled polymer melts of Stephanou et al. [29]
to accommodate a varying slip parameter by including an additional evolution equation
for ξ, following our recent work on the use of a scalar structural variable [35].

This paper is structured as follows: in Section 2, the new model is introduced, whereas
Section 3 presents the details concerning the simulated system and technical information
regarding the MD and NEMD performed. Then, in Section 4, we offer the model predictions
along with a comparison with the accumulated simulation data. The paper concludes with
Section 5, where we elaborate on the significance of our work and discuss future plans.

2. Model Modification

Following previous work [29,30], we define the conformation tensor as the second
moment of the distribution function Ψ(R, r, t) for the chain end-to-end vector R, with
its center-of-mass at position r, i.e., C(r, t) = 〈RR〉(r, t) =

∫
RRΨ(R, r, t)dR with the

brackets denoting a configurational average. The evolution equation for the dimensionless
conformation tensor c(r, t) = 3C(r, t)/

〈
R2〉

eq, as derived by Stephanou et al. [29], is:

.
c[JS] = −

B(c)
τR(tr(c))

[I + α(1− ξ)B(c)(h0(tr(c))c− I)]
·(h0(tr(c))c− I),

(1a)

where:
.
c[JS] =

∂c
∂
− c·∇u− (∇u)T ·c + ξ

2
(
c· .
γ+

.
γ·c
)
, (1b)

denotes the GS or JS mixed derivative, with
.
γ ≡ ∇u+ (∇u)T being the rate-of-deformation

tensor (XT is the transpose of X), and ∇u is the velocity gradient tensor. Additionally, I is
the unit tensor, α is the anisotropic Giesekus parameter,

h0(trc) =
b− 3

b− tr(c)
, (1c)

is the effective spring constant, accounting for FENE effects, with b the FENE parameter,
and the function:

B(c) =
(

b
b + a0(c)

)2
, (1d)

with 0 ≤ B(c) ≤ 1, which ensures that the entropy density remains bounded even at high
deformation rates [36], with a0(c) the dimensionless unbounded free energy [29] given as:

a0(c) = Φ(tr(c))− ln[det(c)], (1e)

Φ(tr(c)) = −(b− 3) ln
(

1− trc− 3
b

)
, (1f)

and the relaxation, or Rouse, time:

τR(tr(c)) = τR,eq exp[−ε(1− ξ)B(c)(h0(tr(c))trc− 3)], (1g)

with ε the Phan–Thien Tanner parameter, and τR,eq the equilibrium Rouse time (note that
the Rouse time in Stephanou et al. [29] was defined as λ(tr(c))_. Note that other expressions
could also be employed, such as the extended White–Metzner expression [30,35,37]. Finally,
the corresponding expression relating the stress tensor with the conformation tensor is
given as:

σ = G(1− ξ)B(c)(h0(tr(c))c− I), (2)

where G is the elastic modulus.
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We now proceed to modify the Stephanou et al. [29] model by considering a variable
slip parameter. To this end, we simply propose an expression for the evolution equation of
ξ bearing in mind our previous work concerning the scalar structural variable λ [35]:

Dξ

Dt
= − ξ

τξ
+ (ξ0 − ξ)κ : c, (3)

where κ = (∇u)T , τξ is the characteristic time for the increase in the slip parameter, and ξ0
is the upper bound of the slip parameter at high shear rates. The first term in Equation (3)
is a relaxation term returning the slip parameter to its equilibrium, null, value when the
flow is ceased. In contrast, whereas the second is a term that increases the slip parameter
as a result of the applied flow. In the following, we define γ = τξ/τR,eq.

Asymptotic Behavior of the Model for Steady-State and Transient Shear Flow

Here, we analyze the asymptotic behavior of the revised model in the limits of low
deformation rates for both steady-state and transient simple shear flow (SSF), described
by the kinematics u =

( .
γy, 0, 0

)
, where

.
γ is the shear rate, and uniaxial elongation flow

(UEF) described by the kinematics u =
( .

εx,− 1
2

.
εy,− 1

2
.
εz
)

, where
.
ε is the elongation rate (x

is the flow direction, y is the velocity gradient direction, and z is the neutral direction). The
material functions to analyze are the shear viscosity, η ≡ σyx/

.
γ, and the two normal stress

coefficients, Ψ1 ≡
(
σxx − σyy

)
/

.
γ

2 and Ψ2 ≡
(
σyy − σzz

)
/

.
γ

2, respectively, in the case of
shear, and the extensional viscosity, ηE =

(
σxx − σyy

)
/

.
ε, in the case of uniaxial elongation.

By expanding the conformation tensor and the slip parameter up to second-order terms in
the dimensionless shear rate, Wi =

.
γτR,eq, we arrive at the following expressions for the

conformation tensor and the slip parameter (when considering a finite value of γ):

cxx = 1− (α− 2)Wi2, (4a)

cxy = Wi (4b)

cyy = 1− αWi2 (4c)

czz = 1 (4d)

ξ = ξ0γWi2 (4e)

and for the zero-shear-rate shear viscosity and normal stress coefficients:

η0 = GτR,eq, (5a)

Ψ1,0 = 2η0τR,eq, (5b)

−Ψ2,0 =
α

2
Ψ1,0, (5c)

These are the same as the ones presented by Stephanou et al. [29] by considering ξ = 0
in their Equations (41) and (42). On the other hand, at large shear rates, the slip parameter
will approach the upper bound value ξ0; see the next section.

Upon inception of the simple shear flow, the explicit solutions for the time-dependent
viscometric functions in the linear viscoelastic (LVE) limit, following the methodology of
Stephanou et al. [38], are given as:

η+(t) = η0

[
1− exp

(
− t

τR,eq

)]
, (6a)

Ψ+
1 (t) = Ψ1,0

[
1−

(
1 +

t
τR,eq

)
exp

(
− t

τR,eq

)]
, (6b)
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Ψ+
2 (t) = Ψ2,0

[
1− 2t

τR,eq
exp

(
− t

τR,eq

)
− exp

(
− 2t

τR,eq

)]
, (6c)

In steady-state uniaxial elongation, by expanding the conformation tensor and the
slip parameter up to first-order terms in the dimensionless elongation rate, Wi =

.
ετR,eq,

we obtain:
cxx = 1 + 2Wi, (7a)

cyy = 1−Wi (7b)

ξ = 0 +O
(

Wi2
)

(7c)

and for the zero-elongation-rate elongation viscosity:

ηE,0 = 3GτR,eq = 3η0, (8)

meaning that Trouton’s law holds.
Upon inception of elongation flow, the explicit solutions for the time-dependent

elongation viscosity in the linear viscoelastic limit, again following the methodology of
Stephanou et al. [38], is given as:

η+
E (t) = 3η0

[
1− exp

(
− t

τR,eq

)]
, (9)

3. Molecular Model and System Studied

In this work, we conducted equilibrium molecular dynamics (MD) simulations, and
NEMD simulations of PE oligomer C48H98 melts. Equilibrium MD simulations were
performed in the NPT ensemble to fully relax the initial PE configurations at tempera-
ture T = 450 K and pressure P = 1 atm using the united-atom potential model of Siep-
mann et al. [39]. The simulations were carried out using the LAMMPS simulation en-
gine [40], employing the Nosé–Hoover thermostat [41,42] and the Parrinello–Rahman
barostat [43] to preserve the temperature and pressure, respectively, at their prescribed val-
ues. Subsequently, several fully relaxed configurations from the MD runs were selected as
input for the NEMD simulations under shear. The NEMD runs were performed again with
LAMMPS in the NVT ensemble at T = 450 K, using the SLLOD algorithm [44], together with
the Nosé–Hoover thermostat to control the temperature. The microscopic set of equations
of motion was integrated numerically using the reversible Reference System Propagator
Algorithm (r-RESPA) [45], with 2 different time steps: (a) a large one (dt = 4 fs) for the
integration of the slowest varying forces arising from non-bonded interactions at long
interatomic distances, and (b) a small one (dt = 0.5 fs) for the integration of the fast-varying
forces corresponding to the bonded (i.e., bonds, angles, and dihedrals) interactions.

All simulations were conducted using large cells containing 16,000 chain molecules
of C48H98 and were subjected to periodic boundary conditions in all three directions (x,
y, and z). In the course of the NEMD simulations, the x- and y-directions were selected
as the flow and the shear gradient directions, respectively, whereas z was the neutral
direction. The simulation cell had dimensions (462 Å) × (231 Å) × (231 Å) along the x-, y-,
and z-directions. The cell was purposefully enlarged in the (x-) flow direction to ensure
minimal system size effects, particularly with the NEMD runs at high shear rates, where the
polymer chains tend to stretch and orient towards the flow direction. To this end, for the
C48H98 chains, the equilibrium root-mean-square of the chain end-to-end vector

√
〈R2〉eq

and the theoretical maximum chain extension of |R|max were calculated to be equal to√
〈R2〉eq = 27.2± 0.12 and |R|max = 63.1 , respectively. Compared to the simulation cell

dimensions, the maximum chain length |R|max is 7.3 times shorter than the dimension in
the x-direction and 3.6 times shorter than the dimension in the y-direction. Thus, we can
safely expect that the simulation cell is sufficiently large to ensure the absence of system
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size effects due to chain alignment in the flow direction or tumbling motion in the shear
gradient direction.

In the course of the equilibrium MD simulations, the equilibrium orientational relax-
ation time τR,eq of the simulated C48H98 PE chains at T = 450 K and P = 1 atm was found
to be equal to τR,eq = 0.6± 0.01 ns, as estimated by integrating the stretched–exponential
curve [46] over time, describing the time autocorrelation function of the chain end-to-end
unit vector. The MD simulations were conducted for a total of 6 ns, which is 10 times
larger than the chain relaxation time to ensure that the PE chains were fully equilibrated.
The NEMD simulations were executed over a broad range of shear rates spanning the
range from the linear up to the highly non-linear viscoelastic regime, corresponding to
Weissenberg numbers (with τR,eq = 0.6 ns) in the interval [0.1, 285].

4. Results and Discussion
4.1. Model Predictions in Steady-State Shear Flow

In this section, we present the predictions of the new model in the case of steady-
state shear flow. The results were obtained numerically by solving the constitutive model,
Equation (1), under steady-state conditions using MATLAB [47] and then calculating the
stress tensor using Equation (2).

In Figure 1, we depict the model prediction for the slip parameter as a function of Wi
and its dependence on the parameters ξ0, γ, and ε while keeping the constant α = 0.4, b = 50
(panel (a)), and (b) the parameters α, ε, and b while maintaining the constant ξ0 = 0.05, γ = 1
(panel (b)). As noted in Figure 1a, at large values of γ, the slip parameter steeply reaches
its limiting value, which is unaltered as the shear rate increases further. This situation
resembles the previous version of the model [29], where the slip parameter was considered
a constant. However, as γ is reduced to unity, the slip parameter increases with the shear
rate and reaches its limiting value at about Wi = 10. As the parameter ξ0 increases, the
curve shifts upwards, whereas by increasing ε, we note a slight shift upwards at higher
shear rates. This is because when ε = 0 the slip parameter does not fully reach its limiting
value since cxy delays its reduction with the shear rate, as shown in Figure 2b. On the other
hand, the slip parameter seems insensitive to the precise values of α and b (panel (b)). Note
that analytical expression Equation (4e) is accurate in all cases until about Wi = 1.
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Figure 1. Model predictions for the slip parameter as a function of Wi and dependence on: (a) the
parameters ξ0, γ, and ε for α = 0.4, b = 50, and (b) the parameters α, ε, and b for ξ0 = 0.05 and γ = 1.
The dark yellow dotted lines depict the analytical expression Equation (4e) for each case.
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Figure 2. Variation of the conformation tensor elements (a) cxx, (b) cxy, (c) cyy, and (d) czz with Wi
and dependence on the parameters ξ0, γ, and ε for α = 0.4, b = 50. The dark yellow dashed line
depicts the asymptotic behavior at small shear rates given by Equations (4).

Next, in Figure 2, we depict the model predictions for the conformation tensor as a
function of Wi whilst keeping α = 0.4, b = 50 constant, whereas, in Figure 3, we depict
the same comparison whilst keeping ξ0 = 0.05, γ = 1 constant. Irrespective of the values
of the parameters (see both Figures 2 and 3), we note that cxx is reported to increase from
its equilibrium value after about ≈Wi = 0.3 and eventually reach its limiting value, which,
however, differs from the value of the parameter b. On the other hand, cxy is noted to
increase linearly with the shear rate at low shear rates, as dictated by Equation (4b), reaching
a maximum value, and then decreasing inversely proportional to the shear rate. Finally,
the two remaining diagonal elements of the conformation tensor in the shear gradient
direction and neutral direction (cyy and czz, respectively), are observed to be mirrors of
the noted behavior of cxx: they initially decrease from their equilibrium value, eventually
reaching a finite asymptotic value at high shear rates. We note, in Figure 2, that the value
of γ plays only a very modest role for all elements, since the value of ξ0 is small; note
that one would expect such small values to be used since larger values would lead to very
intense oscillations in the time-dependent material functions (see the next section). On the
other hand, by increasing the parameter ξ0, we note the predictions at low shear rates to
be insensitive. Still, the limiting asymptotic values at high shear rates are pointed out to
decrease for cxx and increase for both cyy and czz, whereas the cxy curve shifts to lower shear
rates at higher shear rates whilst keeping the power-law unaffected. This is a direct result
of allowing tumbling to occur sooner, since the slip parameter is larger, thus refraining the
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flow to deform the chain further. Finally, when we increase the value of ε while keeping
the same ξ0 and γ values (Figure 3), we note that the asymptotic values of the diagonal
elements remain the same, but the curves are shifted to the right, a direct result of the
steeper decrease in the relaxation time, cf. Equation (1g). As the anisotropic (or Giesekus)
parameter, α, is increased, we observe that the curve of cxx shifts downwards and the one
of czz shifts upwards (see Figure 3). In constrast, when the FENE parameter is increased
(from 20 to 50, meaning that the chain is now longer or its molecular weight is larger), we
observe the reverse behavior, which is the expected outcome. However, note that during
these parameter value changes, the predictions of the other elements, cxy (panel (b)) and
cyy (panel (c)) are only modestly affected. As in Figure 2, the value of ε controls the rate at
which the asymptotic values, in the case of the diagonal elements, are reached, whereas the
cxy curve shifts rightwards.
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Figure 3. Variation of the conformation tensor elements (a) cxx, (b) cxy, (c) cyy, and (d) czz with Wi
and dependence on the parameters α, ε, and b for ξ0 = 0.05 and γ = 1.

In Figures 4 and 5, we depict the same comparison as in Figures 2 and 3, respectively,
but for the three dimensionless material functions: the shear viscosity, η (panel (a)), and the
first, Ψ1 (panel (b)), and negative second, −Ψ2 (panel (c)), normal stress coefficients. We
again note, in Figure 4, that the predictions are insensitive to the value of the slip parameter
due to the small value of ξ0. By increasing the value of ξ0, both η and Ψ1 are noted to
shift to lower shear rates, which is much more intense for the shear viscosity, whereas
when increasing ε, we note that the shear viscosity curve shifts to higher shear rates, and
Ψ1 remains almost unaltered at large shear rates but shifts rightwards at intermediate Wi.
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On the contrary, −Ψ2 is noted to be almost completely unaffected. Finally, Figure 5 shows
that both η and Ψ1 are invariant to changes in the values of α and b. On the other hand,
the zero-shear-rate negative second normal stress coefficient increases as the Giesekus
parameter increases, cf. Equation (5c), but again remains invariant at higher shear rates.
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Figure 4. Variation of the (a) shear viscosity, (b) the first normal stress coefficient, and (c) the negative
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for α = 0.4, b = 50.

4.2. Model Predictions in Start-Up Shear Flow

In this section, we present the predictions of the new model in the case of start-up shear
flow. The results were obtained numerically by solving the system of differential equations,
Equations (1), using MATLAB [47] and then calculating the stress tensor, Equation (2). Here,
we consider only the case with γ = 1, since the case of large γ is identical to the predictions
presented in Stephanou et al. [29].

In Figure 6, we depict the growth of the slip parameter under start-up shear flow at
two different values of the dimensionless shear rate equal to Wi = 1 and 10 and various
values of the model parameters. We note that irrespective of the model parameter, it
increased exponentially, reaching its steady-state value. A modest dumping behavior is
noted wherein the time-dependent prediction is observed to oscillate around the steady-
state value before reaching it. The overall behavior of ξ is seen not to depend heavily on
the values of the parameters α, ε, and b.
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Figure 6. Variation of the slip parameter upon the inception of shear flow as a function of t/τR,eq

at two different values of the dimensionless shear rate Wi =
.
γτR,eq, and dependence on: (a) the

parameters ξ0 and ε for α = 0.4, b = 50; and (b) the parameters α, ε, and b for ξ0 = 0.05 and γ = 1. In
all cases, γ = 1.
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Next, in Figures 7 and 8, we depict the growth of the conformation tensor under start-
up shear flow at two different values of the dimensionless shear rate equal to Wi = 1 and
10. We observe that the predictions for cxx, cxy, and cyy also present a dumping behavior,
which is much more intense relative to the one noted in the slip parameter (Figure 6). It
intensifies as the ξ0 parameter increases and becomes less intense when the ε parameter
increases. Such a behavior is obtained only when ξ0 > 0. On the other hand, czz seems
not to present such a behavior, although a small saddle point is noted when ε = 0. The
time-dependent behavior of the conformation tensor is seen in Figure 8 to be insensitive to
the value of the parameters α and ε.
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Finally, in Figures 9 and 10, we depict the growth of the three dimensionless materials
functions: the shear viscosity, η+(t) (panel (a)), and the first, Ψ+

1 (t) (panel (b)), and negative
second, −Ψ+

2 (t) (panel (c)), normal stress coefficients under start-up shear flow. Note that
the dotted dark yellow and light grey lines in Figure 10c in each panel depict the LVE
envelope given by Equations (6). We again note that the predictions for the shear viscosity
present a dumping behavior for both shear rates when ξ0 6= 0, which intensifies as the shear
rates increases; such a behavior can also be noted when ξ is a constant (γ� 1) [29,38]. It
also intensifies when ξ0 increases and is less intense when ε increases (Figure 9a), following
the behavior noted in the case of the conformation tensor. A similar behavior is also noted
in Ψ+

1 (t) (panel (b)), although the dumping behavior seems to be less intense. On the other
hand,−Ψ+

2 (t) seems not to exhibit such a behavior (Figure 9c). As either the parameter α or
the FENE parameter b is increased, the time-dependent behavior is unaffected (Figure 10).
However, when increasing ε, the overshoot is noted to decrease and shift to shorter times
for both η+(t) (panel (a)) and Ψ+

1 (t) (panel (b)). On the other hand, as the parameter α
increases, the −Ψ+

2 (t) curve is noted to go over its LVE envelope at short times, which is
never the case for both η+(t) and Ψ+

1 (t).
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envelope given by Equation (6).
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4.3. Comparison with NEMD Simulation Data for an Unentangled PE Melt

In this section, we aim to compare the predictions of the revised model against rheo-
logical data obtained through newly accumulated, fully atomistic NEMD simulations of
a short unentangled C48 PE melt over a broad spectrum of shear rates. We only analyze
the steady-state data of these NEMD simulations. To fit the simulation data, following
Stephanou et al. [29], we first identify the asymptotes c∞

ii of the diagonal elements of the
conformation tensor in the limit of high shear rates. Additionally, the equilibrium relaxation
(Rouse) time, as mentioned in Section 3, is equal to τR,eq = 0.6 ns, whereas the zero-shear-
rate viscosity can be obtained from the shear viscosity NEMD data, which is equal to
η0 = 5 mPa.s. Note that as small shear rates, the NEMD data of the viscometric functions
come with large error bars, and it is difficult, particularly for the normal stress coefficients,
to accurately estimate their zero-shear-rate values. Then, the value of ξ0 ≈ 0.104 is obtained
by using the first equation of Equation (45) of Stephanou et al. [29]. Next, the value of the
Giesekus parameter α ≈ 0.2 can be obtained by fitting the Ψ2 NEMD data at low shear
rates and using Equation (4c) (the value of Ψ1,0 is easily calculated from Equation (4b)).
Note that this value differs from the value α ≈ 0.06 obtained using the second equation
of Equation (45) of Stephanou et al. [29]; however, the fitting of Ψ2 is much improved
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when using the former value, and the comparison against the conformation tensor data is
only mildly worsened. Next, the value of beff=5.78 can be obtained from Equation (48) of
Stephanou et al. [29], which differs from the value 32/

〈
R2〉

eq = 16.15. The remaining two
parameters, ε and γ, can be obtained by simply fitting the NEMD data, since they do not
affect the c∞

ii values; we obtain ε = 0.4 and γ = 0.01. Figure 11 shows how well the new
model can fit the simulation data for the cxx, cxy, cyy, and czz elements of the dimensionless
conformation tensor for the C48 PE system in steady shear. We observe that the predictions
of the revised model are in remarkable agreement with the NEMD extracted simulation
results over the entire wide range of shear rates considered, especially for the diagonal
elements. To quantify how well the model predicts the simulation data, we calculated the
sum of the squares of the residuals (i.e., the residual between the simulation value and the
one obtained by the model); this turns out to be ≈0.2474. The corresponding comparison
for the material functions η, Ψ1, and −Ψ2 is presented in Figure 12. Contrary to the very
good agreement between the refined model predictions and the NEMD simulation data for
the dimensionless conformation tensor, the comparison against the viscometric functions is
less satisfactory. Deviations from the NEMD data are mainly observed at large shear rates
in the case of the shear viscosity (panel (a)) and the second normal stress coefficient (panel
(c)). As also mentioned by Stephanou et al. [29], this disaccord should be related to the
postulated relation between the stress and conformation tensors, Equation (2), which stems
from the assumption of purely entropic elasticity [48]. As such, a more accurate expression
for the free energy needs to be invoked in the future [29].
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5. Conclusions

Today, it is well established, both experimentally [11,12] and computationally [13–22],
that polymer chains subjected to flow fields that possess a rotational contribution exhibit,
in addition to deformation, a tumbling/rotational behavior, which has been shown to be
unambiguously responsible for the appearance of a transient stress undershoot (following
the overshoot) at high shear rates [23,24,38]. This rotational behavior has been related
to the slippage of polymer chains, relative to their surrounding, which in constitutive
models is considered, among other methodologies, via the use of a non-affine or slip
parameter, ξ [25–27,29,38]. Although this parameter has been exclusively considered a
constant, evidence suggests it should be a function of the chain’s aspect ratio [27]. Probably,
with the sole exception of the works of Rallison and Hinch [32,33] and Beris et al. [34], no
other constitutive model has considered a shear-rate- (and time-) dependent slip parameter.

In our present work, we modified a constitutive model [29] that has been quite suc-
cessful in predicting the data (both on the level of the conformation tensor but also the
viscometric functions, albeit not accurately enough) obtained from detailed atomistic
NEMD simulations of unentangled polymer systems over a wide molecular weight span
to accommodate a variable slip parameter. The central idea is that the increase of the slip
parameter from its equilibrium (null) value should be both shear-rate- and time-dependent
due to the increasing rotational contribution of the imposed shear flow as the shear rate
increases. The revised model still accounts for the most significant effects realized in physi-
cal systems, such as anisotropic drag, finite extensibility, non-affine motion, variable chain
relaxation, and a bounded non-equilibrium free energy, all together as introduced in its
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predecessor [29]. We compared the predictions of the revised model against newly exe-
cuted atomistic NEMD simulations of a short unentangled PE melt with a molecular length
equal to C48. Although the predictions at large shear rates were not significantly modified,
the revision amended the problems associated with having ξ-dependent zero-shear-rate
viscometric functions [29,38], cf. Equations (4), and linear-viscoelastic properties [38], cf.
Equations (5). It should be emphasized that although the revised model was not derived
through the use of a non-equilibrium thermodynamics formalism [28,30], its thermody-
namic admissibility still holds, since 0 ≤ ξ ≤ 1 (provided 0 ≤ ξ0 ≤ 1). Additionally, it
is a straightforward exercise to extend the model to entangled systems by following our
recent work [38]. We expect that the future use of the refined model will allow for more
reliable prediction of macroscopic viscoelastic behavior and, therefore, for the develop-
ment of more reliable computational tools, aiming to tailor-design large-molecular-weight
polymeric systems.
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