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Abstract 

Background:  Melatonin is a multi-functional molecule widely employed in order to mitigate abiotic stress factors, 
in general and salt stress in particular. Even though previous reports revealed that melatonin could exhibit roles in 
promoting seed germination and protecting plants during various developmental stages of several plant species 
under salt stress, no reports are available with respect to the regulatory acts of melatonin on the physiological and 
biochemical status as well as the expression levels of defense- and secondary metabolism-related related transcripts 
in bitter melon subjected to the salt stress.

Results:  Herewith the present study, we performed a comprehensive analysis of the physiological and ion bal-
ance, antioxidant system, as well as transcript analysis of defense-related genes (WRKY1, SOS1, PM H+-ATPase, SKOR, 
Mc5PTase7, and SOAR1) and secondary metabolism-related gene expression (MAP30, α-MMC, polypeptide-P, and PAL) in 
salt-stressed bitter melon (Momordica charantia L.) plants in response to melatonin treatment. In this regard, different 
levels of melatonin (0, 75 and 150 µM) were applied to mitigate salinity stress (0, 50 and 100 mM NaCl) in bitter melon. 
Accordingly, present findings revealed that 100 mM salinity stress decreased growth and photosynthesis parameters 
(SPAD, Fv/Fo, Y(II)), RWC, and some nutrient elements (K+, Ca2+, and P), while it increased Y(NO), Y(NPQ), proline, Na+, 
Cl−, H2O2, MDA, antioxidant enzyme activity, and lead to the induction of the examined genes. However, prsiming 
with 150 µM melatonin increased SPAD, Fv/Fo, Y(II)), RWC, and K+, Ca2+, and P concentration while decreased Y(NO), 
Y(NPQ), Na+, Cl−, H2O2, and MDA under salt stress. In addition, the antioxidant system and gene expression levels 
were increased by melatonin (150 µM).

Conclusions:  Overall, it can be postulated that the application of melatonin (150 µM) has effective roles in alleviating 
the adverse impacts of salinity through critical modifications in plant metabolism.
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Background
Salinity is of the major constraints affecting world agri-
cultural production, appearing as one of the major chal-
lenges to be alleviated because of its retarding effects on 
growth, development and productivity of crops [1, 2]. 
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Nearly 50% of irrigated land and 10% of soils in the world 
are under exposure to high levels of salinity [3]. Due to 
their sessile nature, plants cannot escape from the envi-
ronmental cues and for that reason, they have to evolve 
an elaborate system as well as adaptive responses against 
salt stress. Corresponding to the high levels of salin-
ity, the sodium and chloride ions accumulate in the soil, 
which in turn reduces the availability of essential nutri-
ents (such as K+) and water in plants [4]. K+/Na+ home-
ostasis is one of the key mechanisms for salinity tolerance 
in plants and in this regard, regulation/compartmentali-
zation of Na+ and K+ homeostasis in plants is critical 
for enhanced salt stress tolerance [5]. In cytosol, plasma 
membrane Na+/H+ antiporter (SOS1), SKOR K+ chan-
nel, and the PM H+-ATPase regulate Na+/K+ ion homeo-
stasis under salinity stress. Furthermore, reactive oxygen 
species (ROS) signaling exhibits a crucial role linked to 
salinity tolerance [6]. Nicotinamide adenine dinucleo-
tide phosphate (NADPH) oxidase is the main source of 
apoplastic ROS production which leads to salinity toler-
ance in the various plant [7]. In addition, gene family of 
WRKY, a plant-specific transcriptions factor (TF) group, 
plays key functions in various response pathways. For 
example, WRKY1 is involved in plant tolerance against 
drought [8] and salinity [9]. SOAR1, a cytosolic-nuclear 
pentatricopeptide repeat protein, has a vital role in plant 
response to salinity and drought [10, 11]. Furthermore, 
phenylalanine ammonia-lyase (PAL) is a well-known pre-
cursor to increase production of major secondary metab-
olites which are, in general, crucial for plant adaptation 
against biotic and abiotic stress factors [12, 13].

Melatonin (MT) has been shown to have various 
potential physiological functions in plants under stress-
ful and non-stressful conditions [14]. Among the known 
functions, MT has been revealed to be effective in alle-
viating the oxidative damage of stress factors, viz. heavy 
metal [14], high temperature [15], salt [16], drought [17] 
and cold stress [18]. In this context, Zhang and Zhang 
[19] and Reiter et  al. [20] reported that MT is a mito-
chondria-targeted antioxidant that achieves this action 
directly (detoxification of RONS) or indirectly (by induc-
ing antioxidant enzymatic activity and suppressing pro-
oxidant enzymatic activity). It has also been reported 
that MT as a regulator of growth and/or biostimulator 
in plants [21, 22] and could be effective in triggering ger-
mination by biosynthesis regulation and catabolism GA4 
and ABA in cucumbers [23], stimulating development of 
roots owing to the regulation of auxins synthesis, signal-
ing and transport, as observed in tomatoes and Arabi-
dopsis [24], increasing berry quality of grape [25] and 
improving the postharvest conservation of fresh fruits 
and vegetables [26]. Moreover, exogenous applications 
of MT increased the secondary metabolite contents in 

cabbage plants via up-regulating the expression of related 
biosynthetic genes [27].

Momordica charantia L., commonly known as bitter 
melon or bitter gourd is an important member of fam-
ily cucurbitaceae and it widely grows in tropical and 
sub-tropical areas. The fruit and leaves of bitter melon 
are rich in phytochemicals including nutraceutical and 
nutritional components [28]. Bitter melon has a wide 
range of medical applications to treat cancer, hyper-
tension, T2DM, bacterial and viral infections, obesity, 
and even AIDS [29]. Anti-HIV protein, MAP30, and 
α-momorcharin (α-MMC) are Type-I RIPs (Ribosome-
Inactivating Proteins) having single enzyme chain, which 
was isolated from bitter melon and demonstrated to have 
efficacy against HIV infection and cancer. Polypeptide-
P, another bioactive peptide isolated from bitter melon, 
showed hypoglycemic activity in diabetes [30].

The excellent functions of MT as anti-stressor have 
been widely reported for several crops. For instance, MT 
critically altered plant responses against stress through 
reducing the levels of H2O2, activating the ROS-metab-
olizing enzymes and inducing Na+ and K+ transporters. 
Those modifications assisted in alleviating the adverse 
effects of salinity [21, 31]. Interestingly, it has been sur-
mised that melatonin produce minor metabolites, which 
then co-work in combating with the stress. For that 
reason, Back [32] hypothesized that melatonin and its 
metabolites are together in the case exogenous applica-
tions of melatonin, suggesting that marked responses of 
the plants cannot be exclusively attributed to the mela-
tonin alone. For that reason, the studies linked to reveal 
the roles of MT are required. In this regard, we herein 
carried a comprehensive study in bitter melon subjected 
to salt stress. The regulatory roles of MT on the expres-
sion levels of defense- and secondary metabolism-related 
related transcripts in bitter melon subjected to the salt 
stress were, for the first time, investigated. The key objec-
tives of the current work were: (i) to study the potential 
function of MT in ameliorating the negative effect of 
salinity, (ii) to decipher the expression profile of defense 
and secondary metabolism-related genes induced by MT 
under salt stress, and (iii) to examine the physiological, 
biochemical, and nutritional state of MT-primed plants 
under salt stress, mainly aiming to investigate molecu-
lar regulatory components involved in the response to 
salinity.

Materials and methods
Growth conditions and plant treatment
This experiment was conducted in a growth chamber 
of the Department of Plant Biotechnology, University 
of Tabriz. The experiment was performed as a factorial 
using a completely randomized design (CRD) with three 
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biological replications and each replication consisted of 
two plants. The bitter melon (Palee F1) seeds were pro-
vided from Victoria Companies, India. Seeds were steri-
lized using sodium hypochlorite solution (1%) for 5 min 
and were then left for germination under darkness at 
25  °C for 48 h for pre-germination. Following one-week 
germination, the seeds those were homogeneously and 
uniformly germinated were transferred to the trays for 
cultivation comprising coco-peat and watered with ½ 
Hoagland’s modified solution. The seeds containing trays 
were then placed in the growth chamber with 28/22°C 
(day/night) and relative humidity of 62–80% 360 µmol 
m− 2  s− 1 light intensity. At the time of third true leaf 
emergence, healthy and uniform seedlings were selected 
and separated into three groups: (i) Hoagland’s nutrient 
solution (HNS, as a control); (ii) HNS + 75 µM melatonin 
(MT); and (iii) HNS + 150 µM MT. The concentrations 
of melatonin were selected according to Yin et  al. [33]. 
Plants were grown in melatonin-supplemented Hoagland 
solution for one week with 0, 75 and 150µM MT (MT 
added to Hoagland’s nutrient solution). MT was dissolved 
in ethanol were then diluated with MilliQ water. The MT 
purchased from Sigma–Aldrich, company, USA. Four 
days after MT supplementation, plants were exposed to 
different levels of salinity stress (0, 50 and 100 mM NaCl) 
for three day period. After treatment, leaves and roots 
samples were harvested for RNA extraction and study of 
gene expression, frozen in liquid nitrogen promptly after 
harvest, and stored at ˗80 °C until further analyses.

Growth parameters
Fresh and dry weights of shoot and root, as well as height 
of shoot and root, were measured at the end of three-day 
salt stress.

Chlorophyll‑related parameters
The chlorophyll index in five fully-expanded leaves was 
recorded with a SPAD-502 chlorophyll meter (Minolta 
Co. Ltd., Japan). Chlorophyll fluorescence parameters 
(Fv/Fo, Y(II), Y(NO) and Y(NPQ)) of leaf samples were 
assessed with a chlorophyll fluorometer (Dual-PAM-100, 
Heinz Walz, Efeltrich, Germany) under dark adaption for 
20 min.

Relative permeability, proline contents and relative water 
content
Relative permeability was determined according to the 
method of Nanjo et al. [34]. Proline content in leaf sam-
ples was determined with detailed method of Bates et al. 
[35]. Freshly sourced leaves were macerated in 3% sul-
phosalicylic acid solution and were then centrifuged for 
10 min at 15,000 × g at 4 °C. One ml of prepared super-
natant solution was placed in a tube and reacted with one 

ml acid ninhdrin and one ml of acetic acid. The result-
ant mixtures were heated for 60 min at 100ºC. The assay 
reaction was stopped by putting the reaction assay on 
ice. After that, toluene (2 mL) was used for the extrac-
tion of assay mixture. The two phases were separated by 
keeping the reaction assay at room temperature for the 
period of 30  min. Finally, supernatants absorbance was 
read at 520  nm on a spectrophotometer (UV-1800 Shi-
madzu, Japan) and toluene was served as blank. The rela-
tive water content (RWC) of leaf samples was measured 
following the protocol described by Sairam and Srivas-
tava [36]. Initial fresh leaf samples were weighted using 
digital balance for fresh weight (FW). Then, turgid weight 
(TW) was recorded by placing the leaf samples in dou-
ble-distilled water for 24 h. Finally, dry weights (DW) of 
samples were assessed after 24 h drying at 70 ºC. RWC 
was measured by the equation: RWC= (FW − DW)/
(TW − DW)×100.

Malondialdehyde (MDA) and hydrogen peroxide (H2O2) 
content
The concentration of malondialdehyde (MDA) was deter-
mined with previous protocol [37]. The 0.3  g fresh leaf 
sample was ground in 20% trichloroacetic acid (TCA) 
and centrifuged for 15 min at 13,000×. Thereafter, TCA 
(20%, 4 mL) was incorporated into 1 ml of the solution 
of supernatant. The mixture was the boiled in water bath 
(95  °C) for 30  min. Afterward, the mixture was quai-
ckly cooled in an ice bath and absorbance was noted at 
600 nm and 532 nm. Finally, MDA was calculated by used 
155 mm− 1 cm− 1 as a coefficient of molar absorption.

H2O2 was determined with protocol of Allen [38]. 
Briefly, 0.2 g sample of the leaves was macerated in an ice 
bath which contained 0.1% TCA (3 mL) and it was cen-
trifuged for 15 min at 20,000×g. After that, 500 µL assay 
mixture was reacted with 10 mM concentrated phos-
phate buffer (500 µL, 7.0 pH) comprising 2  M KI. The 
resultant assay was kept under darkness for 60  min at 
room temperature for the incubation. Finally, H2O2 con-
tent was assayed at 390 nm on a spectrophotometer.

Antioxidant enzymes activities
In order to assay the activity of antioxidant enzymes, 
0.5 g homogenized leaf sample was macerated in 0.05 M 
phosphate buffer (1% PVP, 1  M MEDTA, 7.8 pH), and 
subjected to centrifugation for 20  min at 12,000× g 
(4  °C). The collected supernatants were used for peroxi-
dase (POD) [39] and superoxide dismutase (SOD) activi-
ties determination [40]. To determine POD activity, assay 
reaction comprising enzymes extract, 5 µL of 10% (w/v) 
H2O2, 100 mM phosphate buffer (pH 6.0), and 16 mM 
guaiacol. The absorbance was at 470  nm for 1  min as 
mmol produced tetraguaiacol per minute per mg soluble 
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proteins (U mg− 1). As well as one unit of SOD activity 
was enzyme amount needed to cause 50% inhibition of 
NBT (nitro blue tetrazolium) at 560 nm.

Content of nutrient elements
For quantifying the content of major macro-elements, 
100 mg of ground, oven-dried root tissue was digested in 
concentrated nitric acid (110 °C for 6 h). The concentra-
tion of potassium (K+) and sodium (Na+) in the digested 
extracts was quantified by flame emission spectrometry, 
while calcium (Ca2+) and phosphorus (P) were deter-
mined by atomic absorption spectrometry (AA-7000, 
Shimadzu). For chloride (Cl−) determination, oven-dried 
root samples were extracted with deionized water at 
100 °C for 2 h, after which Cl− content was measured by 
ion chromatography (ICS 2000, Dionex, Sunnyvale, CA, 
USA).

RNA isolation and quantitative real‑time PCR (RT‑qPCR) 
assay
Total RNA extracted from the leaf and root samples 
(using CinnaGen kit, Iran) was used for cDNA synthe-
sis (using Yekta Tajhiz Azma kit, Iran). The primers for 
the α-tubulin 1a internal control gene and studied genes 
(MAP30, α-MMC, polypeptide-P, SOS1, H+-ATPase, 
SKOR, SOAR1, Mc5PTase7, and WRKY1) are shown in 
Table S1. The RT-qPCR reaction mixtures (25 µL) con-
tained 12.5 µL of master mix (AMPLIQON), 1 µL of 
primer (10 µM), 2 µL of cDNA, and 9.5 µL of nuclease-
free water. The reaction parameters were used in all cycle 
sequencing reactions: initial denaturation at 95  °C for 
30 s; denaturation at 95 °C for 5 s, annealing at 60 °C for 
20 s, 30–40 cycles; 55° to 95 °C increased by 0.5 °C every 
30 s, 81 cycles. Three replicates were calculated for each 
sample and gene the relative expression of the gene was 
calculated by the comparative Ct (2−ΔΔCt) method.

Statistical analysis
The data obtained were analyzed by Statistica-13 (Stat-
soft, Tulsa, USA). Factorial ANOVA, in which the con-
centration of MT solution and degree of salinity stress 
were used as categorical variables revealed a significant 
difference between treatments. When a significant dif-
ference was found, Duncan’s post-hoc analysis was 
used to find homogeneous groups (p < 0.05, significant 
difference).

Results
Effect of exogenous melatonin on growth parameters 
under salinity stress condition
To assess the effects of MT and salt stress in bitter melon, 
four-week-old bitter melon seedlings were subjected to 
MT pre-treatment, and were then treated with 50 and 
100 mM NaCl stress for three days. In relation to the con-
trol, the higher levels of salinity critically decreased shoot 
height, root height, shoot fresh weight, shoot dry weight, 
root fresh weight, and root dry weight up to 51.25%, 
57.23%, 48.51%, 48.46%, 42.18%, and 42.01% respectively 
(p < 0.05) (Table  1). As expected, 150 µM concentration 
of MT substantially increased shoot height (15.04% and 
30.46%), root height (19.23% and 37.43%), shoot fresh 
weight (20.18% and 22.15%), shoot dry weight (20.07% 
and 21.76%), root fresh weight (14.58% and 20.68%) and 
root dry weight (14.74% and 15.04%) than salt-treated 
biter melons with 50 and 100 mM (p < 0.05) (Table 1).

Effect of exogenous melatonin on photosynthetic 
parameters under salinity stress condition
High concentration of salt significantly reduced SPAD, 
Fv/Fo and Y (II) and increased Y (NO) and Y (NPQ), in 
comparison to the control (Table  2). Being consistent 
with the former reports [41], MT (150 µM) reduced the 
adverse impacts of high level of salinity by increasing 

Table 1  Effect of application of melatonin (0, 75 and 150 µM) on growth parameters of bitter melon (Momordica charantia) under salt 
stress (0, 50 and 100 mM NaCl) conditions

a-h show significant difference according to Duncan’s multiple range test at p ≤ 0.05

NaCl (mM) Melatonin (μM) Shoot length
(cm)

Root length
(cm)

Shoot FW
(g)

Shoot DW
(g)

Root FW
(g)

Root DW
(g)

0 0 19.57 ± 0.62 a 14.03 ± 0.49a 33.31 ± 0.40b 2.93 ± 0.03b 0.422 ± 0.016ab 0.0238 ± 0.0009ab

75 19.76 ± 0.42 a 14.42 ± 0.50a 34.02 ± 0.06ab 2.99 ± 0.00ab 0.424 ± 0.013ab 0.0240 ± 0.0007ab

150 20.08 ± 0.40 a 14.61 ± 0.45a 34.66 ± 0.48a 3.05 ± 0.04a 0.433 ± 0.013a 0.0245 ± 0.0007a

50 0 15.59 ± 0.37 d 10.92 ± 0.50c 25.35 ± 0.99e 2.23 ± 0.08e 0.328 ± 0.014de 0.0185 ± 0.0008de

75 16.60 ± 0.33 c 12.09 ± 0.50b 28.76 ± 0.49d 2.53 ± 0.04d 0.359 ± 0.011cd 0.0203 ± 0.0006cd

150 18.35 ± 0.19 b 13.52 ± 0.50a 31.76 ± 0.36c 2.79 ± 0.03c 0.384 ± 0.011bc 0.0217 ± 0.0006bc

100 0 9.54 ± 0.13 g 6.00 ± 0.51f 17.15 ± 0.25g 1.51 ± 0.02g 0.244 ± 0.010f 0.0138 ± 0.0006f

75 11.56 ± 0.13 f 7.92 ± 0.48e 21.02 ± 0.45f 1.85 ± 0.03f 0.290 ± 0.045e 0.0164 ± 0.0025e

150 13.72 ± 0.19 e 9.59 ± 0.46d 22.03 ± 0.12f 1.93 ± 0.01f 0.308 ± 0.011e 0.0174 ± 0.0006e
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the values of SPAD, Fv/Fo, Y(II) and by decreasing Y(NO) 
and Y(NPQ), in comparison to either unprimed or salt-
stressed plants (p < 0.05).

Effect of exogenous melatonin on proline and RWC 
under salinity stress condition
High concentration of salt stress caused significant incre-
ments in proline content, while it decreased RWC. Once 
compared with 50 and 100 mM NaCl stress, pre-treat-
ments with MT (150 µM) increased proline and RWC 
(p < 0.05) (Fig. 1a, b).

Effect of exogenous melatonin on oxidative stress 
indicators under salinity stress condition
In regard to common cellular damage indicators, 100 
mM NaCl increased the level of MDA, H2O2 and electro-
lyte leakage, in comparison to the control. Along with the 
pre-treatment of 150 µM MT, significant reductions were 
observed in levels of MDA, H2O2 and electrolyte leakage, 
in comparison to either the unprimed or 50 and 100 mM 
NaCl treatments (Fig. 2a-c).

Effect of exogenous melatonin on antioxidative enzymes 
activities under salinity stress condition
In accordance with the increased stress-related param-
eters, significant increases in activities of POD and 
SOD were observed at 100 mM NaCl, relative to the 
control. However, pretreatment with 150 µM MT fur-
ther increased the activity of POD and SOD more than 
salinity alone, in comparison with 50 and 100 mM NaCl 
(Fig. 3a, b).

Effect of exogenous melatonin on nutrient concentration 
under salinity stress condition
In relation to the control, sharp decreases in K+, P 
and Ca2+ content by 50.88%, 40.97%, and 55.69%, 

respectively, and increases in Na+ and Cl− of up to 
60.83% and 60.22% were observed in roots under 100 
mM NaCl. However, pretreatment with 150 µM MT 
increased K+ (21.98% and 30.29%), P (24.18% and 
29.21%) and Ca2+ (26.77% and 21.67%) content and 
decreased Na+ (27.07% and 18.68%) and Cl− (25.97% 
and 15.46%) content, in relation to 50 and 100 mM 
NaCl (Fig. 4a-e).

Effect of exogenous melatonin on defense‑related genes 
expression under salinity stress conditions
To evaluate the effects of MT on the ion homeostasis in 
roots of bitter melon under salinity conditions, the tran-
scription level of SOS1, SKOR, and PM H+-ATPase were 
also investigated. Accordingly, 100 mM NaCl caused sig-
nificant inductions in the transcriptions level of all three 
genes (Fig.  5a-c), in comparison to the control. How-
ever, pre-treatment with 150 µM MT further increased 
expressions level of SKOR, SOS1, and PM H+-ATPase in 
relation to 50 and 100 mM NaCl treatments (Fig. 6a-c).

Under 100 mM salinity, WRKY1, SOAR1, and 
Mc5PTase7 were significantly up-regulated in the shoot 
of bitter melon plant once compared with non-saline 
conditions (Fig. 7a-c). However, pre-treatment with 150 
µM MT showed significant up-regulation in expres-
sions level of the three genes in shoot tissues, in com-
parison to the stressed plants (Fig. 5a-c).

In addition, current findings revealed that transcript 
levels of PAL, MAP30, α-MMC, and Polypeptide-P 
were significantly up-regulated under 100 mM salinity 
stress. As the case of other estimated parameters, pre-
treatment with MT 150 µM significantly inducted PAL, 
MAP30, α-MMC and polypeptide-P compared with 
unprimed, salt-stressed plants under both NaCl con-
centrations (Fig. 7a-d).

Table 2  Effect of application of melatonin (0, 75 and 150 µM) on photosynthetic parameters of bitter melon (Momordica charantia) 
under salt stress (0, 50 and 100 mM NaCl) conditions

a-h show significant difference according to Duncan’s multiple range test at p ≤ 0.05

NaCl (mM) Melatonin
(μM)

SPAD Fv/Fo Y (II) Y (NO) Y (NPQ)

0 0 38.15 ± 0.76a 2.91 ± 0.02b 0.590 ± 0.002a 0.289 ± 0.004g 0.183 ± 0.003f

75 37.80 ± 1.02a 2.96 ± 0.01b 0.590 ± 0.006a 0.284 ± 0.005g 0.179 ± 0.003f

150 39.02 ± 1.07a 3.05 ± 0.04a 0.594 ± 0.005a 0.278 ± 0.004g 0.171 ± 0.001g

50 0 32.2 ± 0.68c 2.31 ± 0.03e 0.431 ± 0.002d 0.395 ± 0.011d 0.233 ± 0.004c

75 34.2 ± 0.71b 2.48 ± 0.02d 0.477 ± 0.006c 0.352 ± 0.004e 0.214 ± 0.004d

150 35.57 ± 0.48b 2.78 ± 0.02c 0.516 ± 0.012b 0.326 ± 0.009f 0.200 ± 0.004e

100 0 28.59 ± 0.77d 1.66 ± 0.06h 0.264 ± 0.004g 0.595 ± 0.005a 0.260 ± 0.003a

75 30.84 ± 0.66c 1.77 ± 0.02g 0.301 ± 0.010f 0.545 ± 0.011b 0.253 ± 0.001a

150 31.69 ± 1.07c 1.91 ± 0.05f 0.345 ± 0.008e 0.505 ± 0.007c 0.242 ± 0.002b
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Discussion
In the current study, exogenous effects of melatonin on 
salt stress-submitted bitter melon plants were investi-
gated through an array of agronomic, physiological and 
biochemical attributes. The relevant findings were col-
lectively visualized and presented in Fig. 8. As expected, 
high levels of salinity critically decreased growth and 
photosynthetic parameters such as SPAD index, Fv/Fo, 
Y(II) and increased Y(NO) and Y(NPQ). These findings 
are in accordance with the observations of Wu et  al. 

[42] and Gohari et al. [43] for cucumber and Moldavian 
balm plants, respectively. As expected, the application 
of MT led to increases in SPAD index, Fv/Fo, Y(II) and 
decreases in values of Y(NO) and Y(NPQ). Photosyn-
thesis is an important process due to its pivotal role in 
plant survival and productivity. For that reason, reduc-
tion in photosynthesis is commonly translated into 
reduced growth and development. Numerous reports 
have shown the protective role of MT on photosyn-
thetic apparatus of crop plants exposed to salt stress. 

Fig. 1  Effect of application of melatonin (0, 75 and 150µM) on Proline (a) and RWC (b) in bitter melon under salt stress (0, 50 and 100 mM NaCl) 
conditions. Data are the average of 3 replicas ± standard error. Different letters show significant difference according to Duncan’s multiple range test 
at p ≤ 0.05
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Fig. 2  Effect of application of melatonin (0, 75 and 150µM) on MDA (a), H2O2 (b) and Relative Permeability (%) (c) content in bitter melon under salt 
stress (0, 50 and 100 mM NaCl) conditions. Data are the average of 3 replicas ± standard error. Different letters show significant difference according 
to Duncan’s multiple range test at p ≤ 0.05
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For instance, employing MT significantly increased 
chlorophyll pigments, carotenoids concentration and 
Fm, Fv/Fm, ETR, Y(II), and qP in cucumber plants [44]. 
Similarly, MT priming increased photosynthetic quan-
tum yield (φPSII), the total content of chlorophyll, as 
well as RbcL and RbcS genes expression in Phaseolus 
vulgaris L. [45], while relative chlorophyll content and 
genes involved in photosynthesis (including ATPF0A, 
ATPF0B, ATPF1B and LHCB) genes were induced in 
melatonin-primed rubber tree (Hevea brasiliensis) 
grown under salt stress [46]. In addition, Xie et al. [47] 

reported that MT decreased Y(NO) and Y(NPQ) in 
tomato seedlings under calcium nitrate stress.

As one of the adopted strategies for combating the 
stress, plants accumulate osmotic regulators for main-
taining intra-cellular stability and protecting their cells 
from the toxicity of salt stress [48]. Ferchichi et  al. [49] 
reported that proline presents multiple roles such as reg-
ulation of salt stress-responsive gene expression, redox 
homeostasis, as well as stabilization of membrane and 
proteins. In the present experimental setup, the applica-
tion of MT significantly improved proline’s concentration 
and RWC in bitter melons plant during salt stress, as the 

Fig. 3  Effect of application of melatonin (0, 75 and 150µM) on POD (a) and SOD (b) enzyme activity in bitter melon under salt stress (0, 50 and 100 
mM NaCl) conditions. Data are the average of 3 replicas ± standard error. Different letters show significant difference according to Duncan’s multiple 
range test at p ≤ 0.05
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cases observed in several other plant species treated with 
MT and salt stress [50, 51]. Specifically, MT amplified 
proline, total soluble carbohydrate content as well as pyr-
roline-5-carboxylate synthase (P5CS) activity in tomatoes 
[52]. Furthermore, Chen et al. [50] reported that soluble 
sugar and soluble protein contents in cotton seeds were 
enhanced following MT application under salinity stress.

Current findings showed that 100 mM NaCl caused 
critical increments in levels of free radicals (H2O2), 
MDA, and relative conductivity. These findings are 

similar with the observations of Zhang et al. [23]. In the 
same way, Chen et  al. [53] and Li et  al. [54] reported 
that MT generally protects the crop plants from oxi-
dative-induced detrimental stress by detoxification of 
the ROS and owing to increased activities of antioxida-
tive enzymes. Similarly, findings of the present study 
revealed that MT application lowered free radicals 
(H2O2), MDA content and relative conductivity level 
by increasing activities of POD and SOD enzymes. In 
agreement with our findings, the application of MT 

Fig. 4  Effect of application of melatonin (0, 75 and 150µM) on K+ (a), P (b), Ca2+ (c), Na+ (d) and Cl− (e) content of bitter melon roots under salt 
stress (0, 50 and 100 mM NaCl) conditions. Data are the average of 3 replicas ± standard error. Different letters show significant difference according 
to Duncan’s multiple range test at p ≤ 0.05
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Fig. 5  Effect of application of melatonin (0, 75 and 150µM) on relative expression level of WRKY1 (a), SOAR1 (b) and Mc5PTase7 (c) genes in the 
bitter melon leaves. Data are the average of 3 replicas ± standard error. Different letters show significant difference according to Duncan’s multiple 
range test at p ≤ 0.05
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Fig. 6  Effect of application of melatonin (0, 75 and 150µM) on relative expression level of SOS1 (a), SKOR (b) and PM H+-ATPase (c) genes in bitter 
melon roots. Data are the average of 3 replicas ± standard error. Different letters show significant difference according to Duncan’s multiple range 
test at p ≤ 0.05
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increased antioxidative enzyme activities and tran-
scriptions level of the associated genes that encode the 
antioxidative enzyme expressions, while decreasing 
free radicals (H2O2, O2

⋅−), MDA, and relative conduc-
tivity in cucumber [44] and Phaseolus vulgaris L. [45] 
under salinity stress.

Maintaining ionic homeostasis in plant tissues has 
been linked with the status of the antioxidant enzymes, 
membrane integrity and osmotic potential of the cells, 
affecting cellular turgor which is translated into plant 
growth and development. In this regard, Shabala and 
Cuin [55] reported that maintaining a high K+/Na+ 
ratio and a low cytosolic Na+ content were essential fac-
tors for plants to maintain homeostasis of their cellular 
metabolism as Na+ and Cl− were metabolically toxic at 
high concentrations [56]. Kurusu et  al. [57] reported 
that Ca2+ is a key signaling component in a plant’s salt 
stress response. It has been reported that Ca2+ reduces 
the negative effects of salt stress in plants [58] by stabiliz-
ing cell wall structures [59], maintaining functional and 
structural integrities of membrane in plants [58], regu-
lating ion selectivity and transport and controlling ion-
exchange behavior [60]. Stressors such as cold shock [61], 
heat shock [62], salinity [63] and drought [61] induce 

cytosolic Ca2+ accumulation, which acts as in the form 
of secondary messenger during the stressful conditions 
signaling [64].

The SOS2-SOS3 complex activities SOS1 (Na+/H+ 
anti-porter), which in turn regulates cytosolic Na+ con-
centration [65]. It has been reported that SOS2 affects 
CAX1, thus further connecting cell Ca2+ with Na+ trans-
portation [66]. Phosphorus (P) is an essential element of 
the macro-category that is involved in a variety of pro-
cesses in the plants such as transfer of the energy where it 
is required, photosynthesis, respiration, signaling trans-
duction cascades, and macromolecular biosynthesis [67]. 
The availability of P can affect salt tolerance of plants 
[68]. Current results showed that salt stress-imposition 
enhanced the Na+ and Cl− and reduced K+, Ca2+ and P, 
while application of MT significantly increased K+, Ca2+ 
and P contents and substantially reduced Na+ and Cl− in 
roots of bitter melon under salinity stress. Furthermore, 
MT increased SKOR, SOS1, and PM H+-ATPases tran-
scripts level in the root cells of salt-stressed bitter mel-
ons in comparison to either Unprimed or salt-stressed 
plants. Application of MT increased transcription levels 
of SOS pathway genes (SOS1-3) in cucumber [44], PM 
H+–ATPases activities, and the homeostasis of K+/Na+ 

Fig. 7  Effect of application of melatonin (0, 75 and 150µM) on relative expression level of PAL (a), MAP30 (b), a-mmc (c) and polypeptide-p (d) 
genes in bitter melon leaves. Data are the average of 3 replicas ± standard error. Different letters show significant difference according to Duncan’s 
multiple range test at p ≤ 0.05
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in the seedlings of sweet potatoes [69], genes expression 
associated with key potassium channels and transport-
ers (OsHAK1, OsAKT1, OsGORK and OsHAK5) and K+ 
content [70], the content of Ca2+ [71] and reduced Na+ 
and Cl− [50] under salt stress. Regarding current find-
ings, MT significantly induced WRKY1, SOAR1 and 
Mc5PTase7 expression under salinity stress. The WRKY1 
transcription factor is a key component of stress-related 
signal transduction pathways and is a factor in the 
improvement of plant tolerance to stress [72]. A wide 
range of downstream genes [72] including jasmonic acid-
responsive genes [73], and genes associated with signal 
transduction of salicylic acid [74] and regulators of sec-
ondary metabolism are controlled by WRKY1 [72]. In 
agreement with our findings, MT induced up-regulation 
of various genes expression such as MYB, WRKY, and 
other (genes) transcription in Arabidopsis and cucumber 
[75, 76] and DREB, WRKY, and MYB in Bermuda grass 
[77].

SOAR1 is a downstream of the ABA receptor and 
upstream of an important ABA-responsive bZIP tran-
scription factor [11]. Ma et  al. [78] stated that two iso-
forms of Arabidopsis eIF4G, eIFiso4G1 and eIFiso4G2 
interacted with SOAR1 in order to regulate ABA 

signaling negatively. In addition, Bi et  al. [79] reported 
that both USB1 and SOAR1 were required genes for 
transcripts splicing of numerous genes such as the 
genes associated with salinity responses and signaling 
of ABA pathways. The over-expression of SOAR1 also 
increased proline levels, expression levels of SOS1, SOS2, 
and P5CS1 and growth of plants under salinity while it 
decreased the level of electrolyte leakage [10]. Our results 
showed that MT increased growth, transcript levels of 
SOAR1 and SOS1, proline, and decreased electrolyte 
leakage under salinity stress conditions.

Huang et al. [7] reported that certain ROS production 
has been found associated with NADPH oxidase-which 
is further linked with tolerance of salinity in differ-
ent plants. The main apoplastic ROS generation source 
is burst oxidase homolog (RBOH). Torres et  al. [80] 
described that RBOH generated superoxide, which was 
then dismutated to H2O2 [81].

Kaye et al. [82] found that AtRbohJ plays a key role in 
production of ROS in plants under salinity stress and 
the production of ROS in AtRbohJ mutants was signifi-
cantly lower under salinity stress. Other reports revealed 
that the transcriptions of AtRbohJ in At5ptase7 mutants 
were significantly decreased during salt stress [82]. 

Fig. 8  Schematic presentation of the findings of the study
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Those findings suggest that At5ptase7 plays an impera-
tive function in production of ROS and NADPH oxi-
dase activity under salinity stress. It was observed that 
At5PTase7 mutants showed failure in the induction of 
RD22 and RD29A, that contains numerous ROS-reliant 
components with regard to their certain promoters [82]. 
NADPH oxidase activity increased rosette fresh weight, 
K+ concentration, K+/Na+ ration, total chlorophyll con-
tent, chlorophyll fluorescence (Fv/Fm), CAT, APX, GR 
and SOD enzymatic activities, and decreased Na+, H2O2 
and MDA concentrations in Arabidopsis thaliana under 
salt stress [83]. Present findings showed that application 
of MT increased transcript levels of Mc5PTase7, fresh 
weight, K+ concentration, SPAD, Fv/Fo, Y(II), POD and 
SOD enzymatic activities, and decreased Na+, H2O2 and 
MDA concentrations in salt-stressed plants. Similar to 
our conclusion, Chen et  al. [84] reported that MT may 
improve tolerance against certain stresses through mod-
ulation of ROS-signaling which is well co-ordinated by 
NADPH oxidase.

Several important proteins and peptides such as 30 kD 
(MAP-30) which is an anti-HIV protein, α-momorcharin 
(α-MMC) and polypeptide-P were isolated from bitter 
melon. MAP30 and α-MMC is a single chain RIP (type I 
ribosome-inactivating proteins) and their molecular mass 
are 30 kD. MAP30 and α-MMC prevent many types of 
cancers such as blood, brain, breast, colon, liver, and lung 
cancer [85]. In addition, polypeptide-P, a hypoglycemic 
peptide, has an imperative function in the recognition of 
cells and certain reactions required for the adhesion pur-
pose [30]. In this study, the application of MT increased 
MAP30, α-MMC, polypeptide-P and PAL gene expres-
sion levels under control and saline conditions. The cur-
rent molecular profiles are in accordance with earlier 
reports that MT treatment positively induced transcrip-
tion of flavonoid biosynthetic genes such as C4H, PAL, 
LAR, CHS, F3H, ANR, and UFGT in kiwifruit [86], genes 
related to the biosynthesis of rosmarinic acid (PAL and 
RAS) in Dracocephalum kotschyi [87], phenylpropanoid 
pathway genes (PAL, STS) in grape berries [88] and bio-
synthesis associated genes of anthocyanin (C4H, PAL, 
CHI, CHS, DFR, LDOX, F3H, F3′H, GST and UFGT) in 
red cabbage and white cabbage [27].

Conclusions
Exogenous MT enhanced salinity stress tolerance in bit-
ter melon through different mechanisms. Exogenously 
applied MT (150 µM) in salt-stressed plants improved 
growth and photosynthetic parameters, increased osmo-
protectant through higher proline content, lowered oxi-
dative stress by up-regulating antioxidant enzymatic 
activity, regulated ionic homeostasis and importantly, 

resulted in the transcriptional regulation of multiple 
defense-related genes. Furthermore, MT induced the 
transcription levels of genes linked to the secondary 
metabolites. Overall, it can be concluded that MT can be 
successfully employed as an effective priming agent for 
the amelioration of salt stress in bitter melon plants.
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