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Abstract
Environmental conditions, such as nutrient concentrations, salinity, elevation etc., shape diatom assemblages of periphytic biofilms. 
These assemblages respond rapidly to environmental changes, a fact which makes diatoms valuable bioindicators. Hence, fresh-
water biomonitoring programmes currently use diatom indices (e.g. EU Water Framework Directive - WFD). To date, microsco-
py-based assessments require high taxonomic expertise for diatom identification at the species level. High-throughput technologies 
now provide cost-effective identification approaches that are promising, complementary or alternative tools for bioassessment. The 
suitability of the metabarcoding method is evaluated for the first time in the Cyprus streams WFD monitoring network, an eastern 
Mediterranean country with many endemic species and results are compared to the results acquired from the morphotaxonomic 
analysis. Morphotaxonomic identification was conducted microscopically, using the most updated taxonomic concepts, literature 
and online resources. At the same time, DNA metabarcoding involved the use of the rbcL 312 bp barcode, high-throughput sequenc-
ing and bioinformatic analysis. The ecological status was calculated using the IPS Index. Results show a positive correlation be-
tween morpho-taxonomic and molecular IPS scores. Discrepancies between the two methodologies are related to the limitations of 
both techniques. This study confirmed that Fistulifera saprophila can have a crucial role in key differences observed, as it negatively 
influences IPS scores and microscopy methods frequently overlook it. Importantly, gaps in the DNA barcoding reference databases 
lead to a positive overestimation in IPS scores. Overall, we conclude that DNA metabarcoding offsets the morphotaxonomic meth-
odology for the ecological quality assessment of freshwaters.
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Introduction
Freshwater ecosystems are transient environments, fea-
turing hotspots of biodiversity and supporting about 10% 
of the total known species on the earth (Strayer and Dud-
geon 2010). Due to the extensive urbanisation and ad-
vancement in human activities in recent decades, these 
ecosystems are subjected to environmental degradation 

and impacted by anthropogenic pressures (Hupało et al. 
2021). As a result, these freshwater biodiversity hotspots 
are declining. The Mediterranean region fosters a unique 
combination of geography, geological history and cli-
mate, making it an excellent example of a freshwater 
biodiversity hotspot. This is estimated to result from a 
distinctly cool and wet season, followed by a warm and 
dry season influenced by a sequence of regular and often 
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extreme flooding and drying periods and relatively rare 
snowfall. Additionally, it is characterised by intense hu-
man activities. Mediterranean islands are no exception, 
being the most threatened ecosystems within the region, 
having intermittent and harsh-intermittent rivers high-
ly impacted by human activities (Hupało et al. 2021). 
Although the Mediterranean is one of the most studied 
and well-known regions globally, little is known about 
the organisms inhabiting freshwater ecosystems. Studies 
focus mainly on vertebrates, macroinvertebrate orders 
and macrophytes of the northern and north-western do-
main (Figueroa et al. 2012).

Diatoms are unicellular photosynthetic autotrophs 
(microalgae) inhabiting a huge variety of habitats, such 
as oceans, rivers, wetlands and even the soil environment. 
They are the chief primary producers and key contrib-
utors in food webs, biogeochemical cycles and carbon 
fixation (Pérez-Burillo et al. 2020). Interestingly, an es-
timated 100,000 species of diatoms are believed to exist, 
with newly-discovered diatom species present in unique 
areas worldwide (Mann and Vanormelingen 2013). Di-
atom assemblages have selective growth preferences. 
They bloom at specific environmental conditions (salini-
ty, temperature etc.) with short-generation periods (Smol 
and Stoermer 2010). Therefore, they respond rapidly to 
environmental changes that can influence their habitat, 
such as nutrient concentration, organic matter and water 
contamination (Hering et al. 2006).

For several decades, scientists have assessed the ef-
fect of pollution on diatom assemblages. Sixty years ago, 
scientists started assessing the influence of pollution on 
diatom assemblages and provided occurrence probabili-
ties of microalgal species in water quality classes. During 
the late 20th century, scientists managed to incorporate 
the long-term monitoring of the diatom assemblages as 
a means of bioassessment (Butcher 1947; Zelinka and 
Marvan 1961; McCormick and Cairns 1994). In 2000, 
the Water Framework Directive (WFD) incorporated 
the concept of reference conditions and the adoption of 
phytobenthos as one of the obligatory Biological Quality 
Elements (BQEs) (European Comission 2000) consider-
ing that changes in diatom assemblages can be a valuable 
monitoring and assessment tool. Therefore, diatoms are 
used by the Member States to meet their legislative ob-
ligations towards the WFD (European Comission 2000).

To date, the quality of water-bodies worldwide is as-
sessed by applying different diatom indices (Dalu et al. 
2016). Such indices include the Biological Diatom In-
dex (BDI), the Eutrophication Pollution Index (EPI), the 
Trophic Diatom Index (TDI), the Specific Polluosensitiv-
ity Index (IPS), the Sladecek Index (SLA) and the Sap-
robic Index of Rott (ROT), each of which has different 
sensitivities and investigate various environmental drives 
towards pollution (Rimet et al. 2005; Dalu et al. 2016; 
Pawlowski et al. 2018).

In Cyprus, the IPS Index (CEMAGREF 1982) is used 
since it was more suitable for the pressures that could af-
fect the water quality in Cyprus’ streams (WDD 2008) 

and the official assessment method’s class boundary 
values, based on the morphotaxonomy. The IPS Index 
correlates parameters related to organic pollution, ionic 
strength and eutrophication and, therefore, provides an 
overall estimate of water quality and is used by sever-
al European countries, such as Spain, Belgium, Estonia, 
Luxembourg, Sweden, Bulgaria, Greece and Portugal 
(WDD 2014; European Comission 2018; Masouras et al. 
2021). It is worth mentioning that most of these indices 
and assessment concepts were developed elsewhere in 
Europe. Therefore their transfer to Cyprus and the eastern 
Mediterranean countries should be done with caution due 
to the combination of harsh climate and geographical iso-
lation (Cantonati et al. 2020). In 2014, several Mediter-
ranean countries performed an intercallibration exercise 
to provide a common framework for the successful com-
parison of diatom assessments of river quality across the 
Mediterranean European region (Almeida et al. 2014).

Diatom taxonomic classification involves morpho-
logical identification under the microscope by catego-
rising the siliceous frustules of diatoms (Pandey et al. 
2017). This is a time-consuming procedure that requires 
an accurate morphological identification at species or 
sub-species level. Therefore, it requires high taxonomic 
expertise (Kahlert et al. 2009). At the same time, such 
practices are subjected to biases and are susceptible to hu-
man error. New strategies have been examined to develop 
high-throughput, cost-effective approaches (Hering et al. 
2018; Kelly et al. 2018; Vasselon et al. 2018). Recently, 
DNA metabarcoding, combined with high throughput se-
quencing and bioinformatics, is an alternative approach 
to morpho-taxonomic identification (Hering et al. 2018; 
Pawlowski et al. 2018; Rivera et al. 2018; Vasselon et 
al. 2018; Tapolczai et al. 2019). DNA metabarcoding in-
volves identifying the microbial diversity from environ-
mental samples by analysing relatively conserved small 
gene sequences (i.e. barcodes).

The start of Cyprus streams’ bioassessment using dia-
toms dates back to 2005 (Cantonati et al. 2020) and the 
Water Development Department (WDD) of Cyprus has 
incorporated it into routine assessments since 2010. The 
routine assessment involves the use of the morpho-tax-
onomic identification method for the calculation of IPS. 
To date, DNA metabarcoding has been assessed mainly 
by the west-northern Mediterranean and northern Euro-
pean countries (Vasselon et al. 2017b; Kelly et al. 2018; 
Bailet et al. 2019; Feio et al. 2020; Pérez-Burillo et al. 
2020). Additionally, extensive studies have been per-
formed throughout Mediterranean marine environments 
regarding diatom biodiversity using DNA metabarcod-
ing (Malviya et al. 2016; Kaleli et al. 2020; Vijver et 
al. 2020). Therefore, this study compares, for the first 
time, the diatom diversity and IPS scores obtained using 
high-throughput DNA sequencing and the morpho-taxo-
nomic identification approach for an eastern Mediterrane-
an country, like Cyprus, with a known population of en-
demic diatom species (Cantonati et al. 2016, 2018). Here, 
the study uses the results of the metabarcoding analysis 
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that utilised a small 312 bp fragment of the rbcL, which 
encodes the Ribulose-1,5-bisphosphate carboxylase/ox-
ygenase. This gene shows alternating highly conserved 
and polymorphic regions, which are key requirements 
for a successful genetic identification to the species level 
(Kermarrec et al. 2013). We compared both methods to: 
a) assess whether the two methodologies are complemen-
tary or they can replace one another and b) test which 
methodologies are more suitable within Cyprus’ routine 
bioassessment protocol using the IPS Index.

Materials and methods

Study area and sampling methodology.

Sampling stations were selected following the annual 
schedule of the WDD during May and June 2018. Bio-
film samples were collected from 32 river sites in 11 
catchments. Permanently submerged cobbles making up 
an area of about 100 cm2 were randomly selected from 
the main stream channel in moderate flow conditions and 
a minimum of 5 cm water depth. The cobbles were gen-
tly rubbed with a brush at the parts exposed to the river 
flow. The dislodged material was preserved in formalde-
hyde (3%) for morphological or ethanol (70%) for the 
molecular analysis (CEN 2018). Samples were stored in 
a cool, dark area until laboratory analysis, as previously 
described by Pissaridou et al. (2021).

DNA extraction and molecular analysis

DNA extraction was performed using a commercial kit 
(NucleoSpin Soil Kit, MACHEREY-NAGEL) according 
to the manufacturer’s instructions. Two technical samples 
were evaluated. Briefly, 2 ml of suspended diatom biofilm 
were centrifuged for 30 min at 13,000 rpm. The pellet 
was then lysed and the DNA was purified following the 
Kit’s protocol. The DNA quality was assessed spectro-
photometrically (NanoDrop 1000, Thermo Fisher Scien-
tific). The rbcL barcode was amplified by PCR using di-
atom-specific rbcL primers and the HiFi KAPA Taq Mix 
(KAPA Biosciences) to a final volume of 25 ml. Samples 
were then sent to GenoToul Genomics and Transcriptom-
ics platform (GeT‐PlaGe, Auzeville, France) for Illumina 
MiSeq sequencing.

Bioinformatic analysis

Raw Fastq sequences were analysed using Mothur soft-
ware (version 1.41.3) (Schloss et al. 2009). Sequences 
were filtered for quality and length (criteria: minimum 
length 280 bp, one mismatch allowed and homopoly-
mers less than 8 bp), dereplicated and aligned to the Diat.
barcode database version 7.1 (Rimet et al. 2019, 2018). 
Then, chimera detection and removal were performed. 
Taxonomic affiliation of reads was achieved using the 
Wang Method at a 75% confidence threshold. Lastly, a 

distance matrix was created to allow the clustering of 
reads into operational taxonomical units (OTUs). The 
clustering method was the Furthest-Neighbour, where se-
quences with more than or equal to 95% similarity were 
clustered in one OTU. OTUs singletons were removed. 
Then all samples were normalised to the lowest read 
abundance. The method is described in detail in Pissar-
idou et al. (2021).

Morpho-taxonomic analysis

The diatom biofilm samples underwent processing using 
the hydrogen peroxide and potassium dichromate meth-
od, following the European standard EN 13946 (DIN EN 
13946 2014), before permanent slide mounting. Briefly, 
5 to 10 ml of diatom samples were centrifuged. Samples 
were then cleaned by repeated rinsing with 30% hydrogen 
peroxide (H2O2) and hydrochloric acid (HCl) following 
final decantation with distilled water. Next, samples were 
air-dried and mounted on microscope glass slides using 
Naphrax (Brunel Microscopes Ltd). At least 400 valves 
were identified for each sample and counted under an op-
tical microscope Zeiss Axioskop 2, equipped with phase 
contrast and a digital camera Axiocam (Carl Zeiss JSC, 
Milan, Italy). The species identification was performed 
to the lowest taxonomic level possible (species or intra-
specific rank) using various keys, with Cantonati et al. 
(2017) as the primary reference and recent scientific pub-
lications for specific taxa. The results were harmonised 
according to the “Final harmonisation of diatom names” 
list (Feio 2011). A complete species list and number of 
valves per species were created for each sample, along 
with each species’ relative abundance.

Data analysis

Correction factor: The Correction Factor (CF) was ap-
plied to account for the rbcL copy number in relation to 
the biovolume of cells. The application was performed as 
described by Vasselon et al. (2018) according to the infor-
mation supplied in the Diat.barcode database version 7.1 
(Rimet et al. 2018, 2019).

IPS score calculation:
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IPSV = pollution tolerance values
IPSS = pollution sensitivity values

The IPSV and the IPSS values for each species were 
acquired from the Diat.barcode database version 7.1 
(Rimet et al. 2018, 2019). IPS scores were transformed 
to water quality estimates where IPS ≥ 17 – “High”; IPS 
(13–17) – “Good”; IPS (9–13) – “Moderate”; IPS (5–9) 
– “Poor”; and IPS (1–5) – “Bad” class, respectively (CE-
MAGREF 1982).
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Statistical analysis: Pearson’s Correlation was per-
formed using GraphPad PRISM version 9 for Windows, 
GraphPad Software, (La Jolla, California, USA). Pie 
charts and Venn Diagrams were performed in Excel (Mi-
crosoft). Plots were created using R (R Core Team 2020).

Results

DNA metabarcoding diatom identification

The DNA metabarcoding analysis identified a total of 
four classes, 13 orders, 28 families, 53 genera, 106 spe-
cies and 136 strains amongst 1,553,538 reads for the 32 
stations studied. Vasselon et al. (2018) observed that the 
molecular approach results overestimate the presence of 
high biovolume species, which may have higher rbcL 
copies per cell. The metabarcoding approach performed 
in this study was also able to observe such changes in 
abundance, as expressed as OTU copy numbers (Fig. 1). 
Consequently, a Correction Factor (CF) was applied to 
take into account the biovolume of diatom frustules to 
make DNA metabarcoding counts fit better with those 
estimated by microscopic counts (Charles et al. 2021). 
This removed species with high biovolume from the top 
ten most abundant species, like Ulnaria ulna, Cocconeis 
euglypta and Cymbella cymbiformis and, instead, intro-

duced species like Fistulifera saprophila, Planothidium 
frequentissimum, Planothidium lanceolatum and Maya-
maea permitis with low biovolume (Fig. 1). This correc-
tion allows for a better alignment of the diatom assem-
blages from the molecular approach and subsequently a 
higher correlation between the two methodologies.

The ten most abundant species of the morpho-taxo-
nomic analysis are represented in Figure 2. Cocconeis eu-
glypta, Achnanthidium jackii and A. minutissimum are the 
most abundant diatoms. This was also the case in the mo-
lecular analysis (Fig. 1), as A. minutissimum was detected 
second in line. A. jackii was not detected in the molecular 
data as, in the reference database, it is considered a vari-
ant of A. minutissimum and is, therefore, represented by 
the same barcode (Rimet et al. 2019).

Comparison of the morpho-taxonomic and molecular 
identification of diatoms

To evaluate the performance of the two methods, we 
compared the species identified in both cases. Figure 3A 
shows that both methodologies identified 39 common 
species, corresponding to 18% (Suppl. material 1: Ta-
ble S1). These 39 species represent a large part of the 
community in terms of biomass since the 39 species in-
clude several of the most frequent and abundant taxa in 
the Cyprus diatom assemblages. Interestingly, 99 species 

Figure 1. Correction factor application. Ten most abundant species identified by the molecular approach before and after the CF 
application.



Metabarcoding and Metagenomics 5: e68438

https://mbmg.pensoft.net

115

were identified only by the morpho-taxonomic identifica-
tion and 67 species only by the molecular identification 
method (Fig. 3A).

The number of species observed with each technique 
was used to calculate the IPS index for the ecological sta-
tus evaluation of each station (CEMAGREF 1982). The 
IPS scores, obtained with the two methodologies, show 
significant positive correlation (p < 0.0001, r = 0.6745, 
Fig. 3B). More than half of the samples shared the same 
quality class.

At the same time, some discrepancies between the two 
methodologies were observed. Twelve stations show sub-
stantial differences between the two approaches (Fig. 3B, 
Fig. 4, Suppl. material 2). The molecular approach calcu-
lated lower ecological status values than the morpho-tax-
onomic approach for six stations (Fig. 3B). Interesting-
ly, four out of six stations have Fistulifera saprophila as 

the most abundant species. As detected by the molecular 
analysis, one station has Amphora pediculus as the most 
abundant with Fistulifera saprophila following and one 
station has Achnanthidium minutissimum and Ulnaria 
ulna as the most abundant species.

On the other hand, the molecular approach calculated 
higher IPS values than the morpho-taxonomic approach 
for six more stations (Suppl. material 2). These differ-
ences could be due to the lack of barcoding data for 
diatom species at these stations, creating gaps in com-
paring the two methodologies. The molecular approach 
identifies a higher abundance of Planothidium victorii, 
Hantzschia unclassified and Achnanthes unclassified. 
For the same stations, higher abundance of Achnan-
thidium jackii, Achnanthidium minutissimum, Cocco-
neis euglypta, Cyclostephanos cf. invisitatus, Ampho-
ra pediculus and Amphora micra have been identified 

Figure 2. Ten most abundant species identified by the morpho-taxonomic approach.

Figure 3. Comparison of morpho-taxonomic and molecular identification at the species level. A) Venn Diagram demonstrating the 
number of species identified by both methodologies, by morpho-taxonomic identification only (99), by molecular identification only 
(67) and by both methods (39). Suppl. material 1: Table S1 gives the number of valves and number of reads recorded for the 39 
common species; B) IPS correlation of the morpho-taxonomic and molecular identification methodologies. Pearson Correlation was 
performed indicating a significant correlation (r = 0.6745, p < 0.0001. The boundaries of the ecological status classes are marked: 
red (Bad), orange (Poor), yellow (Moderate), green (Good), blue (High). Dashed lines: Good/moderate boundary, Red dashed circle: 
morphological classifies as good status, while molecular classifies below good status. Blue cirlce: morphological classifies as below 
good status, while molecular classifies good status.
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using the morpho-taxonomic approach (data not shown) 
(Pérez-Burillo et al. 2020). As previously noted, Cyclo-
stephanos cf. invisitatus and Amphora micra are diatoms 
species whose barcode is not yet available in online bar-
code databases.

Discussion

Thus far, several studies have shown disagreements be-
tween molecular and morphological datasets due to the 
inherent biases of both methods (Keck et al. 2021). The 
most apparent reason for these discrepancies is the in-
completeness of molecular reference databases since bar-
coding studies focused so far on particular river types and 
geographical regions, including mostly north-west Med-
iterranean countries and perennial rivers. (Pawlowski et 
al. 2018).

Here, as presented by recent studies, the identification 
of more species by the morphological approach than by 
DNA metabarcoding, in many cases, does not signifi-
cantly impact the IPS assignment (Vasselon et al. 2017a; 
Keck et al. 2018; Rivera et al. 2018; Mortágua et al. 
2019). Additionally, we have demonstrated how the CF’s 
application to the molecular approach is important in 
comparing the two methodologies. The CF accounts for 
the rbcL copy number concerning the biovolume of cells 

and, therefore, is considered to obtain DNA sequence 
proportions closer to cell proportions obtained through 
microscopy and account for large diatom frustules having 
several rbcL copies (Vasselon et al. 2019). Both meth-
odologies have their limitations, including the classifica-
tion biases in species complexes and oversimplification 
requiring high scientific expertise for morphology-based 
approaches and the gaps of DNA barcoding data in exist-
ing references databases in molecular-based approaches 
(Jahn et al. 2017; Pinseel et al. 2017). Kelly et al. (2020) 
suggested that, as microscopy data also have some biases 
and limitations, it would be better to treat molecular data 
at their face value to integrate them into indicator metrics. 
Indeed, the differences in size reflected by the rbcL data 
(Vasselon et al. 2018) may give a more accurate indica-
tion of the relative contribution of each taxon to diatom 
productivity than the microscopy data, which could lead 
to novel bioindicator metrics, better reflecting the ecosys-
tem functioning.

In this paper, some discrepancies in IPS scores appear 
when comparing both approaches. The microscopy can 
sometimes underestimate small diatom species with low 
sensitivity values, thereby having a significant negative 
impact on the IPS scores estimated with DNA metabar-
coding (Jahn et al. 2017; Pinseel et al. 2017). Interesting-
ly, literature suggests that small species like Fistulifera 
saprophila and Mayamaea permitis are often overlooked/

Figure 4. Map representation and comparison of the IPS values obtained using the morpho-taxonomic and molecular approach. The 
detailed values are provided in Suppl. material 2: Fig. S1.
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underestimated by the morphological approach (Kahlert 
et al. 2009; Pérez-Burillo et al. 2020). In this study, only 
F. saprophila was detected exclusively by the molecu-
lar approach, whereas M. permitis was detected by both 
methods (Suppl. material 1). Both species become prom-
inent in eutrophic and polluted environments and con-
sequently lower the IPS Index scores (Rott et al. 1998; 
Rimet et al. 2005; Kahlert et al. 2009; Pérez-Burillo et 
al. 2020). This explains why six of the twelve differing 
stations have lower IPS scores when estimated through 
the molecular approach (Suppl. material 2). F. saprophila 
valves are known to be prone to dissolution during labo-
ratory preparation and this could explain why this species 
is usually overlooked in the morphological identification 
procedures (Zgrundo et al. 2013; Cantonati et al. 2017, 
2018; Kelly et al. 2020). Our results agree with the ob-
servations of Pérez-Burillo et al. (2020) that Fistulifera 
saprophila was often the species responsible for sites be-
coming critical, i.e. having a low IPS score. The same 
study identified A. minutissimum as the diatom species 
contributing positively to the IPS scores (Pérez-Burillo 
et al. 2020).

On the other hand, gaps in the reference databases 
may be unable to identify some other taxa of low sen-
sitivity value, with a significant positive impact on the 
IPS scores estimated with DNA metabarcoding (Vasse-
lon et al. 2019; Bailet et al. 2020). Regarding the eastern 
Mediterranean countries, there is a lack of sufficient DNA 
barcoding studies to date. Most recent DNA barcoding 
and metabarcoding studies focus on the west-northern 
Mediterranean and northern European countries (Vasse-
lon et al. 2017b; Kelly et al. 2018; Bailet et al. 2019; Feio 
et al. 2020; Pérez-Burillo et al. 2020). When considering 
the eastern Mediterranean region, most studies focus on 
the marine environment (Malviya et al. 2016; Kaleli et al. 
2020; Vijver et al. 2020) and morphological identification 
of endemic species, such as Navicula veronensis sp. nov. 
found in low elevation carbonate springs (Cantonati et al. 
2016), Ulnaria monodii found in streams with relatively 
warm waters and Ulnaria acuscypriacus sp. nov. having 
tolerance to brackish conditions (Cantonati et al. 2018). 
Therefore, the gaps, observed here in the comparison of 
the two methodologies, are more or less expected.

Even though the morpho-taxonomic approach is able 
to identify more species than the DNA metabarcoding 
method, the DNA metabarcoding approach is still con-
sidered an effective method for diatom assemblage iden-
tification as it offers high-throughput, cost-effective and 
accurate analysis provided that the online barcode data-
bases are up to date (Vasselon et al. 2017a; Keck et al. 
2018; Rivera et al. 2018; Mortágua et al. 2019).

Conclusions

To conclude, this study has investigated diatom sam-
ples from the Cyprus stream monitoring network and 
the correlation of the two methodologies currently in 

play for stream-quality bioassessments, based on phy-
tobenthos/diatoms. For the first time, we compared and 
contrasted DNA metabarcoding to the traditional mor-
phological, ecological assessment for river biomonitor-
ing in Cyprus, a typical eastern Mediterranean coun-
try. Our results are in line with what has already been 
shown in literature. The limitations of both techniques 
can offset each other nicely when using spatial data-
sets. Despite the differences between the two methods 
and the taxonomic inventories they produced, the IPS 
scores from the molecular data were well correlated 
with those from morpho-taxonomic data when a CF is 
applied to bring molecular data in line with the expecta-
tions, based on microscopy data. As Kelly et al. (2020) 
stated: “HTS is not a simple transaction in which LM is 
replaced by a better technology, but requires a deeper 
level of institutional transformation than had hitherto 
been anticipated”.

Future work can investigate how the two methodolo-
gies could contribute to an integrated assessment of dif-
ferent Mediterranean rivers with different hydrological 
impacts and pollution (Charles et al. 2021). Additionally, 
it is worth studying the temporal observation of rivers to 
examine whether a potential shift to metabarcoding al-
ters perceptions of status at an individual site level, as 
previously demonstrated by Kelly et al. (2020). Lastly, 
there is a parallel need of: 1) an enrichment of DNA ref-
erence databases for the diatom species that are primarily 
present and endemic to southern-eastern Mediterranean 
rivers and 2) development of so-called taxonomy-free ap-
proaches to overcome these reference gaps, as recently 
tested on diatoms (Apothéloz-Perret-Gentil et al. 2020; 
Tapolczai et al. 2021).
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