Sales and Promotions

 and theGreat Recession Deflation
2020 EEA Virtual

Demetris Koursaros
Cyprus University of Technology

Niki Papadopoulou
Central Bank
of Cyprus

Christos Savva
, Cyprus University of Technology

25 August 2020

Introduction

Motivation

Introduction

Motivation

Introduction

Motivation

Introduction

Motivation

Inflation Measures and the Phillips Curve

Motivation

- Consumer price inflation, (personal consumption expenditures price index), was 2% between 2003 and 2007
- It only declined to 1.5% for the next 8 years, through the deepest contraction since the Great Depression (Gilchrist et al. 2017)
- It even casts doubt on the relevance of the Phillips curve relationship.
- Explanations involve the anchored expectations hypothesis or alternative definitions of economic slackness or even the financial accelerator
- Ball and Mazumder (2011); Gordon (2013); Krueger, Cramer, and Cho (2014); Coibion and Gorodnichenk (2015); Del Negro, Giannoni, and Schorfheide (2015) and others

Growth rates (Price Indices)

From St. Louis FRED

Main Findings

Main Goal

- We provide a different explanation as we show theoretically that occasional sales can have a significant effect in the cyclicality of price indexes.
- A theoretical model is provided where firms post sales on products infrequently.
- We report that price indexes that disregard sales are less volatile and more persistent than they would otherwise be.
- Moreover, when agents form expectations using indices net of sales, recessions are exacerbated.
- Infrequent Sales do not affect the inflation measures if the economy is at steady state.

Main Findings

Main Goal

- We demonstrate that in a recession:
- Sales become more generous
- Sales are more frequent
- Consumers devote more effort in identifying those bargains
- We re-estimate a simple Phillips curve relationship
- We find that the UK CPI inflation with a higher weight on sale items correlates better with output gap and unemployment
- The traditional CPI inflation is uncorrelated with output gap and unemployment as in Gali and Gertler (1999).

Frequencies of Sales

Relative number of goods on sale and not on sale

Frequency of Sales

Popularity in various Google searches across time

Sales Hunting

Methodology

The Model

- A Standard New Keynesian Model is modified with occasional sales
- Prices $p_{i t}$ are subject to menu costs
- Sales $s_{i t} \in\left[\bar{s}_{t}, 1\right]$ and thus the price paid by consumers for the $i^{t h}$ good is $s_{i t} p_{i t}$.
- Sales are unpredictable and are a draw from an endogenous distribution of sales. (similar to Varian (1980))
- Households send V_{t} share of consumers to search for bargains and $1-V_{t}$ randomly pick a store.
- The true price index in the economy is:

$$
P_{t}=\left[\begin{array}{c}
\left(1-V_{t}\right)\left(p_{i t}\right)^{1-\theta} \int_{\bar{s}_{t}}^{1}\left(s_{i t}\right)^{1-\theta} f\left(s_{i t}\right) d s_{i t} \\
+V_{t}\left(p_{i t}\right)^{1-\theta} \int_{\bar{s}_{t}}^{1}\left(s_{j t}\right)^{1-\theta}\left(1-F\left(s_{j t}\right)\right)^{N-1} f\left(s_{j t}\right) d s_{j t}
\end{array}\right]
$$

The Model

Firms

- There is no equilibrium in pure strategies in this model but there is one in mixed strategies.
- $F\left(s_{t}\right) \equiv \operatorname{Pr}\left(s_{i t}<s_{t}\right)$ for $i \in\{1,2, \ldots, N\}$ is the probability the $i^{\text {th }}$ producer to have a lower sale fraction than s_{t}
- The Profit for a firm is

$$
\Xi\left(s_{t}\right)=\Pi_{t}^{V}\left(s_{t}\right)\left(1-F\left(s_{t}\right)\right)^{N-1}+\Pi_{t}^{N V}\left(s_{t}\right)\left(1-\left(1-F\left(s_{t}\right)\right)^{N-1}\right)
$$

- In mixed strategies any $s_{t} \in\left[\bar{s}_{t}, 1\right]$ should give the same expected profit to the firm.
- Therefore, $\Xi\left(s_{t}\right)=\Xi(1)$
- From this, the distribution of sales can be identified:

$$
F\left(s_{t}\right)=1-\left[\frac{1-V_{t}}{V_{t}} \frac{1}{N}\left(\frac{\frac{p_{t}}{P_{t}}-m_{t}}{s_{t} \frac{p_{t}}{P_{t}}-m_{t}} s_{t}^{\theta}-1\right)\right]^{\frac{1}{N-1}}
$$

- Differentiating gives the pdf: $f\left(s_{t} ; N, V_{t}, \frac{p_{t}}{P_{t}}, m_{t}\right)=\frac{d F\left(s_{t}\right)}{d s_{t}}$

The PDF and CDF of Sales

An Example of Realized Sales by store

Circles are the choices by a household with 0.5 of members as bargain hunters

Sales and Prices in Recession

Shows how prices paid by customers change during recessions

Many Searchers V=0.6

The histogram From the Previous Example

Captures the Distribution of Sales

IRFs after a 1 sd Increase in Federal Funds Rate

Inflation (no sales)

Relative price (average sales) $\frac{p_{t}}{P_{t}}$

Sales lower bound \bar{s}_{t}

Fedfunds rate $i_{t}^{f f}$

Inflation (average sales)

Bargain hunters V_{t}

Relative price (sales) $\frac{p_{1}}{P_{i}}$

Wage w_{t}

Median - sales

Relative price (no sales) $\frac{p}{P}$

Dynamic Distribution of Sales after 1 SD Increase in Federal Funds Rate

Movement from red to the rightmost blue line

IRFs after a 1 sd Increase in Federal Funds Rate

Taylor Rule

The Importance of Persistence

- The log-linear Euler equation is:

$$
\begin{equation*}
\hat{y}_{t}=E_{t} \hat{y}_{t+1}-\left(i_{t}-E_{t} \pi_{t+1}\right) \tag{1}
\end{equation*}
$$

where \hat{y}_{t} is the log deviation of output Y_{t} from its steady state, π_{t} the inflation and i_{t} the log linearized gross nominal rate from its steady state.

- The log-linearized Taylor rule according to which the central bank sets the interest rate is

$$
i_{t}=\rho^{i} i_{t-1}+\left(1-\rho^{i}\right)\left(\rho^{\pi} \pi_{t}+\rho^{y} \hat{y}_{t}\right)
$$

- Solving equation (1) forward implies

$$
\hat{y}_{t}=-\sum_{i=0}^{\infty} E_{t}\left(i_{t+i}-E_{t} \pi_{t+i+1}\right)
$$

- The deviation of current income from steady state is the sum of all deviations of future real interest rates from steady state.

IRFs after a 1 sd Increase in Federal Funds Rate

Empirical Exercise

Phillips Curve Estimation

Dependent variable: $\pi_{\mathrm{t}} \mathrm{CPI}$

	Model 1	Model 2	Model 3	Model 4
Constant	$\begin{aligned} & 5.974^{*} \\ & (3.203) \end{aligned}$	$\begin{aligned} & 5.457^{*} \\ & (3.326) \end{aligned}$	$\begin{gathered} 2.782^{* * *} \\ (0.707) \end{gathered}$	$\begin{gathered} 2.763^{* * *} \\ (0.689) \end{gathered}$
Inflation π_{t-1}	$\begin{gathered} 0.055 \\ (0.109) \end{gathered}$	$\begin{gathered} 0.055 \\ (0.110) \end{gathered}$	$\begin{gathered} 0.079 \\ (0.097) \end{gathered}$	$\begin{gathered} 0.082 \\ (0.090) \end{gathered}$
Output gap x_{t}			$\begin{gathered} 0.008 \\ (0.009) \end{gathered}$	
Output gap x_{t-1}				$\begin{gathered} 0.007 \\ (0.008) \end{gathered}$
Unemp. rate u_{t}	$\begin{gathered} -0.498 \\ (0.410) \end{gathered}$			
Unemp. rate u_{t-1}		$\begin{gathered} -0.413 \\ (0.431) \end{gathered}$		
Dependent variable: $\pi_{\mathrm{t}}^{\mathrm{s}} \mathrm{CPI}$, weight sale flags				
Constant	$\begin{gathered} 22.440^{* * *} \\ (7.734) \end{gathered}$	$\begin{gathered} \hline 18.541^{* *} \\ (7.825) \end{gathered}$	$\begin{gathered} 2.616 \\ (1.596) \end{gathered}$	$\begin{gathered} 2.665 \\ (1.589) \end{gathered}$
Inflation π_{t-1}	$\begin{gathered} -0.209 \\ (0.129) \end{gathered}$	$\begin{gathered} -0.194 \\ (0.134) \end{gathered}$	$\begin{gathered} -0.166 \\ (0.142) \end{gathered}$	$\begin{gathered} -0.154 \\ (0.144) \end{gathered}$
Output gap x_{t}			$\begin{aligned} & 0.053^{* *} \\ & (0.024) \end{aligned}$	
Output gap x_{t-1}				$\begin{aligned} & 0.050^{* *} \\ & (0.024) \end{aligned}$
Unemp. rate u_{t}	$\begin{gathered} -3.152^{* * *} \\ (1.114) \end{gathered}$			
Unemp. rate u_{t-1}		$\begin{gathered} -2.522^{* *} \\ (1.125) \end{gathered}$		

Conclusion

Extensions

- Sales may be temporary but they are more frequent and attract more attention during downturns.
- This may understate the true inflation as prices reported by producers are not as volatile as what consumers pay.
- Moreover, recessions appear to be deeper when all agents and especially the CB responds to CPI instead of a sales-adjusted price index inflation.
- Placing more weight on sales items may revive the Phillips curve relationship

