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Abstract

Spatial relations between image regions are used in
this paper for image classification in a rule-based fash-
ion. In the particular case where image regions correspond
to semantically interpretable objects the rules provide the
means for justifying classification in a human-familiar man-
ner. In the work presented here instances of particular ob-
ject classes are detected combining bottom-up (learnable
models based on simple features) and top-down informa-
tion(object models consisting of primitive geometric shapes
such as lines). The rule-based system acts as a model for
the spatial configuration of objects. Experimental results in
the athletic domain show that despite inaccuracy in object
detection, spatial relations allow for efficient discrimination
between visually similar images classes.

1. Introduction

Content-based image retrieval remains a challenging is-
sue although research in the corresponding area is active [5]
for almost twenty years [22]. Even the most advanced
content-based image retrieval systems lack semantic value
when presented to human users [17]. This is because the
indexing features that are used in these systems are too sim-
ple and generic (color, shape and texture derived low-level
descriptors) [4, 9, 18] to allow semantic interpretation of re-
trieval results. To be fair, however, we should mention that
the usage of the previously mentioned features enhance ro-
bustness and preserve domain independency [10].
The last decade image retrieval research has being focusing
on the query-by-example paradigm [21], though an ambi-
tious goal is to allow the user to formulate semantic queries
through a natural language interface [12]. Beside translat-
ing textual information into a semantically valid query, this
goal also requires an association of semantic classes to their
visual representations. An approach to handle semantic

queries has been to label images with coarse classes, such as
indoor/outdoor and cities/landscapes, based on global char-
acteristics of images. Such a labelling, though, tends to be
inadequate in respect to realistic user-queries. At the same
time, finer grain classification based directly on global im-
age features, seems unfeasible. In more realistic scenarios,
a user may wish to retrieve an image based on particular
objects that appear in it. This brings up the question of
detecting and classifying particular areas of images to one
among a certain number of object classes. What’s more,
once this question is addressed, an overall image classifi-
cation becomes conceivable, by resolving it to a particular
spatial combination of objects it is made of.
In this study, we apply an object detection followed by im-
age classification approach to detect objects and events in
the athletics domain. Our object detection method results in
finding image areas corresponding to a (possibly partially
occluded) 2D-representation of an instance of a predefined
set of object classes. To that end, we combine a top-down
strategy, i.e. take into account modelling of specific object
classes, with a bottom-up approach, i.e. determine region
boundaries based on visual cues, as suggested in [3, 15, 14].
As a next step, we consider the image as a combination of
distinct semantic objects corresponding to different area lo-
cations [7, 25, 1, 20]. We then verify the object spatial rela-
tions against a set of rules, to characterize the whole image.
In unconstrained images, there is a great variability of ob-
ject classes in respect to lighting conditions and camera po-
sitions. Hence, most literature has been concentrating on
very specific application domains, such as car plates recog-
nition, horses, street scene analysis and face detection [8].
In this article, we present on-going work focused on the ath-
letic domain, where (a) the objects to be identified are the
humans and the athletic instruments and facilities and (b)
the image is classified as a whole in respect to on of two
athletic events (pole vault - high jump) it focuses on. Nev-
ertheless, as it will be shown, our methodology allows to
improve image classification results even when objects are



Figure 1. Schematic diagram of the detection
and classification process

missing or not properly detected.

2 System Overview

Semantics extraction from images has been frequently
depicted as bridging the gap between concepts and their vi-
sual representations. Our approach consists of constructing
this bridge with, as an intermediate abutment, the detection
of particular image areas as instances of semantic classes.
The overview of our method is depicted in Figure 1.

Our assumption is that in most circumstances, even when
an image can be overall described by a single word (a high-
level concept), its semantics is too complex to be detected
directly by visual cues. Instead, it may be easier to decom-
pose the image semantics into a set of interrelated concepts
corresponding to distinct visual areas of the image, which
may be much more easily detectable. We will refer to these
concepts as mid-level concepts [19], since they serve as in-
termediates between the low-level visual cues and the high-
level concept, i.e. the final image classification, (Notice
that although the concepts’ qualifier “mid-level” refers to
their role as intermediates in bridging the semantic gap, they
can also be characterized as “atomic” in that they consti-
tute the smallest semantic entities detected directly through
image processing techniques).This has the advantage of be-
ing able to explicitly supplement the extraction system with
known semantics regarding the relation between the mid-
level concepts and the high-level ones, thus providing use-
ful a-priories to the extraction procedure.

To illustrate our methodology, consider an example of
the athletics domain, where an image shows an athlete hold-
ing a pole and jumping over an horizontal bar, whereas a
pillar is also visible. Clearly, this may be interpreted as a
photo taken from a pole-vault event, as long as the relative
position of these objects does indicate this. Although a di-

rect classification of an image as a pole-vault event is theo-
retically possible, detecting each object separately and then
associate them seems a more robust and scalable solution,
if a distinction between a very visually similar event, such
as high jump, is desirable.

Our methodology results in semantic labelling of images
as well as of objects within images, which makes it poten-
tially suitable for image retrieval. An important issue that
arises then is how the results are further used to allow for
query answering. Although early work employed ad-hoc
methods for querying specially crafted databases [16], our
approach is to populate an ontology, and then query it us-
ing a standard reasoner (see [11]), also taking advantage of
further knowledge, implied by the T-box of the ontology, to
answer complex semantic queries. The reader is referred to
[19] for an analytical description of this approach.

3 Object Detection

Our approach to object detection is a conjunction of
bottom-up and top-down techniques to detect specific ob-
jects. Namely, following a domain-independent segmen-
tation to find a first set of segments (bottom-up approach),
particular algorithms [23] [24], taking into account informa-
tion regarding the colour/texture of objects, are used to de-
tect fragments of objects classes (top-down approach). Ad-
ditional information regarding the expected shape of the ob-
ject classes is also used either to merge adjacent fragments
of the same object class or to directly locate them in the im-
age (top-down). In the latter case, a further combination of
the segments found with the general-purpose segmentation
is used to optimally adjust the object boundaries. To further
distinguish among object classes in a finer grain, we extract
features of the detected objects and feed them to a learnable
classifier, assigning the object class with the highest score.
The multi-class classifier also includes an “unknown” class,
thus allowing handling of detected objects that don’t belong
to any of the foreseen classes.

In the remainder of this section, we describe in details the
way detection is done for three object classes: human bod-
ies, human faces and elongated objects. Figure 2 illustrates
a typical image containing these classes, whose choice has
been such that, as it will be shown at section 4, it will enable
a final image classification based on spatial relations.

3.1 Detection of human bodies

To detect human bodies, the image I is first partitioned
into segments S = {Si} using the JSEG [6] algorithm, such
that

I =
⋃
i

Si (1)



Figure 2. A high jump image with the detected
horizontal bar, body and face.

To allow for more accurate object contour detection, over-
segmentation is promoted, by choosing high values for the
merging threshold of this algorithm. Subsequently, a small
number among these segments is kept, based on whether
these constitute foreground areas of the image. Foreground
areas are modelled as the visually attended areas, computed
with the aid of the algorithm described in [24]. The assump-
tion here is that the human to be detected is always part of
the foreground, since during photo capturing, the focus is
on him. In particular, the set of segments S ′ kept as candi-
date for humans, comprises those having overlap precision
ratio higher than a defined threshold T :

S ′ = {Si :
|Mi ∩MF |
|Mi|

> T} (2)

where Mi denotes the mask of segment Si, MF denotes the
mask of area detected as foreground, ∩ denotes the logical
AND operation and | · | denotes the sum over pixel values.
A typical value for the threshold T is 0.5.

To further reduce the elements of S ′, we make use of
a classifier, which decodes wether a segment is part of a
body, rather than some other object class. Since the same
classifier is used to discriminate among object classes, it is
described separately below. Finally, adjacent partitions of
this set are then merged and the body is considered as the
largest candidate after merging.

3.2 Detection of human faces

To detect human faces, we rely on two essential charac-
teristics of a face: (a) faces are skin areas having significant
intensity variability due to the presence of eyes, eyebrows,
mouth and nostrils and (b) faces tend to have an oval-like
shape. In particular, we first detect segments containing
skins, based on the combination of the JSEG segmentation
algorithm with a skin-detection algorithm described in [23].
Again, over-segmentation is pursuit in order to allow dis-
crimination between the face and neighboring naked body
parts (neck and arms). We should mention, however, that

this is not always feasible and is actually the main reason
for achieving high area recall but low area precision val-
ues (see the evaluation section below). Having identified a
number of potential face fragments, we proceed by selec-
tively merging their corresponding segments. Segments are
recursively merged under the condition that (a) they are ad-
jacent and (b) the resulting segment jointly maximizes both
the anticipated skin colour [23] and the circularity index,
as compared to the largest of the component ones. The cir-
cularity index is computed as the ratio of the area of a cir-
cle having as radius the variance of the segment along its
longest projection, to the actual area of the segment:

2π(max|v|=1 var{v>S})2

|S|
(3)

The resulting candidate human faces segments are then
given to the machine learning algorithm for a final scoring.

3.3 Detection of elongated objects

Particular attention has been given to the detection of
possibly occluded objects having an important elongated
nature, since these are pertinent in respect to the athlet-
ics domain (horizontal bars, poles, pillars). Elongated ob-
jects have line segment characteristics and their detection
involves the combination of the radon transform with hough
transform. Namely, the image edges are first extracted, by
using information from the gradient and the entropy of the
pixels’ images. Then, the matrix stemming from the radon
transform, evaluated at angles with a small step (e.g. 3◦),
is processed by a hough transform to find optimal angles,
where the intensity of accumulation is important across a
wide range of pixels. Subsequently, the image-mask cor-
responding to each of the angles found is dilated and com-
bined with the original image with the AND operator. The
detected objects are then fed to the classifier for a final de-
cision. To allow for discrimination among several types of
elongated object classes, features such as orientation and
length are also extracted.

3.4 Finer Object Classes

The above methods for human face, human body and
elongated objects result in image segments that possibly
correspond to one of these object classes. To further en-
hance the ability to discriminate among these classes, as
well as to discriminate among sub-classes, we make use of
a classifier. This requires generating a feature vector cor-
responding to each image segment. The features that have
been used are area, colour, area entropy (texture), circular-
ity index, angle, and position. The generated feature vectors
are then fed to a multiclass 1-vs-all extension of an RBF-
SVM classifier. The class with the maximum score is then
used to finally characterize the segment.



id relation 1st arg. 2nd. arg freq. class confidence
7 is-at-both-sides human body horizontal bar 30 high jump 0.91
8 is-behing human body pole 19 pole vault 1.00
9 is-overlapping human face horizontal bar 11 high jump 1.00

Table 1. Example of spatial rules

4 Ruled-Based Image Classification

In the proposed methodology for image classification,
the role of rules is to provide relations between semantic
entities (objects) so as to allow for an overall image inter-
pretation. The rules are derived automatically based on the
manually annotated objects and refer to spatial relations be-
tween them. Justification of using rules referring to spatial
relations was first identified during the manual image anno-
tation process, where the issue regarding the discriminatory
cues that allow humans for identifying the class of an image
given a set of available classes was raised. In the athletics
domain it turned out that these cues were: (a) Existence of
particular athletic instruments (e.g., pole, hurdles, etc), (b)
posture of athlete’s body, and (c) recognition of an athlete
and association with her/his athletic event of expertise.

The existence of particular objects, in our approach, is
verified through the object detection process. As already
mentioned, however, object detection (even in the context
of a particular domain like athletics) is neither easy nor re-
liable. Thus, rules of the form “if instrument X was found
then input image belongs to class Y” are error pruned. On
the other hand by using spatial rules between two objects
we ensure that neither object detection false alarms nor ob-
ject detection misses would be able to activate a rule be-
cause a spatial relation with another object needs also to be
fulfilled. As far as the athlete’s body posture cue is con-
cerned, by defining human body and human face as differ-
ent objects one can define rules describing a variety of pos-
tures. Finally, the third image classification cue implies face
recognition abilities so as to recognize athletes from photos.
Despite the lot of work done in this area, unconstrained face
recognition from images is closed to impossible

4.1 Rule extraction

In order to construct rules concerning the spatial rela-
tions between objects we have defined a set of spatial re-
lations that can be easily identified in the 2D-projection of
a physical scene through the use of image analysis tech-
niques. In the first stage we have used the following spatial
predicates: above, below, left, right, overlapping, at both
sides, above left, above right, below left and below right.
We are currently working towards reliable automatic extrac-
tion of the ‘behind’ relation.

Rules are automatically extracted by using the manu-
ally annotated content. Spatial relations are then computed
based on the object masks. Although formal rule extraction
exist [2], in a preliminary study we have constructed spatial
rules by exhaustive search in our training corpus. In partic-
ular we have tried to identify rules that frequently appear in
the content of a particular image class and are able to sep-
arate this image class from the other classes. A sample of
derived rules are shown in Table 1. For instance, the rule
with id=7 can be expressed as ‘a body is at both sides of an
horizontal bar‘; this rule holds in the 30% (see frequency
field) of training images. The 90.5% (see confidence field)
of these images belong to the high jump class.

4.2 Image Classification

In order to classify images w.r.t a set of available classes
using the above mentioned rules we use a ‘rule-voting’ pro-
cess. That is, given the object detection results for a partic-
ular image, every activated rule votes for its class with the
rule’s confidence value. The overall score for a particular
class is the sum of votes for this class divided by the total
number of activated rules. Imagine, for example, that the
rules with ids 7,8,9 hold based on the image analysis results.
The ‘voting’ score for the pole vault class is 1/3 = 0.3333
while the corresponding score for the high Jump class is
(1 + 0.91)/3 = 0.64. Given that the confidence score for
each rule is bounded in the [0, 1] interval it is obvious that
the sum of voting scores for all classes is bounded by one.
However, the upper bound is rarely reached in practice. On
the other hand, there are cases (images) in which no rule
is activated. In this case the image class is denoted as ‘un-
known’. In this way images, for which the evidence for their
class estimation is poor, remain unlabelled.

We should note, here, that the aim is to transfer the
knowledge captured through the rule extraction process,
outlined earlier, into an ontology to allow for usage of de-
scription logics. This will allow rule combination and uti-
lization of prior knowledge already available in the ontol-
ogy. A further goal is then to use the ontology to guide the
object extraction process, by also detecting object’s config-
urations unlike to appear. To give an example, in the context
of pole vault and high jump images, it is unlike that a body
can be above a face and both of them below an horizontal,
unless a pole is also present and touches the body.



object class occurrences recall precision MAR MAP MAM

horizontal bar 111 81.1 81.8 79.0 61.8 80.1
pole 61 73.8 81.8 62.3 65.1 85.6
human face 139 62.6 64.9 91.9 48.0 66.7
human body 140 67.2 72.9 93.1 84.7 88.3

Table 2. Evaluation Results for the detection of objects. The first three columns correspond to the number
of occurrences of instances of each object class, the recall and precision of the object detection method. The follow-
ing three columns are percentages in respect to the object correctly identified, conveying information about the area
matching: mean area Recall (MAR), mean area precision (MAP) and Mean Area Match between annotations (MAM).

Discipline Performance Confusion Matrix
Recall Precision high jump pole vault Unknown

high jump 86,7% 92.2% 13 2 1
pole vault 75.0% 85.7% 1 12 3

Table 3. Evaluation results for image classification – Confusion matrix

5 Evaluation Results

The performance of the presented algorithms has been
evaluated based on a set of manually annotated images spa-
tial dimensions 480 × 600, taken from the IAAF web site
[13]. In total 140 images illustrating pole vault (69) and
high jump (71) events were manually annotated by two dif-
ferent annotators. In order to evaluate the consistency of
the manually marked areas the inter-annotator agreement
(IAG), which equals the ratio of the number of pixels be-
longing to both annotated areas to the number of pixels be-
longing to at least one annotated area, was used:

IAGi =
|M 1

i ∩M 2
i |

|M 1
i ∪M 2

i |
(4)

The ground truth area for each object instance was set as
the logical OR operation between the areas marked by the
two annotators under the constraint that the IAG for these
annotations is higher than 0.6. In this way a ground truth
set was built comprising of 140 human body instances, 139
human face instances (one face was fully occluded), 111
horizontal bars instances and 61 pole instances.

Table 2 presents the results of evaluation of the object
classes at image level. We consider that a segment Si de-
tected automatically is correct when there exists a manu-
ally annotated segment Sm

i classified under the same object
class with high overlap, in the sense of eq.(4). The thresh-
old t of overlapping is defined as a function of the manually
annotated segment size, being more strict (respectively less
strict) for large objects (respectively small objects). In par-
ticular, we used the sigmoid-shape function

t(S) = a(1 +
b

1 + exp(−c|S|/|I |+ 1)
) (5)

where |S| and |I | are the areas of the segment and image
respectively, and a, b and c are parameters set to a = 0.1,
b = 3 and c = 10. For the segments classified as correct,
the area recall and recision have been evaluated as:

|M ∩M a|
|M a|

,
|M ∩M a|
|M|

(6)

where M and M a denote the mask of a detected and its cor-
responding manually annotated segment respectively. Their
mean values across all instances of the same class is shown
in Table 2. An interesting point one can notice is the low
rates of face detection. These can be assigned to the vari-
ability in pose (in very few images face appears in frontal
position) and a frequent partial occlusion from human body
and athletic objects. The authors believe that given the dif-
ficulty of face detection in such an unconstrained environ-
ment, results are more than satisfactory. Also notice that
horizontal bar is detected more accurately than pole, though
both are detected using the same principle (elongated ob-
jects). This is due to the higher variability in shape and
orientation encountered in the visual appearance of poles.

In Table 3, the evaluation results for image classifica-
tion are presented. To test the generalisation performance
of the rules used, we tested them on a set of 32 pole vault
and high jump images not used during the rule induction
and object class learning process. Object detection results
for the same set are shown in Table 4. Notice that the only
object class which can be used for discriminating between
pole vault and high jump images is pole, since all other ob-
ject classes appear in both sports. However, as can be seen
from Table 4, retrieving pole vault images only upon pole
existence would result in poor performance (recall 63.6%,
precision 70%). Rule-based classification achieves signif-



object class occurrences recall precision

horizontal bar 24 79.2 79.2
pole 11 63.6 70.0
human face 30 66.7 69.0
human body 32 75.0 82.8

Table 4. Evaluation Results for the detection
of objects in the test set.

icantly higher rates (recall 75.0%, precision 85.7%), thus
alleviating false alarms and misses during pole detection.

6 Conclusion and Future work

In this paper, we proposed a methodology that allows
for fine-grain image classification. At a first step, a number
of key-objects with specific semantics are detected. Subse-
quently, the spatial configuration of these objects is taken
into account by a set of rules, to ultimately characterize the
entire image. The evaluation of our approach shows that
spatial relations between objects have provided substantial
information for image classification. The redundancy of
cues induced by both detected objects and their spatial rela-
tions allows for tempering object misses and/or misclassifi-
cations, thus rendering the overall methodology robust.

Our future plans to improve upon our methodology in-
volve two main directions. First, we plan on investigating
one-class learning models to measure the level confidence
of the objects detection. The level of confidence can then
be used as a weighting factor while applying the rules. A
second research direction regards rules learning, currently
done through exhaustive search. We expect that elaborated
machine learning methods for rule extraction, allowing for
complex rule formation, can further improve the accuracy
and robustness of image classification.
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