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Abstract

Sandwich structures are an efficient form of construction but can suffer

from nonlinear interaction phenomena that can erode their load carrying ca-

pacity. This interaction is triggered at a secondary bifurcation point and is

manifested as a localized deformation wave in the most compressed face plate

which destabilizes and drastically reduces its load carrying capacity. The cur-

rent work advances some recent analytical work on mode interaction and local-

ization in sandwich struts by extending and developing the model for different

geometries and material parametric design.

In the first part, a nonlinear analytical model for investigating localized

interactive buckling in simply supported, thin-face plate sandwich struts with

weak cores, is extended to account for local deformations in both face plates,

which have been observed in experiments and finite element simulations. The

original model is based on the total potential energy principles with large dis-

placement assumptions. It assumes Timoshenko shear deformable theory for

the core and approximates the overall mode as a half-sine wave along the length

of the strut while the local face plate displacements are initially unknown and

are found as solutions of the governing equations. The extended model is able

to capture measurable local face plate displacements in the less compressed

face plate, beyond the secondary bifurcation which leads to localized interac-

tive buckling, for the case where overall buckling is critical. Moreover, the

allowance of local displacements in both face plates allows the extended model

to predict the postbuckling behavior better in cases where local buckling is

critical. The results from this model compare very well with nonlinear finite

xi



Abstract

element simulations with respect to both the equilibrium paths and panel de-

formations.

In the second part, two analytical model for interactive buckling in sand-

wich struts with cores made from a functionally graded material based on the

total potential energy principles are presented. Each model is derived from a

different shear deformation theory, namely Timoshenko Beam Theory (TBT)

and Reddy-Bickford Theory (RBT). Parametric results from the analytical

models are compared with geometrically nonlinear simulations using ANSYS

general purpose finite element package. Good agrement is found, and this of-

fers encouragement for more elaborate models to be devised that can account

for face-core interface delamination, an area where functionally graded mate-

rials could offer mitigating design solutions.

Keywords - Mode interaction, Sandwich struts, Variational formulation,

Interactive buckling, Postbuckling, Functionally graded material
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Chapter 1

Introduction

Suinstainable design and construction has gradually become the main-

stream in the structural engineering. Engineers are increasingly required to

take full advantage of material resources to design efficient structural systems

so as to minimize the adverse effects on the environment due to construc-

tion. The advances in material science and manufacturing technology brought

forward many light weight and high performance materials for structural pur-

pose (Ashby 1999). Moreover, better understanding of nonlinear mechanics

(Thompson and Hunt 1973) as well as advances in computational mechanics

and optimization theory (Rozvany 2009), have enabled structural forms to be-

come increasingly slender. However, buckling instability is practically often

the governing failure mode of such structures under compression (Timoshenko

and Gere 1961; Baẑant and Cedolin 2010).

Sandwich structures are one of the most popular and materially efficient

structural forms. These structures consists of three main parts as illustrated

in Figure 1.1. Two thin, stiff and strong face plates are separated by a thick

light and weaker core (Zenkert 1995; Vinson 1999). In most cases the face

plates carry the loading, both in-plane and bending, while the core resists

1



Chapter 1 Introduction

transverse shear loads. A sandwich structure operates in the same way as an

I-beam with the difference that the core of a sandwich is of a different ma-

terials and is stretched across the breadth of the structure. Therefore, it has

wide applications in engineering structures particulary where the self-weight of

the structure is a key design constraint factor, such as astronautic, aeronautic,

marine and civil engineering applications. A more detailed description of such

applications of sandwich structures can be found in Chapter 2.

Face plate

Face plate

Core

Figure 1.1: A typical configuration for sandwich panels.

The problem arising with very efficient and optimized structures such as

sandwich panels, is that it can lead to more than one failure mode being trig-

gered almost simultaneously, which reduce the load carrying capacity of the

panels considerably. The buckling of sandwich structures is a familiar and an
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extensively investigated problem. The two commonly observed modes of buck-

ling are the long-wave overall buckling and the short-wave face plate wrinkling

(Sokolinsky and Frostig 1999). Despite the apparent simplicity of the phe-

nomenon, the prediction of the overall buckling loads is by no mean facile and

unambiguous. The phenomenon of wrinkling has been the subject of numer-

ous investigations (Goodier and Neou 1951; Goodier and Hsu 1954). Its is

also known that these modes can interact, for example, when overall buckling

occurs, localized wrinkling follows in the most compressed part of the facings

(Hunt and Da Silva 1990; Hunt and Wadee 1998).

Figure 1.2: Interactive localized buckling exhibited in the more compressed
face plate and local deformations within the less compressed faceplate as ex-
hibited in (a) expereimental work (Wadee 1999) and (b) FE simulations per-
formed in ABAQUS (Wadee et al 2010).

The current research is a direct continuation of the work of Wadee and

Hunt (1998) and Wadee et al (2010) on mode interaction and localization in

simply supported sandwich panels. Firstly, the current work seeks to improve

and increase the applicability of a previous model (Wadee and Hunt 1998)

which considers localized that occurs solely at the more compressed face of

the sandwich strut. The aim herein is to present an analytical model that

investigates and accounts for local deformations on both face plates. Specifi-

cally for the case where overall buckling occurs first, it has been observed both
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experimentally (Wadee 1999) and in Finite Element simulations (Wadee et al

2010) that smaller amplitude local deformations begin to appear practically

immediately after the secondary bifurcation when local buckling within the

other face plate has been triggered as showen in Figure 1.2.

Furthermore the investigation continues in a different direction where two

nonlinear analytical models are extended to cater for functionally graded ma-

terials in the core. Using these models, the interactive buckling phenomenon

is captured and investigated for different gradation patterns. The models have

been compared with fully numerical finite element simulations created within

the general purpose commersial package ANSYS (2019).

The thesis begins with a review of elastic structural stability theory, paying

particular attention to nonlinear buckling phenomena, mode interaction and

localized buckling, since thsese are all manifested in sandwich structurus. The

second part of the current chapter presents a brief overview of the legacy

models (Hunt and Wadee 1998; Wadee et al 2010) which are extended and

improved in the subsequent chapters.

1.1 Buckling theory

1.1.1 Linear Buckling

Buckling as a phenomenon has received extensive research and attention in

engineering science across different scales. Many different techniques have been

used to study buckling in various structures, including experimental, analytical

and numerical methods, both in the geometrically linear and nonlinear range.

Structures susceptible to buckling can be categorized as one dimensional, two

dimensional, or three dimensional. Buckling can be caused by in-plane com-
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pression loads, shear loads or torsional loads.

Structures respond defferently to various types of loading. It is well-known

that structures in tension are limited promarily by their material strength. On

the other hand, structures in compression are also limited by their geometry

since they might be susceptible to dynamic processes such as buckling. Buck-

ling theory has origins going back to Euler’s time (1744), who was the first to

formalize the buckling phenomenon as applied to the elastica — a thin and

incomperssible strut — on simple supports, as shown in Figure 1.3, through

the then newly devised method of the calculus of variations. Linearizing the

elastica problem led to the following governing ordinary differential equation

for the lateral deflection of the strut:

Figure 1.3: (a) Euler’s uniform elastica under axial load. (b) Linear solution
to elastica problem.

EI
d4y

dx4
+ P

d2y

dx2
= 0, (1.1)

where EI is the flexural rigidity of the strut, P is the axial load and y is the

function describing the buckled profile of the strut. Integrating the differential

equation twice and rearranging, the differential equation of bending is given:

Py + C1x+ C2 = −EI d
2y

dx2
, (1.2)
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The quantity Py is the bending moment resulting from the load eccen-

tricity due to buckling, and is related to the second derivative of lateral dis-

placement, which is equal to the linear curvature term of the strut under small

deflections. The constants of integration C1 and C2 vanish on the application

of simply supported boundary conditions. The critical load PC
n can be found

for the buckling mode n, by solving the above equation:

PC
n = n2EIπ

2

L2
, y = Q sin

nπx

L
, (1.3)

where n is an integer and Q is an indeterminate amplitude of buckling dis-

placement. The lowest critical load which minimizes the potential energy of

the strut is the one with the lowest nontrivial value of n (i.e. n = 1) leading

to the so-called Euler load:

PC
1 = PE =

EIπ2

L2
(1.4)

with its associated mode shape:

y = Q sin
πx

L
(1.5)

Even though Euler solved the full nonlinear equation for the elastica, he

remains famous in structural engineering primarily for the linear critical load

that bears his name. Several applications of linear buckling analysis for differ-

ent structures are well-documented in Timoshenko and Gere (1961) providing

critical loads and buckling mode shapes. The limit of linear buckling analysis

can be seen by considering the equilibrium (load versus lateral displacement)

path of the structure in Figure 1.3(b). The critical load is found at a bifurca-

tion point, since a perfect and symmetric strut can buckle in more than one

direction with equal probability, leading to a different postbuckling path and

a loss in stiffness. Since linear theory predicts zero stiffness for the postbuck-

ling response, the implication is that as long as structurre remains elastic, the
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structure will deflect indefinitely keeping its current load carrying capacity.

For some structures, such as columns, the critical load can be a good esti-

mate for their collapse load. However, this is not true for plates supported on

their edges since they exhibit significantly positive postbuckling stiffness due

to material stretching. On the other hand, in the presence of even very small

imperfections, cylidrical shells, for example, will fail due to buckling instability

well before the critical load is reached. It is therefore essential to account for

the geometric nonlinearities in the formulation for postbuckling analysis. The

importance of the postbuckling analysis in estimating the capacity of struc-

tures under compression is evident in the incorporation of its finding in design

codes for practical structures (Wadee 2007).

1.1.2 Nonlinear buckling

When investigating the postbuckling response in structural problems, it is

often more convenient to formulate the governing equations using total poten-

tial energy (V ) as opposed to applying Newton’s laws of motion to a free-body

(Wadee 2007). The problem of interactive buckling in sandwich structures

leads to large displacements which requires geometrically nonlinear analyses

that can be computationally expensive if performed by the direct equilibrium

method. This complicates the set of governing equations, raises their order,

and adds new boundary conditions. Due to these complications, it may be

more efficient to use energy methods in such analyses (Vinson 1999) as long as

the loads are conservative. The potential energy methods are powerful tools

for stability analysis and for interactive phenomena. The total potential en-

ergy V is the algebraic sum of the work done W (W=-Φ) by the applied forces

and the stored energies U :

V = U +W (1.6)
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The basis for using the total potential energy V in nonlinear analysis was

pioneered principally by Koiter (Hutchinson and Koiter 1970), who presented

the first general approach for modeling postbuckling behaviour. Koiter’s post-

buckling analysis was based on the principle of the minimization of the total

potential energy which consists of the strain energy stored in the structure

minus the work done by the applied loads. The potential energy is formulated

as a continuous integral over the volume of the structure S such that:

V =

∫
L dS. (1.7)

The above equation using the calculus of variations the potential energy is

stationary when its first variation δV is zero in a direct analogy with dynamical

systems, leading to the differential equations of equilibrium. These equations

describe the equilibrium states both before and after the critical bifurcations.

Bifurcations are points on the equilibrium path where more than one path of

equilibrium exists.

Along the same lines, applying the minimum potential energy principle

using a discretized system, instead of a continuum, lead to a symmetric per-

turbation method for post-buckling (Thompson and Hunt 1973):

V = V (Q1, Q2, ..., Qn), (1.8)

where the variables Qi are generalized coordinates that define the displacement

profile of the structure. This perturbation method can be explained using the

rolling ball analogy for the stability of an equilibrium path as seen in Figure

1.4. If the ball in part (a) is displaced slightly from its original position of

equilibrium, it will return to that position upon the removal of the disturbing

force. A body that behaves in this manner is said to be in a state of stable

equilibrium. In part (a), any slight displacement of the ball from its position
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of equilibrium will raise the center of gravity. A certain amount of work is re-

quired to produce such a displacement. The ball in part (b), if it is disturbed

slightly from its position of equilibrium, does not return but continues to move

down from the original equilibrium position. The equilibrium of the ball in

part (b) is called unstable equilibrium. In part (b), any slight displacement

from the position of equilibrium will lower the center of gravity of the ball and

consequently will decrease the potential energy of the ball. Thus in the case

of stable equilibrium, the energy of the system is minimum (local), and in the

case of unstable equilibrium it is a maximum (local). The ball in part (c),

after being displaced slightly, neither returns to its original equilibrium posi-

tion nor continues to move away upon removal of the disturbing force. This

type of equilibrium is called neutral equilibrium. If the equilibrium is neutral,

there is no change in energy during a displacement in the conservative force

system. This discrete coordinate approach for structures under conservative

loading, reduces some of the mathematical; it is based on two fundamental

axioms (Thompson and Hunt 1973):

(a) (b) (c)

Figure 1.4: Description of the rolling ball analogy. (a) Minimum point, (b)
maximum point and (c) saddle point.

Axiom 1 A stationary value of the total potential energy with respect to the

generalized coordinates is necessary and sufficient for the equilibrium of the

system.

Axiom 2 A complete relative minimum of the total potential energy with re-

9
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spect to the generalized coordinates is necessary and sufficient for the stability

of an equilibrium state.

P

Q

V V

V

Stable

Stable

unstable

Figure 1.5: A graphical description of the elastic stability axioms. Every point
along the equilibrium path is a stationary solution and that stable paths are
associated with minima in the energy while unstable paths are associated with
maxima.

A graphical representation of the two axioms can be see in Figure 1.5.

The axioms indicate that when the first derivative of V vanishes we have

equilibrium and the second derivative of V in most cases defines the stability

or otherwise of the equilibrium state. However, the interesting cases arise

when the second derivative of V vanishes (these define critical equilibrium),

where the structure first buckles (P = PC). For example, if the total potential

energy (V ) for a single degree-of-freedom system is written as a Taylor series

with Q being the generalized coordinate that define the displacement profile

of the structure and δ being a perturbation, we have:
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V (Q+ δ) = V (Q) +
dV

dQ
δ +

1

2!

d2V

dQ2
δ2 + ...+

1

n!

dnV

dQn
δn. (1.9)

Axiom 1 states that for equilibrium the first derivative of V vanishes (dV
dQ

=

0), hence V is rewritten:

V (Q+ δ)− V (Q) =
1

2!

d2V

dQ2
δ2 +

1

3!

d3V

dQ3
δ3...+

1

n!

dnV

dQn
δn + ..., (1.10)

and this implies that the right-hand side of Equation (3.5) to be positive for

V to be minimum and therefore the equilibrium state to be stable by Axiom

2, instead when the right-hand of Equation (3.5) is negative the equilibrium

state to be unstable.

When the second derivative of V is zero (d
2V

dQ2 = 0) the determination of

stability gets more complicated as it depends on higher than second deriva-

tives of V . In this case there are more than one postbuckling path. Therefore,

further information about the stability of the new equilibrium state, nonlinear

buckling analysis (or postbuckling analysis) is required.

1.1.3 Interactive buckling phenomena

Mode interaction, also known as interactive buckling, is a phenomenon

where at least two or more buckling modes are observed to be occuring simul-

taneously. An example of interactive buckling can be observed in reticulated

columns. As seen in Figure 1.6, the column buckles in an overall, Euler-type,

mode but at the same time the individual compression members on the lower

side buckle between the joints. Other examples of interactive buckling under

compression, include cylindrical shells, stiffened plates and also the interac-

tion between lateral-torsional buckling and local buckling in beams. Nonlinear
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buckling theory, allowed secondary instability, loads and equilibrium paths, to

be identified, rather than just the fundamental path and the critical loads.

These modes remain usually passive unless interactive buckling occurs.

Face plate

Core

(a)

(b)

Figure 1.6: A reticulated or triangulated column. (a) Unbuckled state and
(b) the column has buckled in an overall mode, but also the bottom side has
buckled in a local mode between the joints.

One of the most famous models to portray interactive buckling is the

2-DOF Augusti model (1964), as shown in Figure 1.7, which is used to un-

derstand the interactivity of buckling modes that both have stable symmetric

postbuckling paths when considered in isolation. The model is made up of

a rigid cantilever with length L that is pinned at its base but restrained by

two rotational springs with stiffnesses c1 and c2 that provide the structural

integrity. The deflected profile of the cantilever is described by the angles

spanned by the springs, Q1 and Q2. The detailed energy formulation and the

corresponding equilibrium path solution of the model can be found in Thomp-

son and Hunt (1973).

12
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Figure 1.7: Augusti (1964) model and sketches of its typical equilibrium paths.
(a) The inital configuration with rotational spring of stiffness c1 and c2 acting
in the xz and the yz planes respectively. (b) The buckled configuration with
generalized angular coordinated Q1 and Q2 representing the rotational defor-
mation in the springs. Equilibrium paths for the cases where (c) c2 > c1 and
(d) c1 = c2. Symbols C, B and S represent the critical buckling point, the
higher buckling load point, and the secondary bifurcation point respectively.
The equilibrium paths of the model with initial geometric imperfections are
also shown to demonstrate the erosion in the ultimate load due to geometric
imperfections.
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Figure 1.7(c,d) present the sketched of the equlibrium of the Augusti model

with c1 > c2 and c1 = c2 respectively. When Q1 and Q2 are triggered in iso-

lation, i.e. the cantilever purely deflects either in the xz plane or the yz

plane, the system exhibits symmetrically stable postbuckling behaviour. How-

ever, in realistic scenarios, there is an interaction between Q1 and Q2 since

there is only finite restraint in the non-critical plane of deflection. For ex-

ample, the cantilever initially remains undeflected in the foundamental path

until P reaches the critical load PC = c1/L. After that, the cantilever starts

to deflect in the direction Q1 corresponding to the relatively smaller spring

stiffness c1. When P reaches the buckling load at the secondary bifurcation

point P S = (3c1 + c2)/4L, the cantilever starts to deflect in Q2 in addition to

Q1, i.e. interactive buckling is triggered. The triggering of interactive buck-

ling also leads to unstable post-buckling behaviour. From the perspective of

energy, the unstable interactive buckling path requires less energy compared

with the primary stable postbuckling path (Timoshenko and Gere 1961; Hunt

et al 1989). In particular, when c1 = c2, the critical and secondary bifurcation

points coinceide, the postbuckling behaviour is highly unstable, as shown in

Figure 1.7(d); the critical buckling load is followed by negtive postbuckling

stiffness and hence a reduction in the load-carrying capacity.

Mode interaction in sandwich panels which is pertinent to the scope of this

thesis herein has been reported by Allen (1969) and Hunt (1986). While in-

vestigating sandwich panels under uniaxial compression, it was observed that

even though the overall, Euler-type, mode had a largerly neutrally stable post-

buckling response and the local face plate buckling had a higher critical load

with stable postbuckling, mode interaction would limit the neutral response of

the energetically lowest mode causing a sudden loass of stability, as shown in

Figure 1.8. This nonlinear interaction was initially attempted to be modelled

using a periodic Rayleigh–Ritz approach by combining local modes of different
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wavelengths in Hunt et al (1988). The method involved the superposition of

three buckling modes, the overall Euler-type mode and the two local modes for

the face plates with symmetric and antisymetric waveforms about the panels

neutral axis. The method sought to find the minimum energy buckling defor-

mations where both face plates were allowed to buckle locally and the panel

globally in combination.

1.1.4 Localization of buckling pattern due to interactive

buckling

In contrast to the periodic buckling modes in the purely local buckling

cases, interactive buckling also leads to the localization of the local mode,

which has been widely observed in both analytical (Hunt and Wadee 1998;

?; Wadee et al 2010; Wadee and Farsi 2014) and experimental (Wadee and

Garden 2012; Wadee 1999) studies on interactive buckling of sandwich panels

and thin walled structures. Hunt et al (1989) adopted simplified rigid-link

and springs systems to illustrate the mechanism of the formation of the lo-

calization pattern, as shown in Figure 1.9. If the postbuckling behaviour is

stable, the localized pattern requires more energy to trigger and thus the prac-

tically observed postbuckling mode is periodic. If the postbuckling behaviour

is unstable, the periodic pattern requires more energy to trigger and thus the

postbuckling mode is localized. In such case buckling would cause loss of

stiffness and strength and therefore would be unsafe.

1.2 Outline of thesis

A brief summary of the chapters in the thesis herein is given below.

1.2.1 Sandwich structures applications and theory

Chapter 2 comprises a literature review on sandwich structures buckling

theory summarizing the latest developments in the field while providing deriva-
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Figure 1.8: Top: the response of a sandwich strut if the two principal buck-
ling modes are treated seprarately. Bottom: the coupling of the two buck-
ling modes leads to a secondary bifurcation and an unstable response. (a)
The pre-buckling fundamental path associated with squatioshing; (b) over-
all mode post-buckling initiated at critical bifurcation C; (c) local face plate
post-buckling response which remains inactive and (d) the interactive buck-
ling response being triggered at a secondary bifurcation S. Path (e) shows
the equilibrium diagram after the introduction of an initial imperfection E0.
Quantities EC and ES refer to the respective end shortening values at the
critical and secondary bifurcations.
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Figure 1.9: Link-spring (Hunt et al 1989) model illustrating the effect of local-
ized and periodic deformation on the equilibrium path.

tions of the critical loads through clasical eigenvalue analysis. It concludes

with a detailed description of the analytical model for interactive buckling in

sandwich struts by Wadee and Hunt (1998) which is utilized in Chapter 3 to

investigate localized buckling in sandwich struts with inhomogenous deforma-

tions in both face plates and Wadee et al (2010) which is utilized in Chapter

4 in order to investigate the nonlinear response of sandwich struts with core

of graded properties and how different patterns of gradations can affect the

response of nonlinear interactive phenomena.

1.2.2 Modelling localized buckling in sandwich struts

with inhomogeneous deformations in both face plates

A new analytical model is developed in Chapter 3 in the footsteps of

Wadee and Hunt (1998) which is based on a Timoshenko beam theory (TBT)

(Timoshenko and Gere 1961) and is extended in order to investigate local

deformations on both face plates during postbuckling. This chapter aim to

capture these response of different sandwich configurations and the results are
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compared with the results obtained from Hunt and Wadee (1998).

1.2.3 Modelling interactive buckling for FGM sandwich

struts

Functionally graded cores are increasingly becoming popular in sandwich

construction. They are a step towards further optimization of sandwich panels

to fulfil further functions. In Chapter 4, the initiation of interactive buck-

ling in the presence of a functionally graded core is investigated by varying

the Young’s modulus of the core symmetrically across the depth of the strut

for models using the Timoshenko and Reddy-Bickford beams theories. The

two strut analytical models presented in Yiatros et al (2013) are updated to

include the changes in the shear strain distribution in their total potential en-

ergy functional, with a focussed discussion on their validity in the light of the

functionally graded distributions of the material properties.

1.2.4 Comparison of analytical models with finite ele-

ment simulations

In Chapter 5, nonlinear finite element models for sandwich structures are

developed in the comersial package ANSYS (2019). The modelling strategy,

such as element types, meshing, strut modelling, boundary and loading condi-

tions as well as geometric imperfection are introduced. Moreover, the analysis

type, procedure and solution strategy are introduced. The developed finite el-

ement models are used to compare with the results from the analytical models

in Chapter 3 and 4 in order to deduce the limits of validity and advantages

that each model has to offer.

1.2.5 Conclusions and future work

The principal work conducted and discoveries are summarized in Chapter

6. The original contributions and practical significance is also explained and

highlighted. The chapter concludes with recommendations for extending the

current work and the potential application of the present methodology.
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Sandwich structures applications

and theory

Advances in sandwich structures applications continue to rise due to im-

proved manufacturing methods and emergence of new innovative materials and

adhesion methods that either amplify the advantages of sandwich construction

or mitigate their weaknesses. In this chapter a historical review of sandwich

construction is presented, followed by a review of sandwich structures fabri-

cation techniques and materials and concluding with a review of linear and

nonlinear stability theory pertinent to sandwich struts.

2.1 Applications

The primary concept or definition of sandwich structure dates back to

Fairbairn in 1849, as proposed by Noor et al (1996). The plywood sand-

wich structure was firstly used in the Mosquito night bomber of World War

II in England (Rayjade and Rao 2015). Feichtinger (Vinson 2005) had further

stated the concept of sandwich construction originated with the faces made of

reinforced plastics and low-density core. In 1944, the first scientific paper con-
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cerning sandwich construction was published, which studied sandwich panels

subjected to the in-plane compressive loads. Meanwhile, many research publi-

cations on sandwich structures emanating from the U.S Forest Products Lab-

oratory used the wood products. In 1992, it was noted that the aircraft engine

utilized some honeycomb and increasingly applied 46% honeycomb structure

of the wetted surface of the newer Boeing 757/767. Composite sandwich bridge

deck panels were used to replace the conventional bridges, which highlighted

the lightweight and corrosion resistance of composite sandwich construction.

For the past 10 years, different properties of sandwich structures have been in-

vestigated with various loading conditions. It is found that sandwich structures

have been widely used in numerous applications such as aircraft, transporta-

tion and infrastructure (Vinson 2001; Takeda et al 2007). The rapid historic

development of sandwich structures is briefly shown in Table 2.1.

1849s • The concept of sandwich construction

1924s • Polymer sandwich construction

1943s • Fabricated BT-15 fuselage

1944s • First research paper on sandwich panels

1951s • U.S. Forest Products Laboratory (USFPL)

1966s • First sandwich structure book

1975s • Naval ship hulls

1989s • First international conference on sandwich constructions

1992s • Boeing 757/767

1999s • Journal of sandwich structures and materials

2005s • Composite sandwich bridge deck

2008s • Wind blades

2009 - 2019s • Mechanical properties of sandwich structure under various loading

Future • Other potential applications and development of sandwich structure

Table 2.1: Rapid development of sandwich structure according to the history
timeline (Quanjin et al 2021).
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The sandwich structures with lightweight concept are used in many mod-

ern industrial sectors. Here, we list some recent examples of application ar-

eas including aerospace, automotive, marine and civil engineering. To briefly

highlight and understand the recent and potential applications of sandwich

structures.

Vibration tests of lightweight satellite structures using lattice core sand-

wich panels were studied, which found that the satellite structure could endure

vibration loads during rocket launching (Zhang et al 2018). Sandwich panels

with unidirectional corrugated and tubular reinforcements were fabricated and

investigated subjected to soft body high velocity impact as used in bird strike

tests (Vignjevic et al 2019). The proposed reinforced sandwich panels improved

the impact resistance performance with the desired augmented strength and

stiffness in one direction, which has promising potential in aerospace area.

The rigid-foldable morphing sandwich structures of Miura rigid origami pat-

tern were examined, and the alternative mechanism improved stability and

locking capabilities (Gattas and You 2015). The Whipple shield of sandwich

panels was developed to protect the unmanned spacecraft from much smaller

orbital debris, which offered better performance in the single-purpose orbital

debris shields category (Cherniaev and Telichev 2017). The concept of a Non-

ablative Lightweight Thermal Protection System (NALTPS) was proposed for

Mars exploration mission, which consists of carbon/carbon composite, insula-

tor tiles and honeycomb core sandwich panel (Suzuki et al 2017).

In aerospace applications, lightweight sandwich structures have been suc-

cessfully developed in the aircraft structure (Zhu et al 2018). Some potential

applications where extensive use of sandwich panels include the Concorde su-

personic airliner and the General Dynamics F-111, the second case involving

honeycomb sandwich panels for the canard and vertical fin (Bannink et al
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Figure 2.1: Example for sandwich applications A380 (Herman et al 2005).

1978). In the currently evolving technical progress, the two commercial avia-

tion manufacturers Airbus and Boeing have been moving towards an extencive

use of composite sandwich panels (Marsh 2005). The commercial aircraft from

Airbus, figure 2.1 gives an overview of composite sandwich applications in the

A380 aircraft, such as for secondary structures in pylons that connect the en-

gines to the wings, for access, leading and trailing edge panels wings, for the

fuselage belly fairing and vertical tail plane as well as for cabin floor panels

(Herman et al 2005).

Figure 2.2: Overall view of the novel sandwich composite footbridge in civil
engineering (Chróścielewski et al 2017).
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Sandwich structures have also found their way into civil engineering projects

such as bridge decks, wall and roof claddings for building because of their

low cost and thermal performance. For example, can be found in the design

of offshore, bridge, nuclear and defence structures mainly as a composite of

steel and unreinforced concrete (Narayanan et al 1994; Bowerman et al 2002).

Polystyrene/cement mixed cores and thin cement sheet facing sandwich pan-

els were fabricated and studied on insulation and weatherproofing properties,

which can be used for almost building applications such as roofs, walls and

floors (Tabatabaiefar et al 2017). The novel sandwich footbridge was built

and tested under in situ static loading, which was an example of practical

applications in civil engineering (Chróścielewski et al 2017), as illustrated in

Figure 2.2. Last, but certainly not least, with energy demand rising, the devel-

opment of technologies for renewable forms of energy has seen the increase in

popularity of wind turbines and the use of sandwich composites for the spar of

the blades. A sandwich spar can allow the increase of the length of the blades

to a point where the height of the tower of the turbine becomes the critical

constraint, leading to greater energy output by the turbine (Norlin and Reu-

telöv 2002; Berggreen et al 2007). Composite sandwich panels are also utilized

for the skins of the blades (Brøndsted et al 2005; Østergaard 2008) to reduce

the weight even further without a significant loss in stiffness.

2.2 Materials

A wide range of materials can be used for sandwich facings and cores.

Every different combination of these components results with sandwich con-

structions having different mechanical responses. It is important for a sand-

wich structure to address adequately the attributes of its working environment.

There are several different methods for producing structural sandwich panels

such as wet lay up, prepreg lay up, adhenhesive bonding, liquid moulding and
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continuous lamination. An excelent review of all these methods can be found

in Karlsson and Åström (1997).

2.2.1 Face plate materials

Aluminium alloys, graphite-epoxy, carbon-epoxy, glass-epoxy, and glass-

vinyl ester are widely used as face plates materials (Zenkert 1995). Aluminium

alloys are most common facing material in sandwich structures. The energy

absorption characterisitcs of metal sheets sandwich strucutre and allumunium

sandwich structure were constrasted with glass fiber-reinforced plastic sheets

sandwich structures in the study of Liu et al (2017). High strength carbon

fiber/epoxy composite prepreg are used as face plates of composite sandwich

panels in the study of Kong et al (2014). FRP including CFRP and glass fiber-

reinforced polymer (GFRP) are used to improve the bending characteristics

(Prabhu et al 2019). Bao et al (2018) tested the strength of composite sand-

wich panels with face plates made of carbon/epoxy fabric and carbon/epoxy

unidirectional prepreg. Table 2.2 lists mechanical properties of some typical

face plate materials.

Face Material Desity

(kg/m3)

Longitudinal

modulus

(GPa)

Trsanseverse

modulus

(GPa)

Young’s

modulus

(GPa)

Shear

modulus

(MPa)

Poisson’s

ratio

USN [0] 1540 130 10.5 — 5.06 0.28

USN [90] 1540 51.7 51.7 — 19.94 0.30

Alluminium Alloy 2700 72 72 — 27 —

Stycast epoxy resin 1200 2.1 2.1 — 0.81 —

FRP 1200 — — 43.8 24.8 0.33

Table 2.2: Mechanical properties of some common materials for face plates
(Zenkert 1995).

2.2.2 Sandwich core materials

The other main component of the sandwich structures is the core material
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(Quanjin et al 2021). Various types of core design on sandwich structure have

been proposed to develop the lightweight structures on stiffness, strength and

energy-absorbing characteristics. The mechanical properties of sandwich core

structures depend on three factors, which are the relative density of the core

structure, the properties of the initial used material and geometry of the core

materials (Ashby 2006).

In order to improve the mechanical properties of sandwich structures,

many types of cellular core structures were proposed and developed, which are

generally defined as cellular structures. Cellular structures can be classified as

the stochastic cells and periodic cells (Zhu et al 2010). A hierarchical descrip-

tion of cellular materials classification is shown in Figure 2.3. For stochastic

structures, metal and polymeric foams are introduced, as open-cell and closed-

cell types. For periodic structures, the cell unit is repeated in the array, which

can fabricate the two-dimensional (2D) and three-dimensional (3D) core struc-

tures.

Sandwich structures with cellular foam cores are classified into two main

types, which are metal and polymeric foams. Metallic and polymeric foams

have been used extensively as filled-based material, which offers a positive ef-

fect on the energy absorption capability of sandwich panels. Metallic foams

could be fabricated with one of three methods: foaming by injecting gas into

the liquid metal, foaming of melts with blowing agents and foaming of powder

compacts. Polymeric foams are manufactured by injecting the gas into liq-

uid polymer and solidifying through the cross-linking or cooling. The metallic

foam offers a higher density than the polymeric foam, which leads to excellent

energy absorption features at a higher strength level compared to polymeric

foam. Polymeric materials such as Polyvinyl chloride (PVC), Polyurethane

(PU), metallic (such as aluminium), and biomaterial foams (such as balsa
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Figure 2.3: Cellular material classification, where the cellular material with
stochastic or periodic microstructures is configured as the cores of sandwich
panel structures (Zhu et al 2010).

wood) are considered as sandwich cellural foam materials.

Two-dimensional periodic cores can be briefly classified into two types

of core structures, which are honeycomb core and prismatic core (Xiong et al

2019). The honeycomb core is made of two sheets that form the edge of the unit

cell. It is placed perpendicular to the face plate to design a two-dimensional

structural core like triangular (Kim and Christensen 2000), square, and cir-

cular geometries (Foo et al 2008). For prismatic core, the core is rotated 90o

on the horizontal direction (y-axis), which forms the core structure with open

channels in single direction (x-axis) and the closed-cell structure in another

direction (y-axis). Therefore, prismatic core sandwich structure can provide

better cross-flow of air and humidity compared with the closed-channel hon-

eycob core. Figure 2.4 exhibits the schematic illustration between honeycomb

and prismatic core, which is helpful to understand coresponding core geomet-

rical concepts.
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Figure 2.4: Schematic illustration of two-dimensional (2D) periodic core used
triangular core (Quanjin et al 2021).

Three-dimensional periodic core is developed based on the geometrical

concept of the two-dimensional periodic core. From the core structural per-

spective, the two-dimensional periodic core enhances the core cavity space

through vertical direction (Z-axis), which forms the double 3D open channels.

Compared with 2D open channel, the 3D open channel provides the potential

core cavity to insert cellular foams, which offers an excellent impact and noise

resistance responce. For a three-dimensional core, various typical core struc-

tures have been summarized and mentioned, such as lattice core, folded core,

egg-box core and contoured-core.

2.3 Sandwich structures literature

A considerable amount of literature exists on sandwich structures as they

are used in a large number of applications. Research into the theoretical anal-

ysis of sanswich structures began following World War II and is summarized

in the two classical books of Plantema (1966) and Allen (1969) who gathered

all important theoretical knowledge in the subject, including the projects of

Reissner (1948) and Goodier (1946) for sandwich structures in aerospace tech-
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nology. Zenkert (1995) published a comprehensive book building upon the

previous publications and reviewing the latest updates in the field. This book

included design guidelines, a discussion of new materials available for sandwich

panels and advice on the use of finite element packages to model structural

sandwich panels.

Many useful theoretical analyses have been conducted in the past to an-

alyze the global and local buckling of sandwich beam. Many of these studies

have been conducted by Frosting and his collaborators on sandwich panels with

transversely flexible cores. Frostig and Baruch (1990) investigated bending in

sandwich panels and developed an analytical model from two-dimensional equi-

librium and compatibility. The flexibility of the core assumed in the analysis,

released the assumption of the so-called engineer’s bending theory of normal

planes in bending. Léotoing et al (2002) and Frostig et al (1992), assumed the

core as a linear elastic foundation, and applied a higher-order shear deforma-

tion theory for sandwich panels, inverstigating buckling and localized effects

from lateral loads (Frostig and Baruch 1993). The induced cross-sectional

nonlinear displacements were not prescribed but solved from the elasticity

equations. In both cases, a note of warning is given for the development of

localized peeling stresses at the face-core interface that might cause depond-

ing, also knoen as delamination (Frostig 1992). Delamination reduces the local

stiffness of the structure leading to destabilization of the panel well below its

design load. In the analysis of Allen (1969) and Niu and Talreja (1999), the

core is assumed to be elastic isotropic material. They suggested a unified ex-

pression for the wrinkling stress of the possible deformation modes expressed

through a case parameter, when the beam is pinned at each end.

The buckling mode interation and localization in terms of the nonlinear

postbuckling response has been investigated by many researchers using vari-
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ous types of elastic foundation along with presumed sinusoidal modes (Zenkert

1995). Goodier and Hsu (1954) dealt with buckling of an infinitely long sand-

wich plate and showed that the nonsinusoidal modes, in which the deformation

is confined to end zones of the plate, may occur with critical loads that are

about one-half of those predicted on the basis of the sinusoidal mode. Hunt

et al (1988) investigated mode interaction in sandwich panels for two buck-

ling modes of different scales, which comprised overall Euler-type buckling

and wrinkling of the face plates. The initial works concerned a geometrically

nonlinear model where the two face plates were modelled as struts and the

core as a series longitudinal springs (Hunt 1986). This was followed by a

subsequent formulation of a sandwich panel where the core was modelled as

an elastic solid in conjunction with the Rayleigh-Ritz method; again the for-

mulation was geometrically nonlinear and considered axial compression (Hunt

et al 1988), bending (Hunt and Da Silva 1990), and orthotropic core materials

(Da Silva and Hunt 1990).

A number of experimental studies have also been performed to investi-

gate compression response. Fleck and Sridhar (2002) tested various sand-

wich columns made of different combination of materials and having different

geometrical properties. They observed different failure modes depending on

the material properties of the core and geometrical properties of the column.

Fagerberg (2004) uncovered a transition in the failure mode by examining

sandwich beams of different core stiffnesses. He postulated that the transition

from wrinkling to pure compression failure (squashing) of the face plate occurs

when the modulus of the core is sufficient to support the face plate, in effect a

sandwich beam with a high ratio of Ec/Ef , where Ec is the core Young’s mod-

ulus and Ef the face plate Young’s modulus. Wadee (1999) experimental work

was focused on capturing of the interactive buckling localization in sandwich

panels and achieved good correlation with the localized buckle wavelength and
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collapse loads from previous analytical works.

2.4 Analytical modelling of sandwich struts

As mentioned previously, there now follows the detailed derivation of the

model presented by Hunt and Wadee (1998). Firstly, the panel reviewed. A

sandwich panel of length L and breadth c is considered. The core depth is b and

the face plates are of thickness t. The core material properties are assumed to

be orthotropic with quantities Ex and Ey corresponding to the Young’s moduli

of the core in the longitudinal and tranverse directions respectively, whereas

the Young’s modulus for the isotropic face plates is denoted by E. Similarly,

Poisson’s ratios are denoted by νx and νy for the core and ν for the face plates.

The shear modulus of the core is Gc and since the face plates are assumed to

be thin, the shear modulus for the face plates is neglected. The panel is simply

supported on the knife edge support at one end with a pinned roller support at

the other end. The axial load is assumed to be applied along the neutral axis of

the sandwich panel through a rigid plate that spreads the load evenly through

the depth of the panel as indicated in Figure 2.5 It is worth emphazing that

the long edges are unsupported,, hence the panel modelled is effectively a strut.

x
L

b

c
t

t

z

y

Elevation: Cross-section:

P

Figure 2.5: The sandwich panel in elevation and cross-section.

2.4.1 Critical load for overall buckling

From Hunt (1986) and Hunt et al (1988) three buckling modes are identi-

fied for sandwich panels and are shown in Figure 2.6. The first mode, Figure
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2.6(a), is the overall or global ‘Euler-type’ buckling mode, the second, Fig-

ure 2.6(b), is a local buckling mode of the face plates where the waveform is

symmetric bout the longitudinal axis of the panel and is referred to as the

‘hourglass’ mode. The third mode, Figure 2.6(c), referred to as ‘snake’ is a

local mode again with waveforms that are antisymmetric about the longitu-

dinal axis. Under compression, depending on the materials and geometry of

the panel, the mode with the lowest critical load would become critical and

dominate the initial post-buckling response. The ‘snake’ mode can never be

critical since it is purely a higher frequency phenomenon akin to the overall

mode. Since the current study considers interactive buckling is usually trig-

gered after overall-type buckling, the critical load primary importance is tha

overall (Euler) buckling load.

Figure 2.6: The three buckling modes. (a) Overall ’Euler’ mode, (b) ’Hour-
glass’ symmetric mode and (c) ’snake’ antisymetric mode.

2.4.2 Overall buckling

The overall buckling mode can be broken into two degrees of freedom;

sway and tilt (Allen 1969; Hunt et al 1988). Decomposing the components of

the deflection of the neutral axis into functions W (x) and θ(x) for the overall

Euler mode:
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W (x) = qsL sin
πx

L
, θ(x) = qtπ cos

πx

L
(2.1)

where qs and qt are the generalized coordinates representing the magnitudes

of the sway and tilt components respectively, as seen in the Figure (2.7). The

potential energy is then assembled; this comprises the strain energy stored in

the structure minus the work done by the applied load. The strain energy of

the panels can be broken down into contributions from bending and membrane

strains in the face plates, while strain energy contributions in the core come

from direct strain and shear.

y

y

x

W(x)

(x)

w(x)

u(x)

L

Figure 2.7: Modal descriptions. From top to bottom: Purely compressive;
overall buckling sway mode W (x); tilt mode θ(x); local displacement u(x) and
w(x) becoming non-zero beyond the second bifurcation.

2.4.3 Bending theories

A bending theory provides the connection between the applied loads and
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the consequent kinematics of the beam. The classical and best-known beam

theory is Euler-Bernoulli theory (EBT), which is stated below:

M = EIκ, (2.2)

where M is the applied moment, E is the Young’s modulus, I is the second

moment of area and κ is the curvature. This can be approximated as the total

second derivative of deflection W such that:

κ = −d2W

dx2
. (2.3)

By integrating the above equation twice and applying the correct bound-

ary conditions the deflected shape of the beam can be found as a function of the

induced bending moment, its flexural rigidity and length. The theory’s princi-

pal assumptions are that “plane section remail plane” and that “shear strains

are neglible”, leading to a linear distribution of direct stresses (σ) increasing

from the neutral axis towards the extreme fibres of the beam:

M

I
=
σ

y
= −Ed2W

dx2
, (2.4)

where y measures the distance from the neutral axis.

A number of refined bending theories have been proposed over the years to

overcome the limitations of classical models. Two different shear deformable

bending theories considered here (Figure 2.8), that allow the development of

shear strains within the sandwich core, these being essential in capturing buck-

ling mode interaction and localization. The first model is based on the Timo-

shenko Beam Theory (TBT), which assumes a constant shear strain distribu-

tion across the core (Timoshenko and Woinowsky-Krieger 1959), and second

model is based on third-order Reddy-Bickford Theory (RBT), which assumes

a higher order shear strain distribution across the sandwich core (Reddy 1984;
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Reddy 1990) which has a quadratic distribution of shear strain; the maximum

being at the neutral axis and reducing to zero at the extreme fibres of the

cross-section..

uc(x, y) =

(
b− 2y

2b

)
u(x), wc(x, y) =

(
b− 2y

2b

)
w(x) (2.5)

Figure 2.8: Outline of the bending theories. (a) TBT, and (b) RBT

The deformation fields of each model are concerned, the vertical deflections

W (x) are the same, whereas the difference lies in overall in-plane deflection

ug:

ug,T (x, y) = −yθ(x), ug,R(x, y) = −y

[
θ(x) +

4y3

3b2

(
∂2W

∂x2
− θ(x)

)]
(2.6)

where T and R subscripts to the TBT and RBT models, respectively. A Total

Potential Energy approach (Thompson and Hunt 1973) is followed to arrive at

the equilibrium equations for the strut. The system’s Total Potential Energy

comprises the strain energy stored in the sandwich panel minus the work done

by the loads, integrated over the volume of the structure. The strain energy

has three components of which two are for the face plates in terms of bending

energy, Ub and membrane energy, Um. The third component concerns the strain

energy stored in the core and consists of contributions from axial, transverse

and shear strains Uc. The work done by the loads include the usual component

from the axial load P . Assuming plane stress condition, the potential energy

of the strut is readily integrated over the breadth of the strut. The derivation
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of the Total Potential Energy is given below for both models.

2.4.4 Bending Energy

The bending energy components provide the resistance to bending and

arise from the deflection induced by a moment M and its associated curvature

k about the neutral axis of both face plates, coupled with local bending of the

bottom face plates. Linear curvature expressions suffice, giving:

Ub =
1

2

∫ L

0

Mk dx (2.7)

where, the moment M described in terms of the strut’s flexural rigidity and

the curvature. However, the strain energy under bending can be obtained as

the integral production of the plate rigidity EI and curvature. The expression

is the same for the both TBT and RBT models:

Ub =
1

2
EI

∫ L

0

(
2Ẅ (x)2 + ẅb(x)2

)
dx (2.8)

where, EI = Ect3/12(1 − ν2) is equivalent to the assuming plane stress of a

single face plate. The dots over the symbols denote differentiation with respect

to x.

2.4.5 Membrane Energy

The membrane energy consists of the strain energy developed in the face

plates under axial compression and tension. Considering that the sandwich

panel buckles upwards, the displacement components for the top face plate

are given as the axial tensile strain minus the squash term. On the other

hand, the bottom face plate contributes to the compressive strain, the squash

component and some extra contributions from von Kàrmàn large-deflection

plate theory added to account for any deviation from the overall mode. Since

the two models have different in-plane deformation fields in the overall mode,
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the displacement functions will be different. For TBT:

utx,T (x) = −1

2
bθ(x)−∆x (2.9a)

ubx,T (x) =
1

2
bθ(x)−∆x+ u(x) (2.9b)

uby,T (x) = w(x) (2.9c)

For RBT, some extra terms introduced :

utx,R(x) = −1

2
bθ(x) +

b

6

(
∂W

∂x
− θ(x)

)
−∆x (2.10a)

ubx,R(x) =
1

2
bθ(x) +

b

6

(
∂W

∂x
− θ(x)

)
−∆x+ u(x) (2.10b)

uby,R(x) = w(x) (2.10c)

From Hooke’s law, the strain energy is the integral of the product of the

stress-strain relationship. Since the plates are long and thin, both transverse

and shear stresses are neglected. The out-of-plane stresses are also neglected

since the plates are free to expand in the z-direction, eliminating Poisson’s

ration effects. Hence, the axial stress, σ, can be formulated in terms of the

Young’s modulus and axial strain, ε.

Um =
1

2

∫ L

0

∫ t/2

−t/2

[∫ −b/2
−b/2−t

σxbεxb dy +

∫ b/2+t

b/2

σxtεxt dy

]
dzdx

= D

∫ L

0

(
ε2xb + ε2xt

)
dx

(2.11)

where D = Etc/2 and subscripts xt, xb represents the axial properties of

the top and bottom face plates. The axial strain in each plate is the sum

of the strain from the initial compression and subsequent buckling, while the

bottom face adds as extra contributions the corresponding strains du/dx and

1
2
(dw/dx)2, terms familiar from standard von Kàrmàn large-deflection plate
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theory:

εxt =
∂utx
∂x

(2.12a)

εxb =
∂ubx
∂x

+
1

2

(
∂uby
∂x

)2

(2.12b)

2.4.6 Core Energy

The core provides all the transverse and shear resistance but only some of

the longitudinal resistance, most of which comes from the faces. The displace-

ment field inside the core includes contributions from the elastic end shorten-

ing, the overall sway and tilt buckling modes and the localized displacements.

To match the assumed displacements w(x) and u(x) on the bottom face and

zero in the top face of Figure (3.3) displacements wc(x, y) and uc(x, y) must

vary through the core Equation (2.5). The TBT displacement field inside the

core given as:

ucx,T (x, y) = −yθ(x) + uc(x, y)−∆x (2.13a)

ucy,T (x, y) = W (x) + wc(x, y) + νx∆y (2.13b)

For RBT deformation field is given as:

ucx,R(x, y) = −y

[
θ(x) +

4y3

3b2

(
∂W

∂x
− θ(x)

)]
+ uc(x, y)−∆x (2.14a)

ucy,R(x, y) = W (x) + wc(x, y) + νx∆y (2.14b)

The core is modeled as a linear elastic solid and strain energy stored can

be formulated as below:
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Uc =
1

2

∫ L

0

∫ b/2

−b/2

∫ c

0

(
σxεx + σyεy + σzεz + τxyγxy + τxzγxz + τyzγyz

)
dzdydx

(2.15)

where, τ and γ denote shear stress and strain respectively. The formulation

is reduced by allowing the strut to be free in the z-direction reducing the

formulation to a state of plane stress where σz = τxz = τyz = 0, hence:

Uc =
1

2

∫ L

0

∫ b/2

−b/2

∫ c

0

(
σxεx + σyεy + τxyγxy

)
dzdydx (2.16)

For orthotropic materials with the plane stress conditions the constitutive

relationships given as:


εx

εy

γxy

 =


1/Ex −νy/Ey 0

−νx/Ex 1/Ey 0

0 0 1/Gc



σx

σy

τxy

 (2.17)

Upon rearrangement, the stresses can be expressed again in terms of the

material properties and strains such that:

σx =
Ex

1− νxνy
(
εx + νyεy

)
(2.18)

σy =
Ey

1− νxνy
(
εy + νxεx

)
(2.19)

τxy = Gcγxy (2.20)

This can now be substituted back into Equation (2.16) for the strain en-

ergy in the core, taking into advantage of the reciprocal relationship of the

constitutive law Exνy = Eyνx:
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Uc =
1

2

∫ L

0

∫ b/2

−b/2

∫ c

0

[
1

1− νxνy

(
Exε

2
x + Eyε

2
y + 2Eyεxεy

)
+Gcγ

2
xy

]
dzdydx

(2.21)

The expression for the axial strain in the core is similar to the one for

the face plates and includes contributions from the initial compression and

subsequent buckling. On the other hand, the transverse strain εy accounts for

the Poisson’s ratio effect, the pure compression.

εx(x, y) = −yθ̇(x)−∆ +
∂uc
∂x

+
1

2

(
∂wc

∂x

)2

(2.22)

εy(x, y) = νx∆ +
∂wc

∂y
(2.23)

The shear strain consists of the difference between the slope of the deflected

neutral axis and cross-sectional plane:

γxy =
∂W

∂x
+
∂ug
∂x

+
∂wc

∂x
+
∂uc
∂y

(2.24)

2.4.7 Work Done

The work done by the external force is the product of the applied load

P , time the total displacement E at the point of application. For kinematic

variable in our model the work done by external force has the form:

PE = P

∫ L

o

(
∆ +

1

2
Ẇ 2 − 1

2
u̇

)
dx (2.25)

where the first term is due to the uniform compressive strain ∆ (Figure 2.9a)

which gives the prebuckling endshortening. The second term is the contribu-

tion from the overall buckling lateral displacement W (Figure 2.9b). The last

term are the contributions of the localized displacements components of the

bottom face plate (Figure 2.9c).
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Figure 2.9: Total endshortening contributions for work done; (a) pre-buckling
endshortening; (b) endshortening from lateral displacement W (x) due to over-
all buckling; (c) in-plane displacement u(x, 0) from the interactive mode.

2.4.8 Total potential energy

The total potential energy V , of the strut is obtained by summing all the

energy contributions as:
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VT = Ub + Um + Uc − PE

=

∫ L

0

{
G

[
(qs − qt)2π2 cos2

πx

L
+ (qs − qt)π cos

πx

L

(
ẇ − 2u

b

)
+
u2

b2
+
ẇ2

3

−uẇ
b

]
+D

[
2∆2 +

ẇ4

4
+ q2t

b2π4

2L2
sin2 πx

L
+ u̇2 + u̇ẇ2 −

(
2∆

+qt
bπ2

L
sin

πx

L

)(
u̇+

ẇ2

2

)]
+ Cx

[
ẇ4

20
+
u̇2

3
+
u̇ẇ2

4
−∆

(
u̇+

ẇ2

3
−∆

)
+
qtb

12L
π2 sin

πx

L

(
qt
b

L
π2 sin

πx

L
− 2u̇− ẇ2

)]
+ Cy

[
ν2x∆

(
u̇+

ẇ2

3
−∆

)
−νx

w

b

(
ẇ2

3
+ u̇

)]
+ kw2 +

1

2
EI

(
ẅ2 + 2q2s

π4

L2
sin2 πx

L

)
−P

(
1

2
q2sπ

2 cos2
πx

L
− 1

2
u̇+ ∆

)}
dx.

(2.26)

VR = Ub + Um,R + Uc,R − PE

=

∫ L

0

{
D

[
(2qt + qs)

2 b
2π4

18L2
sin

πx

L
− (2qt + qs)

bπ2

6L
sin

πx

L

(
ẇ2 + 2u̇

)
+ 2∆2

+
1

4
ẇ4 + u̇ẇ2 − 2u̇∆− ẇ2∆ + u̇2

]
+
EI

2

(
q2s

2π4

L2
sin2 πx

L
+ ẅ2

)
+

Cx

1260

[(
5q2s + 32qsqt + 68q2t

) b2π4

L2
sin

πx

L
+ 315u̇ẇ2 + 420

(
u̇2 − ẇ2∆

)
−21 (qs + 4qt)

bπ2

L
sin

πx

L

(
ẇ2 + 2u̇

)
+ 1260

(
∆2 −∆u̇

)
+ 63ẇ4

]
+ Cyνx

[
νx∆

(
u̇+

1

3
ẇ2 −∆

)
− u̇w

b
− 1

3b
wẇ2

]
+

1

2
kw2

+G

[
(qs − qt)2

8π2

15
cos2

πx

L
+ (qs − qt)

2π

3

(
ẇ − 2u

b

)
cos

πx

L
+

1

3
ẇ2

uẇ

b
+
u2

b2

]
− P

(
∆ + q2s

π2

2
cos2

πx

L
− 1

2
u̇

)}
dx.

(2.27)

For clarity, some material and geometric constants have been grouped for

TBT and RBT models as:
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EI =
Ect3

12(1− ν2)
, D =

Etc

2
, Cx =

Exbc

2(1− νxνy)
, Cy =

Eybc

2(1− νxνy)
,

G =
Gcbc

2
, k =

2Cy

b2
and φ =

b

L

(2.28)

2.4.9 Critical load

The critical load for overall buckling is found when the Hessian matrix of

the buckling generalized coordinates qs and qt becomes singular. This occurs

when the determinant of the 2x2 matrix of the second derivatives of the Total

Potential Energy V C
ij is equal to zero, where:

V C
ij =

∣∣∣∣∣∣V
C
ss V C

st

V C
ts V C

tt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∂2V
∂q2s
|C ∂2V

∂qs∂qt
|C

∂2V
∂qt∂qs

|C ∂2V
∂q2t
|C

∣∣∣∣∣∣ = 0. (2.29)

Solving Equation 2.29 and setting w(x) and u(x) to zero enables the critical

load, PC to be obtained for TBT and RBT, thus:

PC
T =

2

π2EI
L2 + 2Gφ2π2

[
D + Cx/6

2G+ φ2π2(D + Cx/6)

]
, (2.30)

PC
R =

2

π2EI
L2 +

840Gπ2φ2(Cx + 6D) + Cxπ
4φ4(Cx + 20D)

30(168G+ 17Cxφ2π2 + 70Dφ2π2)
. (2.31)

The first part of the equations 2.30 and 2.31 is the same for the both

models since it correspods to the contribution of the two individual face plates

buckling about their minor (weak) axis of bending. The main difference in the

two models is the second part of expression and attributed to the presence of

the sway mode in the in-plane displacement field of the cross-section.

2.4.10 Solution of the fully nonlinear problem

The equilibrium equations are obtained by treating the potential energy
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function V as a Langrangian and minimizing it via variational principles (Fox

1987; Hunt and Wadee 1998). This leads to two non-autonomous nonlinear

ordinary differential equations (ODEs), a fourth order ODE in w and second

order ODE in u. The minimization process also results in a set of physical

boundary conditions for w that are satisfied by assumming simple supports

at the ends while for u the conditions are satisfied by considering the applied

stresses at the ends. More details on the variational principles can be found

in the description in Chapter 4. Presenting the Total Potential Energy as an

integral of a Langrangian, for TBT:

V =

∫ L

0

L(ẅ, ẇ, w, ü, u̇, u)dx. (2.32)

For equilibrium to be satisfied, the potential energy of the loaded sandwich

strut must be stationary with respect to x. It is therefore required for the first

variation δV to vanish:

δV =

∫ L

0

[
∂L
∂ẅ

δẅ +
∂L
∂ẇ

δẇ +
∂L
∂w

δw +
∂L
∂u̇

δu̇+
∂L
∂u

δu

]
dx = 0. (2.33)

Integrating the first variation of V by parts reveals a set of boundary

conditions and two integrals over the length of the sandwich panel in δw and

δu:

δV =

[
∂L
∂ẅ

δẇ +

{
∂L
∂ẇ
− d

dx

(
∂L
∂ẅ

)}
δw +

∂L
∂u̇

δu

]L
0

+

∫ L

0

{[
d2

dx2

(
∂L
∂ẅ

)
− d

dx

(
∂L
∂ẇ

)
+
∂L
∂w

]
δw

+

[
∂L
∂u
− d

dx

(
∂L
∂u̇

)]
δu

}
dx = 0.

(2.34)

With the assumption of simple supports at the ends of the buckled faces,

the physical boundary conditions

43



Chapter 2 Sandwich structures applications and theory

w(0) = ẅ(0) = w(L) = ẅ(L) = 0, (2.35)

eliminate the first two terms in square brackets. Similarly, matching the ap-

plied stress at the ends,

u̇(0)

(
2D +

2Cx

3

)
+ ẇ2(0)

(
D +

Cx

4

)
−∆(2D + Cx − Cyν

2
x) +

P

2
= 0,

(2.36)

and a similar condition exists for x = L. For δV = 0 this leaves the integrand,

which also must vanish to give the equations:

EI
....
w (x) = D

[
2u̇ẅ + 2üẇ + 3ẇ2ẅ − qtφπ2

(
sin

πx

L
ẅ +

π

L
cos

πx

L
ẇ
)
− 2∆ẅ

]
+ Cx

[(
1

2
üẇ +

1

2
u̇ẅ +

3

5
ẇ2ẅ

)
− qt

φπ2

6

(
sin

πx

L
ẅ +

π

L
cos

πx

L
ẇ
)
− 2

3
∆ẅ

]
+
Cyνx
b

[
u̇− 1

3
ẇ2 − 2

3
wẅ +

2

3
νx∆bẅ

]
+G

[
2

3
ẅ − u̇

b
− (qs − qt)

π2

L
sin

πx

L

]
− kw,

(2.37)

2ü

(
D +

Cx

3

)
=

2G

b

(
u

b
− ẇ

2

)
− 2

(
D +

Cx

4

)
ẇẅ +

Cyνx
b

ẇ

+
2π

b
cos

πx

L

[(
D +

Cx

6

)
π2φ2

2
qt −G(qs − qt)

]
.

(2.38)

As well as δV being zero for any δw and δu, for equilibrium, V must also

be stationary with respect to the generalized coordinates, qs, qt and ∆, which

reveals three integral contraints equal to zero.

P =
2π2EI

L2
+

2G

qs

[
(qs − qt) +

1

πL

∫ L

0

cos
πx

L

(
ẇ − 2u

b

)
dx

]
, (2.39)
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Gπ

2φ
(qt − qs) +

(
Cx

6
+D

)
φπ3

4
qt

− 1

L

∫ L

0

[(
D +

Cx

6

)
π

2
sin

πx

L

(
u̇+

ẇ2

2

)
+
G

2φ
cos

πx

L

(
ẇ − 2u

b

)]
dx = 0.

(2.40)

P

2
= ∆(2D + Cx − Cyν2x)− 1

2L

∫ L

0

[
D
(
2u̇+ ẇ2

)
+
(
Cx − Cyν

2
x

)(
u̇+

ẇ2

3

)]
dx

(2.41)

The same set of equations for RBT are given below.

EI
....
w (x) = −D

{
2∆ẅ(x) + (2qt + qs)

φπ2

3

(
sin(

πx

L
)ẅ +

π

L
cos(

πx

L
)ẇ
)

−
(
2u̇ẅ + 2üẇ + 3ẇ2ẅ

)}
− Cx

{
2

3
∆ẅ − 3

5
ẇ2ẅ

+ (qs + 4qt)
φπ2

30

(
sin(

πx

L
)ẅ +

π

L
cos(

πx

L
)ẇ
)
− 1

2
(ẇ + ẅu̇)

}
− kw − Cy

b
νx

{
2

3
ẅ (w − νx∆b)−

(
u̇− 1

3
ẇ2

)}
−G

{
(qs − qt)

2π2

3L
sin(

πx

L
) +

u̇

b
− 2

3
ẅ

}
,

(2.42)

2ü

(
D +

Cx

3

)
=
Cy

b
νxẇ −D

{
2ẇẅ − φπ3

3L
(qs + 2qt) cos(

πx

L
)

}
− Cx

{
1

2
ẇẅ − φπ3

30L
(qs + 4qt) cos(

πx

L
)

}
− G

b

{
ẇ +

4π

3
(qs − qt) cos(

πx

L
)− 2u

b

}
,

(2.43)

P =
2π2EI

L2
+

16G

15

(
1− qt

qs

)
+
Dφ2π2

9

(
1 +

2qt
qs

)
+
Cxφ

2π2

126

(
1 +

16qt
15qs

)
+

1

qsL

∫ L

0

{
4G

3π
cos(

πx

L
)

(
ẇ − 2u̇

b

)
− φ

15
(Cx + 10D) sin(

πx

L
)

(
u̇+

ẇ2

2

)}
dx,

(2.44)
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4Gπ

15φ
(qt − qs) +

φπ3

630
[qs (35D + 4Cx) + qt (70D + 17Cx)]

− 1

L

∫ L

0

[(
D +

Cx

5

)
π

3
sin

πx

L

(
u̇+

1

2
ẇ2

)
+
G

3φ
cos

πx

L

(
ẇ − 2u

b

)]
dx = 0.

(2.45)

u̇(0)

(
2D +

2Cx

3

)
+ ẇ2(0)

(
D +

Cx

4

)
−∆(2D+Cx−Cyν

2
x) +

P

2
= 0. (2.46)

2.4.11 The solution process

Having formulated the necessary equations, in order to establish the non-

trivial interactive modes, the system of governing ordinary differential equa-

tions, integral constraints and boundary conditions was non-dimensionalized

and solved numerically using AUTO07p (Doedel et al 2012).

AUTO07p is a piece of numerical continuation and bifurcation software

primarily for autonomous differential equations. It has very powerful solver

which is well-known for its capability to locate biffurcations and trace multiple

branching paths as model parameters are varied. AUTO07p utilizes numerous

numerical techniques to trace solutions of given problem, such as the current

one, which comprises nonlinear non-autonomous ordinary differential equa-

tions subject to boundary conditions and integral constraints. Initially the

problem is discretized by the method of orthogonal collocation (de Boor and

Swartz 1973). The principal numerical continuation technique used by the

solver is the modified Newton-Rabson method which is used in a predictor-

corrector mode. The solver begins at an initial point in the solution space and

estimates a solution which is then corrected iteratively using the above conver-

gence method until the actual solution is found. Beyond folds and limit points,

where modified Newton-Rapson fails, the pseudo-arc continuation method is

utilized in conjuction with Newton’s method (Riks 1972; Riks 1979) since it

46



Chapter 2 Sandwich structures applications and theory

allows the continuation beyond these features in the solution space. This is

particularly important for the current work since once of the reasons for solving

the fully nonlinear equations is to trace the resulting post-buckling equilibrium

paths.

Despite its merit in tracing postbuckling paths, it is not possible for the

pseudo-arclength method to identify bifurcations in the solution space (Cr-

isfiels 1981; Crisfiels and Wills 1988), whose discovery and location are vital

for the current problem under study. This is where the real strength of the

solver comes into play since it can locate bifurcations by recognising that the

rank of the system of equation’s Jacobian reduces by at least one at the loca-

tion of a bifurcation (Doedel et al 2012). From there, upon the evaluation of

the Jacobian, the different post-bifurcation (postbuckling) paths can be traced

by finding the solution of the roots of the algebraic bifurcation equation (Keller

1977). Another useful feature of the software is that it allows branch switch-

ing at bifurcations where more than one feasible paths are available. This

feature has been widely used in the analysis that follows. To conclude, even

though the detection of limit points and bifurcations are considered sufficient

for the curent study, the software can also identify other critical points such as

folds, Hopf bifurcations, period doubling bifurcations and torus bifurcations

(Glendinning 1994), which shows the wide applicability of the package as a

numerical solver for nonlinear problems.

2.4.12 Solution strategy

The two ODEs are solved subject to the three integral constraints, there-

fore there are four parameters that are free to vary. These comprise the load

P , and the three generalized coordinates: the squash strain, the amplitude

of sway qs and amplitude of tilt qt. One of the parameters is named as the

leading parameter and that is varied with the rest of the free parameters being
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calculated at the end of each step. The solver is not initiated from the un-

loaded stage but rather from the primary bifurcation which is located at load

PC and end shortening over length C in the solution space (point C in Figure

2.10) since this is already known from the eigenvalue analysis. Both the load

and the squash parameters are normalized against the critical values of P and

respectively. Initially, a small perturbation in qs is applied from the primary

bifurcation and the sway parameter, as the leading parameter, is varied by

small increments until the secondary bifurcation is reached (S in Figure 2.10).

Figure 2.10: A graphical representation of the solution process. Point C is
found through linear eigenvalue analysis qs is then varied until the secondary
bifurcation is reached and beyond that load P is varied down the postbucking
path. The quantity EC refers to the value of end shortening at the critical
load. Similarly ES and qSs refer to the values of end shortening and amplitude
of sway at the secondary bifurcation respectively.

From experience with the TBT model and initial runs with the RBT model

the localized postbuckling solution that minimizes V is the one whose bifurca-

tion occurs first, leading to a symmetric localized wave mode that is maximum
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at midspan (Wadee 2000). At this stage, care has to be taken to capture the

correct secondary bifurcation which leads to a postbuckling mode that mini-

mizes VR, as shown in Figure 2.11. When the secondary bifurcation is located,

the solver is paused and P becomes the leading parameter which is reduced

as the postbuckling path develops. The procedure is halted when a sufficient

loss of load bearing capacity or excessive end shortening is reached.

Figure 2.11: A graphical representation of the equilibrium path showing a
number of secondary bifurcations after the critical bifurcation at C. Each
bifurcation Si leads to a different localized solution for w but it is only the
first secondary bifurcation that provides the minimum energy configuration.

Once the postbuckling path of a strut is determined, the process can be

restarted from any point along the path. Since there are only three integral

constraints, any four parameters not just the load and the three generalized

coordinates can be varied by utilizing numerical continuation on homotopy

(Doedel et al 2012), where at any point along the solution path, another path

might be traced by replacing one of the free parameters by one that was fixed

during the previous computation. For example, the process can be restarted

for a given strut by fixing the load parameter at a given value and varying
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the depth of the strut b instead with the three generalized coordinates. A new

path is then traced which has a constant load over the critical load ratio, but

varies in the depth of the core (Figure 2.12). The new path can be continued

again by fixing the depth for different cases and then varying the load parame-

ter instead, the secondary bifurcations of the new configurations can be easily

found. Homotopy has been widely used during the parametric studies of this

thesis and has played a major part in reducing the analysis time, especially

when searching for the secondary bifurcation.

Figure 2.12: An example of the use of continuation homotopy. At some point
down the post-buckling path of a strut with b1, the load parameter P is fixed
and b varied. When the desired depth is reached the process is paused and then
restarted again after b is again fixed and P in increased to find the secondary
bifurcation of the new geometric configuration.

2.4.13 TBT and RBT solutions from Wadee et al (2010)

The set of equation was solved using the numerical continuation software

AUTO (Doedel et al 2012) which allowed the identification of the secondary

bifurcation and traced the localized solutions for the postbuckling response.

The properties for the sandwich strut are given below and are in accordance

with Wadee et al (2010) as a practical configuration for a strut in order to
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understand the previous models reported in the literature.

Face plate Young’s modulus : E = 68947.57 MPa

Face plate Poisson’s ratio : ν = 0.3

Core Young’s modulus : Ec = 198.57 MPa

Core Poisson’s ratio : νc = 0.2

Core shear modulus : Gc = 82.74 Nmm−2

Face plate thickness : t = 0.50 mm

Core thickness : b = 5.08 and 10.00 mm

Length of the structure : L = 100.0 mm

It is important to note that the sandwich breadth c eliminated from the

governing equations without any loss in accurancy. Hence, the breadth c has

been taken to be unity and the dimensional axial forces are given as a force

per unit width (N/mm) in the results below. In addition the materials are

considered to be linear elastic for the ranges of strain of this study.
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Figure 2.13: Equilibrium paths Load versus normalized end shortening for
strut of length 100mm. (a) Core depth b = 5.08mm and (b) Core depth
b = 10mm.

The equilibrium paths for load versus endshortening for TBT and RBT

model are shown in Figure 2.13 for core depth b = 5.08mm and b = 10mm.
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From these results it is evident that the two models are well correlated with

minor differences in the initial stiffness. The first observation is that the RBT

model predicts the secondary bifurcation before TBT model, which can be

attributed to greater flexibility in shear deformability and leads indirectly to

a larger axial stress in the face plates, which exceeds the compressive stress

needed to trigger local buckling at midspan significantly earlier than the equiv-

alent TBT model, as shown in Figure 2.14(c), close to the secondary bifurca-

tion.
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Figure 2.14: (a)-(b) Cross-sectional deformation at x = L/4 from the end;
(a) Core depth b = 5.1mm; (b) Core depth b = 10.0mm; (c) Shear strain
distribution through the core depth.

Hence, the RBT model having zero shear strain (Figure 2.14(c)) at the

edges of the core might not be entirely accurate since the zero shear strain
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condition applies to the outermost edge of the face plates. It is though a good

approximation for the thin face plates, especially where the centroid of the

faces plates is taken at the edge of the core. The Reddy-Bickford Theory is

more suitable for sandwich panels with deeper cores since it better accounts for

local nonlinear deformations of the cross-sectional planes in the neighborhood

of the extreme fibres, which can be seen in physical experiments (Wadee 1999).

When the core depth is b = 10mm, the effect of the higher order deformation

is also increased as shown in Figure 2.14(b), hence the assumption of plane

sections remaining plane is less likely to hold even approximately. This is also

applicable for softer cores where the axial stresses are principally concentrated

at the much stiffer extreme fibers and comparatively less strain energy is stored

in the core.
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Figure 2.15: The evolution of the local modes w(x) for the two models for
different stages in the unloading path. (a) P/PC = 0.9 and (b) P/PC = 0.6.
In this case: L = 100mm and b = 5.08mm

In addition, the modes of the two analytical models are compared at dif-

ferent stages in the postbuckling path, as presented in Figure 2.15. During

the early stages of postbuckling, both the amplitude and the so-called ”wave-

length of localization” λ—the distance between the first extrema on either

side of midspan (Figure 2.16) (Wadee 1999)—are smaller for TBT compared
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to the equivalent values for RBT. However, as the path evolves the difference

in the modes from the two models is reduced since both wavelength and the

maximum amplitudes of w converge. An explanation for the results of the two

models converging at the advanced postbuckling state is probably due to the

effect of the large amount of lateral deflection, attributed to the overall buck-

ling, which then dominates the behaviour. The growth of the sway amplitude

qs reduces the relative effect of the nonlinear in-plane deformation field—the

main difference in the modelling—which grows at a much smaller rate.

Figure 2.16: Definition of localized buckle wavelength λ and maximum wave
heigh H.

In conclusion, the results of the comparative study between the TBT and

RBT analytical formulations have shown that the latter model provides a safer

prediction for the location where the secondary instability is initiated as a re-

sult of higher axial stress developing in the face plates. This effect is magnified

for sandwich panels with deeper cores where the difference between the two

models becomes more pronounced. In terms of the critical load, the RBT

model overstimates the critical load compared to the TBT model, indicating

that the linear in-plane displacement field is a more accureate representation

of the actual field.
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Modelling localized buckling in

sandwich struts with inhomoge-

neous deformations in both face

plates

Sandwich construction, comprising two stiff face plate separated by a softer

core material, is popular as provider of structural combined with weight ef-

ficiency and as seen in the previous chapter it is utilized in a multitude of

applications in engineering world. However, precisely because they are both

specialized and efficient, the responses of sandwich struts are liable to exhibit

complicated collapse mehcanisms (Hunt et al 1988; Wadee and Hunt 1998;

Sokolinsky and Frostig 1999; Fleck and Sridhar 2002). It is well known from

classical work that compressed sandwich panels, or more specifically struts

sometimes fail by a combination of overall (Euler-type) buckling and local

buckling (wrinkling) of the face plates. As presented in Chapter 2, this type

of structural response has been previously modelled using combination of non-

linear structural stability theory, the appearance of shear strains within core

55



Chapter 3
Modelling localized buckling in sandwich struts with inhomogeneous

deformations in both face plates

material being vital in iintroducing a nonlinear interaction between the overall

buckling wavelength scale and the local (face) buckling.

Mode interaction and localization in sandwich structures is a very impor-

tant phenomenon since it can dominate the post-critical response, regardless

of the initiating mode (Wadee 2000). This work seeks to extend the funda-

mental model for interactive buckling developed by Wadee and Hunt (1998)

which considers localization that occurs solely at the more compressed face

plate of the sandwich strut. More rescently, Wadee and Bai (2014) success-

fully modeled interactive buckling between minor axis buckling of an I-section

strut, using a similar modeling technique. Although this is a different problem,

the aim herein is to present an analytical model that investigates and accounts

for local deformations on the both face plates during post-buckling. Specifi-

cally for the case where overall buckling occurs first, it has been observed both

experimentally and in finite element simulations that smaller amplitude local

deformations begin appear practically immediately after the second bifurca-

tion when local buckling within the other face plate has been triggered. This

chapter aims to capture these responses and study their effects on the post-

buckling response of different sandwich configurations. The results from this

model are compared with the results obtained from Wadee and Hunt (1998).

3.1 Analytical modelling

In the current work, the original Hunt and Wadee (1998) - hereinafter

termed the ‘1998 model’ - is modified to allow local deformations in both face

plates. The dimensions of the sandwich strut and the coordinate system are

shown in Figure 2.5. The model assumes isotropic face plates with Young’s

modulus E and Poisson’s ratio ν as well as an isotropic core material with
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Young’s modulus Ec and Poisson’s ratio νc. Loading is applied axially by a

compressive force P acting at the mid-section, through rigid end plates to en-

sure equal load transfer to the face plates.

The purely compressive displacement prior to buckling is represented by

∆L, while overall (Euler-type) buckling is decomposed into sway and tilt com-

ponents, W (x) and θ(x) (see Figure 3.1). These components are represented

by predetermined trigonometric functions with dimensionless amplitudes qs

and qt respectively as:

W (x) = qsL sin
πx

L
, θ(x) = qtπ cos

πx

L
, (3.1)

since it is well known that the solution for the overall buckling mode of sim-

ply supported strut can be best approximated by a half-sine wave and the

total shear effect is determined by the difference of sway and tilt. The ampli-

tudes qs and qt, as well as ∆ enter the model as generalized coordinates, which

are computed during the solution process. The new model retains the Timo-

shenko Beam Theory (TBT) for the core material under which shear strains

are allowed to develop within the core, which are essential for including the

interaction between the two buckling modes of different length scales (Wadee

et al 2010). For the range of application of this model (weak, isotropic core and

stiff thin face plates) Timoshenko shear deformable theory for the core suffices

and offers a sufficiently good approximation of the kinematics of the overall

mode. Furthermore, along with the contributions of the sway and tilt com-

ponents for overall buckling to the displacement of the strut, both face plate

wt(x) is defined as the displacement of the buckled face plate perpendicular

to the unbuckled face, and ut(x) is defined as the displacement parallel to the

unbuckled face. The corresponding displacements for the bottom face plate

are defined as wb(x) and ub(x). These functions of x have no predetermined

form and are sought as solutions from the minimization of the total poten-
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tial energy functional formulated in a later subsection. To ensure continuity

of the displacements within the core, the top and bottom interactive mode

displacements are taken to vary linearly with y, as:

Figure 3.1: From top to bottom: Purely compressive displacement prior to
buckling denoted by ∆L; overall buckling mode W (x); overall tilt mode θ(x);
top face plate transverse wt(x) and in-plane ut(x) displacements and bottom
face plate transverse wb(x) and in-plane ub(x) displacements.

wc(x, y) =

(
b+ 2y

2b

)
wt(x) +

(
b− 2y

2b

)
wb(x) (3.2)

uc(x, y) =

(
b+ 2y

2b

)
ut(x) +

(
b− 2y

2b

)
ub(x) (3.3)

so that pure deformations for each face plate can be easily extracted as the

solutions of the governing differential equations, while superposition can be
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used to quantify the displacement due to local deformations within the core.

The linear variation of each displacement function across the depth of the core

was deemed appropriate, since the magnitudes of these displacements are gen-

erally small and previous trials with nonlinear variations did not reveal any

significant changes in the response.

3.1.1 Strain energy

As in the original work by Hunt and Wadee (1998), a total potential en-

ergy approach with large displacement assumptions is followed to arrive at the

equilibrium equations for the strut. The Total Potential Energy V of the sys-

tem comprises the strain energy of the sandwich strut integrated over its entire

volume minus the work done by the applied load. In sandwich struts, the face

plates are considered to provide the principal resistance to bending. The pri-

mary function of the core, on the other hand, is to resist shear deformation and

does not intrinsically provide significant bending or axial resistance. Hence,

the total strain energy of the strut is compartmentalized into strain energy

components associated with pure bending due to buckling, membrane stretch-

ing of the face plates with core shear and transverse deformation. Finally, the

work done by the applied load is introduced in the potential energy functional.

Assuming a plane stress condition, the potential energy of the strut is readily

integrated over the breadth of the strut. The procedure for formulating the

total energy is thoroughly explained in chapter 2.

3.1.2 Bending energy

Presently, the strain energy due to the overall and local curvature on the

face plates is considered. These are taken as their linearized form; the sec-

ond derivative of global and local lateral displacements, since the bending
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strains are small and the cross terms add complexity to the formulation with-

out changing the response significantly. The strain energy from the local and

global curvature is assembled, neglecting cross terms that play a negligible role

in the total potential energy functional for a sandwich panel geometry where

b� t and L� b or t� and t� L:

Ub =
1

2
EI

∫ L

0

(
2W ′′2 + w′′

2
t + w′′

2
b

)
dx (3.4)

where, EI = Ect3/12(1− ν2) and primes indicate differentiation with respect

to x.

3.1.3 Membrane energy

Along with bending energy, face plates are also subjected to membrane ac-

tion. Unlike the previous model (Hunt and Wadee 1998), axial strains include

global and local contributions for both face plates, as shown below:

εxt = − b
2
θ′ −∆ +

1

2
w′

2
t + u′t (3.5a)

εxb =
b

2
θ′ −∆ +

1

2
w′

2
b + u′b (3.5b)

where ub, ut, wb and wt are all functions of x only given on the right hand

side of the expressions in Equations 3 and 3.4. The nonlinear terms for each

face plate arise from Von Kármán plate theory. Hence the membrane energy

is assembled as follows:

Um = D

∫ L

0

(
ε2x,t + ε2x,b

)
dx,

= D

∫ L

0

[
2∆2 +

1

2
b2θ′

2
+ u′

2
t + u′

2
b +

1

4

(
w′

4
t + w′

4
b

)
+ (bθ′ − 2∆)

(
u′b − u′t +

1

2
w′

2
b −

1

2
w′

2
t

)
+ u′tw

′2
t + u′bw

′2
b

]
dx

(3.6)
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where D = Ect/2.

3.1.4 Core strain energy

As in the 1998 model (Hunt and Wadee 1998), the strain energy stored

in the core, Uc is derived from considering shear and transverse strains only,

whereas the longitudinal strains are omitted for simplicity. This derives from

the assumption that the core is soft and hence the strain energy stored in

the system is very small compared to the face plate membrane energy. A

subsequent model presented in Wadee and Hunt (1998), which accounted for

the longitudinal strain energy in the core, had an overall buckling critical

load less than 1% different from the current formulation, while the position of

the secondary bifurcation and interactive buckling deformations were virtually

identical. It was thus deemed appropriate to neglect the contributions of the

direct longitudinal strains from the core strain energy, reducing the complexity

of the model is reduced, without losing significant accuracy.

Uc =
1

2

∫ c

0

∫ b/2

−b/2

∫ L

0

(
Ec

1− ν2
ε2y +Gcγ

2
xy

)
dxdydz (3.7)

where Gc = Ec/[2(1 + νc)] and

εy =
wt(x) + wb(x)

b
(3.8)

γxy = W ′(x)− θ(x) +

(
b+ 2y

2b

)
w′t(x) +

(
b− 2y

2b

)
w′b(x) +

ut − ub
b

(3.9)

The core strain energy can be readily integrated over the breadth and

depth of the core, resulting in an integral over the length. Thus:
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Uc =

∫ L

0

{
G

[
w′t

2 + w′b
2 + w′tw

′
b

3
+
utw

′
b + utw

′
t − ubw′b − ubw′t
b

+
u2t + u2b − 2utub

b2
+ (W ′ − θ)

(
w′t + w′b −

2

b
(ub − ut)

)
+ (W ′ − θ)2

]
+

1

2
k(wt − wb)

2

}
dx

(3.10)

where G = Gcbc/2 and k = Ecc/[b(1− ν2c )].

3.1.5 Work done by applied load

The work done by the external force is the product of the applied load P ,

multiplied by the total displacement E at the point of application, i.e. at the

mid-plane of the strut. The procedure for obtaining the total displacement at

the point of application has been described in Yiatros et al (2013). For the

kinematic variables in the current model, the work done by the external force

has the form:

PE = P

∫ L

0

[
1

2
W ′2 + ∆− 1

2
(u′t + u′b)

]
dx, (3.11)

where the first term is the contribution from the overall buckling lateral dis-

placement W if the strut is inextensional. The second term arises due to

the uniform compressive strain ∆ which gives the non-trivial pre-buckling end

shortening. The remaining terms are contributions of the localized displace-

ment components ut and ub of the top and bottom face plates within the core.

The contribution due to these components is from the relative movement at

the two end-points.

62



Chapter 3
Modelling localized buckling in sandwich struts with inhomogeneous

deformations in both face plates

3.1.6 Total potential energy, critical load and equilib-

rium equations

The total potential energy V of the strut is obtained by summing all the

energy contributions, such as:

V = Ub + Um + Uc − PE ,

=

∫ L

0

{
EI

2

(
2q2s

π4

L2
sin2 πx

L
+ w′t

2
+ w′b

2

)
+

[
1

2
b2
q2t π

4

L2
sin2 πx

L
+ 2∆2 + u′t

2
+ u′b

2
+

1

4
(w′t

4
+ w′b

2
) + u′tw

′
t
2

+ u′bw
′
b
2

+

(
qtbπ

2

L
sin

πx

L
− 2∆

)(
u′b − u′t +

1

2
w′b

2 − 1

2
w′t

2

)]
+G

[
(qs − qt)2π2 cos2

πx

L
+

1

3
(w′t

2
+ w′b

2
+ w′bw

′
t)

+ (qs − qt)
(
w′tw

′
b +

2ut − 2ub
b

)
π cos

πx

L
+
u2t + u2b − 2ubut

b2

+
utw

′
b + utw

′
t − ubw′b − ubw′t
b

]
+

1

2
k(wt + wb)

2

− P
(

1

2
q2sπ

2 cos2
πx

L
− 1

2
u′t −

1

2
u′b + ∆

)}
dx.

(3.12)

Note that by setting all wt and ut terms and their derivatives to zero, the

potential energy functional becomes identical to the 1998 model. Hence the

critical load for overall buckling, given in Eq. 3.13 remains the same as in

(Hunt and Wadee 1998):

PC =
2π2EI

L2
+
Gb2π2

L2

[
2D

2G+Db2π2/L2

]
. (3.13)

The governing nonlinear equations of equilibrium are found by minimizing

the total potential energy functional. For the system to be in equilibrium, the

total potential energy has to be stationary with respect to the functions wb,

wt and ut alow with the generalized coordinates qs, qt and ∆. The station-
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ary points of the functional are computed through a hybrid formulation: the

calculus of variations (Fox 1987) is used for computing the stationary points

with respect to the unknown functions wb, wt, ub, ut, whereas the station-

ary points with respect the generalized coordinates are computed as in the

classical Rayleigh Ritz method by setting the partial derivatives of the energy

functional with respect to qs, qt and ∆ to zero. This leads to four nonlinear

ordinary differential equations (ODEs) that are 4th order with respect to wt

and wb and 2nd order with respect to ut and ub, plus three integral constraints,

given in Eqs. 3.14 - 3.20 :

EIw′′′′b +D

[
2∆w′′b + qt

bπ2

L

(
sin

πx

L
w′′b +

π

L
cos

πx

L
w′b

)
− 3w′b

2
w′′b − 2w′′bu

′
b − 2w′bu

′′
b

]
+G

[
u′b − u′t

b
− 2w′′b + w′′t

3

+ (qs − qt)
π2

L
sin

πx

L

]
+ k(wb − wt) = 0,

(3.14)

EIw′′′′t +D

[
2∆w′′t + qt

bπ2

L

(
sin

πx

L
w′′t +

π

L
cos

πx

L
w′t

)
− 3w′b

t
w′′t − 2w′′t u

′
t − 2w′tu

′′
t

]
+G

[
u′b − u′t

b
− 2w′′t + w′′b

3

+ (qs − qt)
π2

L
sin

πx

L

]
+ k(wt − wb) = 0,

(3.15)

u′′b + w′bw
′′
b −

bπ3qt
2L2

cos
πx

L
+

G

Db

(
ut − ub

b
+
w′t + w′b

2
+ (qs − qt)π cos

πx

L

)
= 0,

(3.16)

u′′t + w′tw
′′
t −

bπ3qt
2L2

cos
πx

L
+

G

Db

(
ub − ut

b
+
w′b + w′t

2
+ (qs − qt)π cos

πx

L

)
= 0,

(3.17)

P =
2G

qs

{∫ L

0

[(
w′b + w′t −

2ub − 2ut
b

)
cos

πx

L

]
dx

}
+

2EIπ2

L2
, (3.18)
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qs =qt

(
1 +

Db2π2

2GL2

)
+

∫ L

0

[
1

πL

(
2ub − 2ut

b
− w′b − w′t

)
cos

πx

L

− Db

GL2

(
u′b − u′t +

w′b
2

2
− w′t

2

2

)
sin

πx

L

]
dx,

(3.19)

∆ =
P

4D
+

1

2L

∫ L

0

(
u′t + u′b +

1

2
w′b

2
+

1

2
w′t

2

)
dx. (3.20)

The governing equations are subject to the following boundary conditions

that minimize V :

wb(0) = wb(L) = w′′b (0) = w′′b (L) = 0, (3.21)

wt(0) = wt(L) = w′′t (0) = w′′t (L) = 0, (3.22)

u′b(0) +
1

2
w′b

2
(0)−∆ = u′t(0) +

1

2
w′t

2
(0)−∆ = − P

4D
, (3.23)

u′b(L) +
1

2
w′b

2
(L)−∆ = u′t(L) +

1

2
w′t

2
(L)−∆ = − P

4D
, (3.24)

which ensure simple supports for face plates and matching in-plane stresses at

both ends.

3.2 Nonlinear stability analysis

In order to establish the non-trivial interactive modes, the system of gov-

erning ordinary differential equations, integral constraints and boundary con-

ditions was nondimensionalized and solved using AUTO (Doedel et al 2012),

the powerful numerical continuation software with the ability to trace evolv-

ing solutions with parametric changes, identify bifurcation points and trace

paths. The selected leading parameter —usually P in the current case —is

varied and AUTO solves for the remaining parameters (qs, qt and D) as well

as the unknown functions and their derivatives. The investigation of buckling

mode interaction is conducted for the cases where either overall or local buck-

ling is critical. The selected leading parameter is varied from zero along the
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fundamental path until a bifurcation point is found. The load parameter in

AUTO is normalized with respect to the overall buckling load, so that when

overall buckling is critical, p = P/PC
o = 1. A second run is then performed

from the primary bifurcation until the secondary bifurcation, beyond which

interactive buckling is triggered in the bottom—more compressed—face plate,

while simultaneously, deformations begin to appear at the top face plate. In

the next few subsections some key results from the analysis described above

are presented and discussed.

3.2.1 Results

A typical sandwich strut configuration comprising stiff aluminum alloy

plates and a polymeric compliant foam was used. The material and geometri-

cal properties are given below:

Face plate Young’s modulus : E = 68947.57 Nmm−2

Face plate Poisson’s ratio : ν = 0.3

Core Young’s modulus : Ec = 198.57 Nmm−2

Core Poisson’s ratio : νc = 0.2

Core shear modulus : Gc = 82.74 Nmm−2

Face plate thickness : t = 0.50 mm

Core thickness : b = 5.08 - 18.00 mm

Length of the structure : L = 100.0 - 200.0 mm

The same material properties and some of the geometric ones have been

used in earlier relevant publications (Hunt et al 1988; Hunt and Wadee 1998)

and are also used currently for comparison purposes. The materials are con-

sidered to be linearly elastic for the ranges of strains studied. The geometric

properties were selected to include cases of criticality of the overall mode and

others of the local (face plate) modes.
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Figure 3.2: Left: plotting p versus normalized end shortening (E/L). Right:
plotting amplitude of tilt qt versus amplitude of sway qs for struts of length
L = 100mm and different core depths. b = 5.08mm for (a) and (b) and
b = 10.16mm for (c) and (d)

Considering the first strut, where b = 5.08mm and L = 100mm. In this

case overall buckling is critical once the secondary bifurcation is located and

the strut subsequently destabilizes, rapidly losing its load carrying capacity as

seen in Figure 3.2(a). It can be seen that by comparing the two models, no

significant differences can be observed in the post-buckling unloading response

beyond the secondary bifurcation. Some very minor differences can be seen

in Figure 3.2(c), which depicts the response of a sandwich strut of core depth

b = 10.16mm and length L = 100mm. In both instances, the new model

(thereafter termed ’modelTB’) has a marginally steeper post-buckling but,
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nonetheless, following the same unloading trend. A slightly more measureable

difference beyond the critical (primary) bifurcation is visible when compar-

ing the tilt and sway components of the overall mode directly, as shown in

Figures 3.2(b) and 3.2(d). These differences, however small, are attributed

to the formation of local deformations occurring at the top (less compressed)

face plate, which were inhibited within the 1998 model. As seen in Figure

3.3, which exhibits the evolution of interactive modes wb; wt; ub; ut with P

unloading, as soon as the interactive localized buckle appears within the more

compressed face plate, a quasi-periodic buckle pattern appears in the other.

The top face plate deformation begins for all configurations as a shallow neg-

ative displacement, flattening the top face plate at mid-span and down the

post-buckling path, two more half sine waves begin appearing at the two ends.

These diagrams show the nature, as well as the comparative magnitude, of the

interactive modes. The first observation is that the modes corresponding to the

top face plate are smaller in magnitude compared to the ones corresponding

to the bottom face plate. This can be attributed to the fact that the localized

interactive buckling displacement occurring within the bottom face plate is a

signature of a destabilizing phenomenon and hence grows faster during un-

loading. The displacement wt, however small, contributes to the flattening of

the top face plate during post-buckling (Figure 3.4). Parametric studies, while

keeping the core depth constant, demonstrate that with increasing length the

periodicity in the deformations of the top face plate is maintained, albeit with

an increasing number of half sine waves and diminishing growth, as shown in

Figure 3.5. This is expected since with increasing length, more half sine waves

would be generated in the most energetically favorable buckle pattern. The

amplitude of the less compressed face plate local deformations does not change

with increasing length at different levels of loadP . These local deformations

are independent of the localized mode that manifests in the more compressed

face plate, as shown in Equations and 3.3. Moreover they have a different
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wavelength and their amplitude is uniform, unlike the localized mode which is

concentrated at midspan. A further parametric study, performed by investi-

gating the amplitude and nature of deformations for different sandwich depths

at constant levels of load, P , exhibited an insensitivity to the amplitude of

the less compressed face plate deformations, maintaining a constant local dis-

placement amplitude to depth ratio. Conversely, the interactive mode in the

more compressed face plate becomes more localized with increasing depth, for

the different depths (5.08–14mm). As the load rapidly decreases during post-

buckling, local plate buckling at the top does not grow and its effect is quickly

diminished due to the tensile stresses from bending introduced by the overall

buckling component.

Figure 3.3: (a) Local mode evolution of face plates unloading for strut of length
L = 175mm and core depth b = 5.08mm. (a) wt (b) wb, (c) ut and ub.

An important feature of the model presented herein is that it enables the

investigation of interactive localized buckling when local buckling occurs first.

69



Chapter 3
Modelling localized buckling in sandwich struts with inhomogeneous

deformations in both face plates

Figure 3.4: (a) The overall buckling on a b = 5.08mm and L = 100mm strut
at p = 0.7. (b) A close look at midspan deformations. While the bottom face
plate deformations are easily observed, the top face plate local deformations
are not as clear but contribute to the flattening of the top face plate.

The second case considers deeper struts where local buckling becomes critical.

Example struts of length L = 100mm with depths b = 16 and 18mm are

analyzed. Since the load parameter is normalized with respect to the overall

critical load, the primary bifurcations are, in all cases, found to be close to,

but below, p = 1; specifically p is critical at 0.94 and 0.92 for b = 16mm and

b = 18mm respectively. An interesting feature compared to the case where the

overall mode is critical, is the continued close proximity of the primary (local

mode) and secondary (overall mode) bifurcation. Owing to the close proximity

of the two bifurcations, the solver jumped from the primary (local) bifurcation

to interactive buckling beyond the secondary bifurcations, thus not revealing

the nature (symmetric/antisymmetric) of the local mode that was triggered

first. The system subsequently exhibiting a steep destabilizing post-buckling

response as the interactive mode is initiated, as observed in Figure 3.6. The

confinement and growth in amplitude of the localized mode in the bottom face

plate, as well as the top face plate deformations, lead to a steeper postbuckling

response and sudden loss of the load carrying capacity. It has to be noted that

these interactive modes cannot be captured by the 1998 model since it does

not account for local deformation on both face plates and hence it could not

account for the case where local buckling is critical very accurately. However,

an attempt was made in Wadee (2000) to model pure local buckling assuming

a mode where the bottom plate deflected with a purely periodic profile; similar
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findings were made, where the gap between triggering local buckling and then

interactive buckling was very small for all geometries that were considered.

More differences can be found when examining the mode shapes more closely,

the interactive mode observed within the more compressed face plate remains

confined to the midspan as the post-buckling response evolves, exhibiting a

higher modulation of the main wave, further down the path. This can be

attributed to the softer nature of the strut that has a deeper core. On the

other hand, local face plate displacements are seen within the top face plate,

initially as a sizable negative displacement at midspan of similar amplitude to

the localized mode, which then tends to be quasi-periodic, without growing as

fast as the localized mode (Figure 3.7).

Figure 3.5: Both face plate local displacements for depth b = 5.08mm. Length
L = 125mm for (a-b) and L = 175mm for (c-d). All are shown at p = 0.7.
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Figure 3.6: Equilibrium paths for struts with length L = 100mm and core
depth (a) b = 16mm, or (b) b = 18mm. The E/L gap between the primary
and secondary bifurcation points is 0.0024 and 0.0018 for b = 18mm.

Figure 3.7: (a) Interactive mode deformation profile for strut of length L =
100mm and core depth b = 16mm. (b) Local modes within the top and bottom
face plate at E/L = 10% within the interactive post-buckling range.
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3.3 Conclusions

A variational formulation based on potential energy principles accounting

for interactive buckling in sandwich struts has been presented. The model

builds on the fundamental work by Hunt and Wadee (1998) and captures lo-

cal quasi-periodic deformations within the top, less compressed, face plate in

the post-buckling range. The deformations in the less compressed face plate

have a different wavelength to the interactive buckle in the more compressed

face plate; both grow with progressive unloading in the postbuckling range,

but the deformations in the less compressed face plate are always significantly

smaller in amplitude than the localized interactive mode that dominates the

response. Indeed, the dominance of the interactive buckling mode is high-

lighted by the minimal difference in the equilibrium paths, showing that the

local deformations in the less compressed face plate play a negligible influence

in the mechanical response of the sandwich strut, for the thickness considered

and where overall buckling was critical. More importantly for the current dis-

cussion, however, the model is capable of dealing with the case where local

buckling is critical. This case exhibits a very close proximity between the pri-

mary and secondary bifurcations and a severely unstable response is the result,

which would translate into a high degree of imperfection sensitivity (Wadee

2000).
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Chapter 4

Modelling interactive buckling for

FGM sandwich struts

In Chapter 3, a nonlinear analytical model to investigate localized inter-

active buckling in simply supported thin-face plate sandwich struts with weak

core was extended to account for local deformations in both face plates. The

results indicated that the local deformations in the less compressed face plate

play negligible influence in the overall mechanical response of the sandwich

strut during interactive buckling, while the real merits of the model is when

investigating the cases where the local mode is critical. Sandwich construc-

tion boasts its advantage over homogeneous construction methods due to its

optimized configuration which assigns material and stiffness where it is most

effective, thus reducing the cost and weight of the structural element. This

optimisation could be enhanced further with the use of functionally graded

materials in sandwich construction. Functionally graded materials have prop-

erties that vary continuously, either by varying their density or their chemical

composition.

In this chapter an introduction to functionally graded materials is pre-

75



Chapter 4 Modelling interactive buckling for FGM sandwich struts

sented. This is followed by review of available methodologies for analysing

functionally graded materials, before moving to the analytical modelling of

interactive buckling in sandwich struts with functionally graded core.

4.1 Functionally graded core materials

Functionally graded materials (FGMs) are materials or structures in which

the material properties vary with location in such a way as optimize some

function of the overall FGM. Nature provides many examples of functionally

graded materials. In many of the cases the nature at functionally graded struc-

tures were evolved based on some mechanical function: bones give a light, stiff

frame to the body, wood supports the tree under environmental loadings, leaves

transport fluids. Bamboo is one of the examples of structurally smart plant

(Amanda et al 1997). Bamboo structure, which resembles that of a unidi-

rectional, fiber-reinforced composite, is described by a macroscopically graded

geometry that is adapted to environmental wind loads while the fiber distri-

bution exhibits a microscopically graded architecture, which leads to smart

properties of bamboo. Amanda et al (1997) demostrated experimentally and

analytically how the functionally graded microstructure of a bamboo has been

optimized through evolution to maximize its load bearing capabilities under

environmental loading conditions.

The concept of functionally graded materials was proposed in the 80s by

materials scientists in Japan as a way to create thermal barrier materials.

Koizumi (1997) summarized the first projects in this field. The idea pro-

posed was to combine in a gradual manner heat-resistant ceramics and tough

metals with high thermal conductivity. The result is a panel with a high heat-

resistance on the high-temperature side and high mechanical strength on the

other side. The new materials were obtained by four methods: Chemical Va-
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por Deposition (CVD), powder metallurgy, plasma sprays and self propagating

combustion syntheis (SHS).

As the use of FGMs increases, new methodologies have to be developed

to characterize FGMs, and also to design and analyze structural components

made of these materials. Although fabrication technology of FGMs is in its in-

fancy, they offer many advantages. Few of the manufacturing methods are pre-

sented here. Fukui (1991) developed a high-speed centrifugal casting method,

in which the layers are formed in the radial direction due to different mass

densities. An melted Al-Ni alloy cast into a thick-walled tube was rotated at a

speed such that the molten metal experienced an acceleration, thereby produc-

ing two kinds of composition gradient. El-Hadek and Tippur (2003) developed

functionally graded syntactic foam sheets by dispersing micro balloons (with

linear graded volume fraction) in epoxy. They determined Young’s modulus

and the density by using the wave speed and density for syntactic foams having

homogenous dispersion of the micro balloons. The resulting foam sheets have a

nearly constant Poisson’s ratio. Other FGM manufacturing methods presented

in literature are powder metallurgy, plasma sprays and self-propagating com-

bustion synthesis.

4.2 Sandwich structures with FGMs

Sandwich structures have many benefits such as their low-weight and high

bending stiffness and thus have been broadly applied in aircraft, aerospace,

flexible electronics, and biomedical areas (Birman and Kardomateas 2018).

The introduction of inhomogeneous materials, such as functionally graded ma-

terials, has made the sandwich structures become even more attractive (Garg

et al 2021). As options for either face plates and/or the core, FGMs can

play a functional role as sandwich components, by helping reduce interlaminar
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stresses and thermal stresses, enhancing the mechanical and thermal perfor-

mances of sandwich structures (Jha et al 2013; Swaminathan et al 2015). Two

types of FGM sandwich structures are mainly seen: sandwich structures with

FGM face plates and a homogeneous core, and sandwich structure with homo-

geneous face plates and FGM core.

More relevant to the scope of work herein the sandwich panels with func-

tionally graded cores where the stiffness in the core varies in the transverse

direction by gradually changing the mechanical properties of the core materi-

als. Functionally grading the core properties can provide further advantages

to sandwich construction, such as the increase of critical loads, but it can also

address specific localized phenomena such as delamination and fracture due

to impact (Anderson 2003). The interest here is to see whether particular

stiffness functional gradations, could be used as part of a design mitigation

strategy to delay or ameliorate buckling.

In terms of the structural analysis of functionally graded sandwich pan-

els, the literature focuses on the application of mechanical and thermal loads

(Samsam Shariat et al 2005; Zenkour 2005; Zhu and Sankar 2007), with special

attention to the change in the response brought by the gradation. It has been

shown that the risk of delamination due to high interfacial shear stresses is min-

imized if the stiffness of the weaker part is locally increased (Venkataraman

and Sankar 2003; Anderson 2003). The increasing stiffness near the interface

also results in an increase of the wrinkling (local buckling) critical load (Ávila

2007) as well as contributing in reducing electric displacement intensity factors

in piezoelectric FGMs (Li and Weng 2002).

The accurate modelling of sandwich FGMs has been of great interest to

many researchers leading to the proposal of several approaches from simpler
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Equivalent Single Layer (Reissner 1945; Reddy 1984) to Layer-wise (Cho et al

1991) and Carrera’s unified formulation (Carrera et al 2008); the approaches

listed currently are in order od increasing complexity. Apetre et al (2008),

compared two Equivalent Single layer approaches with a Higher Order (Frostig

et al 1992) and a Fourier-Galerkin (Zhu and Sankar 2007) showing that the two

approaches correlate much better with an FE simulation used for comparisons,

at the expense of increased computational cost. The reason lies in the fact that

both approaches rely in the solution of the elasticity equations without making

any assumptions about the through-depth in-plane displacements, unlike the

Equivalent Single Layer approaches which are based on the same assumptions

as the TBT and RBT models presented in this thesis. On similar grounds,

Brischetto (2009) also suggested the use of higher order theories in the cases

of thick plates or large gradients.

The stability of FGMs has also been investigated in terms of compression

(Feldman and Abudi 1997) and thermal buckling including (Samsam Shariat

and Eslami 2007; Javaheri and Eslami 2002) some postbuckling (Shen and Li

2008; Ke et al 2009) and vibration analysis (Yang et al 2006; Park and Kim

2006). Since these have been monstly on the stability of plates, postbuckling

work is yet to be seen on the onset of interactive buckling and localization

of sandwich panels with FGM cores. This has been shown to destabilize the

neutrally stable postbuckling of sandwich struts and its effects are magnified

in the presence of eccentric load (Yiatros and Wadee 2011) or geometrical

imperfections (Wadee 2000) as seen in part from in the earlier chapters. It is

for reason that the current of FGM sandwich panels under the influence of an

axial load for various graded combinations.

4.3 Analytical modelling

In this section, the two models TBT and RBT presented in Chapter 2,
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predicting interactive buckling in sandwich struts are adapted in a pilot study

to account for cores made from a functionally graded material. Currently,

both models account for homogeneous orthotropic materials where the material

properties vary in two orthogonal directions. In the current modelling, core

properties are considered to be graded continuously in the transverse direction,

y, using the gradation function presented in Equation 4.1.

X(y) = XC

[
a0 + a1

y2

b2
+ a2

y4

b4
+ a3

y6

b6
+ a4

y8

b8

]
, (4.1)

where, XC is the base material property, such as Young’s modulus or Shears

modulus, while X gives the value of the property at position y in the trans-

verse direction. The parameters a0, .., a4 denote the material constants and the

nature of the gradation, as seen in Figure (4.1). When the parameters a1, .., a4

are set to zero the distribution of material properties is constant through the

depth of the core. Selecting polynomial gradation allows the investigation of

different gradations modes. Two distinct distributions with different grada-

tions modes are investigated. When the gradation is concave, the material

property is minimum at the neutral axis and increases further away from it,

and when the gradation is convex, the material property is maximum at the

neutral axis and reduces further way from it.

The analytical models are based on the Total Potential Energy principle,

as described in the earlier chapters. Given that only the core is assumed to be

made from FGM, the strain energy of the face plates remains unchanged and

the same applies for the work done by the axial force. The diference in the

core is that previously, the material property terms were treated as constants.

In the current modelling procedure, the material property terms are inside the

integral since they vary across the depth of the strut. The potential energy

functionals for both TBT and RBT models are presented next.
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Figure 4.1: The variation in material properties through the depth of the core.
(a)-(d) Convex: From left to right (a) a0 > 0, a1 > 0; (b) a0 > 0 , a2 > 0; (c)
a0 > 0 , a3 > 0; (d) a0 > 0 , a4 > 0. (e)-(h) Concave: From left to right (e)
a0 > 0, a1 < 0; (f) a0 > 0, a2 < 0; (g) a0 > 0, a3 < 0; (h) a0 > 0, a4 < 0.
When a1..a4 = 0 the distripution of material properties is constant through
the depth of the strut.

4.3.1 Strain enrgy

Bending Energy

The first component of this strain energy comes from the strain induced

in the two face plates bending about their local minor axis and contains con-

tributions from both global and local curvature and is stated in Equation 2.8 .

Membrane Energy

The second component is the strain energy arising from the axial strains

in the face plates. These strains are developed from the initial squashing and

the subsequent bending due to buckling and is stated in Equation 2.11. For

TBT the Membrane Energy given as :
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Um,T =

∫ L

0

{
D

[
2∆2 +

ẇ4

4
+ q2t

π4φ2

2
sin2 πx

L

+ u̇2 + u̇ẇ2 − qtπ2φ

(
u̇+

ẇ2

2

)
sin

πx

L
− 2∆

(
u̇+

ẇ2

2

)]}
dx

(4.2)

For RBT the Membrane Energy given as :

Uc,R =

∫ L

0

{
D

[
2∆2 +

ẇ4

4
+ (2qt + qs)

2π
4φ2

18
sin2 πx

L

+ u̇2 + u̇ẇ2 − (2qt + qs)
π2φ

6
sin

πx

L

(
2u̇+ ẇ2

)
− 2∆

(
u̇+

ẇ2

2

)]}
dx

(4.3)

Core Energy

As stated in Chapter 2, the strain energy stored in the core has three

sources: axial, trasnverse and shear strains. Equation 2.21 gives the basic ex-

pression for the core energy, which recast to describe FGM core as the following

expressions. For TBT the Core Energy given as :

Uc,T =

∫ L

0

{
Cx

[
ẇ4

20
f5 +

u̇2

3
f2 +

ẇ2u̇

4
f4 −∆

(
u̇f1 +

ẇ2

3
f2 −∆f1

)

+
qtφ

12
f3π

2 sin
πx

L

(
qtπ

2φ sin
πx

L
− ẇ2 − 2u̇

)]

+ Cy

[
∆ν2x

(
u̇f1 +

ẇ2

3
f2 −∆f1

)
− νx

w

b

(
u̇f1 +

ẇ2

3
f2

)]
+

1

2
kw2f1

+ G

[
π2 cos2

πx

L

(
qs − qt

)2
f1 − π(qs − qt) cos

πx

L

(
2u

b
− ẇ

)
f1 +

u2

b2
f1

+
ẇ2

3
f2 −

ẇu

b
f1

]}
dx

(4.4)
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For RBT the Core Energy given as :

Uc,R =

∫ L

0

{
Cx

1260

[(
5q2sf6 + 32qtqsf7 + 68q2t f9

)
φ2π4 sin2 πx

L

− 21φπ2 sin
πx

L
(qsf3 + 4qtf8)(2u̇+ ẇ2) + 315u̇ẇ2f4 + 420f2(u̇

2 − ẇ2∆)

+ 1260f1

(
∆2 − u̇∆

)
+ 63ẇ4f5

]

+ Cyνx

[
∆νx

(
u̇f1 +

ẇ2

3
f2 −∆f1

)
− w

b

(
u̇f1 +

ẇ2

3
f2

)]
+

1

2
kw2f1

+ G

[
8π2

15
cos2

πx

L

(
qs − qt

)2
f11 −

2π

3
(qs − qt) cos

πx

L

(
2u

b
− ẇ

)
f10

+
u2

b2
f1 +

ẇ2

3
f2 −

ẇu

b
f1

]}
dx

(4.5)

Work done by load

The work done comprises the axial load P multipled by the total end short-

ening E . The contributions come from pure compression, overall buckling and

the in-plane displacement due to local buckling. This term remain unchanged

from the TBT and RBT formlation in Chapter 2, given in Equation 2.25.

4.3.2 Total Potential Energy

The total potential energy, V , whether is equal to VT or VR, is obtained by

summing all the energy contributions. Integrating over the depth and assem-

bling all the strain energy and work done contributions, the Total Potential

Energy is given as an integral over the length. For TBT:
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VT = Ub + Um + Uc − PE

=
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(4.6)

where, f1, .., f5 define the graded materials constants and given as:

f1 = a0 +
a1
12

+
a2
80

+
a3

448
+

a4
2304

,

f2 = a0 +
a1
10

+
9a2
560

+
a3

336
+

5a4
8448

,

f3 = a0 +
3a1
20

+
3a2
112

+
a3

192
+

3a4
2816

,

f4 = a0 +
7a1
60

+
11a2
560

+
5a3

1344
+

19a4
25344

,

f5 = a0 +
11a1
84

+
23a2
1008

+
65a3

14784
+

295a4
329472

(4.7)

For RBT the total potential energy given as:
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ẇ2

2

)]

+
Cx

1260

[(
5q2sf6 + 32qtqsf7 + 68q2t f9

)
φ2π4 sin2 πx

L

− 21φπ2 sin
πx

L
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(4.8)

where, f1, .., f11 the RBT graded material constants.
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(4.9)

4.3.3 Critical load

The critical load for overall buckling can be defined by the linear eigenvalue

analysis. To perform that, all the local mode terms, u(x) and w(x) from the

Equations (4.6) and (4.8) must be set to zero.

PC
T =

2π2EI

L2
+

2Gφ2π2f1

(
D +
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6
f3

)
2Gf1 + φ2π2

(
D +
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6
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) (4.10)
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(4.11)
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From each expression the first terms represent the load of the face plates

buckling independently, and the last term represent the contributions from the

face plates bending about the global neutral axis of the sandwich panel.

4.3.4 Governing Equations

Upon assembly of the potential energy for each model, the system of the

two ordinary differential equations and three integral equilibrium constrants

are obtained via the same strategy described in §2.4.10 by utilizing the calculus

of variations and minimizing the potential energy with respect to the gener-

alized coordinates. For the ODEs, the boundary conditions remain the same.

The two non-autonomous coupled ordinary differential equations (ODEs) for

the TBT model is presented first:

{
EI

....
w
}
T

= −D

[
2∆ẅ + qtφπ

2

(
ẅ sin

πx

L
+ ẇ

π

L
cos
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L
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(

2u̇ẅ + 2ẇü+ 3ẇ2ẅ
)]
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3
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Φπ2

6

(
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π
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cos
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)
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1

2
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1

2
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3

5
ẇ2ẅf5

)]

− Cyνx
b

[
2

3
wẅf2 −

2

3
νx∆bẅf2 − u̇f1 +

1

3
ẇ2f2

]
− kwf1

−G

[
u̇

b
f1 −

2

3
ẅf2 +

π2

L
sin

πx

L
(qs − qt)f1

]

(4.12)
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For RBT the ODEs are given as:
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....
w
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ẇf1 +

4π

3
f10(qs − qt) cos

πx

L
− 2u

b
f1

]
(4.15)

The integral constraints for the TBT model given as:
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The following integral constraints for the RBT are given as:
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4.3.5 The solution process

Having formulated the necessary equations, in order to establish the non-

trivial interactive modes the system of governing ordinary differential equa-

tions, integral constants and boundary conditions was non-dimensionalized

(Appendix A) and solved numerically using AUTO07p (Doedel et al 2012).

The merits of using AUTO07p have been extensively highlighted in Chapters

2 and 3.

Case Eeq(MPa) Ec(MPa) ECE(MPa) a0 a1 a2 a3 a4

C0 198.57 198.57 198.57 1.0 0.0 0.0 0.0 0.0

C1.1ex 198.57 278.00 39.71 1.4 -4.8 0.0 0.0 0.0

C1.2ex 198.57 238.28 39.71 1.2 0.0 -16.0 0.0 0.0

C1.3ex 198.57 225.05 39.71 1.1333 0.0 0.0 -59.733 0.0

C1.4ex 198.57 218.43 39.71 1.1 0.0 0.0 0.0 -230.4

C2.1ex 198.57 258.14 79.43 1.3 -3.6 0.0 0.0 0.0

C2.2ex 198.57 228.36 79.43 1.15 0.0 -12.0 0.0 0.0

C2.3ex 198.57 218.43 79.43 1.1 0.0 0.0 -44.8 0.0

C2.4ex 198.57 213.46 79.43 1.075 0.0 0.0 0.0 -172.8

C3.1ex 198.57 238.28 119.14 1.2 -2.4 0.0 0.0 0.0

C3.2ex 198.57 218.43 119.14 1.1 0.0 -8.0 0.0 0.0

C3.3ex 198.57 211.81 119.14 1.06667 0.0 0.0 -29.8667 0.0

C3.4ex 198.57 208.45 119.14 1.05 0.0 0.0 0.0 -115.2

C1.1ve 198.57 99.29 397.14 0.5 6.0 0.0 0.0 0.0

C1.2ve 198.57 99.29 595.71 0.5 0.0 40.0 0.0 0.0

C1.3ve 198.57 99.29 794.28 0.5 0.0 0.0 224.0 0.0

C1.4ve 198.57 99.29 992.85 0.5 0.0 0.0 0.0 1152.0

C2.1ve 198.57 139.00 332.60 0.7 3.6 0.0 0.0 0.0

C2.2ve 198.57 139.00 436.85 0.7 0.0 24.0 0.0 0.0

C2.3ve 198.57 139.00 549.00 0.7 0.0 0.0 132.145 0.0

C2.4ve 198.57 139.00 666.14 0.7 0.0 0.0 0.0 679.6

C3.1ve 198.57 158.86 278.00 0.8 2.4 0.0 0.0 0.0

C3.2ve 198.57 158.86 357.43 0.8 0.0 16.0 0.0 0.0

C3.3ve 198.57 158.86 429.86 0.8 0.0 0.0 89.6 0.0

C3.4ve 198.57 158.86 516.28 0.8 0.0 0.0 0.0 460.8

Table 4.1: a0...a4 Material parameters. Note that EC is the Young’s modulus
for the core center, ECE is the Young’s modulus for the core edge. Cases
between C1.1-ve to C3.4-ve refers to concave distribution shape and C1.1-ex
to C3.4-ex refers to convex distribution shape.
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4.4 Results and discussion

4.4.1 Material and geometrical properties

A typical sandwich strut comprising stiff aluminium alloy plates and FGM

core is used. The material and geometrical properties are given below:

Face plate Young’s modulus : E = 68947.57 MPa

Face plate Poisson’s ratio : ν = 0.3

Core Young’s modulus : Ec = 198.57 MPa

Core Poisson’s ratio : νc = 0.2

Core shear modulus : Gc = 82.74 MPa

Face plate thickness : t = 0.50 mm

Core thickness : b = 5.00 - 10.00 mm

Length of the structure : L = 100.0 mm

The axial load is assumed to be applied along the neutral axis of the

sandwich panel throught a rigid plate that spreads the load evently through the

depth of the panel. In order to compare the TBT and RBT models a number of

geometrical and material parametric studies have been performed. Two types

of parametric studies investigating gradation distributions through the depth

of the core are presented, as reflected in Figure 4.2. The first parametric study

where the material is relatively compliant at the core interfaces and stiffer at

the mid-height of the core is denoted by “convex” (Figure 4.2a), while the

second parametric study is where the stiffer core properties are at the face

core intreface is denoted by “concave” (Figure 4.2b). The material parameters

for convex and concave parametric studies are tabulated in Table 4.1. For the

concave parametric study, the Young’s modulus of the core is kept constant

and different patterns are examined with different Young’s modulus at the

face core interface, while convex parametric study the Young’s modulus of
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the face core interface is kept constant and different patterns are examined

with different Young’s modulus at the mid-height of the core. The case of the

homogenous core with uniform through-the-thickness properties is denoted by

”C0”. The stiffness corresponding to this case coresponds to the average of

the convex and concave parametric studies.

(a) Convex parametric study
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(b) Convcave parametric study
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Figure 4.2: (a)-(b) The variation in material properties through the depth of
the core. (a) Convex parametric studies cases and (b) Concave parametric
studies cases.
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4.4.2 Convex parametric study

In this section, three differennt convex parametric study cases are consid-

ered. Every case, four different core material gradation patterns are examined,

labelled C1.1ex, C1.2ex, C1.3ex and C1.4ex (C1 denotes the case number and

1ex denote the material gradation pattern). In all cases, the core modulus at

the face plate interface is kept fixed while the core modulus at the mid-plane is

varied. The critical load for Case 1 with different material gradation patterns

are given in the Table 4.2. The first and most important observation is that

the TBT model indicates virtually no impact on critcal load. This emanates

from the graded material constant as it can be seen in the given Equation 4.10

(TBT critical load), where only f1 and f3 graded material constants are taken

into account, f1 is the ratio Eeq/Ec; for this study is equal to 1, while the

contribution of f3 is minimal. On the other hand, for the RBT model can be

seen in the given Equation 4.11, that more than one graded material constant

is taken into account. For this reason the RBT model exhibits variation in

critical load. The critical load increase from the C1.1ex to C1.4ex pattern, lies

in the way the gradation in the core stiffness is treated. This is expected since

an increases in core stiffness, is contributing to the resistance of the strut to

buckling.

Case PC
TBT (N/mm) PC

RBT (N/mm) TBT ES/L RBT ES/L

C0 211.78 231.05 0.0276 0.0248

C1.1ex 211.62 252.47 0.0263 0.0200

C1.2ex 211.66 245.86 0.0267 0.0213

C1.3ex 211.69 242.26 0.0269 0.0220

C1.4ex 211.71 240.03 0.0270 0.0225

Table 4.2: The critical load for overall buckling for core depth b = 5mm with
different convex FGM patterns.

Figure 4.3(a,c) illustrates the equilibrium path for Case 1 with different
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material gradation patterns. Comparing the prediction of the secondary bifur-

cation and the subsequent postbuckling path, the trend for the two models is

the same. Starting with the secondary bifurcation point, which marks the on-

set of localized buckling, as the core stiffness increases (C1.4ex to C1.1ex) the

plateu between the critical bifurcation point and the secondary decreases, more

intensely is observed in RBT model. More importantly, the RBT model pre-

dicts the secondary bifurcation before the TBT model, which can be attributed

to a more flexible representation of the cross-sectional deformation (Table 4.2).

(a) TBT model
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Figure 4.3: Left: plotiting P versus normalized end shortening E/L, Right:
ploting amplitude of tilt qt versus amplitude of sway qs for struts of core dept
b = 5mm. (a)-(b) TBT model and (c)-(d) RBT model.

Another interesting feature in the results is found during the compari-

son of the evolution of the overall mode components, sway and tilt. Figure
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4.3(b&d) shows qs plotted against qt for different material gradation patterns.

During prebuckling, the two models exhibit similar trends with qs increasing

along with qt. Beyond the instability, for the TBT model, the slope of qt de-

creases abruptly indicating a slower growth with increasing qs. On the other

hand, for the RBT model (4.3(d)) beyond the instability, qt decreases with

increasing qs. This difference in the response can be attributed to the nonlin-

ear cross-sectional deformation field which relaxes the constraint of constant

tilting thoughout the depth of the panel. Before the instability the difference

in the cross-sectional deformations are small; beyond it, the in-plane displace-

ment within the core becomes increasingly nonlinear while the displacement

at the edges is very close to the corresponding displacements of TBT model.

The decrease in qt occurs since the minimum energy configureation for the

displacement field is significantly influenced by the flexibility of the core under

shear.

0 10 20 30 40 50 60 70 80 90 100
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Figure 4.4: Interactive buckling on a sandwich panel 100mm long and 6mm
deep at 5% end shortening.

Localized buckling is triggered beyond the point of instability and the

modes are similar for both models since this is caused by the compressive

stress in the bottom face plate, as shown in FIgure 4.5. This effect manifests
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itself as w(x) and u(x) become non-zero and grow as the axial load carrying

capacity from PC . The interactive buckling modes of TBT and RBT models

exhibit similar characteristics qualitatively, both having a localized maximum

displacement at midspan which decays towards the boundaries. Even though

the RBT localized mode tiggered first, leading to larger deflections than TBT

equivalent, particularly in the neighbourhood of the limiting load, the two

models become similar in amplitude and localized wavelength λ (Figure 2.16)

in the far post-buckling range where the sway mode dominates.

Moving further to the important contribution of the two models—the pre-

diction of the secondary bifurcation and the subsequent postbuckling path—for

material gradation patterns with different cases are presented in Table 4.3. The

average core stiffness for all cases is remain constant. As observed, the critical

load and the prediction of the secondary bifurcation point for TBT model are

same for all cases, on the other hand a slightly more measurable difference is

observed for RBT model. Comparing the two models, the RBT model provides

a higher critical load and predicts the secondary bifurcation point before the

TBT model. This is supported by the fact that the RBT model assumes a

different in-plane displacement field that is both influenced by the amplitude

of tilt and sway after overall buckling has been triggered.
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Figure 4.5: The evolution of the local modes (a),(c),(e),(g) w(w) and
(b),(d),(f),(h) u(x) for the convex cases in the unloading path E/L = 5%.
In this case: L = 100mm and b = 6mm.
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Case PC
T PC

R TBT ES/L RBT ES/L TBT ES/L− EC/L RBT ES/L− EC/L

C0 276.47 304.11 0.0211 0.0188 0.01723 0.01446

C1.1ex 276.24 335.44 0.01997 0.01503 0.01604 0.01026

C2.1ex 276.30 328.24 0.02026 0.01573 0.01632 0.01107

C3.1ex 276.36 320.63 0.02058 0.01663 0.01665 0.01207

C1.2ex 276.31 325.72 0.02029 0.01594 0.01636 0.01131

C2.2ex 276.35 320.61 0.02050 0.01656 0.01657 0.01199

C3.2ex 276.39 315.32 0.02075 0.01723 0.01681 0.01274

C1.3ex 276.34 320.44 0.02048 0.01649 0.01654 0.01193

C2.3ex 276.38 316.53 0.02064 0.01699 0.01670 0.01249

C3.3ex 276.41 312.51 0.02084 0.01754 0.01691 0.01309

C1.4ex 276.37 317.17 0.02059 0.01692 0.01666 0.01241

C2.4ex 276.39 314.02 0.02064 0.01733 0.01683 0.01287

C3.4ex 276.42 310.79 0.02089 0.01777 0.01696 0.01335

Table 4.3: The critical loads, end shortening and gap between critical and
secondary bifurcations for core depth, b = 6mm with convex FGM patterns
for different cases.

Furthermore, using the previous strut configuration for four different core

depths (b = 5.0mm, b = 6.0mm, b = 8.0mm and b = 10.0mm), the interaction

between the overall and local mode is examined. Comparing, the critical loads

predicted by the two models, for all material gradation patterns indicates a

similar trend as observed in Figure 4.6(a)&(c) since they both increase with

an increasing core depth. This is expected since increases the core depth,

contribute to the resistance of the strut to buckling. Also, as the core depth

increases both models shows similar decreasing gap between primary and sec-

ondary bifurcation points (Figure 4.6(b)&(d)).
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(a) TBT

5 6 7 8 9 10
b(mm)

200

250

300

350

400

450

500

550

600
P

C
(N

=
m

m
)

C0
C1.1ex
C1.2ex
C1.3ex
C1.4ex

(b) TBT

5 6 7 8 9 10
b(mm)

0.005

0.01

0.015

0.02

0.025

ES
=L
!

EC
=
L

C0
C1.1ex
C1.2ex
C1.3ex
C1.4ex

(c) RBT

5 6 7 8 9 10
b(mm)

200

300

400

500

600

700

800

P
C
(N

=
m

m
)

C0
C1.1ex
C1.2ex
C1.3ex
C1.4ex

(d) RBT

5 6 7 8 9 10
b(mm)

0

0.005

0.01

0.015

0.02

0.025

ES
=L
!

EC
=
L

C0
C1.1ex
C1.2ex
C1.3ex
C1.4ex

Figure 4.6: Comparison of the critical loads and gab between critical and
second bifurcation point from the two analytical model for different core depth.
(a)-(b) TBT model, (c)-(d) RBT model. Convex parametric study.

4.4.3 Concave parametric study

In the previous section, a convex distribution parametric study was consid-

ered. Herein, concave parametric studies to further examine the postbuckling

behaviour are considered. As previously, four different type material gradation

patterns are examined, labelled C1.1ve, C1.2ve, C1.3ve and C1.4ve. The core

modulus at the mid-plane is kept fixed while the core face plate interface is

varied. The critical buckling load and the position of the secondary bifurca-

tion point for the two models with different type material gradation patterns

are given in the Table 4.4. The critical buckling loads for RBT model with

different gradation patterns are smaller than the values obtained for sandwich

struts with homogeneous core (C0). Instead, the results of TBT model are

good agreement with the case C0 (sandwich strut with homegeneous core).

The differences in the critical load for the RBT model are dependent to the
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cross-sectional displacement function set by the Reddy-Bickford theory. When

the face-core interface stiffness is not hight, the RBT model can predict the

behaviour of sandwich structures with good accurancy. But, as the stiffness

at the face-core interface increases, the critical loads diverge.

Case PC
TBT (N/mm) PC

RBT (N/mm) TBT ES/L RBT ES/L

C0 211.78 231.05 0.0276 0.0248

C1.1ve 211.99 195.34 0.0292 0.0361

C1.2ve 212.07 180.36 0.0299 0.0435

C1.3ve 212.12 172.89 0.0303 0.0485

C1.4ve 212.16 168.70 0.0306 0.0517

Table 4.4: The Critical load for overall buckling for core depth b = 5mm with
different concave FGM patterns.

Figure 4.7 shows the equilibrium paths for load versus end shortening for

a concave parametric study with different gradation patterns. As mentioned

in §4.4.1 for the TBT model virtually no impact on results is observed. The

main difference is visible when comparing the tilt and sway components of the

overall mode directly, as shown in Figure 4.7. Comparing all types of grada-

tion patterns for RBT model, it is observed that the gap between critical and

secondary bifurcation point depends by the face-core interface stiffness. As the

stiffness near the face-core interface increases, the plateau between the critical

and the secondary bifurcation point increases (as seen for C1.4ve).

At the secondary bifurcation, interactive buckling is triggered, leading to a

localized buckling that maximizes at midspan. In Figure 4.8 the local mode at

E/L = 5% is presented. Comparing the gradation material patterns for RBT

model, the figure clearly shows that the pattern with lower stiffness near the

core-face interface predict an earlier onset of localization (Figure 4.8(d)). The

effective match in the amplitude of localization between the different gradation

100



Chapter 4 Modelling interactive buckling for FGM sandwich struts

(a) TBT model
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Figure 4.7: Equilibrium paths for concave parametric study for length 100mm
and depth 5mm. (a) TBT model, (b) RBT model.

patterns at early postbuckling can be attributed to the close proximity of the

secondary bifurcation points. The secondary bifurcation for the type C1.4ve

is found to occur at lower load and therefore the localized buckling initially

has a much smaller amplitude, when compared with all gradation patterns for

RBT model.

As the buckling interaction is analyzed, it is important to show the effect

of the interaction of buckling modes for all types of gradation patterns with

different cases. The results of the postbuckling equilibrium path for all types

patterns with different cases is presented in Table 4.5. An interesting feature,

in the results is observed for the case 3 where the core stiffness increase and
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the face-core interface stiffness decrease. In this case, for all pattern types

(C3.1ve, C3.2ve, C3.3ve and C3.4ve), the results of the two analytical models

are in good agreement. Comparing results for all pattern types with different

cases, variation in the results for RBT model was observed. On the other

hand, the results for TBT model are similar.
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Figure 4.8: The evolution of the local modes w(x) for the concave cases in the
unloading path E/L = 5%. In this case: L = 100mm and b = 6mm.
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Case PC
T PC

R TBT ES/L RBT ES/L TBT ES/L− EC/L RBT ES/L− EC/L

C0 276.47 304.11 0.0211 0.0188 0.01723 0.01446

C1.1ve 276.77 253.16 0.02267 0.02829 0.01878 0.02468

C2.1ve 276.65 275.45 0.02207 0.02343 0.01813 0.01951

C3.1ve 276.59 285.58 0.02177 0.02048 0.01783 0.01755

C1.2ve 276.89 232.24 0.02333 0.03487 0.01939 0.03156

C2.2ve 276.72 264.69 0.02236 0.02584 0.01853 0.02207

C3.2ve 276.64 278.92 0.02203 0.02287 0.01859 0.01891

C1.3ve 276.96 221.92 0.02237 0.03918 0.01975 0.03602

C2.3ve 276.99 259.42 0.02264 0.02706 0.01870 0.02336

C3.3ve 276.67 275.80 0.02187 0.02036 0.01823 0.01970

C1.4ve 277.00 216.14 0.02391 0.04211 0.01997 0.03904

C2.4ve 276.01 256.64 0.02277 0.02787 0.01884 0.02422

C3.4ve 276.69 274.11 0.02171 0.02408 0.01832 0.02018

Table 4.5: The critical loads, endshortening and gab between critcal and sec-
ondary bifurcation for core depth b = 6mm with concave FGM patterns for
different cases

To analyze the effect of the core depths on the post-critical equilibrium

paths, the results for sandwich panels with core depth 5mm, 6mm, 8mm and

10mm and with different type material gradation patterns are compared. The

results presented in Figure 4.9 indicate the differences in the postbuckling

response. As the previous parametric study, the two analytical models are

well correlated. As the core depth increases the critical buckling load increases

and the gap between the critical and secondary bifurcation point decreases.

Comparing all pattern types, more divergence between RBT results compared

to TBT results is observed. The difference between the two models depends

on the way the gradation in the core stiffness is treated.
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Figure 4.9: Comparison of the critical loads and gap between critical and sec-
ond bifurcation points from the two analytical model for different core depth.
(a)-(b) TBT model, (c)-(d) RBT model. Concave parametric study.

4.5 Conclusions

The utilization of functionally graded materials in the core of sandwich

strut and it is effect on their load carrying capacity and stability has been

examined in the current chapter. The merits of FGM in the core can be real-

ized by assigning a certain material property where its most needed, without

creating steep changes. This gradual change in the properties across the depth

of the strut can minimize the risk of delamination in composites (such as sand-

wich panels) where there is a large interlaminar shear stress between the two

laminates in the cases where the adhensive is not strong. If the stiffness of

the softer layer gradually increases toward the interface, the danger of a shear

discontinuity appearing is reduced. On the other hand, the reduction of the
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stiffness at plates where it is nor needed, could be utilized in an optimaztion

strategy in system with weight constraints.

Two analytical models based on different shear deformable bending theo-

ries, as described in Chapter 2, have been adapted to investigate the interactive

buckling of sandwich struts with functionally graded cores, using a symmetric

polynomial gradation function. The two models are tested with struts where

the stiffness in the core is graded symmetrically about the neutral axis. In the

“Convex” first parametric study, the stiffness of the core is larger at the neutral

axis and decreases towards the extreme edges. In the “Concave” parametric

study, the trend is reversed with shear stiffness being minimum at the neutral

axis and increasing further form it. The two models exhibited different results

regarding the critical buckling load and the position of the secondary bifurca-

tion point. The TBT model, shows virtually no impact on results, while the

RBT model exhibits variations in both critical load and position of secondary

bifurcation. The difference between the two models lies in the way the grada-

tion in the core stiffness is treated. For TBT model, as its name implies the

shear strain is assumed to be constrant across the depth of the strut due to

the use of the Timoshenko beam theory. The RBT model though, is based on

a third order theory, assuming a quadratic distribution of shear strain which

is maximum in the middle and zero at the extreme edges. This makes the

RBT model more versatile to adapt to the gradation in the stiffness of the

strut predicting a more realistic cross-sectional deformation distribution at for

convex gradation parametric study, than the TBT model.

The results of this study between the two analytical models have shown

that the RBT model provides a safer estimation of the location of the sec-

ondary bifurcation where the secondary instability is initiated as a result of

higher axial stresses developing in the face plates. This effect is magnifed for
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sandwich struts with concave FGM cores where the difference between the

two models becomes more pronounced. Conversely, for sandwich struts with

convex FGM core and deeper cores, the differences between the two analytical

models become negligible since overall buckling dominates and the relative in-

fluence of the shear capacity of the core reduces. In terms of the critical load,

the RBT model overestimates the critical load compared to the TBT model,

indicating that the linear in-plane displacement field is a more accurate repre-

sentation of the actual field in all cases.

The next chapter describes the development of finite element models for

sandwich struts using the commercial package ANSYS (2019). These models

are used to compare the analytical models for a number of different cases.
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Comparison of analytical models

with finite element simulations

In Chapters 3 and 4, mechanical models based on different shear de-

formable theories and different attributes were presented. In Chapter 3 the

focus was to identify whether the allowance of inhomogeneous deformation

in the least compressed face plate of a sandwich strut undergoing interactive

buckling leads to a substantially different behaviour in the interactive mode

evolution. Furthermore the model was able to offer insights when the local

(hourglass) mode was critical. In Chapter 4 the focus shifted on parametric

design for the core and how the gradation in core mechanical properties affects

interactive buckling when overall mode is critical, showing distinct differences

in the response of the two models with the different shear deformable theories,

both in terms of the critical load as well ass the onset and subsequent interac-

tive buckling response.

The chapter begins with an introduction into finite element (FE) mod-

elling pertinent to geometrically nonlinear analysis and stability, followed by a

description of FE stability models from the literature and the development of
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the current bespoke model. The chapter ends with comparison of the results of

the mechanical models with finite element simulations for different geometric

and material cases.

5.1 Finite element method

Before describing numerical models from the literature, a brief introduc-

tion to the finite element method is presented, which is commonly applied

to structural engineering problems. The finite element method (FEM) is a

method for numerical analysis of field problems. Numerical methods, as the

name implies, offers an alternative way to continuous mathematical modelling

in analysing structures. Unlike the analytical modelling—which is based on

continuous shape functions—used in the development of the TBT and RBT

models, the finite element method, discretizes the system into nodes and ele-

ments. The system does not need to be described by differential equations, but

rather through the relationship between the displacement of the nodes using

appropriate shape functions for the elements. Through an iterative procedure,

the loads (or displacements) are applied to the structure and the response of the

elements is computed at each step. With advances in technology and computa-

tional power, FEM has become increasingly popular for analysing complicated

structural and geometrical engineering problems, especially the ones for which

closed form solutions form are not easily obtainable.

The finite element method can be used for both linear and geometrically

nonlinear systems (Belytschko et al 2000). For linear elastic analysis, the

equilibrium of the structural system in invoked from the local (node, element)

level to the overall by satisfying appropriate physical boundary conditions.

The equilibrium is given as the assembly of:
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{P} = [K]{U} − {Pp}, (5.1)

where {P} is the set of equivalent nodes due to external loading, [K] is the

structural stiffness matrix and {U} is the set of nodal displacement. The final

term {Pp} is zero for perfect structures, but for most practical situations this

term represents equivalent nodal loading due to imperfections, such as initial

lack of fit, initial thermal strains and distributed loading. The equations are

assembled for all nodes with the nodal displacements being the unknowns. For

geometrically nonlinear analysis the effects of the deflected shape at each step

need to be considered when calculating at each equilibrium state. The geo-

metric nonlinearities are manifested in the stiffness matrix, which is no longer

constant, and changes with changing displacements. Since this makes the di-

rect force equilibrium calculations cumbersome, the principle of virtual work

is thus utilized. In the context of nonlinear structural analysis, the principle

states that a structural system is in equilibrium in its deflected configuration

if the external work, performed by the applied forcing over any possible in-

finitesimal displacement mode, is equal to the internal work performed by the

component forces over the correspoding compatible infinitesimal deformations,

thus:

δW = δ{d}T{f}. (5.2)

In this relationship, δW is the incremental work done by the structure,

{d}T is the transpose of the set of deformations, {f} is the set of internal

forces and this holds for all increments of the nodal displacement δ{U}. The

equilibrium equations can thus be expressed in the form of:

{G} =

{
∂V

∂{U}

}
= {0}, (5.3)

where ∂V refers to the change in the potential energy and {G} describe the
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out-of-balance forces. The infinitesimal variation of the out-of-balance forces

{G} with respect of the degrees of freedom of the system {U} is known as the

tangent stiffness matrix, [KT ]:

{G} =

[
∂{G}
∂{U}T

]
. (5.4)

For conservative loading, the nonlinearity in the system can only be con-

sidered in terms of the tangent stiffness matrix which is symmetric. This

comprises the material constant stiffness matrix associated with the consti-

tutive law and geometric stiffness matrix shich is associated with geometric

noninearities:

[KT ] = [KE] + [KG], (5.5)

where

[KE] = [T ]T [k][T ], (5.6)

and

[KG] =

[
∂2{d}T

∂{U}∂{U}T
{f}

]
−
[

∂2Wi

∂{U}∂{U}T

]
− Λ

[
∂2Wn

∂{U}∂{U}T

]
. (5.7)

Here, [T ] is a geometric transformation matrix, [k] is the stiffness constant

matrix and Λ is the load factor. The subscripts i and n refer to the initial

and the next stage respectively. The geometric stiffness matrix is dependent

on the deflected shape of the structure, the presence of existing imperfections

(as indicated by the second variation of work ∂2Wi) and the applied loads as

indicated by the third term with the corresponding load factor Λ.

5.2 Buckling and postbuckling analysis

Buckling in structures is associated with the presence of bifurcation points
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which lead to more than one equilibrium state or limit points in the response.

The position of these points, which reveals the critical loads, can be found by

the nature of tangent stiffness matrix through linear analysis. In the discrete

system case, such as the case in FEM, the second variation of the energy is

given as:

δ2V =
1

2
δ{U}T [KT ]δ{U}. (5.8)

Taking advantage of this form, and by finding the determinant of the

tangent stiffness matrix, the stability of the system can be found from the sign

of the result. Specifically, if the determinant of [KT ] is positive this translates

to a stable equilibrium path, if it is negative to an unstable path and when

it is zero this is the signature of a critical point. The critical point can be

classified as a limit point if the first order work done by the load over any

of the buckling modes δ{U} is non-zero. If it is zero, then it indicates the

presence of a bifurcation point. To evaluate the critical loads at the bifurcation

or limit point, the tangent stiffness matrix is observed more closely. Since

the material stiffness matrix, [KE], remains positive for elastic systems with

changing load or displacement, the focus shifts to the geometric stiffness matrix

by considering the linear change in terms of Λ in [KT ].

[KT ] = [KA
T ] + ∆Λ[KA

Gn], (5.9)

where the superscript A represents the initial stage of the matrices. If A rep-

resents the unloaded state, then when the determinant of [KT ] becomes zero,

the values of ∆Λ that satisfy the above equation are the critical loads of the

different buckling modes.

Even though linear buckling analysis can provide the critical buckling loads

and expected mode shapes, it cannot progress any further beyond the critical
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points, especially in the cases of bifurcations, where more than one nontrivial

equilibrium paths are available. Nonlinear analysis is thus employed to trace

postbuckling paths using incremental methods by tracing succesive adjacent

equilibrium states. The two incremental methods used in structural engi-

neering are known as load control and displacement control methods, some-

times also called “dead” or “rigid” loading respectively. As their corresponding

names imply, neighbouring equilibrium states on the path are computed iter-

atively by applying small increments of either loads or displacements respec-

tively. The nature of these incremental methods may lead to erroneous results,

if applied to a perfect structure from the unloaded state, since upon reaching

the bifurcation, the next succesive state might be still on the fundamental

path, hence skipping over the bifurcation point. A small imperfection allows

the method to compute and trace an equilibrium path as close as possible to

the perfect path. A large step-size in load control may again lead to erroneous

results especially close to the critical point, where smaller step-sizes are nec-

essary for continuation purposes (Figure 5.1). Displacement control methods

can usually rectify the situation, although nowadays most commercial codes,

such as ANSYS, offer adaptive step-sizes to increase computational efficiency.

A numerical technique for tracing equilibrium paths in FEM is the Newton-

Raphson procedure to compute the tangent stiffness matrix at every iteration.

The modified Newton-Raphson strategy can also be implemented for which

the tangent stiffness matrix is only computed at the beginning of each set

of iterations, reducing the computational cost signicantly. Finally, close to

limit points in the equilibrium path the Riks pseudo-arclength algorithm (Riks

1979) is also invoked in order to trace the continuous paths whether stable or
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Figure 5.1: A diagram exhibiting the two incremental methods on a post-
critical bifurcation system. (a) Load cotrol and (b) displacement cotrol. Sym-
bols indicate ”◦” large step load control, ”•” small step load control and ”3”
displacement control.

unstable.

5.3 Errors

Results computed by finite element analysis contain errors, except in in-

stances where the mathematical model is so simple, that a closed form solution

of the continuum could also be possible with limited effort. Error here is a ref-

erence to the deviation between finite element analysis results and the exact

solutions of the mathematical model. There are three main sources of error

associated with the finite element method, namely modelling, discretization

and computational errors (Cook et al 2002). The first source, modelling er-

rors, refers to the difference between a physical system and its mathematical

model. As the mathematical model is a simplification of the actual problem,

based on accepted assumptions, the omission of details in the model might

introduce errors in the modelling.

The second source of error comes from the degree of discretization. This

error can become increasingly important if the discretization leads to a coarse

mesh of elements, while on the other hand, it can be minimized by refining

113



Chapter 5 Comparison of analytical models with finite element simulations

the mesh with more nodes and elements at the expense of increased require-

ments for computational power. Another example of discretization errors is

seen when the discretization cannot match or follow the continuum response

due to the use of inappropriate shape functions for element deformations and

their aspect ratio (Cook et al 2002). Especially in the presence of localized

loads or other special boundary conditions, inappropriate shape functions can

lead to large discontinuities in the stress-strain response between adjacent el-

ements and hence erroneous results can be obtained. The complexity of the

element and accuracy of the response in finite element modelling is associated

with the aspect ratio of the element and the order of the elemental shape func-

tions which are usually in the form of polynomials and guide the variation (if

any) of stresses and strains within the element. Obviously, high order multi-

nodal elements imply a significant increase in the computational cost, so in

an optimum finite element model, these should only be used where they are

most needed, with lower order elements being used everywhere else, making

sure though that compatibility through the structural model is satisfied. For

linear problems, the discretized system has a stiffer response since the work

done by the loads is always less than the work done by the continuous model.

As the mesh is refined, the solution of the work done from the discretized sys-

tem approaches the exact solution from the continuum. The third and final

source of error is associated with computational errors since by rounding off

very small numbers, these errors can accumulate and can lead to unexpected

results. It is worth applying some engineering intuition and back-analysis for

parts of the structure in question to verify the validity of the obtained results.

5.4 Modeling sandwich structures with Finite

Element

Modelling sandwich structures is not as straightforward as modelling ho-
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mogeneous components, due to the composite nature of the structural system.

Zenkert (1995) includes a chapter on the use of finite element analysis in the

modelling of sandwich structures. In addition to the common sources of error

outlined above, the author reports a few more key points to be considered

in the finite element analysis, such as the core shear, local effects, boundary

conditions and the potential anisotropy in the material properties of the face

plates or the core.

Taking into account the geometry of regular sandwich panels, the problem

can be reduced to two dimensional (2D) modelling, where the face plates can

be modelled as rods and the core with membrane elements (Zenkert 1995).

Rod elements can take either compression or tension while membrane element

will be able to shear, since this is the main function of the core. In the case of

sandwich panels for which the bending strain in the face plates is quite impor-

tant, the face plates could be modelled with beam elements, hence allowing

bending stresses to develop as well. The use of beam elements that share nodes

with core membrane elements can lead to a small degree of incompatibility in

the lines joining two nodes at the interface, since beam elements have rota-

tional degrees of freedom while the membrane elements do not. This issue

can be rectified with the use of membrane elements for the face plate as well,

which refines the mesh significantly, since it is advisable that the side aspect

ratios of membrane elements should be confined to 1:10 (Zenkert 1995). Other

combinations of modelling include formulating the core with solid elements

and using beam elements for the face plates which leads to the same sort of

incompatibility at the interfaces mentioned previously.

5.4.1 Sandwich strut finite element models in the liter-

ature

Léotoing et al (2004) and Kim and Shridharan (2005) have both reported
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on cases where interactive buckling and localization occurred after overall buck-

ling. Léotoing et al (2004) describes the development of an analytical model

to calculate the critical loads and buckling modes of different sandwich pan-

els. The paper considers simply supported sandwich panels with three pos-

sible buckling modes, overall and two types of face wrinkling, antisymmetric

(‘snake’) and symmetric (‘hourglass’). In addition, finite element models were

also developed to investigate the full postbuckling response of sandwich panels

with different geometric configurations. The panels were modelled with solid

two-dimensional bilinear plate stress elements and beam elements for the face

plates. Perfect bonding between the core and the face plates was assumed.

Initially, a linear elastic constitutive model was used and small imperfections

were applied from the unloaded state to trace the equilibrium path. For the

boundary conditions at the ends, the nodes were constrained in their local

vertical and rotational degree of freedom. This was done to model adequately

realistic conditions where the edges were stiffened by close-outs in order to

apply connections or loading (Hexcel 1989). The load was applied horizontally

on the edge supported on rollers along the neutral axis of the panel. In the

later parts of that article, nonlinear analysis using elastoplastic material prop-

erties for sandwich panels was also implemented.

Kim and Shridharan (2005) also investigated the response of sandwich

columns with a particular emphasis on the interaction of two competing buck-

ling modes, the long-wave overall buckling mode and local buckling. The finite

element modelling was implemented using Abaqus 5.8, where linear analysis

was used initially to capture the linear buckling loads and mode shapes. Non-

linear Riks analysis was then implemented to trace the postbuckling response

of the sandwich columns. A two-dimensional finite element model was devel-

oped by the authors, with 3-noded Timoshenko beam elements, known as B22,

for the face plates and plane stress solid elements with 8 nodes, known as CPS8.
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Le Grognec and Saoud (2015) developed two-dimensional finite element

model, that included finite plasticity, arc-length methods and brach-switching

procedures in order to investigate sandwich columns in elastoplastic buckling

and post-buckling response. In the elastic range it was observed that sec-

ondary bifurcation points may generally occur for most of the geometric and

material configurations, due to the modal interaction phenomena, leading to

unstable collapse. On the other hand, in plasticity, no secondary bifurcation

point is observed but the primary deformed shaped, either local or global, tend

to localize, which in most cases corresponds a sharp snap-back phenomenon.

A similar phenomenon was observed in the experiments undertaken by Wadee

(1999).

5.4.2 Current model

In order to proceed with the comparisons, new finite element formulations

are necessary with boundary conditions and constraints simulating the ones in

the analytical modelling. Since the current research work is based on simply

supported, perfectly elastic structural members, with perfect bonding at the

face plate - core interface, these assumptions must be reflected in the finite

element modelling. The models are formulated in the general purpose finite

element package ANSYS (2019).

The sandwich struts are modelled with two-dimensional plane stress el-

ements, the same assumption used in the analytical modelling. Given that

sandwich panels are wide, plane strain could have also been used without a

significant difference in the response other than it would give slightly higher

critical load. The face plate and core are discretized with two dimensional (2D)

solid element (Plate182) which is defined by four nodes having two degrees of

freedom (DOF) at each node. Symmetry along the length of the strut has
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been utilized, only half of struts has been modeled in the FE simulations by

applying suitable boundary conditions along the axis of symmetry at the mid

span of the strut Figure (5.2(a)). This is possible due to the inherent symme-

try of the interactive mode along the span of the strut. Figure 5.2(b) shows

the boundary conditions adapted for analyzing sandwich struts. The left and

right edge are constrained in the vertical and horizontal direction. ANSYS

enables the use of a multipoint constraint, such as either edge is constrained

to behave as a solid medium, i.e. the nodes are prescribed to move along a

straight line connecting the two extreme nodes located on the top and bottom

skins. The line can stretch linearly and rotate around a central node, the de-

gree of freedom of which is used to apply the boundary conditions and loading.

On the right edge, symmetry conditions are applied with restrictions on the

horizontal displacement and rotation while vertical displacement is permitted.

b

L/2

t

t
(a)

(b)

Figure 5.2: (a) Finite element sandwich panels, (b) The boundary conditions
applied to the finite element model.

In order to study the buckling behaviour, ANSYS uses linear eigevalue

analysis for critical buckling and eigenmode predictions. Alternatively, non-

linear geometry effects are turned on and postbuckling behaviour is evaluated

along the buckling load. The geometrical nonlinear analyses are led with AN-

SYS and the use of an arc-length algorithm permits the investigation the post-

buckling problems both with stable and unstable behaviours. In the nonlinear
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geometry analysis, geometric imperfections can be defined by the linear super-

imposition of buckling modes or any other displacement distributions. Often

imperfections are assumed to be of the same shape as the first mode achieved

from eigenvalue analysis. The amplitude of the imperfection is typically se-

lected to manufacturing standards. An imperfection amplitude of L/10000 is

selected as it sufficient to trigger the instability, and small enough to trace a

path close to the equilibrium path of the perfect structure.

5.5 Comparison of FE simulations with the

mechanical models in Chapter 3

Finite element simulations are conducted to capture both the botton face

plate localization as well as the top face plate local deformations. As seen

in Table 5.1, the results from FE simulations achieved good agreement when

compared to the analytical model in terms of critical loads for both cases of

criticality (i.e. when overall buckling is critical or when local buckling is criti-

cal). For the cases where local buckling is critical, eigenvalue analysis revealed

that ”snake” (antisymmetric) and ”hourglass” (symmetric) local modes are

extremely close with the ”snake” mode having a marginally smaller buckling

load, as also observed in the literature (Williams et al 1941). For sufficiently

deep cores where local buckling is critical, such as the range of depths used

herein, the strain energy stored at the neutral axis is negligible and remains

mostly unaffected, unlike the case of thinner cores where the neutral axis dis-

torts following the buckled pattern of the face plates. Therefore, since the

nature of local buckling is mainly governed by the face plate stiffness and

thickness, as well as the core stiffness, the critical loads for the antisymmet-

ric (snake) and symmetric (hourglass) modes of the same number of half-sine

waves tend to be very close.
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b(mm) PC
FE(N/mmm) PC

Anal(N/mm) Mode type

5.08 238.0 218.0 overall (Euler type: i = 1)

12.7 807.4 764.8 overall (Euler type: i = 1)

16.0 1009.2 959.35 local (Euler type: i = 13)

18.0 1020.4 1086.8 local (Euler type: i = 13)

Table 5.1: Comparison of FE and analytical model results, i represents the
number of half-sine waves present in the eigenmode.

The equilibrium diagrams compare very well with the analytical model re-

sults for different strut depths, as seen in Figure 5.3. There was good agreement

for the critical loads, which improved for deeper struts. The difference in the

overall buckling loads results from the simplified kinematics in the analytical

model for the overall mode, since the primary objective is to capture interactive

buckling and is more appropriate for longer struts where the buckling loads

for symmetric and antisymmetric modes are sufficiently close together. The

agreement is even better in the postbuckling range, where the responses fol-

low the same (unstable) unloading trend. For the case where overall buckling

is triggered first, the principal difference can be seen in the far postbuckling

range. The FE simulation locks the localized mode within the bottom face

plate at midspan, which grows as the load reduces during unstable postbuck-

ling, while for the analytical model, progressing down the postbuckling path,

the localized response tends to resemble cellular behavior somewhat with lo-

calized waves spreading towards the edges (Wadee and Bai 2014; Hunt et al

2000; Wadee and Garden 2012; Wadee and Farsi 2014).

For the case where local buckling is critical the FE model generated equi-

librium paths that completely bypassed the primary bifurcation and headed

directly to the secondary bifurcation which leads to unloading, which can be

attributed to the use of geometrical imperfections in the nonlinear analysis.
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Chapter 5 Comparison of analytical models with finite element simulations

Figure 5.3: Comparison of equilibrium paths for different struts of Length
L = 100mm and core depths of: (a) b = 5.08mm, (b) b = 7.63mm, (c)
b = 16mm and (d) b = 18mm. (a) - (b) Overall buckling is critical; (c) - (d)
Local buckling is critical.

Even though this also applies to the critical overall buckling case, the extremely

close proximity of the two bifurcation points in the case where local buckling

is critical makes the effect more pronounced. The close proximity of the pri-

mary and secondary bifurcations when local buckling is critical, has also been

observed in the work of Le Grognec and Saoud (2015) who studied nonlinear

postbuckling of sandwich struts, for differing boundary conditions. Never-

theless, the unloading pattern of the postbuckling path are in good agreement

in terms of the rate of unloading, with the two curves being essentially parallel.

The deformed shapes at equal normalized end shortening also agree very
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Figure 5.4: Comparison of deformation profiles from the analytical model and
FE simulations for strut of depth b = 12.7mm and length L = 100mm at
E/L = 2/2%. (a) Total deformations; (b) bottom face plate local deformations
wb and (c) top face plate local deformations wc.

well, the wavelength and the amplitude of localization match well for the bot-

tom face plate, as shown in Figure 5.4(a). The numerical simulations in all

cases exhibited local deformations on the top face plate, diverging from the

classical overall eigenmode with associated localized buckling in the bottom

face plate. To evaluate the amplitude and nature of the local deformations on

either face plate approximately, a half-sine wave is subtracted from the top and

bottom face plate deformations. For the top face plate, the local deformations

are mostly quasi-periodic in nature, starting with a negative displacement and

later forming one or more crests, depending on the length of the strut. The

main difference between the numerical simulations and the analytical model

is that, in the far post-buckling range, the top face plate deformations in nu-

merical simulations seem to be influenced by the bottom face plate localized

mode, with a kink appearing at midspan, as shown in Figure 5.4(b) and (c).
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This phenomenon is deliberately not modeled in the analytical model such

that the model remains fairly simple in concept, otherwise non-local effects

may become important, with one face plate strongly influencing the other,

while the large displacement analysis in the finite element simulation, locks

the localized mode in the more compressed face plate to such an extent that it

essentially affects the less compressed face plate, at midspan. In the absence of

this, away from midspan, the deformations seem to agree well both in nature

and magnitude. For deeper struts, where local buckling is critical, there is also

excellent agreement between the analytical model and the FE simulations in

terms of the confinement of the localized mode at midspan, as seen in Fig-

ure 5.5. The difference in the amplitude of sway, observed in Figure 5.5(a),

can be attributed to the difference in end shortening between the equilibrium

paths at the same load level. Looking in detail at the decomposed local de-

formations, the numerical simulations are in very good agreement with the

analytical results in terms of wavelengths. The only differences observed are

some smaller amplitude higher frequency waves in the FE simulations, as seen

in Figure 5.5(c), which may be attributed to the local imperfection that was

used to initiate the nonlinear analysis, as well as the propagation of the more

compressed face plate interactive mode, which contaminates the response. In

terms of the amplitudes, some of the less stiff behavior of the overall panel and

the bottom face plate can be attributed to the neglecting of the axial stiffness

of the core, which increases in significance for panels with deeper cores.

5.5.1 Conclusions

A numerical Finite Element model is developed in order to simulate the

full post-buckling response of linear elastic, sandwich strut. The results from

Finite Element model shows good agreement with analytical model in terms of

critical loads for the case when the overall buckling is critical, even in the case

when the local buckling is critical. Comparing the Finite Element equilibrium
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Figure 5.5: Comparison of deformation profiles from the analytical model and
FE simulations for strut of depth b = 16mm and length L = 100mm at
p = 0.80. (a) Total deformation; (b) bottom face plate local deformations wb

and (c) top face plate deformations wt. Note that the FE results in (a) is
possibly affected by the selected imperfection used to trigger buckling in the
nonlinear analysis.

paths for different strut depths match well with the analytical model results.

The difference where local buckling is critical for the Finite Element simulation

can be attributed to the use of geometrical imperfections in the nonlinear

analysis. However, the results show good aggrement with the Finite Element

results which also capture the inhomogeneous quasi-periodic deformation in

the less compressed face plate.

5.6 Comparison of FE simulations with me-

chanical results from Chapter 4

The difference in the response of the two analytical models in Chapter 4,

specifically in the position of the secondary bifurcation, led to the development
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of a nonlinear finite element formulation in ANSYS. The functionally graded

core is discretized vertically in horizontal strips. The gradation in the mate-

rial properties is approximated by having a large number of strips of different

properties. As seen in Figure (5.6) it was found that 20 strips across the core

depth were sufficient to provide a reasonably smooth transition in the prop-

erties and more importantly avoid unwanted numerical errors. The property

of each strip (Figure 5.7) is the value of the property at its mid-height which

is derived from the below gradation function which was implemented in the

analytical model:
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Figure 5.6: Plotting P (N/mm) over the number of elements in the core thick-
ness.
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For each parametric study two types of simulation are performed. Firstly,
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Figure 5.7: The variation in the core materials properties through its the depth
of the core and the approximation used in the FE simulation for a sandwich
strut. The same FE approximation used for the other gradation modes.

a linear perturbation analysis to capture the overall buckling mode and the

corresponding critical load is performed. Table 5.2 shows the critical load for

convex and concave parametric studies for different gradation patterns from

the linear perturbation, the comparison with the TBT model is even favourable

for the convex parametric study and RBT model for the concave parametric

study. Qualitively, regarding the mode shape, the FE simulation shows good

agreement with the RBT model since the cross-sectional displacement seems

to be increasing towards the extreme edges in the convex parametric study as

shown in Figure 5.8(a). For concave parametric study which implies higher

stiffness further from the neutral axis, the shear strain is seen to be maximum

and localized at the neutral axis (Figure 5.8(b)).
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(a)

(b)

Figure 5.8: A schematic of the in-plane displacement due to overall buckling
as this was seen in the finite element simulations at quarter length along the
length of the strut (a) Convex parametric study; (b) Concave parametric study.

127



Chapter 5 Comparison of analytical models with finite element simulations

Case PC
TBT (N/mmm) PC

RBT (N/mmm) PC
FE(N/mmm) TBT % diff RBT %diff

C1.1-ve 276.77 253.16 268.99 2.89% 5.88%

C1.2-ve 276.89 232.24 252.91 9.48% 8.17%

C1.3-ve 276.96 221.92 242.79 14.07% 8.60%

C1.4-ve 276.00 216.14 236.59 16.65% 8.64%

C1.1-ex 276.24 335.44 269.42 2.53% 24.50%

C1.2-ex 276.31 325.72 279.26 1.06% 16.63%

C1.3-ex 276.34 320.44 285.49 3.20% 12.24%

C1.4-ex 276.37 317.17 289.00 4.47% 9.74%

Table 5.2: Comparison the critical load of FE ana analytical models

Using the overall buckling mode shape as an imperfection of size L/10000,

as before, a nonlinear analysis is then perfomed in order to capure the full

post-buckling response of the nearly perfect struts. The displacement control

incremental method is used and the applied load is found from the reaction

force. Examining the position of the secondary bifurcation point, for different

convex gradation patterns (Figure 5.9(b)), the RBT model seems to be superior

in capturing the trend which shows that the gap widening between the critical

and secondary bifurcation points increases when the gradation pattern is sim-

ilar homogeneous material C1.4ex. As can be seen from the equilibrium paths

shown in Figure 5.10, the equilibrium paths predicted by the RBT model have

a similar evolution for the postbuckling response with the FE simulation indi-

cating a constant drop in the load carrying capacity (at0.70PC for normalised

end shortening 3%), which remains approximately constant throughout.

The situation is reversed for the concave parametric study, which shows the

TBT model predicting the position of the secondary bifurcation points and the

initial postbuckling paths quite closely, as can be seen in Figure 5.9(d), with

excellent agreement in the residual postbuckling load capacity. It should be

noted that even though the RBT model marginally overestimates the plateau
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between the critical and secondary bifurcations, it exhibits a good comparison

of the postbuckling path with a very good load prediction.
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Figure 5.9: (a)&(c) Comparison of the critical loads from the two analytical
models and FE simulations for different gradation patterns pattern. (b)&(d)
The variation of the position of the secondary bifurcation for different grada-
tion patterns.
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Figure 5.10: Left: Convex case. Right: Concave case. Equilibrium paths for
strut for length 100mm and depth 6mm. (a)-(b) TBT model, (c)-(d) RBT
model, (e)-(f) FE model.
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5.6.1 Conclusions

Two analytical models based on different shear deformable bending the-

ories, have been adapted to investigate the interactive buckling of sandwich

struts with functionally graded cores. The analytical models have been com-

pared with the Finite Element simulations implemented in ANSYS, exhibiting

a good correlation. In the first parametric study, with a convex stiffness distri-

bution, the RBT model exhibits a better correlation with the Finite Element

simulations especially on the onset of interactive buckling since the displace-

ment field shows an approximately cubic distribution. The amplification of the

difference in the critical load is indicative of the limitation of Equivalent Sin-

gle Layer approaches which tend to overstimate critical loads. For the second

parametric study, with concave stiffnes distribution, the TBT model seems

to provide an excellent comparison for the position of secondary bifurcation

points. The reason for the excellent correlation can be attributed to the in-

plane displacement field is approximately linear except very locally near the

neutral axis.
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Discussion

Elastic stability is practically important for engineers responsible for de-

signing safe structures. If our sole concern was to understand the initial stages

of buckling of such bodies, then a suitable model consisting of linearized equa-

tions would serve the purpose. On the other hand, deeper appreciation of

the true nature of the instabilities together with knowledge of the subsequent

responses of failure mechanisms requires that nonlinear effects be included as

well. In the overwhelming majority of postbuckling scenarios, exact analytical

solutions do not exist and so necessarily, we have to resort to approximation,

be it fully numerical or a simplification of the full system followed by analysis

in various limited ranges (Thompson and Hunt 1973). Both of these strategies

can reveal behaviour which is of interest not only to engineers but also to ap-

plied scientists. Instability phenomena are becoming of increasing importance

in many fields and some previous studies are being given renewed prominence

owing to the discovery of physical phenomena down to the atomic level which

these theories seem to model well (Lee et al 2008). It is in this spirit that

herein we study mode interaction and localization in sandwich struts.

In the current thesis, the interactive postbukling behaviour of a sandwich
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strut has been successfully investigated using analytical and Finite Element

methods. An analytical approach presents a novel contribution to the field

and has added to the understanding of interactive buckling phenomena. The

energy method has been utilized extensively in the field of interactive buckling

phenomena for sandwich structures, the interaction being, in general between

overall buckling and local buckling. The potential energy method used for these

studies to describe the global buckling mode first, using at least a two degree

of freedom system; “sway”, indicating the lateral displacement and “tilt”, for

the rotation of the plane. Two mechanical models were developed based on

two different shears deformable bending theories, that allow the development

of shear strains within the core. The first model is based on the Timoshenko

Beam theory (TBT), which assumes a constant shear strain distribution across

the core, the second model is based on the third-order Reddy-Bickford Theory

(RBT) which assumes a higher order shear strain distribution across the core.

For local buckling, the out-of-plane and in-plane deflections in the transverse

directions are solved by introducing mathematical functions for the in-plane

and out-of-plane local displacements. The Total Potential Energy is formu-

lated. By using the calculus of variations, a system of governing equations is

subsequently found by considering the variations of the out-of-plane and in-

plane displacements, and minimizing the Total potential energy with respect

to sway and tilt degrees of freedom. The system of governing equations is the

solved numerically in the continuation and bifurcation software AUTO-07p.

The software is capable of identifying bifurcation and branching points; thus,

the equilibrium paths and corresponding deflection shapes can be determined.

This thesis is divided into two parts. In the first part, a nonlinear analytical

model for investigating localized interactive buckling in simply supported, thin-

face plate sandwich struts with weak cores, is extended to account for local

deformations in both face plates. In the second part, analytical models were
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developed to cater for Functionally Graded Material’s in the core. Using these

models, the interactive buckling phenomenon is captured and investigated for

different gradation patterns.

6.1 Modelling localized buckling in sandwich

struts with inhomogeneous deformations

in both face plates

An analytical model based by Hunt and Wadee (1998) model were de-

veloped in order to account local deformations of the face plate on the least

compressed side of the panel. This phenomenon, which the smaller local de-

formations begin to appear almost right after the secondary bifurcation when

interactive buckling at the second face plate has been triggered, it has been

observed both experimentally and Finite Element simulations. The results

from the analytical model are compared with the results obtained from Finite

Element simulations performed in ANSYS.

First comparing the results obtained from Hunt and Wadee (1998) model,

the results showing that the local deformations in the less compressed face plate

play a negligible influence in the mechanical response of the sandwich strut.

Second, comparing the results obtained from Finite Element simulations, the

numerical results show inhomogeneous deformations in the least compressed

face plate. The differences between analytical and Finite Element model are

mainly due to the assumptions that have been use but also to the way the

problem is solved with finite elements, as well as to the assumptions of the an-

alytical model. A typical difference is that in Finite Element simulations there

are boundary points, in contrast to the analytical model there are branches.

135



Chapter 6 Discussion

Another difference is that in the analytical model there is no imperfection but

a specific deformation has been delivered to the core, on the other hand in the

Finite Element model the geometric imperfection that was used to initiate the

nonlinear analysis has more freedom and is based on the degree of discretiza-

tion. As described in Chapter 5, the Finite Element model considers the face

plate and core are uniform discretized with two dimensional solid element. In

order to minimize the difference between the results of analytical and finite

model could be optimized the mesh with more nodes and elements between

core face plate interface. Moreover, owing to the small thickness of a face

plates the Finite Element model will be considered as two-dimensional linear

elements bonded to the edges of the core with specific suitable engineering

properties.

6.2 Modelling interactive buckling for FGM

sandwich struts

Two analytical models based on two different shear deformable bending

theories have been enhanced to allow Functionally Graded Material (FGM)

core. The first model is based on the Timoshenko beam theory and the second

model is based on higher-order Reddy-Bickford beam theory. In order to de-

scribe the functionally graded material core we have used polynomial function

to create a gradation in stiffness (Young’s and Shear Modulus) which could

be realised via changes in the density of a porous material. The polynomial

equation except from the ease of modelling and being adaptable, has the abil-

ity to investigate various mechanical properties gradation patterns. Two types

of parametric studies with different gradation distributions through the depth

of the core investigated in order to capture interactive buckling phenomena.

In the first parametric study “Convex” distribution, the Young’s modulus is

maximum at the neutral axis and reduces further away from it, and the second
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parametric study, “Concave” distribution, the Young’s modulus is minimum

at the neutral axis and increases further away from it. The results from the

analytical models are compared with the results obtained from Finite Element

simulations performed in ANSYS.

Comparing the results, the two analytical models exhibited different re-

sults regarding the critical buckling load and the position of the secondary

bifurcation point. The difference between the two models lies in the way the

gradation in the core stiffness in treated. The RBT model based on third-order

therory, assuming quadratic distribution of shear strain, which is maximum in

the middle and zero at the core interface, make the model more versatile to

adapt the convex gradation than the TBT model. On the other hand, the

TBT model which assumes that the shear strain is constant across the depth

of the core, makes the model adequate for concave gradation.

Summarizing all of the above findings, the two analytical models based

on different bending theories seem to have quite distinct ranges of applica-

bility, depending on the material configurations as has been shown from the

finite element results. The RBT model exhibited a very good correlation with

Finite Element simulations for the convex parametric study and TBT model

for concave parametric study. A typical difference that was observed between

analytical and Finite Element results, are due to the assumptions that have

been used. In order to describe the functionally graded material in the core,

the core in the finite element model is discretized uniform in horizontal strips.

It was found that 20 strips across the core depth were sufficient to provide a

reasonable smooth transition. Nevertheles, differences were observed between

the results of analytical and Finite Element models. In order to minimize the

error could be optimized the element discretized. For the convex parametric

study where the material is relatively compliant at core interfaces and stiffer
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at the mid-height of core, the Finite Element model could be minimized by

refining the mesh with more nodes and elements at the mid-height of core.

On the other hand, for concave parametric study where the stiffer core are at

the face core interface, the Finite element model can be minimized by refining

the mesh with more nodes and element between core face plate interface. In

conclusion, further study will be needed to optimize the element discretize, in

order to minimize the error between analytical and finite element models.
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General conclusions and further

work

7.1 Conclusions

The thesis herein presented the development of series of analytical mod-

els to capture mode interaction in the elastic range between buckling modes

and localization in sandwich struts with a soft core material. Building on an

existing variational model which was based on Timoshenko beam theory and

Reddy-Bickford beam theory (Hunt and Wadee 1998; Wadee et al 2010), en-

hanced models have been developed and adapted to examine interactive buck-

ling for different geometric, and material, attaching particular importance to

the onset of the instabilities.

Firstly, a nonlinear analytical model extended to account for local defor-

mations in both face plates, which have been observed in experiments and

finite element simulations. The original model was based on total potential

energy principles with large displacement assuptions. The model was assumed

a simply-supported strut with a linear elastic core and was compared against
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the previous formulation (TBT) (Wadee and Hunt 1998); exhibiting a safer

prediction of the secondary bifurcation point, which is known to pinpoint the

onset of interactive buckling that causes destabilization of the postbuckling

path. The extended model was abled to capture measurable local face plate

displacements in the less compressed face plate, beyond the secondary bifur-

cation which leads to localized interactive buckling, for the case where overall

buckling is critical. The results showed that the local deformations in the less

compressed face plate play a negligible influence in the mechanical response of

the sandwich strut, for the thickness considered and where overall buckling was

critical. More importantly for this current study, that the model was capable

of dealing with the case where local buckling was critical. This case exhibits

a very close proximity between the primary and secondary bifurcations and

a severely unstable response is the result, which would translate into a high

degree of imperfection sensitivity. The results of this work were published in

Composite Structures (Yiatros et al 2015).

The second part of the work presented herein was dedicated to the applica-

tion of functionally graded materials and their effect on triggering of interactive

buckling. A study was initiated for a simply-supported sandwich strut with an

elastic core whose material properties were varying across its depth. Two para-

metric studies where the stiffness decreases (convex distribution) or increases

(concave distribution) from the neutral axis outwards have been considered

since the former can be used in a minimum weight design strategy while the

latter has been to reduce the risk of delamination and fracture. The analyti-

cal models have been adapted with changes in the potential energy to reflect

the varying material properties across the depth of the core. The two models

exhibited different results about the critical buckling load and the position of

the secondary bifurcation point. The RBT model provides a safer estimation

for convex parametric study, on other hand, for the concave parametric study
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the TBT model provide excellent results for the position of secondary bifurca-

tion points and post-buckling paths. These results have been presented at the

EMI2021 Conference (Georgiou and Yiatros 2021).

The last part of the work involved the development of a nonlinear finite

element formulation was developed in ANSYS. The model was created, using

2-dimensional solid elements for both the core and the face plates. In order to

match the analytical models as closely as possible, the core depth was modeled

as b − t. The left edge elements were free to rotate about a master element

at mid-sections which were constrained in the vertical direction. On the right

edge, simply supported conditions were imposed by resticting horizontal and

vertical displacements of the master element, while the remaining elements

were free to rotate about the master element. Initially, a linear eigenvalue

analysis was used to find the individual buckling modes, which were then in-

put as initial imperfections into a nonlinear model solved using Arc-length

analysis. Comparing the results by analytical model of Chapter 3, the re-

sults have showen good aggrement with the Finite Element results which also

capture the inhomegeneous quasi-periodic deformations in the top (less com-

pressed) face plate.

Finally, comparing the results for the analytical model of Chapter 4, the

finite element model have been adapted to reflect the varying material proper-

ties across the depth of the core. More preciesely, the RBT model exhibited an

excellent correlation with the FE simulation for the convex parametric study

where reduced stiffness outwards from the neutral axis for on the onset of the

instability, even though it overestimated the critical load. The TBT model

was superior for the concave parametric study, matching both the onset of

interactive buckling, critical load and initial postbuckling path more closely.

The reasons for the range of applicability of each corresponding model can be
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found in the different in-plane displacement field used by each analytical model.

As shown from the FE simulation each model approximated the in-plane dis-

placement through the depth of the core more closely than the other for each

respective case, thus better estimating the actual bending stress responsible

for triggering interactive buckling.

7.2 Originality

Sandwich structures are well-known in many engineering disciplines as a

versatile structural solution with a favorable combination of low weight and

high bending stiffness. However, they are prone to instability phenomena such

as overall buckling and wrinkling. These phenomena are triggered at certain

critical loads with sandwich structures buckling either globally or locally in

each face plate in a symmetric or antisymmetric. Since sandwich structures

can fail in various mode, in this thesis, the interactive buckling phenomena of

sandwich struts were investigated by developing analytical models. This thesis

divided into two parts.

� The first part of thesis is direct continuation of the work of Hunt and

Wadee (1998) in order to capture localized deformation that occurs at

the both face plates. An analytical model based on Timoshenko beam

theory developed and the results compared with Finite Element simula-

tions. The results of this work were published in Composite Structures

(Yiatros et al 2015)

� Second part of thesis continues in a different direction, the materials op-

timazation. Although, standard sandwich structures offer advantages

over homogenous structures, in this thesis investigated other novel sand-

wich technologies in order to obtain optimum design response. One
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such alternative is represented by sandwich structures with function-

ally graded core.

– Two analytical model based on different theorys, are developed

for sandwich structures with functionally graded core, in order

to see whether particular stiffness functional gradations, could be

used as part of a design mitigation strategy to delay or ameliorate

buckling.

– In order to describe the functionally graded material core we

have used polynomial function to create a gradation in stiffness

(Young’s and Shear Modulus) which could be realised via changes

in the density of a porous material.

– The results compared with Finite Element simulations.

– The results have been presented at the EMI2021 Conference (Geor-

giou and Yiatros 2021).

7.3 Further work

The widespread use sandwich structures with functionally graded mate-

rial in industry offers a plethora of problems to be investigated for which the

aforementioned models could be extended to cover. An obvious extension is

the investigation of interactive buckling and localization on a sandwich beam

under 3-point bending, a standard test of sandwich beams and continuous lat-

eral loading. Such an extension would require different displacement functions,

more appropriate to the loading scenario.

Furthermore, a possible extension of the model is to investigate the initi-

ation and propagation of delamination at the face plate - core interface due to
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interactive buckling. Delamination related issues are quite frequent in practice

and may lead to catastrophic failure due to a sudden loss of local stiffness.

Even though delamination is usually caused by impact, examining its initia-

tion due to localized buckling and, more importantly, its propagation can be

informative since the possible results of this inestigation can shed more light

onto the mechanism of failure and help engineers to adopt better procedures

to account for it.

The current analytical model only limit to the linear elastic material

properies. However, the sandwich struts with imperfection levels is mainly

governed by material failure. Therefore, including the nonlinear effects of the

material in the variational model would help to understand the underlying

mechanism in the failure of sandwich structures in realistic scenarios better.

As far as the author knows, the current analytical and numerical model has

not been validated with experimental results. However, experimental tests to

capture interactive buckling phenomena using digital image correlation thech-

niques throug photogrametric methods is nesesarry to valited the analytical

models results (Sinur et al 2012; Skarlatos and Yiatros 2016).

Finally, an analytical approach presents a novel contribution to the field

and has added to the understanding of complex interactive buckling phenom-

ena in popular structural components. Developments have also been made

towards the understanding of structural imperfection sensitivity, with some

preliminary suggestions of how this research can be implemented in engineer-

ing design.
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Non-Dimensionalization of system

equations of Chapter 4

In Chapter 4, having formulated the necessary equations, in order to

establish the nontrivial interactive modes the system of governing ordinary

differential equations, integral constants and boundary conditions was non-

dimensionalized and solved numerically using AUTO-07p (Doedel et al 2012).

As it name implies AUTO is solver for autonomous equations. However it

can solve non-autonomus equations, such as the system derived currently, by

indroducing another variable. This would transform the sixth order (w, ẇ,

ẅ,
...
w, u, u̇) non-autonomous system into a seventh order system with the in-

clution of x̃ variable that takes values between 0 and 1, and represents the

spatial parameter along the length of the panel. The spatial coordinate along

the length x is non-dimensionalized such that:

x = Lx̃ (A.1)

where, x̃ = 0 at one end and x̃ = 1 at the other end. Another note is that it

normalizes the terms in the solution matrix making the matrix numerically less

stiff and computation more efficient. The non-dimensionalize of the potential
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energy of the system and all the terms in u and w given as:

V =

∫ L

0

L
[
w, ẇ, ẅ, uu̇

]
dx =

∫ 1

0

L
[
Lw̃, ˜̇w,

1

L
˜̈w,Lũ, ˜̇u

]
dx̃ (A.2)

The non-dimensionalized total potential energy for TBT given as:

ṼT =

∫ L

0

{[ ˜̈w2

2
+
q̃s

2

φ2
sin2(πx̃)

]
+ D̃

[
2∆2 +

˜̇w4

4
+
q̃t

2

2
sin2(πx̃)

+˜̇u2 + ˜̇u ˜̇w2 − q̃t
(

˜̇u+
˜̇w2

2

)
sin(πx̃)− 2∆

(
˜̇u+

˜̇w2

2

)]
+ C̃x

[ ˜̇w4

20
f5 +

˜̇u2

3
f2 +

˜̇w2 ˜̇u

4
f4 −∆

(
˜̇uf1 +

˜̇w2

3
f2 −∆f1

)
+
q̃t
12
f3 sin(πx̃)

(
q̃t sin(πx̃)− ˜̇w2 − 2˜̇u

)]
+ C̃y

[
∆ν2x

(
˜̇uf1 +

˜̇w2

3
f2 −∆f1

)
− νx

w̃

φ

(
˜̇uf1 +

˜̇w2

3
f2

)]
+

1

2
k̃w̃2f1

+
G̃

φ

[
cos2(πx̃)

1

π2
(q̃s − q̃t)2 f1 − (q̃s − q̃t)

2φ

π
cos(πx̃)

(
ũ

φ
−

˜̇w

2

)
f1

+ũ2f1 +
˜̇w2φ2

3
f2 − ˜̇wũφf1

]
− P̃ G̃φ

[
2∆ +

q̃s
2

φ2π2
cos2(πx̃)− ˜̇u

]}
dx

(A.3)
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and for RBT the non-dimensionilzed total potential energy given as:

ṼR =

∫ L

0

{[ ˜̈w2

2
+
q̃s

2

φ2
sin2(πx̃)

]
+ D̃

[
2∆2 +

˜̇w4

4
+ (2q̃t + q̃s)

2 1

18
sin2(πx̃)

+˜̇u2 + ˜̇u ˜̇w2 − (2q̃t + q̃s)
1

6
sin(πx̃)

(
2˜̇u+ ˜̇w2

)
− 2∆

(
˜̇u+

˜̇w2

2

)]
+

C̃x

1260

[ (
5q̃s

2f6 + 32q̃tq̃sf7 + 68q̃t
2f9
)

sin2(πx̃)

− 21 sin(πx̃)(q̃sf3 + 4q̃tf8)(2˜̇u+ ˜̇w2) + 315˜̇u ˜̇w2f4 + 420f2(˜̇u2 − ˜̇w2∆)

+ 1260f1
(
∆2 − ˜̇u∆

)
+ 63 ˜̇w4f5

]
+ C̃yνx

[
∆νx

(
˜̇uf1 +

˜̇w2

3
f2 −∆f1

)
− w̃

φ

(
˜̇uf1 +

˜̇w2

3
f2

)]
+

1

2
k̃w̃2f1

+
G̃

φ

[
8

15π2
cos2(πx̃) (q̃s − q̃t)2 f11 −

2φ

3π
(q̃s − q̃t) cos(πx̃)

(
2ũ

φ
− ˜̇w

)
f10

+ũ2f1 +
˜̇w2

3
φ2f2 − ˜̇wũf1

]
− G̃P̃φ

[
2∆ +

q̃s
2

π2φ2
cos2(πx̃)− ˜̇u

]}
dx

(A.4)

where the constants fi for both models given by the Equations (4.7) and 4.9),

respectively. The terms by the Equation (2.28) in a non-dimensional form

given below:

V =
EI

L2
Ṽ , D =

EI

L2
D̃, Cx =

EI

L2
C̃x, Cy =

EI

L2
C̃y, G =

EI

L3
G̃,

k =
EI

L4
k̃, P = 2GP̃ , qt =

L

bπ2
q̃t, qs =

L

bπ2
q̃s

(A.5)

The critical load PC for the overall mode is normalized for the both models

such that:

P̃C
T =

π2

G̃φ
+

f1

(
D̃ +

C̃x

6
f3

)
2G̃

φπ2
f1 +

(
D̃ +

C̃x

6
f3

) (A.6)
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P̃C
R =

π2

G̃φ
+

14G̃f11(C̃xA1 + 6D̃) +
C̃xπ

2φ

60G̃
(C̃xA2 + 20D̃A3)

168G̃

π2φ
f11 + 17C̃xf9 + 70D̃

(A.7)

The boundary conditions that is same for the both models are non-dimensionalized

as:

w̃(0) = ˜̈w(0) = w̃(1) = ˜̈w(1) = 0 (A.8a)

˜̇u(0)

(
2D̃ +

2C̃x

3
f2

)
+ ˜̇w2(0)

(
D̃ +

C̃x

4
f4

)
−∆

(
2D̃ + C̃xf1 − C̃yν

2
xf1

)
+ P̃ G̃φ = 0

(A.8b)

˜̇u(1)

(
2D̃ +

2C̃x

3
f2

)
+ ˜̇w2(1)

(
D̃ +

C̃x

4
f4

)
−∆

(
2D̃ + C̃xf1 − C̃yν

2
xf1

)
+ P̃ G̃φ = 0

(A.8c)

In the same fashion the non-dimensionalized system of equations for TBT

are given below for:

˜....w + C̃x

[
2

3
∆ ˜̈wf2 +

q̃t
6

(
˜̈w sin(πx̃) + ˜̇wπ cos(πx̃)

)
f3

−
(

1

2
˜̇w ˜̈uf4 +

1

2
˜̇u ˜̈wf4 +

3

5
˜̇w2 ˜̈wf5

)]
+

C̃yνx
φ

[
2

3
w̃ ˜̈wf2 −

2

3
νx∆φ ˜̈wf2 − ˜̇uf1 +

1

3
˜̇w2f2

]
+ k̃w̃f1 + D̃

[
2∆ ˜̈w + q̃t

(
˜̈w sin(πx̃) + ˜̇wπ cos(πx̃)

)
−
(
2˜̇u ˜̈w + 2 ˜̇w ˜̈u+ 3 ˜̇w2 ˜̈w

)]
+ G̃

[
˜̇uf1 −

2

3
φ ˜̈wf2 + sin(πx̃)(q̃s − q̃t)f1

]
= 0

(A.9)

2˜̈u

(
C̃x

3
f2 + D̃

)
− D̃

(
q̃tπ cos(πx̃)− 2 ˜̇w ˜̈w

)
− C̃x

2

(
q̃t
3
π cos(πx̃)f3 − ˜̇w ˜̈wf4

)
− νxC̃y

φ
˜̇wf1 + G̃f1

(
˜̇w − 2ũ

φ
+

2

φπ
cos(πx̃) (q̃s − q̃t)

)
= 0

(A.10)
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q̃sπ
2

φ
− q̃sG̃P̃ + G̃(q̃s − q̃t)f1 − G̃πφf1

∫ L

0

cos(πx̃)

(
2ũ

φ
− ˜̇w

)
dx = 0

(A.11)

G̃(q̃t − q̃s)f1 +
q̃tφπ

2

2

(
D̃ +

C̃x

6
f3

)

−
∫ L

0

[(
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C̃x
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f3

)
φπ2 sin(πx̃)

(
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+ G̃πφ cos(πx̃)

(
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(A.12)

∆
(

2D̃ + C̃xf1 − ν2xC̃yf1

)
− G̃P̃φ

−
∫ L

0

[
D̃
(
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1
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C̃x − ν2xC̃y

)(
˜̇uf1 +
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3
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dx = 0

(A.13)

For RBT the the non-dimensionalized system of equations given as:

˜....w + C̃x

[
2

3
∆ ˜̈wf2 + (q̃sf3 + 4q̃tf8)
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(A.14)
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(A.15)
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φ

)
f10

]
dx = 0

(A.17)
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