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Excess weight is a public health challenge affecting millions worldwide, including younger age groups. 
The human exposome concept presents a novel opportunity to comprehensively characterize all 
non‑genetic disease determinants at susceptible time windows. This study aimed to describe the 
association between multiple lifestyle and clinical exposures and body mass index (BMI) in adolescents 
using the exposome framework. We conducted an exposome‑wide association (ExWAS) study using 
U.S. National Health and Nutrition Examination Survey (NHANES) 2003–2004 wave for discovery 
of associations between study population characteristics and zBMI, and used the 2013–2014 wave 
to replicate analysis. We included non‑diabetic and non‑pregnant adolescents aged 12–18 years. 
We performed univariable and multivariable linear regression analysis adjusted for age, sex, race/
ethnicity, household smoking, and income to poverty ratio, and corrected for false‑discovery rate 
(FDR). A total of 1899 and 1224 participants were eligible from 2003–2004 and 2013–2014 survey 
waves. Weighted proportions of overweight were 18.4% and 18.5% whereas those for obese were 
18.1% and 20.6% in 2003–2004 and 2013–2014, respectively. Retained exposure agents included 75 
laboratory (clinical and biomarkers of environmental chemical exposures) and 64 lifestyle (63 dietary 
and 1 physical activity) variables. After FDR correction, univariable regression identified 27 and 12 
predictors in discovery and replication datasets, respectively, while multivariable regression identified 
22 and 9 predictors in discovery and replication datasets, respectively. Six were significant in both 
datasets: alanine aminotransferase, gamma glutamyl transferase, segmented neutrophils number, 
triglycerides; uric acid and white blood cell count. In this ExWAS study using NHANES data, we 
described associations between zBMI, nutritional, clinical and environmental factors in adolescents. 
Future studies are warranted to investigate the role of the identified predictors as early‑stage 
biomarkers of increased BMI and associated pathologies among adolescents and to replicate findings 
to other populations.

Overweight and obesity are described as an excessive adiposity or fat accumulation, often eliciting multiple 
health conditions leading to health impairments or even  death1–3. Trends of overweight and obesity have been 
increasing over the past three decades, globally and across all  age4. In a systematic analysis of global studies, 
the prevalence of overweight and obesity was estimated to have rose by 27.5% for adults and 47.1% for children 
and adolescents (2–19 years) between 1980 and 2013, hence, leading to an estimated increase in the number of 
overweight and obese individuals from 857 million to 2.1 billion during the same  period4. In 2016, at least 340 
million children and adolescents (5–19 years) were overweight or obese as per the World Health Organization 
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(WHO)  estimates3. In the United States alone, prevalence estimates of overweight and obesity among children 
and adolescents (2–19 years) also increased across race/ethnicities from 1966 to 1967 through 2017–2018, reach-
ing 16% and 19%, respectively, or approximately 14.4 million in  total5.

The physiological complications of overweight and obesity in children, adolescents and adults are well docu-
mented in the  literature6,7. Adult onset of type 2 diabetes, hypertension, cardiovascular diseases, pulmonary, 
endocrine and gastrointestinal disorders as well as premature death were identified as major consequences of 
childhood and adult  obesity7,8.

Obesity in adolescents tends to persist in adulthood. In a 12-year prospective study in Slovenia, more than 
half of 7-year-old overweight and obese children remained overweight or obese at the age of  189. In a longitudinal 
follow-up of individuals enrolled in 1996 through 2007–2009 surveys of U.S. National Longitudinal Study of 
Adolescent Health, obese adolescents were 16 times more likely to develop severe adulthood obesity than normal 
or overweight  adolescents10. Very high adolescent BMI (≥ 85th percentile) was associated with 30–40% higher 
adult mortality rate, as shown in a longitudinal assessment of national health surveys conducted in Norway 
between 1963 and  199911.

Overweight and obesity are multifactorial with numerous identified risk factors. Genetic susceptibility is con-
sidered one of these risk factors, yet monogenic or polygenic forms of obesity are rare and complex interactions 
between genetic and environmental factors are biologically  plausible7,12,13. While the genetic factors are measured 
in genome-wide association studies (GWAS), exposome studies are needed to capture all environmental factors 
complementary to the genome that influence  health14. In the case of obesity and overweight, dietary behaviors 
(e.g., increased fat and calorie intake), lifestyle factors (e.g., physical inactivity and sedentary behavior), and 
psychological states (e.g., emotional stress and maladaptive coping strategies) are all considered possible risk 
factors of obesity onset and projection and their comprehensive examination is warranted for developing effec-
tive disease prevention  programs7.

In an approach similar to GWAS, exposome-wide association studies (ExWAS) are often based on an agnostic, 
untargeted and hypothesis-generating approach aiming to identify associations between environmental fac-
tors and diseases  outcomes15–18. The ExWAS approach was firstly used to explore the association of numerous 
nutrition and environmental factors with various health outcomes in adults, such as abdominal  obesity19, blood 
 pressure20, diabetes  mellitus15 and telomere  length21. The application of ExWAS in studying excess weight in 
younger age groups is still limited to a single study investigating the association between polycyclic aromatic 
hydrocarbons with childhood obesity among 6–17 years participants using data from the 1999–2016 National 
Health and Nutrition Examination Survey (NHANES)  waves22.

Given the public health significance of the rising trends of overweight and obesity in younger age groups 
worldwide, comprehensive, data-driven and hypothesis-generating approaches are warranted to elucidate the 
role of environmental origins of obesity. Using data from the NHANES 2003–2004 and 2013–2014 waves, this 
study aimed to explore and describe the association between multiple lifestyle, clinical or other exposures and 
body mass index (BMI) of U.S. adolescents aged 12–18 years, using the exposome framework.

Materials and methods
Study population. We used the National Health and Nutrition Examination Survey (NHANES) data col-
lected in the 2003–2004 and the 2013–2014 waves. We included participants between 12 and 18 years old at the 
time of the interview, who reported not being pregnant and not being told by a doctor or health professional 
they have diabetes, with non-missing BMI value. The selection of two surveys 10 years apart aimed to allow the 
description of exposome profile variations among adolescents in the United States.

The NHANES is a program of studies conducted every 2 years by the U.S. Center for Disease Control and 
Prevention (CDC) in a nationally representative multistage probability sample of non-institutionalized popula-
tion living in the United  States23. Each of the cross-sectional datasets includes demographic, dietary and health-
related questions collected during the interview, in addition to laboratory tests, medical, dental and physiological 
measurements collected during the physical examination at the mobile examination  centers23. All methods were 
performed in accordance with the relevant guidelines and regulations. The NCHS Ethics Review Board approved 
the survey protocols and written parental informed consent and child assent for participants ages 12–18 years 
were obtained for examination at the mobile examination  center24.

Study outcome. The study outcome was age- and sex-standardized body mass index (BMI) z-scores cal-
culated using standard deviation scores from the U.S. CDC 2000 growth  chart25. To describe weight status cat-
egory, we used the 2010 CDC terminology for children overweight and obesity. The BMI z-score percentiles 
were used to classify children as being “underweight” (< 5th percentile); “healthy weight” (5th percentile < BMI 
z-score < 85th percentile); “overweight” (85th percentile ≤ BMI z-score ≤ 95th percentile); and “obese” (> 95th 
percentile)26.

Selection of explanatory variables. We screened the data files from each of the five NHANES sections 
(i.e., demographics; dietary; examination; laboratory; and questionnaire data) of 2003–2004 and 2013–2014 sur-
veys. In the initial screening, we selected variables: (i) available in both surveys with similar response format; (ii) 
targeting adolescents (12–18 years old); (iii) being relevant to the objective of the study (i.e., excluding: language 
spoken at home, audiometry examinations, dermatology, etc.); and (iv) for the laboratory variables, we included 
only parameters measured in individual samples (i.e., excluding brominated flame retardants (BFRs) that were 
measured in pooled samples). As a result, we retained 139 variables belonging to the following NHANES sec-
tions: laboratory data (75, i.e., clinical and biomarkers of environmental chemical exposures), dietary (63), and 
questionnaire (1) (Fig. 1 and Supplementary material).
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Laboratory variables comprised the following measurements: serum and urinary albumin, serum cotinine, 
standard biochemistry, complete blood count and glycohemoglobin (n = 45); urinary measurements of phthalates 
(n = 9); perfluoroalkyl and polyfluoroalkyl substances (polyfluoroalkyl chemicals) (n = 7); urinary polyaromatic 
hydrocarbons (n = 6); blood cadmium, lead and mercury (n = 3); urinary environmental phenols (n = 1); urinary 
arsenic (n = 1); urinary iodine (n = 1); urinary mercury (n = 1); urinary perchlorate (n = 1). The 63 dietary vari-
ables referred to those collecting information about the dietary intake consumed during the 24-h period prior 
to the interview. The physical activity variable was retained from the questionnaire section.

Variables transformation. All variables were evaluated as either continuous or categorical. For dietary 
and laboratory continuous variables, zero values were substituted with  1e−10; and all values were log-transformed, 
then scaled and centered. When necessary, categorical variables were recoded for a harmonized coding between 
the two survey datasets. For physical activity, a positive answer to vigorous physical activity “over past 30 days” 
(in 2003–2004 dataset) and “during a typical week” (in 2013–2014 dataset) were treated similarly. Particularly, 
participant’s educational level was categorized according to NHANES coding available in 2003–2004 demo-
graphic questionnaire: “Less than high school”, “High school including GED” and “More than high school”. We 
kept the grouping of race/ethnicity as included in NHANES questionnaire: Mexican American, Non-Hispanic 
White, Non-Hispanic Black, other Hispanic and other ethnicities. Age and poverty income ratio (PIR)—a ratio 
of family income to poverty threshold—was treated as a continuous variable. Household smoking was coded as 
“Yes/No”; with an answer of 1 or more smoking household members recoded as “Yes” in the 2013–2014 dataset 
to match the variable assessment in the 2003–2004 dataset.

Statistical analysis. To account for the complex survey design, non-response and post-stratification, 
survey-weighted analysis was conducted using the appropriate sample weight as per NHANES analytical 
 guidelines27. For each survey dataset, we created survey design datasets comprising the variables retained from 
each section along with their assigned sample weight: the demographic variables with the interview weight 
(wtint2yr); the laboratory variables and the physical activity with the Mobile Examination Center (MEC) exam 
weight (wtmec2yr); and the dietary variables with the dietary day 1 sample weight (wtdrd1). Specifically, for 
2003–2004 dataset, polyfluoroalkyl, arsenic and mercury  variables using sub-sample A weight (wtsa2yr); phtha-
lates and polyaromatic hydrocarbons variables using sub-sample B weight (wtsb2yr); environmental phenols, 
iodine and perchlorate variables using sub-sample C weight (wtsc2yr). As for 2013–2014 dataset, sub-sample A 
weight was used for arsenic, iodine, urine mercury, polyaromatic hydrocarbons and perchlorate variables; sub-
sample B weight was used for environmental phenols, polyfluoroalkyl chemicals and phthalates data. For cad-
mium, lead and blood mercury variables, the MEC exam weight (wtmec2yr) and blood metal weight (wtsh2yr) 
were used for 2003–2004 and 2013–2014 datasets, respectively. For correlation between laboratory (standard 
biochemistry) and dietary explanatory variables, we applied the least common denominator approach and hence 
we used the weights of the dietary variables.

We considered the 2003–2004 dataset for discovery of associations between study population characteristics 
and zBMI, and replicated the analysis on the 2013–2014 dataset. Descriptive statistics and correlations between 
all explanatory variables were calculated separately for the discovery and replication datasets. Survey-weighted 
regressions were conducted to explore the associations between each of the explanatory variables and BMI z-score 
(univariable) and after adjusting for age, sex, race/ethnicity, household smoking and income to poverty ratio 

Figure 1.  Initial selection of exposome variables from 2003–2004 and 2013–2014 NHANES waves.
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(multivariable). We applied the Benjamini–Hochberg  method28 to generate false discovery rate (FDR) adjusted 
p-values separately for the univariable and multivariable analyses per dataset (FDR correction). Predictors with 
FDR adjusted p-value < 0.05 were considered significant. Next, we identified predictors that were commonly 
significant in the multivariable analysis of both the discovery and replication datasets.

To evaluate the possible interaction between sex, the statistically significant predictors retained in the previ-
ous step and zBMI, we repeated the multivariable analysis by adding the interaction term, separately for the 
discovery and replication datasets.

Additionally, a sensitivity analysis was conducted by excluding adolescents classified as obese and repeat-
ing univariable and multivariable regression on each of 2003–2004 and 2013–2014 datasets. All of the analysis 
was conducted using R version 4.1.229, and the R studio version 2022.02.130. The scripts used in the analysis as 
well as the detailed output of the analysis are available in the Supplementary Information. All survey-weighted 
descriptive and explanatory analyses were conducted using R survey  package31–33. Data, scripts and outputs are 
available here: https:// doi. org/ 10. 5281/ zenodo. 65589 79.

Ethics approval and consent to participate. The NCHS Ethics Review Board approved the survey 
protocols and informed consent was obtained for all subjects.

Consent for publication. No individual data that consent for publication shall be acquired is present in 
this manuscript.

Results
Descriptive characteristics. Following the selection criteria, 1899 and 1224 participants in total, were 
eligible from the 2003–2004 and 2013–2014 survey datasets, respectively (Fig. 2). The weighted mean age of 
adolescents was similar across the two, datasets with a mean of 15 (standard error (SE) 0.1) years of age. Simi-
larly, almost half of our study population was males; non-Hispanic whites (64.5% and 54.2% in 2003–2004 and 
2013–2014 survey datasets, respectively) having less than high school education (90.5% and 91.8% in 2003–2004 
and 2013–2014 survey datasets, respectively). The mean poverty income ratio (PIR) was similar between the two 
surveys with a weighted mean of 2.6 (0.1 SE) and 2.4 (0.1 SE) in 2003–2004 and 2013–2014, respectively. The 
weighted proportion of reported household smoking in 2003–2004 was 25.1% (95% CI 19.9%, 30.4%) and 23.6% 
(95% CI 17.5%, 29.6%) in 2013–2014.

The weighted proportions of BMI categories were similar across the two surveys: “underweight” (2% in both 
survey waves); “healthy weight” (61.4% and 58.5% in 2003–2004 and 2013–2014, respectively); “overweight” 
(18% in both survey waves), and “obese” (18.1% and 20.6% in 2003–2004 and 2013–2014, respectively) (Table 1). 
No statistically significant (p > 0.05) differences were noted in the distribution of BMI categories between sexes 
in both survey waves (Supplementary Information S1).

Exploratory ExWAS analysis using the 2003–2004 and 2013–2014 dataset. The univariate 
zBMI regression models for each of the 139 variables in the 2003–2004 dataset resulted in 54 predictors with 
a p-value < 0.05, of which only 27 were significant after FDR correction: 18 variables of laboratory variables 
(alanine aminotransferase (ALT); albumin; bicarbonate; total bilirubin; cholesterol; gamma glutamyl transferase 
(GGT); serum iron lactate dehydrogenase; lymphocyte number; mean cell hemoglobin; mean cell volume; plate-
let count; red blood cell count; segmented neutrophils number; sodium ; triglycerides; serum uric acid, and 
white blood cell count) and 9 dietary variables (folate as dietary folate equivalents; iron; lutein and zeaxanthin; 
riboflavin (vitamin B2); thiamin (vitamin B1); total folate; total sugars; vitamin B6, and retinol). All significant 
predictors (FDR adjusted p-value < 0.05) were negatively associated with zBMI, except for the following: ALT; 
cholesterol; GGT; lactate dehydrogenase; number of lymphocytes; platelet count; red blood cell count; segmented 
neutrophils number; triglycerides; serum uric acid, and white blood cell count (Supplementary Information S2).

Multivariable regression resulted in 45 predictors below the p-value cutoff of 0.05 of which only 12 significant 
after FDR correction: 11 laboratory variables (ALT; GGT; mean cell hemoglobin; mean cell volume; phosphorus; 
platelet count; red blood cell count; segmented neutrophils number; triglycerides; serum uric acid; white blood 
cell count) and 1 dietary variable (riboflavin (Vitamin B2)). Eight of these significant predictors were positively 
associated with BMI z-score (ALT; GGT); platelet count; red blood cell count; segmented neutrophils number; 
triglycerides; uric acid and white blood cell count) (Table 2).

For the replication dataset (2013–2014), the univariable regression models resulted in 39 predictors with 
a p-value < 0.05 of which only 22 were significant after FDR correction: 17 laboratory variables (ALT; albu-
min; GGT; globulin; serum iron; lactate dehydrogenase; lymphocyte number; mean cell hemoglobin; mean cell 
volume; monocyte number; platelet count; red cell distribution width; segmented neutrophils number; total 
bilirubin; triglycerides; serum uric acid; white blood cell count); 2 PAHs (1-hydroxyphenanthrene; 2-hydrox-
ynaphthalene); 2 polyfluoroalkyl (perfluorodecanoic acid; perfluorobutane sulfonic acid) and 1 dietary variable 
(total sugars) (Supplementary Information S2). Multivariable regression resulted in 27 significant predictors 
of which only 9 laboratory variables were significant after FDR correction: 2-hydroxynaphthalene; ALT; GGT; 
lactate dehydrogenase; monocyte number; segmented neutrophils number; triglycerides; serum uric acid and 
white blood cell count (Table 2). All of these 9 variables had a positive significant association with zBMI. Volcano 
plots showing the distribution of the model estimates per predictor used in the ExWAS analysis are available in 
Figures 3 and 4.

Six variables were commonly significant after FDR correction (FDR-adjusted p-values < 0.05) in multivariable 
analysis of both the discovery and replication datasets: ALT; GGT; segmented neutrophils number; triglycer-
ides; serum uric acid and white blood cell count. In the second model for multivariable analysis that accounts 

https://doi.org/10.5281/zenodo.6558979
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for interaction between sex and each of the aforementioned predictors, the interaction term was significant for 
serum uric acid (estimate = 0.245, p = 0.022) and ALT (estimate = 0.248, p = 0.035) in the discovery dataset, and 
for ALT (estimate = 0.185, p = 0.03) only in the replication dataset (Figures 5 and 6). The full model estimates 
for variables with significant interaction terms are available in the Supplementary Information. Details on the 
regression analysis results can be found in the Supplementary Information.

Sensitivity analysis. Sensitivity analysis was conducted on a sample of 1540 and 966 non-obese adoles-
cents from the 2003–2004 and 2013–2014 survey datasets. None of the predictors were significant at univariable 
and multivariable analysis in 2003–2004 dataset. For 2013–2014 dataset, 6 laboratory variables (ALT; albumin; 
blood urea nitrogen; GGT; triglycerides and white blood cell count) and 3 dietary variables (cholesterol; folic 
acid and vitamin B12) were significant at the univariable analysis after FDR correction; however, none remain 
significant after adjusting for covariates in the multivariable analysis.

Correlations. 2003–2004 dataset. When examining correlations between dietary and laboratory variables, 
weak coefficients were found overall; a maximum coefficient of r = 0.217 was noted for the correlation between 
selenium and blood urea nitrogen.

Looking specifically at the correlation between serum uric acid and both laboratory and dietary predictors; 
the correlation between uric acid and each of serum creatinine and hemoglobin showed the highest coefficients 
of 0.48 and 0.44, respectively, followed by a coefficient of 0.33 for the correlation between uric acid and GGT. 
On the other hand, the correlation between GGT and ALT had a coefficient of 0.52. A strong correlation was 
found between mean cell hemoglobin and mean cell volume (r = 0.94). A medium correlation was found for the 
following associations: albumin and total calcium (r = 0.56); albumin and total protein (r = 0.56); total bilirubin 

Figure 2.  Flowchart of the participant selection from 2003–2004 and 2013–2014 surveys.
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and iron (r = 0.43); triglycerides and total cholesterol (r = 0.35), while the association between GGT and platelet 
count was weak (r = 0.0265) (Supplementary Information S2).

2013–2014 dataset. Similarly, weak coefficients were found when examining the correlation between dietary 
and laboratory variables, as noted in the correlation between selenium and each of protein (r = 0.9131); phospho-
rus (r = 0.8376) and blood urea nitrogen (r = 0.27). Medium correlations were noted for: GGT and ALT (r = 0.54); 
uric acid and each of creatinine (r = 0.45), hemoglobin (r = 0.39) and hematocrit (r = 0.39) (Supplementary Infor-
mation S2).

Discussion
We conducted an exposome-wide association study exploring 139 explanatory variables with respect to sex-
specific BMI-for-age in non-diabetic and non-pregnant adolescents aged 12–18 years old in the 2003–2004 
NHANES survey and used the 2013–2014 survey for validation. After adjusting for age, sex, race-ethnicity, 
household smoking, and poverty income ratio, we found ALT, GGT, segmented neutrophils number, triglycerides, 
serum uric acid and white blood cell count to have statistically significant associations with zBMI after adjusting 
for FDR in both the discovery and replication datasets, being in line with literature findings for adolescents.

Uric acid is the end product of purine metabolism in humans and its magnitude depends on dietary purines 
(from animal proteins, meat, seafood, beer and fructose sources), the degradation of endogenous purines as 
well as the renal and intestinal excretion of  urate34. Although serum uric acid levels increase differently by 
sex from birth till adolescence, there is still no universally accepted threshold for defining hyperuricemia, or 
excess concentrations of serum uric acid in children and  adolescents35. Elevated levels of uric acid have been 
associated with obesity and non-communicable diseases, such as kidney and cardiovascular diseases in children 
and  adolescents35,36. Recent literature emphasized the association between uric acid and metabolic syndrome 
(MetS) outcomes in children and adolescents, such as glucose intolerance, central obesity, hypertension, and 
 dyslipidemia36–38. Uric acid was associated with the prevalence of metabolic syndrome and its components, 
as shown in a cross-sectional analysis of 1370 adolescents (12–17 years of age) using data from NHANES 
1999–2002; the unweighted prevalence of metabolic syndrome was ≈ 21% in the highest quartile (> 339 μmol/L) 
as compared to ≈ 10% in the third quartile (≤ 339 μmol/L), ≈ 4% in the second quartile (≤ 291 μmol/L) and < 1% 
among participants in the unweighted lowest quartile of serum concentrations of uric acid (≤ 250 μmol/L)39. A 
similar distribution of serum uric acid levels was observed in this study targeting non-diabetic adolescents for the 
2003–2004 dataset (median: 297 μmol/L, interquartile range (IQR): [250 μmol/L, 351 μmol/L]) and 2013–2014 
dataset (median: 297 μmol/L, IQR: [244 μmol/L, 351 μmol/L]). In the adjusted multivariable analysis, the strong-
est adjusted effect size of the association between various exposomic variables with zBMI was observed for uric 

Table 1.  Estimated (weighted) background characteristics and categories of Body Mass Index of the study 
population from the 2003–2004 and 2013–2014 NHANES survey datasets.

2003–2004 2013–2014

Age [mean, (standard error)] 15 (0.1) 15 (0.1)

Sex (% [95% CI])

Male 50.7 (48.3%, 53.2%) 51.8 (47.9%, 55.7%)

Female 49.3 (46.8%, 51.7%) 48.2 (44.3%, 52.1%)

Race/ethnicity (% [95% CI])

Mexican American 11 (5.4%, 16.5%) 15.4 (8.9%, 22%)

Non-Hispanic black 14.7 (9.7%, 19.8%) 14.3 (9.6%, 19%)

Non-Hispanic white 64.5 (54.8%, 74.2%) 54.2 (43.3%, 65%)

Other Hispanic 4.9 (2.3%, 7.4%) 6.9 (4.4%, 9.4%)

Other ethnicity 4.9 (2.9%, 6.8%) 9.2 (6.6%, 11.8%)

Education level

Less than high school 90.5 (86.9%, 94.1%) 91.8 (89.3%, 94.3%)

More than high school 3.6 (1.9%, 5.2%) 1.6 (0.7%, 2.5%)

High school diploma including GED 5.9 (2.8%, 9%) 6.6 (4.4%, 8.8%)

Poverty Income Ratio [mean, (standard error)] 2.6 (0.1) 2.4 (0.1)

Household smokers (% [95% CI])

Yes 25.1 (19.9%, 30.4%) 23.6 (17.5%, 29.6%)

Νο 74.9 (69.6%, 80.1%) 76.4 (70.4%, 82.5%)

Body Mass Index (% [95% CI])

Underweight 2.2 (1.1%, 3.2%) 2.4 (1.1%, 3.8%)

Healthy weight 61.4 (55.7%, 67.1%) 58.5 (53.8%, 63.2%)

Overweight 18.4 (15.3%, 21.5%) 18.5 (15.5%, 21.5%)

Obese 18.1 (14.1%, 22.1%) 20.6 (16.2%, 24.9%)
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Table 2.  Variables significant in multivariable linear regressions adjusted for age, sex, race/ethnicity, 
household smoking and poverty income ratio in 2003–2004 and 2013–2014 survey datasets.

2003–2004 discovery dataset 2013–2014 replication dataset

Estimate (S.E.) p-value FDR adjusted p-value Estimate (S.E.) p-value FDR adjusted p-value

Laboratory

Alanine aminotransferase 
(ALT,U/L) 0.383 (0.044) < 0.001 0.008 0.405 (0.039) < 0.001 0.002

Gamma glutamyl transferase 
(GGT, U/L) 0.341 (0.043) < 0.001 0.010 0.416 (0.034) < 0.001 0.002

Mean cell volume (fL) − 0.174 (0.035) 0.003 0.040

Segmented neutrophils 
number (1000 cell/μL) 0.211 (0.047) 0.004 0.048 0.273 (0.057) 0.003 0.047

Triglycerides (mmol/L) 0.285 (0.038) < 0.001 0.010 0.355 (0.032) 0.001 0.002

Uric acid (μmol/L) 0.452 (0.046) < 0.001 0.008 0.494 (0.066) < 0.001 0.011

White blood cell count (1000 
cells/μL) 0.188 (0.036) 0.002 0.040 0.269 (0.054) 0.002 0.043

Mean cell hemoglobin (pg) − 0.163 (0.034) 0.003 0.045

Phosphorus (mmol/L) − 0.193 (0.042) 0.004 0.047

Platelet count SI (1000 cells/
μL) 0.17 (0.034) 0.002 0.040

Red blood cell count (mil-
lion cells/μL) 0.207 (0.038) 0.002 0.040

Lactate dehydrogenase (U/L) 0.191 (0.035) 0.002 0.036

Monocyte number (1000 
cells/μL) 0.215 (0.034) 0.001 0.028

Nutrition (day 1)

Riboflavin (Vitamin B2) 
(mg) − 0.17 (0.033) 0.002 0.040

Polyaromatic hydrocarbons 
(subsample A)

2-Hydroxynaphthalene 
(ng/L) 0.247 (0.047) 0.002 0.036

Figure 3.  Volcano plots for the univariate and multivariable regressions in the 2003–2004 dataset.
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Figure4.  Volcano plots for the univariate regression and multivariable regressions in the 2013–2014 dataset.

Figure 5.  Scatter plot of the association between zBMI and uric acid in the 2003–2004 survey dataset: 
multivariable analysis including sex*uric acid as interaction term.
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acid in both discovery (estimate = 0.452) and replication (estimate = 0.707) datasets. After excluding non-obese 
participants, the association between zBMI and uric acid was no longer statistically significant, although it still 
showed the strongest effect size in both discovery and replication subsets (adjusted estimates of 0.24 and 0.39, 
respectively). Thus, our findings highlight the pathogenic role of elevated concentrations of uric acid in young 
obese age groups, as showcased in different studies. In a case–control study conducted in Italy among 120 
children and adolescents with primary obesity (zBMI ≥ 97th percentile) and 50 healthy controls, carotid intima-
media thickness was significantly correlated (r = 0.61; 95% CI 0.58–0.64) with the fourth quartile of uric acid 
among obese children regardless of the presence of metabolic syndrome, defined in the study as ≥ 3 or more of the 
following criteria: obesity, hypertension, low HDL cholesterol, elevated triglycerides, and impaired fasting glu-
cose and/or insulin  resistance40. On the other hand, the association between serum uric acid and cardiovascular 

Figure 6.   Scatter plots of the zBMI and alanine aminotransferase in the 2003–2004 and the 2013–2014 
survey datasets including the line of the predicted values from the multivariable regression models that include 
the interaction term.
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diseases, irrespectively of BMI, has also been documented in a study conducted on an 1999–2006 unweighted 
NHANES sample of 12–17 years old adolescents; after adjusting for age, sex, race/ethnicity and BMI, the odds 
of having elevated blood pressure (mean systolic and/or diastolic blood pressure percentile ≥ 95th percentile) 
was 1.38 (95% CI 1.16–1.65) for each 0.1 mg/dL increase in uric  acid41. In a randomized, double-blinded trial 
among pre-hypertensive obese adolescents (11–17 years old), patients treated with two mechanisms of urate 
reduction (allopurinol and probenecid) did not continue to gain weight during the 3-months study period and 
showed a similar and significant reduction in their systolic blood pressure by 10.2 mmHg and their diastolic by 
9.0 mmHg in the two treatment groups as compared to the placebo group; thus, highlighting the role of uric acid 
as a biochemical mediator of increased blood  pressure42.

The observed association of both uric acid and GGT with obesity and other cardiovascular risk factors 
has been previously documented in the literature. In a cross-sectional study of 2067 children and adolescents 
(6–20 years) in Hong Kong, a combined effect of the upper quartiles of both uric acid and GGT on obesity, low 
high-density lipoprotein cholesterol (HDL-C) levels and high blood pressure (adjusted odds ratios ranged from 
1.63 to 5.82, all p < 0.005) was  documented37. GGT, a liver enzyme implicated in the degradation of glutathione 
is associated with BMI, total cholesterol, diabetes mellitus (all components of MetS) as well as cardiovascular 
disease and all-cause mortality in  adults43. The correlation between GGT and MetS and hypertension among 
younger age groups was demonstrated in a 10-year longitudinal study in Taiwan, where subjects (10–15 years) 
with higher baseline levels of GGT were at least twice more likely to develop MetS and hypertension during the 
follow-up  period44. In our analysis, we showed a positive correlation, albeit weak, between uric acid and GGT 
in both discovery and replication datasets, without adjustment for zBMI.

Also, ALT had a statistically significant association with zBMI in the multivariable analysis using both the 
discovery and replication datasets. ALT is a liver enzyme related to fat liver accumulation and considered a useful 
biomarker for non-alcoholic fatty liver disease (NAFLD)45. The association between serum ALT and zBMI was 
previously documented in a study among adolescents (12–18 years) from NHANES III (1988–1994), in which 
overweight and obese study subjects were three to six times more likely to have higher levels of ALT (> 30 U/L) 
as compared to those with normal  weight46. Similarly, a significant correlation between ALT, zBMI and meta-
bolic syndrome was found among 5411 adolescents aged 12–19 years from NHANES 1999–2014; yet, with no 
significance increase in the prevalence of increased ALT over  time47. On the other hand, elevated serum ALT 
levels (> 40 U/L) were also associated with markers of metabolic syndrome, as demonstrated in a study among 
adolescents 10–19 years old from the Korean National Health and Nutrition Examination Survey in  199848.

Elevated triglycerides or hypertriglyceridemia is common among obese children and adolescents, and this 
component of metabolic syndrome is a known biomarker of cardiovascular disease  risk49. In our analysis, a 
positive association between triglycerides and zBMI was found in each of the discovery (estimate = 0.285) and 
replication datasets (estimate = 0.444), but not in the sensitivity analysis in non-obese adolescents. This positive 
association found in our ExWAS study between triglycerides and zBMI is in line with the findings of a study on 
abnormal lipid levels among adolescents (12–19 years) in NHANES 1999–2006, in which 22% of overweight 
and 43% of obese had at least one abnormal lipid level including elevated triglycerides, the most common lipid 
abnormality associated with excess  weight50.

Our analysis also showed the association between zBMI and inflammatory markers, such as white blood cell 
count and segmented neutrophils number. Such findings were also documented among  adolescents51–53, sug-
gesting that obesity-induced inflammation could start in  childhood54.

None of the dietary variables remained significant at multivariable analysis in the discovery and replication 
datasets. Additionally, weak correlations were found between the laboratory and dietary variables in each of 
the discovery and replication datasets. On the other hand, none of the biomarkers of environmental chemical 
exposures remained significant after FDR correction at multivariable analysis in the discovery and replication 
datasets. Particularly, 2-hydroxynaphthalene was no longer significant at multivariable analysis in the replication 
dataset after FDR correction. Although the implicated biological mechanisms remain unclear, further studies are 
warranted to better understand the role of PAHs and other environmental pollutants in obesity pathogenesis.

The associations found between uric acid, GGT or ALT with zBMI using the whole study population were no 
longer statistically significant in the sensitivity analysis that included non-obese adolescents. This observation 
warrants for further investigation on the potential use of these biochemical parameters as biomarkers in the early 
stages of obesogenesis in adolescence or childhood. The sex specific trends observed in the association between 
the three aforementioned biochemical parameters and zBMI are also worth of detailed investigation in other 
population studies as they might be useful in future obesity screening and prevention programs in adolescence 
and/or earlier life stages.

The strength of this study lies in the agnostic nature of the ExWAS approach which allows for the simultane-
ous assessment of multiple parameters and their associations with different outcomes. The NHANES dataset 
is considered representative of the U.S. population; in effect, the weighted estimates of overweight and obesity 
prevalence in this U.S. study population (12–18 years old) were similar in the 2003–2004 (18.4% and 18.1%, 
respectively) and 2013–2014 survey datasets (18.5% and 20.6%, respectively). Moreover, the obesity prevalence 
estimates in both datasets were similar to the weighted estimates by the U.S. CDC of 17.4% (13.9–21.3%) for the 
2003–2004 survey and 20.6% (16.2–25.6%) for the 2013–2014  survey55. The created models are considered as 
robust, being tested on two NHANES datasets, 10 years apart. Another strong feature of this ExWAS study was the 
inclusion of variables belonging to all exposome domains; the general external (individual household income), 
the specific external (dietary variables; education; household smoking and physical activity) and the internal 
domain (intrinsic and laboratory variables). Yet, in order to fully explore the exposome’s utility, it is encouraged 
to include additional groups of environmental components in relation to the studied health  outcome17.

Due to the cross-sectional study design of NHANES, causal associations cannot be established and although 
the approach was as inclusive as possible, not all exposome parameters were available or could be included, 
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e.g. chemical exposure data were not fully available in these NHANES surveys. On the other hand, the lack of 
observed associations between dietary factors and BMI might be interpreted by the use of a self-reported recall 
of the food items consumed during the past 24 hours; which might be subject to recall bias, under-reporting, 
over reporting, or omission of  foods56. Additionally, our analysis did not account for the “dietary recall status” 
variable and hence subjects classified as not having a “reliable recall” were not excluded. In this study, we used 
only dietary intake measurements for 1 day as an adequate metric of describing population mean nutrient intake. 
Earlier studies have shown no significant differences between the 2 days’ dietary intake measurements available 
in NHANES for estimating population  means57,58. However, multiple measures of daily dietary intake are rec-
ommended, particularly in exposome studies, to ensure sufficient capture of the within- and between- subject 
 variability59. Another possible limitation is the use of only two surveys out of the total available NHANES year 
surveys; ExWAS studies integrating additional NHANES datasets as well as a bigger number of environmental 
exposure variables are warranted to improve our knowledge in the environmental determinants of obesogenesis. 
Moreover, we focused on the analysis of parameters such as dietary habits that are more directly linked with  
obesity and not in the analysis of external drivers of variability in these parameters such as mental health, food 
security, socioeconomic determinants. Although the  poverty income ratio was used in the models as a proxy of 
socioeconomic status, more detailed exposome domain assessments including external parameters in the future 
will allow for the identification of effective population programs/interventions that tackle adolescent obesity.

Adolescence is a critical life window of susceptibility to metabolic diseases, such as, overweight and obesity 
during which ongoing children’s development may be perturbed by a suite of environmental stressors, including 
lifestyle/behavioral factors and dietary  habits58. The methodological framework of the human exposome and 
its tools allow for a comprehensive assessment of multiple factors with respect to disease outcomes through an 
agnostic, untargeted and hypothesis-generating approach. The NHANES-based discovered and replicated pre-
dictors of zBMI among U.S. adolescents seem to be in line with the global literature and further highlight their 
importance as potential early-stage biomarkers of excess weight. Additional studies at younger age groups are 
warranted to better explore a broader suite of lifestyle, dietary and environmental determinants in association 
with these biomarkers of effect and their implications with metabolic disease process.

Data and materials availability
The R code, scripts and output are made publicly available and they have been submitted on the Journal’s portal. 
There is supplementary visualization material based on these datasets, which can be easily customized to accom-
modate other NHANES surveys.

Code availability
The code used for the analysis is available in the Supplementary Material. Data, scripts and outputs are available 
here: https:// doi. org/ 10. 5281/ zenodo. 65589 79.
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