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Abstract

Two-dimensional periodic gravity waves at the interface between two bounded fuids of di#erent densities

are considered. Based on the Hamiltonian structure of the problem, the relation between wave frequency
and wave amplitude is obtained through a weakly nonlinear analysis. All classes of time- and space-
periodic waves are studied: traveling and standing waves as well as a degenerate class of mixed waves. As
opposed to water waves, mixed interfacia] waves exist even in the absence of capillality. The stability of
traveling and standing waves with respect to three-dimensional modulationo i8 then studied. By using the
method of multiple scales, Davey-Stewartson-type equations are obtained. A detailed stability analysis i8
performed and reveals that while for longitudinal and oblique modulations standing and traveling waves
have the same stability behavior, for transverse modulations standing waves are less stable than traveling
waves

1. Introduction

The problem of periodic waves at the interface between two inviscid f]uide of unequal depths and different
densities in the presence of gravity is considered. The goal h to study the bifurcations and modulational
stability of al/ classy of periodic interfacial waves: traveling waves (TWa), standing waves (SW's) and
mixed waves (MWs). This kind of waves may fhd applications in the ocean or even in lakes, eventhough
it must be said that this system may be subject to other instabilities of the Kelvin-Helmholtz type when
the wave amplitudes are large enough and may even be a#ected by viscosity. However the simplified
system studied here is itself very useful towards understanding basic features of interracial waves.

Unless otherwise stated, the references below deal with interracial waves. Among numerous contributions
regarding TWs are Thorpe's (1968a) theoretical and experimental investigation of gravity waves in finite
depth, Tsuli and Nagata'o (1973) formal study of deep internal waves thmugh a fifth-order expansion,
and Holyer's (1979) numerical study of gravity waves. Nayfeh (1976) studied the stability of TW's with
respect to small two-dimemional modulations when both layers have infinite depth, while Tanaka (1982)
and Grimshaw and Pullin (1985) treated the finite-depth case. '

The literature concerned with SW's ia quite limited. One may note Thorpe'e (1968b) theoretical and
experimental results for finite-depth gravity waved as well as Diu and Bridged's (1994) analytical study.
To our knowledge no stability results exist for interfacia] Says, which i8 0ne of the main motivations of
the current study.

The third class of periodic waves comidered here is the class of mixed waves. For the linearized problem,
mixed waves are the 8uperposition of a left TW and of a right TPP ' with di#erent amplitudes. However
mixed waves do not peroi8t when nonlinear terms are considered, except in degenerate capes. Diu and
Bridges (1994) showed that mixed waves exist in infinite depth when a certain relation between density
ratio and interfacial tension is satisfied. Here we show that, in finite depth, mixed waves can occur even
if interfacial tension is neglected.

The present study is divided into two parts. In the first part ($ $ 2-3), the objective is to obtain tbe so-
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called n07'ma/ .form of the problem, which gives a relation between the angulu &equency o and the wave
amplitude for fixed wavenumber k and, consequently, gives important information about the behavior
and properties thereof. In the second part($ $ 4-5), we derive Davey-Stewutson-type equation, through
which a stability analysis of interfacial waves with respect to small modulation is performed.

The study in the first put io based on the hamiltonian structure of tbe problem, which has been given
(for interfacial waves) by Benjamin md Bridges (1991): The formulation of the problem is recalled in $ 2.
The equivalent Lagrangian formulation is provided and a fourth-order truncation of the Lagrangian f
is forma[[y derived. The general form of Hamiltonian H or Lagrangian .C may be obtained simp]y by
considering the symmetries of the problem. However, the computation of tbe values of the coef6.dents in
f in terms of the physical puametera requires tedious work. The coeHicients are computed in the general
case of finite depths through a projection method simile to Whitlam'a (1974) averaging method. Note,
however, that in this case the method b only formally constructed and its convergence is not awured.
In $ 3, considering the first variations of f yields the deshed normal form (truncated at order 2) which
reveals the presence of three classes of waves: TW8, SWs and degenerate Jaws. A8 said above, the new
feature is that while for water waves these MWs were only possible in the presence of capillality, they
exist here even for pure gravity waves.

[n the second part($ $ 4-5), our aim is to study the stability of two-dimenaiona] interfacia] waves with
respect to small three-dimensional modulations, in the spirit of Davey a.nd Stewutwn's (1974) analysis.
The first stability results on interfacial waves are due to Nayfeh (1976) who conducted a nonlinear stability
analysis on two-dimensional capillary--gravity waves between two unbounded 6uids, using multiple scales.
Tanaka (1982) and Grimshaw and Pullin (1985) studied the stability of gravity interfacial waves with
respect to three-dimensional modulations. Pullin and Grimobaw (1985, 1986) extended this study to
finite-amplitude waves, with or without the presence of a bwic current. However, no work has dealt so
far with the stability of interracial S}Vs.

The present analysis treats the stability of both Toys and SWs with respect to three-dimensional
modulations. This was first done for surface waves by Pierce and Knobloch (1994). They found that
SIPS may be unstable for transverse modulations even if they are stable with respect to longitudinal
modulations. As in their case, the multiple scales expansion method is used here as flainework. To handle
STVs, one may think of them as a superposition of two counter-propagating TWs of equal amplitudes.
Therefore, asymptotic expansions with respect to a small ordering parameter c will be considered both in
ei(b'-"t) and in e'i(E'-wt), where f ie the spatial coordinate along which the wave of wavenumber I and
angular frequency u propagates in time t. The analysis in $ 4 leads to & system of three partial di#erential
equations (see (33)-(34)) malogous to the two Davey-Stewartson equations (the third one here is due
to the addition of a second fluid-layer). Equation (34) is a nonlinear Schr6dinger-type equation, which
is diRerent for TWs and dIVs. The reason behind this is that while T117o depend on time at order c2
(since at order c they may be transformed by 2 -. z -- cf t), SWo depend on f at order € which yields
additional terms in (34). Based on (33)-(34), a stability analysis in $ 5 with respect to both longitudinal
and transveme small modulations provides interesting nen, results for both SlIPs and TW's. A first
observation is that when only longitudinal modulations (i.e. modulations in z) a.re present, SWa have
the same stability properties as T}V's. However, when only transverse modulations are comidered, SWs
have di6erent properties and are in fact less enable than 7'Ws. As for the role of the density ratio, one
may say that it is in general stabilizing, especially for TW's.

2. Hamiltonian formulation and weakly nonlineu analysis

The geometry of the problem is presented in Fig. 1. A quid of density / lies on top of a heavier quid
of density p. The plane z = 0 represents the interface at rest. When in motion, the interface h described
by z = 17(3, 3r, t), where f and y denote the horizontal coordinates. The lower fluid is bounded below by a
horizontal plane at z = --6, while the upper quid is bounded above by a horizontal plane at z = 6'. Both
fluids are inviscid and incompressible. Tbe £ow8 in each fluid are awumed to be irrotational. Therefore,
velocity potentials are introduced in each quid. The governing equation ue given by

V.8= v'd=o, V.u' = Vzd'=0, (1)
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y = 77(x)

Figure 1. Geometry of the twa-layer fluid pmblem

where {i and un are the velocities of the lower and upper 6uids respectively, generated by corresponding
potentials d and d ', subject to conditions

d. = 0 at z = --6, #l. =0 at z= 6' (2)

At tile interface z l7(f, y, f), the two kinematic conditions are given by

?t -- 0(x) + l7r©(r) + l7V©(V) ?t -- Ot,) + l7'Q(s) + l7v0(!r) 0 , (3)

(4)

and the dynamic condition (obtained from Bernoulli's equation) by

, ,--ll«lO -,'(.&,-- }l-'l ') --,b-,o.:',
where g is the acceleration due to gravity, Q(.) : d(.)(z, y, l7,t), Q(.) = d(.)(z, y, i7,t), u = f(f, y, i7,t),
u/ = {i'(z, 3r, l7,t) and subscripts in parentheses denote evaluation of derivatives at the interface. Note
that the horizontal coordinate y has been included in the formulation above because it will be considered
in the stability analysis (eee $ 4) of the two-dimensional waves obtained in $ 3.

The above problem may be represented as a Hamiltonian system that we brieay recall below for the case
of two-dimensional periodic solutions in space (of wavelnumber E) and in time (of frequency u). For a
detailed analysis see Benjamin and Bridges (1991). The evolution equations ale

«.:a4Fd, '. A.% ((, q)
Aq ' (5)

where canonical variable ( is equal to p® -- /©/ and A denote variational derivatives. The Hamiltonian
function H is the sum of .K + V ', where .K and }'' are respectively the kinetic and potential energies, given
by

K(d, d ', q) /
/
* I/i , ./*'' {,'

}(p -- p')gl72 da .

(6)

(7)\''(q)

In (6) K is given as a function of # and d '. In fact, it can be proved that # and d ' only appeal in
the combination ( through the calculus of variations. That is, K((, 17) is obtained as the minimum of
K(d, d ', l7) with q fixed on the constant set p© -- p'©' = (

The Hamiltonian formulation above has an equivalent Lagrangian formulation. Given suitable functions
q(f, t) and ((z, t) with fixed t-endpoints for l7 md convergent z-integral, the set of equations (5) may
be formally recovered by setting the first derivation of the functional

. : /' [' - "] -* (8)
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equal to zero. Recalling finite-dimemional llamiltonian systems, recovering (5) from (8) is analogous to
Hamilton's Principle of Leet Action.

Functional f can be computed through a weakly nonlineu malyeis. Functions q(f,t), d(=,t), d'(ar,t)
and ((z,t) can be expanded in double Fourier nrieo in a and t. Details can be found for example in
Dias and Bridges(1990). For the present analysis it is suH.dent to retain two terms in the expamions.
Considering wavelengths of 2z/E and time periods of 2a'/u, reacabng time by t b- ut, and averaging over
space and time, the correct reduced f to degree four in the amplitudes is given by

£ @, w,..o : ("' - "lZ;$' + '') .p - a£3il£i1lb (' -D ' + p "'') ,
(9)

where

a(€,£6,16') = 7'(1)+f(2)+f(3),
P(e,t6,£6') = 7'(1) - f(2)+f(4),

(10)

(11)

with

,(1)

,(2)

,(3)
,(4)

[r''(3 - 7'') - pr'(3 - r'')]'
32 rr'(r + pr ') '

[r"(l+r')-pr'(]+r'')]'
16 (r ' + pT) '

-{(r''+p7''),
- } l7'';(1 - 4r ') + pz''(1 - 4r")I

Here, T = tanh h6, T ' = taub £6' and p is pimply the density ratio //p.
frequency given by

. g£TT ' rl -- e\

w6:. T'+eT '
while quantities E and .A/ are given by

Quantity oo denotes the linear

E =lxl'+lal ', M ' I.al ' - I.al ', (12)

where .A and .B are the first order complex Fourier series coeMcients of

i7 = Re I.ae 'i(t-E=) + .B e -i(tuba) + . . .I (13)

Therefore, .E and .A/ may be thought of, respectively, as measures of the energy and momentum of
the waves. The fact that amplitudes .A and .B appear only in combinations .D and M comes eom tbe
symmetries of the problem, as was shown by Bridges and Dias (1990) who also predicted the general form
of f. Equation (9) is identical to equation (5.4) in Dias and Bridges (1994), in t.he limit as 16, 16' --- oo
(setting their b = 0).

3. Analysis of the normal form

Next, the so-called normal form of the problem, that io the system of equations relating the amplitudes
of the waves to the angular wave hegue?!cy, b derived. Following definition(12) and setting to zero the
derivatives of £ (9) with respect to X, B, .A md .B (with bar denoting complex conjugated) yields

.al("'- "g)

.B I(«' - «g)

$bl:li:t#b{ ( + gt.x1' + (. - 8t.al ' }l = o,

?;;l$$!ii:t#;{ (a - P)IXI ' + (a + P)lal ' }l = 0,

(14)

(15)

and their complex conjugated. Looking at (13), tbbere ale three cased, as fu as amplitudes 4 and .B
are concerned, to consider. Each case represents a di#erent class of waves. One may 8w that .A = 0
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corresponds to Tips with direction to the left (7'W '), whereas .B = 0 corresponds to TWs with direction
to the right (T}7+). Equations (12) chow that Tty ' ue characterized by .D = .A/ = 1.Bl2, whereas T}V+
are characterized by .D = --.A/ = 1..4l2. Case I.al = 1.OI corresponds ta SW, whidi may be viewed as a
superposition of a T}V+ and a TW ' of equal amplitudes. These ue chuacterized by .A/ = 0. Finally,
.4 7f B is a degenerate case, possih]e on]y if P = 0, and corresponds to degenerate mixed waves (Jaws).
This case has been given particular attention in Bridges and Diu (1990) for water waves. For all three
classes, the normal form may be simplified. In particular, for TWs (fol both TW+ md FLIP ') (12)--(13)
yield the following nonlinear dispersion relation:

«' ?:?;i$;r;-i©(«+n.D} , (.E = 1.xl ' .- I.elD . (16)

It is worth mentioning that (16) is in agreement with (5.11) in Miles (1986) when l--p is sma/I (Bouwinesq
limit), and with (2.1.4) (k6, £6' --, oo), (2.1.6) (E6 = k6'), (2.1.7) (either £6 or k6' -. oo) md (2.1.9)
(k6 = £6', Boussinesq limit) in Thorpe (1968a).

For SWs, (14) and (15) become identical and yield the following nonlinear dispersion relation

«' ?6?BFgG-a:5-.E}, GD 21.AI ' (17)

Again, we mention the agreement of (17) with dispersion relatiana (2.1.2) (Boussinnq limit), (2.1.4)
(either k6 or h6' --- oo) and (1.4) (16, £6' --, oo) in Thorpe (1968b).

Finally, for .A/}Vs (P = 0), the corresponding nonlineal dispersion relation following from (14)--(15) is
given by

«' : «i {: -. -«i£;;n',}
This degenerate class of periodic waves is characterized by two dominant amplitudes and may be thought
of as partially reflected waves which are the product of & superposition of a T}V+ and a TTV ' of di#ering
amplitudes. Clearly, Twas (resp. TW''B) ale a limiting case of MFt's 'Keen -B = 0 (resp. .A = 0), while
SWs correspond to MWs with I.al = 1-PI. Hence the latter provide a connection between branches of
Tty+s and TW''s and branches of Save.

) (.E =lxl'+l.al '). (18)

Dispersion relations (16) and (17) may yield branching (bifurcation) diagrams for TW's and Says. These
are frequency (or wavespeed) - amplitude (or energy) diagrams and the branching behavior depends on
the sign of coefHcients a + P for T}Vs and a for SWs. There exist values of parameters p, k6 and k6'
through which these coeHicients change sign. Trio very property renders a + P and a important towards
the branching behavior of periodic waves.

Moreover, note that coefEcients a + P and cv appeal in the amplitude equations which describe nonlinear
modulations of the waves. Therefore more emphasis on their importance will be given when stability of
interfacial waves is discussed in $ 5.

It turns out that all three coeHcients (a + P, a and P) may vanish for appropriate choices of p, T
and T '. This behavior diners from its counterpart for gravity surface waves, where only cv vanishes (for
T = 0.7849), while cv + P and P are always positive. It also diners from the conesponding behavior
of gravity interfacial waves in infinite depth, where cv + P and P ale always positive, while a is always
negative. The interesting new feature here is the presence of JI/Ws, which so fu have been associated with
capillarity, in the absence of the latter. These waves may, in fact, exist far all p > 0, given appropriate
depthst

For Toys, a + P may vanish only for values of T'/T < 1.2838. For T'/T > 1.2838, a + P is always
positive. For Sips, a may vanish only when T'/T < 1.8354. For T'/T > 1.8354, a is always positive.
Degeneracy P = 0 (responsible for MWs) may be present for 7"/T < 1.1839 only.

Figure 2 shows the (7',T')-plane for cases p = 0.1, e = 0.5 and p = 0.99. Curves a = 0, a + P = 0 and
P = 0 partition the plane into four regions. Numbers in each region corrmpond to a di#erent branching
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Figure 2. Signs of coeHicients a + P and cr in the puameter plane for di#erent values of e. (1) a + P > 0, a < 0,
(2) a+P > 0, a > 0,(3) crap < cr < 0,(4) a < a+P < 0.(a) e = 0.1,(b) e = 0.5,(c) e = 0.99.
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a

2

Figure 3. Corresponding branching behavior for 7'FV'f and S r for four regions shown in Figure 2 (a denoted
amplitude).

W2«g

behavior shown in Fig. 3. As demonstrated, for high values of p (Fig. 2(c)), case which may be of
interest to the oceanographer or the limnologist, MWs may ody exist for a limited range of T and T '
(i.e for a limited range of depths of the two fluids) while for low values of p (Fig. 2(a)), they exist for all
T. The same applies for dIVs and SW8 with branching behavior as in 3 and 4 of Fig. 3.

4. Multiple scales analysis

We now turn attention to modulational stability of interracial waves. In order to study nonlinear
interactions of small-amplitude waves, we follow the well-known method of multiple scales expansion.
Note that y-dependence is considered hereafter. Spatial and temporal scales are introduced as follows:

X y = €y, 7 = ct, r= c2t

where c is a small ordering parameter given (for example) by k.4, with X and .A being respectively the
wavenumber and the wave amplitude. We awume that c << mind(16)2, (16')2}, where h6 and k6' are
0(1)

We then consider asymptotic expansions of i7, d and d ' in c as follows

q(,,y,t;c) )l-/ }.r }.r Cnq Qei("k'-i"f),
n=1 rn=-n l=--n

>l: }.r }.f CndlnmQei('nh'-lut) ,
n=1 m=- n J=--n

)ll: >1: )1: c'#t««4ei("k'-i"t) ,
n=lrn=-nl=-n

(19)

(20)

(21)

#(z, !r, z, t; €)

#'(z,y,z,f;€)

where *t.«q = '*t««i](z, X, y, 7. .-)
denotes linear frequency.

+[n(-m)(-1)] (with bar denoting complex conjugate) and u henceforth

Substituting (19)-(21) into (1)-(4) and collecting coefEcients of successive powers of c (up to order 3
which sufRces for our purpose), we obtain sets of perturbation equations. Use of these equations at
orders €, c2 and €3 provides expressions for dtnmq and glen«l]. For details 8ee Christodoulides and Diu
(1995)5

The next step is to obtain expressions for coefRcients l7[nmQ through the dynamic boundary condition
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(4). Collecting coefRcients of ei("'f'-l"') (for all m, 1), at each order of € results in,

qloo]

i7[ii(tl)] £e.(Xa - P.A't)
(22)

and

l7[200] -£(d]:oo],' - dl:oojr - iifgf lr(X;X'++ ]:.4'') - g'"(X+lX4' + .A-Z;:')I

- £ (: ''- '' - :£) a"'i ' -' i"-io -- '£ (: -- '' - gg) ''''*i ' -- l"'
£l( : "": - '}) - .( : "''': - "f)I,
£ (: - '' ' g)'''- - g (: - '' * qg)"''''-
g!(!ijli:l;l.Ig-(x+x '' + ..l-.x'+) ,

I') ,

l712i(£l)]

i7[220]

(23)

::P - p.rO + giCiil!%:(.a'Z;: + 7U '')

£ G -- ,' -- g£) «*r-- '£ G -- ," -- %y
£::(p: - pp ''') + g!(!iil:)e.a:.4''

*£(: - '' -T)':'

l7[202]

zy)"'';,
l7[22(X2)]

-£(:-''-z g)"''',
where r = I P

Now, in order to determine the unknown amplitudes in (22)-(23), use ia made of the kinematic conditions
(3). At order c we obtain

(24)

and the dispersion relation (recall $ 3)
gtkTT'
T'+pT

Consequently the group velocity (Useful in what follows) is given by

d« grrrr'(7" + Pr) -t 1:6(1 - 7 2 r 2 + eE6'(1 - 7''')r']
cg = a : 2«(T ' + pr)2 '

(25)

(26)

Order c2 yields

'*, ; 0 (27)

where we have introduced variables Xf = X T cf7, natural tramformatiow ror Tws,
the introduction.

as mentioned in

Finally, at order c3 are recovered evolution equations in dtioo], d]loo] and .Af in particular, for m
we obtain

1:0,

(28)#tiool1'7' -- ediloolrr -- 6gr(dlioolxx + dlloolw ')

#tiool77' -- pdlioolrr + 6'gr(+i:.olxx + dlioojw)
.(lx+l ' -- I.a-l')x ,
a'(I.A+l ' -- I.a- I')x ,

where

${..K:

;zi',Ki-rDT ''

r')7'' -/
}

2gr7'aT 'l
- e(i - z"')r ') + 2g1l;Z:

a' -p(i- r'')T ')-
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and for m = 1, / = &l,

2ia..af -!g.a$v + 'x&x.- + i;P < 7'''#l:.olx + p dl:ooJX >x- x '
+.f < dliool7' -- pdliooJr >x- X+ + hl.A+l2..4+ + j < 1.A'l2 >x- .A+ ,

-!g.aiV + e.A=-x- -- ii;P < Tdlioojx + pTdlioojx >x+ A '

+/ < #liooja '' - Pdllool7' >x+ .A ' + hl..4-la..4- +.7 < 1.Alla >x+ .A ' ,

-2idA; (29)

where

T'+pT
Cd /F/ '

k'((i - T')r '' -- e(i -- T'')T ')'
T':(r'+pr)

r')r" - P(I - T'')T ') ,

' 2TT'4(T + pTJ) {7 (-9 + Iota -- 97'!) + pa7'4(--9 + 107'2 -- 97v4) + p(18T2T'2

+4rr '' - 6r'T '' - 67''7''a + 4T67'' - 87''T '' + 27''T'4 - 8r'7'';) f ,
£4rrl-T2\T"-Prl -Z.!) ): .f( !iZ.:)r''-P(i+7''')r ')' ....2 .--.'r3

r-i(?f:i'ii) ' '''' ?'
Note that the other amplitudes in (22)-(23) have been eliminated along tbe way. In particular, I)f has
been eliminated by demanding that expansions (19)--(21) remain asymptotic for f and t of O(€'2) which
is the case if and only if the spatial averages (over a period) < .Dxv >xv are zero.

Next, following the arguments of Pierce and Knobloch (1994), #]loo] and d]too] may be decomposed asfollows:
dttoo] = d+(x+)+ #'(x')+@(1'')7,
dliool= d'+(x+) + @''(x ') +'P'(f)r

Note that it is not difHcult to show that unknown functions @ and @' ale identically zero for TI,ys. They
are, however, necessary for S}Vs which cannot avoid explicit dependence on time at leading order and
are actually related to the mean level of the interface between the two fluids (qt200] in (23)). Substituting
(30) into (28) and averaging over a period in y, we obtain

< #f: >r
< d3 >*'

(30)

j:<pl.a:l'>* ,
£ <p'l.all'>., .

(31)

where

g: flgr! eq1l .,. ':'-(ci-6g,)a '
66'(g,y - c3(6P + 6')g ' ' P ' : 66'(g,y - c:(6i;l')gr '

provided that c3 # 66'gr/(6p + 6') (which is actually the case for the waves under investigation).

To determine @ and #', which are related to the mean fluid level, we require that the latter be zero (this
assures that the total volume of the system remains unaltered - see Pierce and Knobloch 1994), that is
<< 17[200] >x>r = 0 . Then,

@ - p'#' = {1;z(-(i - T')r ' + P(I - r')r ') + '.(P - PP')} << 1.A'FI ' >x.. + < 1.x'l ' >x- >,,. . (32)

Finally, upon rescaling as follows

r' = ga , .a'f(x, y. r ') = .Af(xl, r, r),
#'f(x,y,,') = df(xS,y.r), d''S(x,y,r ') = d'f(Xf,y.r) ,
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and dropping the stan, (29) and (28) yield the desired system of evolution equations

.£gig,)dh:
i'p,)dg: 6'grd?} : ::J$%', (33)

and

J:i..4f -!g.Xtr + e.A:;. + XI.aXI'..4S + j < 1.aVI ' >* .Ae

+/(V ' - @')X£ £ {(2k" - 'g/)d$ + (21:1Z + ',.f)edg: }41

£{(2k" + ',/) < d! >* +(2#;Z' - ',/)e < dg: >x }..{£ ,

(34)

where @ g@' (recall: present ody for SWs) i8 given in (32)

System (33)--(34) reduces to equations (1) in Pierce and Knobloch (1994) when p = 0 (setting their
p = 0). When the y-dependence is absent, (33)--(34) reduce to

J: i.Xj: = e 4:* + pl..4i: l2Xf + p < 1..4112 >x ..{f + € < 1.alla >x .Af , (35)

where

h + 1(2k" - ',.f)p + (2#P + ',.f)ep'l ,

.r li;z(-(i - p')r '' + e(i - I''')r ') + '.(p - @')I ,
j + (al"p + 2F-@') + / l:g(-(I - r')r ' + p(i 7''')T')I

For TW's (.A ' = 0 or .A+ = 0), the averaged terms vanish and coefRcient p in (35) is in agreement with
cr + P iii the nonlinear dispersion relation (16) (except for the group velocity term). In addition, (35)
recovers (3.5) in Tanaka (1982). For SWs (.A+ = .A '), the coeHicient of the cubic term in (35) becomes
p + z, + ( and is in agreement with a in (17).

5. Stability with respect to moddations

In this section a threefold study of the stability with respect to modulation3 is attempted. It is natural
to consider modulations either in both the longitudinal (X) and transverse (y) directions, or in the
longitudinal direction only, or in the transverse direction only.

(a) Stability CHteHa

The analysis is based on stability criteria, derived separately for each case. The derivation is omitted
here since it follows a pattern similar to the one in Pierce and Knoblocb (1994) for water waves. The
following conditions are obtained:

(a) Longitudinal modulation:
'P $ 0 . (36)

This condition is valid for both TW's and SWs md b identical to the criterion(24) derived by Pierce and
Knobloch (1994) for water waves. The same condition was derived for interfacial waves both by Nayfeh
(1976) (for capillary-gravity TW'8 in infinite-depth) and by Grimshaw and Pullin (1985) (for gravity
TlbVs). Violation of (36) for traveling water waves results in the well-known Benjamin-Fein imtability.

(6) Longitudinal and transverse (oblique) modulations:

e <0, p>0) h >0P h2--.j2 > 0i (37)

paul.christodoulides
Typewritten Text
IUTAM Symposium on Limnology, Broome, Australia, 1995         10



l

0.9

0.8

7'

0.7

0.6

0.5 0.6 0.7 0.8 0.9 1

Figure 4. Stability diagram with respect to ]ongitudina] modulations. Curve pi is plotted for three diferent
values of p. From left to right: p = 0.1, 0.5, 0.99. Both Tips and SH''s ue enable on the left of pt and unstable
on its right.

0.5
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Again these are conditions valid for both TPVs and SW's except for the last one which is only required
for S}Vs

(c) Transverse modulations:

h > 0, h2 --j2 > 0. (38)

These are conditions identical to the criterion (37) in Pierce and Knobloch (1994) for water waves.
Condition h2l-- J2 > 0 is only valid for S}Vs.

The stability criteria having been established, the effects of the two important physical parameters (second
layer and finite depth) on the stability are studied, with particular attention given to the density ratio
electsC

(b) Stability of gravity wades in unite depth

This case has been thoroughly studied by Tanaka (1982) and Grimshaw and Pullin (1985) for Toys, but
to our knowledge there are no results for SIV8.

The problem of interracial gravity waves as described in $ 2 is a 3-parameter problem, its parameters being
p, k6 and A6'. Therefore, fixing density ratio e, stability diagrams may be obtained in the (T,T')-plane
for all three cases described above. Such diagrams are obtained for three di#erent values of p namely 0.1,
0.5 and 0.99 (Boussinesq limit).

(a) The results for longitudinal modulations are presented in Fig. 4. Note that e > 0 for all p. Hence,
stability is established when p < 0. For each value of e there exists exactly one critical curve pl through
which p changes sign. This curve acts as barrier and all waves (meaning both T)Vs and S}V's) on its left
are stable while all waves on its right are unstable. In Fig. 4, curve pi i8 plotted for the three values
of p mentioned above. Note that for a better visualization, not the whole (T,T')-pine is shown. It io
clear that the larger the p the larger the stable area in the (T,7v)-plane, demonstrating the stabilizing
role of p. On the other hand, it is illustrated that letting both T and T ' tend to I (i.e. tbe two depths to
infinity) has a destabilizing erect. Finally, note that for the special Gabe p = 0 (wager waves - not shown)
the critical value is k6 = 1.363 in agreement with Whitlam'a (1967) value.

(b) As e > 0 regardless of p, the first condition of (37) is violated and hence all waves are unstable with
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Figure 5. StabiEty diagrams with respect to transverse modulations for three di#erent values of 0.(a) p
(b) p = 0.5, (c) p = 0.99. (A: 8tabihty regions for both 7W8 md SWs, T: 8tabiEty regions far TW8 only)
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respect to oblique modulations. This verifies drimshaw and Pullin'9 (1985) results for gravity Tll's

(c) When only transverse modulations are considered, the results are shown in Fig. 5. For p = 0.1,
there are two critical curves: hi consisting of two legs and corresponding to the vanishing of coefEcient
h, and .jl consisting of four legs (two "insideEnd two "outside"hi) corresponding to the vanishing of
coeMcient h2 -- j2. Notice that the results are (naturally) reminiscent of Fig. 2. '1Yaveling waves ue
stable everywhere outside ht , while S)V's ue stable in & smaller region of the plane as illustrated in Fig.
5(a). In the limiting case where both fluids are deep (T = T ' = 1) TW ale stable whereas S;Vs are
unstable. For T = I (k6 --. m), all waves ue stable for T ' < 0.114, wheres for T ' = I (k6' --, m), all
waves are stable for T < 0.7415. For p = 0.5 (Fig. 5(b)), hl has become a loop u have the two legs
of .fl inside it. The stability pattern remains the same. The two extreme values in the (T,T')-pla.ne are
(1, 0.3584) and (0.6203, 1). Increasing the density ratio to p = 0.99 (Fig. 5(c)), results in the two loops
having decreased in size. Consequently T[Vs are stable in a barger region than before. Moreover, the two
extreme points in the (T,7'')-plane have moved to (1, 0.498) and (Q.502, 1). Compuing this cue to case
(a), one concludes that interfacial waves in oceans or lakes are more stable than interfacial waves of small
density ratio (which behave like surface waves) when the lower quid is much deeper than the upper fund,
but less stable when the upper fluid is deeper than the lower quid.

Finally, comparing the stability regions in Fig. 5 to the regions in Fig. 2, one may draw the conclusion
that all stable periodic (traveling or standing) waves have the physical property of increasing amplitudes
with increasing angular frequency (Fig. 3 (2)).
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