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Abstract: The documentation and protection of archaeological and cultural heritage (ACH) using
remote sensing, a non-destructive tool, is increasingly popular for experts around the world, as it
allows rapid searching and mapping at multiple scales, rapid analysis of multi-source data sets,
and dynamic monitoring of ACH sites and their environments. The exploitation of remote sensing
data and their products have seen an increased use in recent years in the fields of archaeological
science and cultural heritage. Different spatial and spectral analysis datasets have been applied to
distinguish archaeological remains and detect changes in the landscape over time, and, in the last
decade, archaeologists have adopted more thoroughly automated object detection approaches for
potential sites. These approaches included, among others, object detection methods, such as those of
machine learning (ML) and deep learning (DL) algorithms, as well as convolutional neural networks
(CNN) and deep learning (DL) models using aerial and satellite images, airborne and spaceborne
remote sensing (ASRS), multispectral, hyperspectral images, and active methods (synthetic aperture
radar (SAR) and light detection and ranging radar (LiDAR)). Researchers also refer to the potential
for archaeologists to explore such artificial intelligence (AI) approaches in various ways, such as
identifying archaeological features and classifying them. Here, we present a review study related to
the contributions of remote sensing (RS) and artificial intelligence in archaeology. However, a main
question remains open in the field of research: the rate of positive contribution of remote sensing and
artificial intelligence techniques in archaeological research. The scope of this study is to summarize
the state of the art related to AI and RS for archaeological research and provide some further insights
into the existing literature.

Keywords: artificial intelligence; remote sensing; archaeology; surface detection; site detection

1. Introduction

Archeology is a science with an object of study and research related to history, but also
the activity of people who lived in earlier times, through finds in the natural environment,
monuments of art, and the products of human labor, such as coins, vessels, tools, and
various feature remains, such as mounds and graves. One of the most popular techniques
for the detection of archaeological sites, remains, and description of past landscape uses is
the pedestrian archaeological survey, with fieldwalking being the most common type of
this type of survey [1]. It is a fact that many archaeological sites have been discovered by
searching for evidence in historical maps or texts, while others have been discovered almost
by accident during other construction projects. However, with field survey, archaeologists
try to determine the nature and extent of visible remains, which leads to an improved
range of interpretations. This result provides the impetus for further field research for
the purpose of documentation [2]. The aim of the next steps is the clarification of written
records and the filling of any knowledge gaps. Alcock and Cherry [3] estimated that, by
the beginning of the 21st century, millions of hectares of the Mediterranean alone had been
surveyed, with a significant increase in survey activity since then.
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Nevertheless, a high rate of false positives can be reported during the traditional
pattern recognition methods, and therefore remote sensing approaches blended with
computational approaches may contribute to extracting information from field data in
a systematic way.

When referring to remote sensing for archeology, various types of remote sensing
technologies are included, such as, more specifically, satellite remote sensing, aerial pho-
tography, geophysical research, and unmanned aerial vehicles (UAVs). Therefore, remote
sensing, in its broadest sense and in relation to archaeology, includes methods aimed at
discovering and mapping archaeological sites and remains of past civilizations, which
are located either above or below ground level, and which are conducted in such a way
that these objects are not touched, disturbed, or even destroyed. [4]. The first commercial
very high-resolution satellite, with 1 m panchromatic spatial resolution, was IKONOS,
the launch of which was achieved at the end of the 20th century (1999) and represented a
significant improvement for archaeological research applications. A key advantage is its
ability to provide systematic multispectral data in archaeological sites and monuments [4].
Since then, satellite remote sensing has been used to detect many archaeological sites
around the world.

RS science has been progressively applied for supporting archaeological research in
recent years [5,6]. Technological innovation and improvements of space-based sensors,
in terms of their spatial and spectral resolution, as well as the adoption of open access
and freely distribution of satellite datasets (see Landsat and Sentinel products), have
motivated the further use of space-based remote sensing applications [7]. In addition,
the democratization of low altitude systems, with drones at relevant low costs, has been
widely adopted in the last decade in archaeological research mainly for documentation
purposes [8]. At the same time, archaeological computational approaches have shifted
from desktop-based applications to cloud-based approaches blended with advanced AI
algorithms [1]. As these changes have taken place in a relevant short period (a decade),
one can argue that we are still in the beginning of a new era of so-called “remote sensing
archaeology”.

This review article focuses on the contribution of AI and RS to archaeological research.
The extensive literature review shows a surge of research around the use of AI methods in
archeology. Nevertheless, a main question arises and remain open in the field of research:
the future and the contribution of RS and AI techniques in archaeological research.

2. Archaeological Surface Survey
2.1. Systematic Surface Surveys

Archaeological remains can be objects or even some remains of buildings that were
either destroyed or simply abandoned. These may be found on the surface of the landscape,
but there are also other cases that have been buried either due to natural phenomena or
due to human factors. The latest features may come to the surface again in the future as
part of an archaeological excavation or by accident.

For landscape surface remains studies, the most common method is surface research,
known as walking, surface collection etc. for the indication of possible buried remains using
surveys, management, and protection from the ever rapidly changing modern landscape.
According to [9], the surface survey includes quite a few stages according to: (a) the char-
acteristics of the area under investigation; (b) the amount of data available from previous
research; (c) research questions; and (d) available resources, including cost limitations.

Usually, surface surveying involves methodical walking by teams of archaeologists
with the aim of recording archaeological remains visible on the surface, usually fragments
of pottery (“sherds”). As stated by [1], the analysis of the dispersion of these remains
related to the human presence in our past provides researchers with information, such as
the change of landscape use and the destruction or disappearance of entire settlements.
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2.2. Applications of Systematic Surface Surveys

During the 1950s–1960s, archaeological research developed as a branch and soon
evolved bringing to light major archaeological finds. Alcock and Cherry [3] referred to an
increase in the interest and activity of archaeological investigations since the beginning of
the 21st century [1,10–12].

Archaeological surface research can be applied both to whole areas or part of them with
the main goal of (re)discovering new archaeological sites and remains. It is also applied to
already known sites of archaeological interest with the aim of adding further knowledge to
the existing ones regarding the nature and structure of the antiquities. However, we should
emphasize that covering large areas can be extremely expensive, as well as time-consuming.

As a method, while it is relatively simple, the evaluation of the results can be extremely
problematic due to various factors. With surface survey, we can detect and record anything
that is exposed and visible on the surface. Therefore, the success of the research is further
based on factors that affect this visibility, such as, for example, the density of vegetation, the
slope of the subsoil, etc. It is therefore understandable that the method of this research will
be more successful when applied to areas that are generally arid and semi-arid compared
to more temperate regions where the remains of antiquities are buried. In the last case,
surface research is applied when buried archaeological remains come to a visible point on
the surface of the landscape.

Therefore, a key factor for the success of surface research is the visibility of the land-
scape, which is affected by both climate change and anthropogenic factors that destroy
archaeological records. The disappearance of archaeological landscapes is a major challenge
for 21st century archeology, but it is made more problematic by unrecorded evidence [13].
Excluded areas for investigation are usually agricultural land and forested areas, which
during the research period, were not accessible due to various reasons. These include,
among other things, the existence of intense vegetation, difficulty of the ground (slope,
highly eroded areas), or even existing constructions, such as public or private properties,
roads which prevent access to the researchers, etc. Nevertheless, these research barriers are
very likely to be only a part of the landscape area under investigation. Consequently, this
may generate an inconsistent distribution of the archaeological report.

Another factor that affects the success of surface research is the methodology itself
that is followed during the research, which may not be sufficient or even reliable. As the
collection and recording of the visible findings is subjective, non-trained personnel may
add “noise” to the overall findings. Therefore, there is a difficulty regarding the correct
evaluation of the results and the validity in their interpretation to consider the research
objectives successful.

We, therefore, conclude that surface survey is a relatively straightforward survey
method but, at the same time, its success and correctness is multifactorial. As surface
survey has been long adopted in archaeological practice, its implementation can be further
improved through remote sensors. This is also highlighted by recent articles [1,14]. We
can therefore integrate other complementary methods into the surface survey, such as
earth observation sensors, low-altitude sensors, AI processing techniques, as well as aerial
LiDAR data, which have been increasingly valuable tools for locating, visualizing, and
understanding cultural heritage sites [15].

3. Remote Sensing in Archaeology
3.1. Literature Growth

The science of remote sensing is an achievement of the evolution of technology and
is used to analyze and process both satellite and terrestrial spatial data with the use
of appropriate accounting programs and computers [16]. Numerous definitions have
been given from time to time for what remote sensing is but, basically, we would say
that it is the art or science of explaining something about an object without touching
it [17]. Campbell and Wynne [16] argue in more detail that remote sensing is the practice of
extracting information about the land and water surface using images taken from an internal
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perspective, using electromagnetic radiation in one or more regions of the electromagnetic
spectrum, which is reflected or emitted by the surface of the earth.

The electromagnetic spectrum extends from a wavelength of 0.01 Angstrom to 3 × 106 m,
which characterizes the high and low frequency of radio waves. The human eye is capa-
ble of sensing only a very small part of the electromagnetic spectrum, from 350–700 nm
(Figure 1). Electromagnetic radiation appears in various forms in space. These are (a)
transmitted radiation (the radiation that passes through a material), (b) absorbed radiation
(the radiation that can be used by a material and deliver its energy mainly for heating
the material), (c) emitted radiation (the radiation emitted by a material as a result of its
structure), (d) diffuse radiation (radiation that is scattered in all directions and is lost either
through absorption or further scattering), or (e) reflected radiation (the incident radiation
reflected from the surface of the material with an angle of reflection equal and opposite to
the angle of incidence).
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public/thumbnails/image/EMS-Introduction.jpeg, accessed on 20 November 2022).

In RS, two categories of sensors are used—active sensors and passive sensors. The
difference between them is that active sensors emit radiation to make their measurements,
while passive sensors use existing radiation from the sun to make their own measurements.
Passive sensors include radiometers, spectroscopic cameras, photographic radiometers,
spectrometers, and spectroradiometers. Additionally, active sensors include RADAR (radio
detection and ranging), scatterometer, and LiDAR. Certainly, each sensor provides different
results in the archaeological context, with significant advantages and disadvantages. An
important disadvantage of passive sensors is the impossibility of correct measurement
during the night, but also on cloudy days, while in active sensors the disadvantages are
focused on the fact that the emitted radiation can be affected by other radiations, and the
geometric resolution is very low. The signals do not include clear spectral features, and
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complex analysis is required, which incurs costs. Regarding the advantages of an active
ground sensor, we can cite, as an example, the ground penetrating radar (GPR), which can
penetrate the ground surface, providing three-dimensional information about underground
anomalies. An advantage of passive sensors, such as optical satellite sensors or ground
spectroradiometers, is their ability to detect spectral anomalies, at different wavelengths, of
the ground surface, such as crop marks. These spectral anomalies are used as receptors to
detect buried archaeological remains [14]. It was observed that each object has a different
interaction with electromagnetic radiation, which leads to distinguishing the objects from
each other. This distinction is called the spectral signature of the object (Figure 2).
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Measurements can be made with a variety of instruments, including a spectrometer,
although the most common is the separation of the red, green, blue, and near-infrared part
of the spectrum of electromagnetic radiation, as acquired by digital cameras. This spectral
information can be combined to give us some indicators. Indicators are various algorithms
developed by researchers to improve the results (such as identification of archaeological
remains) associated with an image. In many applications of vegetation monitoring using
satellite remote sensing, vegetation indices are based mainly on simple combinations of
visible and infrared information. Examples of a vegetation index used in the case of
Agapiou and Sarris [14] is presented in Table 1 below.

Table 1. Example of multispectral vegetation indices used in the study of Agapiou and Sarris in
2018 [14].

No Vegetation Index Equation

1 NDVI (Normalized Difference Vegetation Index) (pNIR − pred)/(pNIR + pred)
2 RDVI (Renormalized Difference Vegetation Index) (pNIR − pred)/(pNIR + pred)1/2
3 IRG (Red Green Ratio Index) pRed − Pgreen
4 PVI (Perpendicular Vegetation Index) (pNIR − α pred − b)/(1 + α2) pNIR, soil = α pred, soil + b
5 RVI (Ratio Vegetation Index) pred/pNIR

6 TSAVI (Transformed Soil Adjusted Vegetation Index) [α(pNIR − α pNIR − b)]/[(pred + α pNIR − αb + 0.08(1 + α2))]
pNIR, soil = α pred, soil + b

https://seos-project.eu/classification/classification-c01-p05.html
https://seos-project.eu/classification/classification-c01-p05.html
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RS outperforms data collection and analysis with the advantages of the speed with
which information is collected, as well as the possibility to compare information between
different reception areas. In addition, there is the possibility of multiple measurements
of an object, at different times, giving us the possibility, in this way, to collect and study
its different characteristics. Another advantage of RS is the fact that we can pick up
information that is not visible to the naked eye, such as receiving different wavelengths of
electromagnetic radiation.

Many researchers have previously been involved in using remote sensing to locate
underground remains. Even though the first aerial photography took place in the mid-
19th century, it was only after the end of World War II that a more systematic use of RS in
archeology began [18]. This period is considered an important milestone in the development
of RS in archaeology, as researchers focused on areas where aerial photographs have been
taken during the war, exploring new areas in both the Middle and Far East as well as
Europe and the Americas.

The 1970s are marked by the launch of new satellite systems (US Landsat space
program—1972) and, consequently, the development of recording receivers, while the 1980s
that followed are characterized by the development of multispectral, thermal receivers,
and radar images. In the last decades, and especially after 1999, a milestone was achieved
due to the launch of the first high-resolution satellite sensor IKONOS. Archaeological
research using RS gained more motivation for a more systematic exploitation of geospatial
data. The development in the last 20 years of remote sensing has given great incentives
to researchers to investigate new possibilities in archaeological research [14,17,19–35],
such as the identification of leveled archaeological mounds using satellite remote sensing
analyses [20] or using LiDAR data for the recognition of archaeological features [21,23].
Moving further with the integration of multispectral, and especially thermal images, a
qualitative increase was achieved in the detection of ceramics given the difference in thermal
signatures between vessels, stones, soil, and vegetation [36–39]. Aqdus et al. [36] have
demonstrated the efficacy of multi-spectral and hyperspectral imagery in the identification
of archaeological cropmarks, regardless of differences in terrain. Further cases proved that
areas not accessible to archaeological excavation can be investigated thanks to the use of
multispectral aerial photography at different times of the year [38].

Archaeological remote sensing already has a long history of research in scientific
publications and applications in the field, as seen in many articles [6]. Several advantages
emerge from the results of the research, which are not limited to the estimation of the
parameters and properties of the surface/subsoil or the non-direct contact or destruction
with the object of study.

Satellite visual images can be an objective source of information for heritage condition
assessment, can be relatively inexpensive solution for large landscape areas compared
to using a team of surveyors, and data collection can be easy and fast [20]. In addition,
there is the ability to run iterative data analysis workflows for monitoring and condition
assessment purposes (e.g., multi-temporal change detection). Although archaeologists
rely on satellite pictures, airborne optical remote sensing is another important source
of information, especially for archaeological reconnaissance, prospection, and landscape
archaeology. Airborne data are valuable in areas where the archaeology landscape has
changed dramatically because of human activity, such as urbanization and agricultural
production [32]. Other remote sensing methods, such as LiDAR, use lasers with a much
lower wavelength presenting better accuracy, which allows for the detection, visualization,
and understanding of cultural heritage sites in more detail. LiDAR can perceive subtle
depressions and patterns in the landscape uncoupled from photometric representations
leading to discoveries such as Mayan caves [15]. Currently, the most used solution for
cultural heritage in the field of close range and low altitude acquisitions are UAVs. Areas
not accessible to archaeological excavation have been investigated thanks to the use of
multispectral aerial photography during different times of the year, as well as by many
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different types of features, such as possible buried structures, traces of canals, and channels
or paths. Even recent traces of vehicles can be detected [35].

In recent years, publications on remote sensing applications for archeology have
proliferated mainly due to the development of all the above new technologies that give
many advantages to researchers. This development is clearer in research articles written
these last two decades, as presented in Figure 3 below.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 25 
 

 

Satellite visual images can be an objective source of information for heritage condi-
tion assessment, can be relatively inexpensive solution for large landscape areas com-
pared to using a team of surveyors, and data collection can be easy and fast [20]. In addi-
tion, there is the ability to run iterative data analysis workflows for monitoring and con-
dition assessment purposes (e.g., multi-temporal change detection). Although archaeolo-
gists rely on satellite pictures, airborne optical remote sensing is another important source 
of information, especially for archaeological reconnaissance, prospection, and landscape 
archaeology. Airborne data are valuable in areas where the archaeology landscape has 
changed dramatically because of human activity, such as urbanization and agricultural 
production [32]. Other remote sensing methods, such as LiDAR, use lasers with a much 
lower wavelength presenting better accuracy, which allows for the detection, visualiza-
tion, and understanding of cultural heritage sites in more detail. LiDAR can perceive sub-
tle depressions and patterns in the landscape uncoupled from photometric representa-
tions leading to discoveries such as Mayan caves [15]. Currently, the most used solution 
for cultural heritage in the field of close range and low altitude acquisitions are UAVs. 
Areas not accessible to archaeological excavation have been investigated thanks to the use 
of multispectral aerial photography during different times of the year, as well as by many 
different types of features, such as possible buried structures, traces of canals, and chan-
nels or paths. Even recent traces of vehicles can be detected [35]. 

In recent years, publications on remote sensing applications for archeology have pro-
liferated mainly due to the development of all the above new technologies that give many 
advantages to researchers. This development is clearer in research articles written these 
last two decades, as presented in Figure 3 below. 

(a) (b) 

Figure 3. Annual publications of Remote Sensing in Archaeology since 2000 (a) source: Scopus.com 
(accessed on 15 October 2022), (b) source: https://www.dimensions.ai (accessed on 10 November 
2022).. 

The analysis was based on research conducted during October 2022 on Scopus.com 
(one of the largest abstract and citation database) and during November 2022 on www.di-
mensions.ai  (a comprehensive research grants database, which links grants to millions 
of resulting publications, clinical trials, and patents). 

In the Scopus engine database, the search was based on TITLE-ABS-KEY (remote 
AND sensing AND “archaeol*” OR “archeol*”) AND PUBYEAR > 1999. The results were 
articles from 2000 to the present. Regarding the search on Dimensions.ai, the keywords 
“remote sensing” AND “archaeol*” OR “archeol*” were used, and the results were limited 
to articles from 2000 to the present, and the search category was set to “Archaeology” and 
“History, Heritage and Archaeology”. As we can observe, there is a similarity in the trend 
of publications with little difference in their number, but both charts show a steep increase 
of publications, as well as a peak in one case in 2020 and in 2021 in the other. 

Figure 3. Annual publications of Remote Sensing in Archaeology since 2000 (a) source: Scopus.com
(accessed on 15 October 2022), (b) source: https://www.dimensions.ai (accessed on 10 Novem-
ber 2022).

The analysis was based on research conducted during October 2022 on Scopus.com
(one of the largest abstract and citation database) and during November 2022 on www.
dimensions.ai (a comprehensive research grants database, which links grants to millions of
resulting publications, clinical trials, and patents).

In the Scopus engine database, the search was based on TITLE-ABS-KEY (remote
AND sensing AND “archaeol*” OR “archeol*”) AND PUBYEAR > 1999. The results were
articles from 2000 to the present. Regarding the search on Dimensions.ai, the keywords
“remote sensing” AND “archaeol*” OR “archeol*” were used, and the results were limited
to articles from 2000 to the present, and the search category was set to “Archaeology” and
“History, Heritage and Archaeology”. As we can observe, there is a similarity in the trend
of publications with little difference in their number, but both charts show a steep increase
of publications, as well as a peak in one case in 2020 and in 2021 in the other.

However, the trend may be different when adding some other search engines or
databases, as well as when setting other limitations such as publication types and access.

One explanation for the large number of publications in 2020 and 2021 could be the
emergence of the COVID-19 pandemic [39]. During the period from 2020 to 2021, due
to the long periods of lockdowns, many surveys in the field were cancelled. As a result,
archaeologists and many other scientists had more time to analyze the data of past times,
redefine existing data, confirm hypotheses based on remote sensing images [40], and
prepare new publications. Additionally, archaeologists had the opportunity to explore new
tools aimed at improving digital documentation workflows and preparing better for future
work back in the field [41].

Recent studies [42] report a steady increase in applications in the literature aimed
at this utilization of earth observation data, both from optical and active space-based
sensors. The exploitation of satellite data and products are part of the applications of RS in
archeology and cultural heritage to detect buried archaeological remains [43], as well for
the study of the temporal evolution and changes of the archaeological site [44]. This also
applied to monitoring archaeological sites and monuments against natural and man-made
hazards [45,46].

https://www.dimensions.ai
www.dimensions.ai
www.dimensions.ai
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The technology of remote sensing, and especially satellite Earth observation, although
not originally designed and established for archaeological purposes, has become a very
useful tool in archaeological and cultural heritage (ACH) and is being applied for various
uses [47,48]. The existing spaceborne remote sensing tools in ACH generally can be di-
vided into three types, based on the imaging techniques used—multispectral [35,49–58],
hyperspectral [36–38,55,59,60], and synthetic aperture radar (SAR) [61–66]. Basic principles,
as well as methods that make different remote sensing techniques suitable for ACH and
produce some successful results, have been published and pointed out in many recent
reviews [47,67–69]. For instance, in 2008, an archaeological site was identified in north-
eastern Thailand using airborne synthetic aperture radar (SAR) [70]. A few years later
back, in 2011, in the case study of Alexakis et al. [44], satellite remote sensing was used to
investigate the capability of space and aerial sensors and image processing techniques in
the detection of neolithic settlements in Thessaly. Gade et al., six years later [71], referred to
the detection of various kinds of remains of historical land use at high precision by using a
very high-resolution acquisition (“staring spotlight”) mode of the TerraSAR/TanDEM-X
satellites. Another work from 2020 was contributed to critically compare two types of fine-
scale remotely sensed data: LiDAR and UAV–photogrammetric data [72]. In this work [72],
the approaches that were applied to the remotely sensed data successfully revealed various
archaeological remains within the study site that were presented.

Any proposed workflow should be customized based on the research questions and
goals of the project, as in any sort of automation. As Traviglia and Torsello have referred to
in 2017 [73], the design of a process that is used to extract specific objects, such as archaeo-
logical remains, must start from the landscape characteristics (including the morphology)
and the nature, forms, model, and patterning of the system components.

3.2. Remote Sensing Platforms

Remote sensing platforms refer to structures or vehicles on which remote sensing
instruments are mounted. The platform on which a particular sensor is installed determines
several characteristics related to the use of sensors. The characteristics are the distance of
the sensor from the object of interest, the periodicity of image acquisition, the time of image
acquisition, the location, and the extent of coverage. One of the fields in which remote
sensing from high points was used for the first time is ACH, which continued with kites
and balloons. The evolution of RS continued with the use of aircraft and helicopters, UAVs
(commonly known as drones), and, finally, satellites. Spatial resolution and viewing area
decrease as platform height increases. Thus, the higher the sensor is placed, the lower the
spatial resolution. The types or features of the platform depend on the type of sensor to
be attached and its application. More specifically, remote sensing platforms can be on the
ground, on an aircraft or balloon (within the Earth’s atmosphere), or on a satellite outside
the Earth’s atmosphere (Figure 4).

Based on the height level of RS platforms, there are three types of platforms which
have been rarely or widely applied to archaeological research: ground-based, airborne, and
satellite. Airborne remote sensing, compared to satellite remote sensing, has the advantage
or capability of offering very high spatial resolution images (20 cm or less). Below is a brief
description of these different types.

3.2.1. Ground-Borne Platforms

In RS ground-based platforms sensors (Figure 5), handheld devices or tripods can be
placed on a ladder, scaffolding, tall building, crane etc. These types of sensors are close to
the ground and are used to record detailed information about the surface, or for close range
characterization of objects. These types of platforms have the advantage of being relatively
inexpensive, stable, and, due to their low altitude, they provide high-resolution data.
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3.2.2. Air-Borne Platforms

Airborne platforms have been used to collect very detailed images and to facilitate
the collection of data over virtually any time and on any portion of the Earth’s surface.
Airborne platforms are structures or vehicles on which remote sensing instruments are

https://www.brainkart.com/article/Remote-sensing-platform_41126/
https://www.brainkart.com/article/Remote-sensing-platform_41126/
https://weather.msfc.nasa.gov/landprocess/lp_gbe.html
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mounted, looking downward or sideward, and can provide up to 50 km of elevated remote
sensing data. The platform on which the sensor resides determines several characteristics,
such as the distance of the sensor from the object of interest, image acquisition periodicity,
image acquisition time, location, and extent of coverage. Airborne platforms were the sole
non-ground-based platforms for early remote sensing work. Airborne platforms include
unmanned aerial systems (UAS), free-floating balloons, airplanes, helicopters, and high-
altitude aircraft. Aircrafts are classified into three types: (a) low altitude aerial remote
sensing, (b) medium altitude aerial remote sensing, and (c) high altitude aerial remote
sensing. Generally, airborne platforms are used to acquire aerial photographs for photo
interpretation and photogrammetric purposes.

The use of UAS is growing rapidly and is used in a wide range of applications,
including archaeology. UAS is an aircraft without an onboard pilot that is operated au-
tonomously or manually by a remote-control operator and includes UAV, unmanned
aircraft systems/vehicles, remotely piloted aircraft (RPA), and drones, which are used for a
variety of purposes, including archaeology.

Drones were designed as a form of military reconnaissance and were developed during
World War II in Britain, playing the role of a sky spy. Nowadays they play an important
role in remote sensing. A drone is a tiny remote-controlled aircraft, including photography,
infrared detection, radar observation, and television surveillance equipment. It uses a
satellite communication link while an onboard computer stores data from different sensors
and instruments. There are four main physical types of professional drones: multi-rotor,
fixed-wing, single-rotor helicopters, and fixed-wing hybrid VTOLs (Figure 6). A significant
advantage is that it can be accurately positioned over the area of interest—within a few
centimetres—and capable of providing both night and day data.
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and the course of flight is not always predictable. Balloons float at a constant height of
about 30 km and are governed by the wind. The first aerial photograph was taken by
French author and artist Felix Tournachon. The flight was over the Bievre Valley in 1858,
and Felix Tournachon, with the alias Nadar, captured the first aerial photo from a tethered
balloon (Figure 7).
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Figure 7. (a) Daumier, Nadar elevating photography to the level of art (1862) (b) Nadar early aerial
photograph of Paris c 1860 (source: The adventures of Nadar photography, ballooning, invention and
the impressionists by Philip McCouat).

Aircraft platforms (Figure 8) are medium/high altitude aerial remote sensing plat-
forms, offering an economical method of remote sensing data collection covering small
to large study areas using cameras, electronic imagers, across-track and along-track scan-
ners, and radar and microwave scanners. Special aircraft with cameras and sensors on
vibration-less platforms are traditionally used to acquire aerial photographs and images
of land surface features. Low altitude aerial photography results in large scale images
providing detailed information on the terrain. In contrast, the high-altitude smaller scale
images provide advantage covering a larger study area but with low spatial resolution.

3.2.3. Space-Based Platforms

In space RS, sensors are placed on a space shuttle or satellite which orbit around the
Earth. The altitude of space imaging ranges from 250 km to 36,000 km. Satellites (examples
of commonly known satellite sensors specifications are presented in Table 2) move freely in
their orbit, around the whole earth or any part of the earth with the ability to cover areas
at fixed intervals. Coverage mainly depends on the satellite’s orbit. Through these space
platforms, a huge amount of remote sensing data is captured. Advantages provided by
space remote sensing are: (a) the ability to cover a large area; (b) frequent and repeated
coverage of an area of interest; and (c) the use of radiometrically calibrated sensors to
quantitatively measure soil characteristics.
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Table 2. Technical specifications of commonly known satellite sensors.

Satellite Sensors Spectra Bands Spatial Resolution
(m)

Radiometric
Resolution (bit)

ETM+/Landsat 7
Pan 15

8B1–B5, B7 30
B6 60

HRV/SPOT5
Pan 2.5 or 5

8B1–B3 10
SW-IR 20

MODIS
B1–B2 250

12B3–B7 500
B8–B36 1000

AVHRR B1–B5 1100 at nadir 10

Ikonos
Panchromatic band 0.82 at nadir

11B1–B4 3.2 at nadir

Quickbird
Pan 0.61

11B1–B4 2.44

Geoeye-1 Pan 1.41 at nadir
11B1–B4 1.65 at nadir

4. Artificial Intelligence in Archaeology

AI, due to its increasingly powerful predictive capabilities, is showing an increasing
trend in attracting widespread interest in many sciences. Archaeologists now can more
fully exploit the knowledge from an extensive amount of archaeological data with the use
of artificial intelligence [74–99] in such a way as to make decisions related to appropriate
strategies for the preservation and protection of archaeological elements, as well as to
decide on the most ideal point excavation in a complex cultural landscape. A variety of
studies have concluded that, with artificial intelligence, archaeologists can avoid a costly
or even time-consuming process for research and excavation in limited archaeological

https://www.joanneum.at/en/digital/productssolutions/adam
https://www.joanneum.at/en/digital/productssolutions/adam
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areas. For instance, the overall findings of Agapiou et al. [75], along with those published
by Orengo and Garcia-Molsosa [1], showcase that using DL in UAV imageries can be
revolutionary in the field of archaeological field research, having great potential to support
future archaeological field projects. It is cost-effective, especially in cases where there is a
limited research time frame. These case studies also demonstrate the ability to provide faster
results and higher analytical capabilities when applied under favorable conditions. Future
advances in computer vision and machine learning have the potential to fundamentally
reshape the ability of archaeological research to deal with massive data covering large areas,
minimizing the reliance on human resources. Berganzo-Besga et al. [86] recently, in 2021,
introduced, for the first time, an improved AI algorithm for large-scale automatic detection
of archaeological tombs, which are a common type of archaeological structure, by using
LiDAR and multispectral satellite data. The results of the survey are a valid alternative to
the manual detection of these types of archaeological remains [86].

4.1. Key Components of AI

Jamil et al. [100], in recent research (in the beginning of 2022), refer to, that, in the
archaeology field, most of the ML and DL algorithms are used for classification and
identification of artifacts. But, in contrast, detection of archaeological data using DL is still
insufficient. The main elements of the AI that is used in archaeology can be seen in Figure 9
below.

• Machine learning: allows software applications to become more accurate at predicting
outcomes without the requirement for explicit programming.

• Deep learning: a subset of ML that learns by processing data based on artificial neural
networks with representation learning.

• Neural network: NN mimics the way the human brain operates with a series of
algorithms that endeavors to recognize underlying relationships in a set of data.

• Natural language processing (NLP) is a subfield of computer science and artificial
intelligence concerned with the recognition, interpretation, and production of human
language and speech.

• Computer vision: a subset of machine learning and pattern identification that enables
computers to interpret image content based on graphs, tables, PDF pictures, and
videos.

• Cognitive computing: this is related to technology platforms that attempt to mimic
the way a human brain works.
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4.2. Applications of AI and Remote Sensing for Archaeological Research

Applications of AI and remote sensing for archaeological research is still in its begin-
ning, as this is illustrated in the literature research that was applied.

In this review of AI and RS for archaeological research, two focus areas were prede-
termined, which are RS for archaeological research, as referred to in Section 3.1 above,
and AI for archaeological research. This second search was also conducted using the
Scopus engine database and the Dimensions engine during the same period that the remote
sensing search took place, as referred above. The search was based on TITLE-ABS-KEY
(artificial AND intelligence AND “archaeol*” OR “archeol*”) AND PUBYEAR > 1999. The
results were again only from 2000 and onwards. Regarding the search on Dimensions, the
keyword “artificial intelligence AND “archaeol*” OR “archeol*” was used, and the results
were again limited to articles from 2000 to the present, and the search category was set to
“Archaeology” and “History, Heritage and Archaeology”.

Results show a general trend of fluctuating publications (Figure 10), while the number
of papers between the two searches related to artificial intelligence in archeology differs.
More specifically, in the Scopus survey of 2020, there appears a peak of publications
in contrast to the Dimensions survey, where the publications are quite high, but not as
significant as in 2018 or the current year (2022).
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This can be the result of an ongoing debate about the appropriateness of AI methods
in archaeological practice, but it can also be another effect of the COVID-19 pandemic, as
we mentioned above. Another reason can be the disagreement of researchers about the
definitions that researchers emphasize. Thus, a complex phenomenon might turn into
simple phrases that end up being even more complex than the phenomena they intend
to define [83]. One question is whether we ultimately need AI and to what extent. Is an
AI ultimately smarter than it really is, or is it smarter that is believed to be? Do these
models make errors and, if so, what kinds of errors? Are these errors similar or different
from humans’ errors? All these questions lead to the concept of the so-called barrier
of meaning [101]. With this term, we want to highlight the gap that exists between the
knowledge of the expert and the knowledge captured by the machine. In other words, this
represents the gap between the actual process we are trying to automate with an AI and its
final approximation. Therefore, in the process of designing an AI-based system, we must
not forget the existence of this gap. Nevertheless, as shown by various recent archaeological
studies, when we have a very well-designed model, the results can provide consistency,
high accuracy, and an estimate of probability in the identification of archaeological remains
without any automated detection replacing human experts [102].

https://www.dimensions.ai
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Sharafi et al., in their 2016 paper [103], provided clear evidence that pattern recognition
has real potential as an effective application of artificial intelligence to locate archaeological
burials. In addition, it is believed that the expensive and time-consuming efforts of survey-
ing and excavating landscape areas that present a limited extent of archaeological content
can be avoided by archaeologists. In the field of archaeology, as reported by Jamil et al. [98],
there has been a growing trend in recent years to use artificial intelligence algorithms, such
as ML and DL, for artifact classification and recognition. However, in the same paper, it is
mentioned that the research on the detection of archaeological structures, especially those
applying the DL algorithm or using aerial imaging, is still insufficient.

Below are presented five examples of publications from recent years, and especially
2020, from research applications of AI to locate archaeological remains using drone and
satellite images.

Orengo and Garcia-Molsosa, back in 2019 [1], published an article related to auto-
mated ML-based potsherd detection using high-resolution drone imagery. The results of
this paper show that the potential of this technique, if applied under appropriate field
circumstances, can produce accurate distribution maps of individual potsherds providing
new potentials of archaeological survey. The workflow combined drone photogrammetry
and ML to automatically record surface distributions of archaeological material. As a result,
it provided faster results and higher analytical capabilities under favorable conditions
compared to a traditional pedestrian survey.

In 2020, Mehrnoush et al. [104] published an article for research applying CNN based
deep learning model to detect a qanat shaft using Cold War-era CORONA satellite images.
This was a first attempt of utilizing automated detection on historical satellite images for
automated qanat shaft detection. Data collection, data pre-processing, model construction,
and model assessment were included in the ML pipeline. For model training, images with
both low and high density of qanat features were included. The results obtained showed
an overall precision and recall for the model of 0.62 and 0.74, respectively.

In the same year (2020), Bundzel et al. [105] applied a semantic segmentation of air-
borne LiDAR data to Maya archaeology. Two deep learning-based models for semantic
segmentation, U-Net and Mask R-CNN, were built and compared with each other. These
two segmentation models were used in two tasks: first, to identify areas of ancient construc-
tion activity and, second, to identify the remains of ancient Maya buildings. The research
results showed that the model based on U-Net performed better on both tasks and had a
recognition rate for all items between 60 and 66%.

Another example of AI was presented in 2020 by Orengo et al. [106], which was related
to an automated detection approach for archaeological mounds. That work presented an
innovative multi-sensor, multi-temporal machine learning approach using large RS data to
detect archaeological mounds in Cholistan (Pakistan). In this research, the Google Earth
Engine was used, in which a classifier algorithm was implemented that used multispectral
images and a collection of large-scale synthetic aperture radars. The result covered a range
of approx. 36,000 km2, in which many more archaeological mounds emerged than previ-
ously recorded, giving other possibilities for understanding the area from an archaeological
point of view. The signature classification process involved (a) collecting training data,
(b) training the classifier model, (c) classifying the image composition, and, finally, (d)
validating the classifier with an independent validation set. All previously known mounds
in the study area were detected using a ML algorithm, and, in addition, accurate locations
and many new mounds were gathered, far exceeding the expectations set by previous
research.

Recently, in 2021, Berganzo-Besga et al. [86] introduced, for the first time, an improved
AI algorithm for large-scale automatic detection of archaeological tombs, which are a
common type of archaeological structure, using LiDAR and multispectral satellite data.
The results of the survey are a valid alternative to the manual detection of this type of
archaeological remain. This research combined machine learning techniques (random
forest) for terrain classification using multi-temporal multispectral Sentinel-2 data, as well
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as a DL model on LiDAR data, previously pre-processed using a multi-scale terrain model.
The algorithm used was an improved version of a previous attempt, with a detection rate
of 89.5%, an average accuracy of 66.75%, and a precision of 0.97. As a result, 10,527 burial
tumuli over an area of about 30,000 km2 were identified. This approach is the largest that
has been applied so far from a small training data set. This method can be used wherever
LiDAR data or high-resolution digital terrain models are available, since the code and
platforms used to develop the algorithm are open source.

A recent study, combining DL and traditional ML, was published by Davis et al. in
2021 [107]. What researchers showed was that both deep learning and automation can be
used to detect new archaeological features, but also to systematically estimate the spatial
extents of certain archaeological buildings. Specifically, this study used a multidimensional
procedural workflow to detect shell rings. Using multiple data sources, such as LiDAR,
SAR, multispectral, and new analytical methods, researchers have identified over 100 extant
shell rings throughout South Carolina. A further quantification of the geographical extent
of this building tradition showed that many of these features are quite small compared to
known examples, suggesting that not all shell rings were used as monumental centers. The
DL model, as well as all the code used for the above analysis, is open source, with the main
goal for future researchers being that of using it and improve the results.

Further important findings, together with those published by Agapiou et al. [75],
following the work of [1], show that low-altitude remote sensing sensors (e.g., UAVs)
can provide significant outcomes. Following these cases, a simulation study was recently
(May 2022) implemented by authors in Cyprus, aiming to adopt low-altitude multispectral
and RGB cameras to investigate whether a semi-automated methodology for recording
potsherds could be developed to answer research questions for a more efficient approach
in terms of time and accuracy compared to traditional fieldwalking archaeological surveys.

ML algorithms, such as random forest (RF) classifiers, have been implemented and
compared along with the results from foot surveys. Utilizing workflow of [1] in our study,
the overall accuracy and relative accuracy were estimated (average accuracy around 90%).
The preliminary results (Figure 11) were compared with the archaeological surface survey
records, showing that semi-automatic detection methods using low-altitude remote sensing
sensors can be used as a first proxy indicator for the detection of surface archaeological
ceramics.
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These results and accuracy were very promising but can vary, depending on a variety
of factors, such as the type of soil, the conditions of the plot, the period of flight, the
visibility, the type of crops, and the quantity of the material culture, but also the number
and experience of the inspectors. Certainly, in the future, further improvements can be
made and more sophisticated remote sensing algorithms will be used to cover even larger
areas with a higher success rate.

5. Discussion

Archeology has evolved into many new subfields, such as historical archaeology, RS
archaeology, environmental archeology, and other interdisciplinary approaches due to the
great and rapid development of science and technology, and especially the combination of
applications in the natural sciences and the humanities and the social sciences.

RS shows an increasing trend of interest from experts as well as the public, as there
is the possibility to combine three basic substances of archaeological research: objects,
space, and time [108]. It is an important tool, enabling archaeologists to search for and
understand ACH sites, as well as to discover and to monitor archaeological sites, but
also to solve real archaeological problems, such as documenting and preserving cultural
heritage. The subject of study is, of course, also the ACH feature that is buried underground
or, sometimes, surface debris. Whether archaeological remains are underground or on
the surface, remote sensing archeology applies knowledge of its properties to “space”,
including micro-space (site scale) and macro-space (landscape scale) and, in combination
with AI approaches which are increasingly employed, new knowledge for archaeological
data is created.

As Barder has referred in 2011 [109], archaeology was one of the first disciplines to use
remote sensing in scientific investigations. As soon as it became apparent that excavations
and traditional surveys alone did not provide sufficient clues for understanding the various
aspects of past settlements and their transformation over time, ‘auxiliary’ approaches, such
as AI, ML, and DL, were brought in. Back in 2018, Hutson [110] made a detailed critique of
the widespread use of AI, but with little understanding of when and why AI works well
or when and why it might work less well. AI in recent years has attracted more and more
interest in many sciences. More specifically, in the case of archaeologists, it enables them to
take full advantage of the knowledge that emerges from a wide range of archaeological data
while at the same time helping them to make decisions related to appropriate strategies
in relation to conservation and protection as to where it is best to excavate in a complex
cultural landscape.

Nevertheless, AI approaches cannot be considered as a panacea for archaeological
research. While AI potentials are obvious, such as automation and high accuracy, AI
methodologies still have some major limitations to overcome. The first limitation regards
the large number of samples that are needed to be collected for training, calibration, and
validation purposes of the AI models. In some cases, a large and representative number of
samples is limited, and, therefore, this prohibits the training performance of the AI model.
In addition, accuracy assessment of the AI models is usually performed using samples
taken within the same “context” and archaeological area. Therefore, AI accuracy is not
directly linked with the given complexity of archaeological sites and the heterogeneity that
we can observe in real archaeological surveys (i.e., multi-diachronically occupations of a
site, variety of ceramic typology, etc). Sometimes, the sample itself is provided (or only
available) for only a few types of archaeological objects and functions of archaeological
sites, which makes it difficult for the AI algorithm to understand, and therefore detect, other
features that fall beyond a certain period, typology, etc. Lastly, it should be mentioned that
most of the AI approaches carried out in the past are driven by examples from the northern
hemisphere, in contrast with the limited rate of examples from the southern hemisphere.
These limitations need to be turned into challenges, and then into opportunities, for the AI
applications in the domain of remote sensing archaeology.
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With AI in its current state, one question that can be answered is whether it is possible
for algorithms to oversimplify the detection problem and generally be able to approach or
exceed human performance for complex object detection tasks in different environments.
A workflow in the case of [87] was developed to answer a related question. A large,
random test data set—next to a small, non-random data set—was developed, which better
represents the real situation of rare archaeological objects in different types of complex
terrain. The result of the research showed that the methodology was not intended to either
overcome or replace archaeological experts. Instead, artifact detection models are intended
to become another instrument in the archaeologist’s toolbox that aid rapid and systematic
mapping of objects of interest over extended areas in large and complex data sets. With the
reduction in detection time, the expert’s time can be reallocated to the analysis, validation
(level), and interpretation of the results.

Through this literature review, we observed that the combination of RS with AI can
ensure that archaeologists avoid the costly and time-consuming efforts of surveying and
excavating more archaeologically restricted landscape areas. It is now outdated to focus on
whether archeology should embrace automated detection. Instead, the aim should be to
answer how to embrace AI tools to overcome the challenges of data overload and how to
accelerate the RS documentation process in the face of the increasingly rapid destruction
of the archaeological site landscapes. Automation does not replace human experts, but
it will open new research opportunities that are not currently possible. For example, a
regional-scale comparative study of qanat technology was currently impossible because
no one had the time to create detailed maps of qanat axes by hand. A first attempt to
use automated techniques on historic satellite imagery that takes advantage of neither the
spectral imagery resolution, nor very high (sub-meter) spatial resolution, demonstrated
that deep learning, even with small datasets, can be successfully applied to automate the
detection of qanat shafts [104]. It is worth pointing out that achieving increased success
rates not only requires a better understanding of how and why AI applications works, but
it is necessary to clarify the basis by which archaeologists locate and classify archaeological
monuments and remains.

Ultimately, many will be wondering how the future of AI and other automation tech-
niques within RS archaeology will be and if is there anything more that can be offered
beyond data collection. We can soon envision the use of RS platforms with more sophis-
ticated sensors, which will be able to detect archaeological remains with higher accuracy
within less time. Archaeologists might be able to use more intelligent automations to collect
samples without disturbing the condition of the archaeological remains. Additionally,
climate changes, such as temperature increases, as well as changes in moisture cycles,
continue increasing dramatically, and will inevitably be expected to contribute to an in-
crease impact on the archaeological heritage (both to known or still buried) [111]. As Burke
et al. [112] have communicated, the increasing availability of high-resolution climatological
and ecological reconstructions allows us to study the effects of past climate change at a
human scale, which correlates with archaeological data and allows the reconstruction of
past adaptive responses to specific types of environmental impacts, including sea level
change, rapid cooling and warming, climate instability, and prolonged drought. The use of
archaeological models to predict impacts of a future climate change on modern societies is a
relatively new concept that attempts to bridge established theories in the social and natural
sciences and is based on the recognition of the value of adopting a long-term perspective
for climate change research. Perhaps we should expect, in the future, a higher contribution
of AI to climate change risk assessment, at least in studies that have been conducted for
specific cultural heritage monuments.

Therefore, with continued technological progress of RS and AI and the integration
of skills, aims, and experiences, it seems potential that archeology will soon become an
advanced technological science.
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