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Abstrdct

Two-dimensional periodic gravity waves at the interface between two bounded fluids of different densities
are considered. Based on the Hamiltonian structure of the problem, the relation between wave frequency
and wave amplitude is obtained through a weakly nonlinear analysis. All classes of time- and space-
periodic waves are studied: traveling and standing waves as well as a degenerate class of mixed waves. As
opposed to water waves, mixed interfacial waves exist even in the absence of capillarity. The stability of
traveling and standing waves with respect to three-dimensional modulations is then studied. By using the
method of multiple scales, Davey—Stewartson-type equations are obtained. A detailed stability analysis is
performed and reveals that while for longitudinal and oblique modulations standing and traveling waves
have the same stability behavior, for transverse modulations standing waves are less stable than traveling
waves.

1. Introduction

The problem of periodic waves at the interface between two inviscid fluids of unequal depths and different
densities in the presence of gravity is considered. The goal is to study the bifurcations and modulational
stability of all classes of periodic interfacial waves: traveling waves (TWs), standing waves (SWs) and
mixed waves (M Ws). This kind of waves may find applications in the ocean or even in lakes, eventhough
it must be said that this system may be subject to other instabilities of the Kelvin—~Helmholtz type when
the wave amplitudes are large enough and may even be affected by viscosity. However the simplified
system studied here is itself very useful towards understanding basic features of interfacial waves.

Unless otherwise stated, the references below deal with interfacial waves. Among numerous contributions
regarding T'Ws are Thorpe’s (1968a) theoretical and experimental investigation of gravity waves in finite
depth, Tsuji and Nagata’s (1973) formal study of deep internal waves through a fifth-order expansion,
and Holyer’s (1979) numerical study of gravity waves. Nayfeh (1976) studied the stability of TWs with
respect to small two-dimensional modulations when both layers have infinite depth, while Tanaka (1982)
and Grimshaw and Pullin (1985) treated the finite-depth case.

The literature concerned with SWs is quite limited. One may note Thorpe’s (1968b) theoretical and
experimental results for finite-depth gravity waves as well as Dias and Bridges’s (1994) analytical study.
To our knowledge no stability results exist for interfacial SWs, which is one of the main motivations of
the current study. ’

The third class of periodic waves considered here is the class of mixed waves. For the linearized problem,
mixed waves are the superposition of a left TW and of a right TW with different amplitudes. However
mixed waves do not persist when nonlinear terms are considered, except in degenerate cases. Dias and
Bridges (1994) showed that mixed waves exist in infinite depth when a certain relation between density
ratio and interfacial tension is satisfied. Here we show that, in finite depth, mixed waves can occur even
if interfacial tension is neglected.

The present study is divided into two parts. In the first part (§§2-3), the objective is to obtain the so-
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called normal form of the problem, which gives a relation between the angular frequency w and the wave
amplitude for fixed wavenumber k and, consequently, gives important information about the behavior
and properties thereof. In the second part (§ § 4-5), we derive Davey—Stewartson-type equations, through
which a stability analysis of interfacial waves with respect to small modulations is performed.

The study in the first part is based on the Hamiltonian structure of the problem, which has been given
(for interfacial waves) by Benjamin and Bridges (1991): The formulation of the problem is recalled in § 2.
The equivalent Lagrangian formulation is provided and a fourth-order truncation of the Lagrangian £
is formally derived. The general form of Hamiltonian X or Lagrangian £ may be obtained simply by
considering the symmetries of the problem. However, the computation of the values of the coefficients in
L in terms of the physical parameters requires tedious work. The coefficients are computed in the general
case of finite depths through a projection method similar to Whitham’s (1974) averaging method. Note,
however, that in this case the method is only formally constructed and its convergence is not assured.
In § 3, considering the first variations of £ yields the desired normal form (truncated at order 2) which
reveals the presence of three classes of waves: TWs, SWs and degenerate M Ws. As said above, the new
feature is that while for water waves these M Ws were only possible in the presence of capillarity, they
exist here even for pure gravity waves.

In the second part (§ § 4-5), our aim is to study the stability of two-dimensional interfacial waves with
respect to small three-dimensional modulations, in the spirit of Davey and Stewartson’s (1974) analysis.
The first stability results on interfacial waves are due to Nayfeh (1976) who conducted a nonlinear stability
analysis on two-dimensional capillary—gravity waves between two unbounded fluids, using multiple scales.
Tanaka (1982) and Grimshaw and Pullin (1985) studied the stability of gravity interfacial waves with
respect to three-dimensional modulations. Pullin and Grimshaw (1985, 1986) extended this study to
finite-amplitude waves, with or without the presence of a basic current. However, no work has dealt so
far with the stability of interfacial SWs. :

The present analysis treats the stability of both T'Ws and SWs with respect to three-dimensional
modulations. This was first done for surface waves by Pierce and Knobloch (1994). They found that
SWs may be unstable for transverse modulations even if they are stable with respect to longitudinal
modulations. Asin their case, the multiple scales expansion method is used here as framework. To handle
SWs, one may think of them as a superposition of two counter-propagating TWs of equal amplitudes.
Therefore, asymptotic expansions with respect to a small ordering parameter ¢ will be considered both in
el(kz=wt) and in e~i(k2-w1) where z is the spatial coordinate along which the wave of wavenumber k and
angular frequency w propagates in time t. The analysis in § 4 leads to a system of three partial differential
equations (see (33)—(34)) analogous to the two Davey-Stewartson equations (the third one here is due
to the addition of a second fluid-layer). Equation (34) is a nonlinear Schrédinger-type equation, which
is different for TWs and SWs. The reason behind this is that while TWs depend on time at order &2
(since at order € they may be transformed by = ~— z — ¢4t), SWs depend on ¢ at order £ which yields
additional terms in (34). Based on (33)—(34), a stability analysis in §5 with respect to both longitudinal
and transverse small modulations provides interesting new results for both SWs and TWs. A first
observation is that when only longitudinal modulations (i.e. modulations in z) are present, SWs have
the same stability properties as TWs. However, when only transverse modulations are considered, SWs
have different properties and are in fact less stable than TWs. As for the role of the density ratio, one
may say that it is in general stabilizing, especially for TWs.

2. Hamiltonian formulation and weakly nonlinear analysis

The geometry of the problem is presented in Fig. 1. A fluid of density p’ lies on top of a heavier fluid
of density p. The plane z = 0 represents the interface at rest. When in motion, the interface is described
by z = n(z,y,t), where z and y denote the horizontal coordinates. The lower fluid is bounded below by a
horizontal plane at z = —§, while the upper fluid is bounded above by a horizontal plane at z = §’. Both
fluids are inviscid and incompressible. The flows in each fluid are assumed to be irrotational. Therefore,
velocity potentials are introduced in each fluid. The governing equations are given by

V.-i=V%=0, V.-@=V%=0, (1)
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Figure 1. Geometry of the two-layer fluid problem.

where # and 4’ are the velocities of the lower and upper fluids respectively, generated by corresponding
potentials ¢ and ¢/, subject to conditions

$:=0 at z2=—6, ¢.=0 at z=4¢". (2)
At the interface z = (z, y,t), the two kinematic conditions are given by
M= D)+ 1eP) + M Py) =m — (I’Ez) + q,@(z) + Uvq)éy) =0, ®)

and the dynamic condition (obtained from Bernoulli’s equation) by
p (B + 5lul?) = 4 ( w+ %Iu’lz) +9(p—p =0, (4)

where g is the acceleration due to gravity, @,y = ¢c)(2, ¥, 7, 1), QZ*) = ¢2.)(m,y, 7,1), u = i(z,y,n,1),
u’ = @'(z,y,n,t) and subscripts in parentheses denote evaluation of derivatives at the interface. Note
that the horizontal coordinate y has been included in the formulation above because it will be considered
in the stability analysis (see §4) of the two-dimensional waves obtained in § 3.

The above problem may be represented as a Hamiltonian system that we briefly recall below for the case
of two-dimensional periodic solutions in space (of wavelnumber k) and in time (of frequency w). For a
detailed analysis see Benjamin and Bridges (1991). The evolution equations are

= AHA(E’T’) , G = _AHA(g’n) ) (5)

where canonical variable ( is equal to p® — p'®’ and A denote variational derivatives. The Hamiltonian
function H is the sum of K 4V, where K and V are respectively the kinetic and potential energies, given

by
=1 pm +4'
/ [ [ poiveras+ | %p'|V¢'|’dz] , (6)
= n

2,'_1 7 2
/0 o= f)en dz. ()

K(e, ¢', n)

V(n)

In (6) K is given as a function of ¢ and ¢’. In fact, it can be proved that ¢ and ¢’ only appear in
the combination ¢ through the calculus of variations. That is, K({, 1) is obtained as the minimum of
K(¢, ¢', n) with 7 fixed on the constant set p@ — p'®' = (.

. The Hamiltonian formulation above has an equivalent Lagrangian formulation. Given suitable functions
7n(z, t) and {(z, t) with fixed t-endpoints for 7 and convergent z-integrals, the set of equations (5) may
be formally recovered by setting the first derivation of the functional

z=£gh-ﬂa ' (8)
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equal to zero. Recalling finite-dimensional Hamiltonian systems, recovering (5) from (8) is analogous to
Hamilton’s Principle of Least Action.

Functional £ can be computed through a weakly nonlinear analysis. Functions n(z,t), ¢(z,t), ¢'(z,1)
and ((z,t) can be expanded in double Fourier series in z and ¢. Details can be found for example in
Dias and Bridges (1990). For the present analysis it is sufficient to retain two terms in the expansions.
Considering wavelengths of 27 /k and time periods of 27 /w, rescaling time by ¢ — wt, and averaging over
space and time, the correct reduced £ to degree four in the amplitudes is given by

£ M) = DA D) g O (B ), )
where
a(e kb, k") = 7(1)+7(2)+7(3), (10)
B(o,k6,k8") = 7(1)—7(2)+7(4), (11)
with
) = IPB-T%) —eT?(3 -T2
1) = 32TT'(T + oT") '
5 _ [Tl2(1 +T2) - QT2(1 +TI2)]2
@ = - 16 (T' + ¢T) ’
T(3) = _% (11'#3 + QTS) )
T(4) = —}[T°(1 -4T%) + oT%(1 - 47"%)).

Here, T' = tanhké, T' = tanh k¢’ and p is simply the density ratio p’/p. Quantity wo denotes the linear
frequency given by
o _ 9kTT'(1-p)

Wo = )

T + oT
while quantities E and M are given by

E=|AP+|B*, M=|B]>-|A], ' (12)
where A and B are the first order complex Fourier series coefficients of
= R,e[Ae‘i(""’) + Be~ilttka) 4 . ] . (13)

Therefore, £ and M may be thought of, respectively, as measures of the energy and momentum of
the waves. The fact that amplitudes A and B appear only in combinations £ and M comes from the
symmetries of the problem, as was shown by Bridges and Dias (1990) who also predicted the general form
of £. Equation (9) is identical to equation (5.4) in Dias and Bridges (1994), in the limit as k6, k6’ — co
(setting their b = 0).

3. Analysis of the normal form

Next, the so-called normal form of the problem, that is the system of equations relating the amplitudes
of the waves to the angular wave frequency, is derived. Following definitions (12) and setting to zero the
derivatives of £ (9) with respect to 4, B, A and B (with bar denoting complex conjugates) yields

Al - o) - 2= (ot plaP + (2~ BIBE Y] =0, (14
B~ ) - 7= { (- AAR + (e BB )] =0, (15)

and their complex conjugates. Looking at (13), there are three cases, as far as amplitudes A and B
are concerned, to consider. Each case represents a different class of waves. One may see that 4 = 0
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corresponds to T'Ws with direction to the left (T'W =), whereas B = 0 corresponds to T'Ws with direction
to the right (TW+). Equations (12) show that TW ™ are characterized by E = M = |B|?, whereas TW*
are characterized by E = —M = |A|®. Case |A| = |B| corresponds to SW, which may be viewed as a
superposition of a TW and a TW™ of equal amplitudes. These are characterized by M = 0. Finally,
A # B is a degenerate case, possible only if # = 0, and corresponds to degenerate mixed waves (M Ws).
This case has been given particular attention in Bridges and Dias (1990) for water waves. For all three
classes, the normal form may be simplified. In particular, for TWs (for both TW* and TW~) (12)—(13)
yield the following nonlinear dispersion relation:

2k2
T2T"%(T" + ¢T)
It is worth mentioning that (16) is in agreement with (5.11) in Miles (1986) when 1—p is small (Boussinesq

limit), and with (2.1.4) (ké, k6’ — o0), (2.1.6) (k6 = ké’), (2.1.7) (either k6 or k6’ — oo) and (2.1.9)
(ké = k6, Boussinesq limit) in Thorpe (1968a).

w?=wi {1+ («+BE}, (E=|AP or |BJ). (16)

For SWs, (14) and (15) become identical and yield the following nonlinear dispersion relation:
2k? o
T2T2(T" + ¢T)

Again, we mention the agreement of (17) with dispersion relations (2.1.2) (Boussinesq limit), (2.1.4)
(either k6 or k6’ — oco) and (1.4) (ké, k6’ — oco) in Thorpe (1968b).

w?=wi {1+ E} (E = 2/A] = 2|B%). (17)

Finally, for MWs (8 = 0), the corresponding nonlinear dispersion relation following from (14)-(15) is
given by
2k?

T2T"2(T" + ¢T")
This degenerate class of periodic waves is characterized by two dominant amplitudes and may be thought
of as partially reflected waves which are the product of a superposition of a TW and a TW ™ of differing
amplitudes. Clearly, TWs (resp. TW~s) are a limiting case of MWs when B = 0 (resp. A = 0), while
SWs correspond to MWs with |A| = |B|. Hence the latter provide a connection between branches of
TWs and TW s and branches of SWss.

w? = w? {1 + oE}, (E=|AP+|BP). (18)

Dispersion relations (16) and (17) may yield branching (bifurcation) diagrams for TWs and SWs. These
are frequency (or wavespeed) - amplitude (or energy) diagrams and the branching behavior depends on
the sign of coefficients o + § for TWs and o for SWs. There exist values of parameters g, k6 and k6’
through which these coefficients change sign. This very property renders ¢+ 8 and « important towards
the branching behavior of periodic waves.

Moreover, note that coefficients @ + # and & appear in the amplitude equations which describe nonlinear
modulations of the waves. Therefore more emphasis on their importance will be given when stability of
interfacial waves is discussed in § 5.

It turns out that all three coefficients (o + 8, a and f) may vanish for appropriate choices of p, T
and T". This behavior differs from its counterpart for gravity surface waves, where only o vanishes (for
T = 0.7849), while  + § and f are always positive. It also differs from the corresponding behavior
of gravity interfacial waves in infinite depth, where & + 8 and § are always positive, while « is always
negative. The interesting new feature here is the presence of M Ws, which so far have been associated with
capillarity, in the absence of the latter. These waves may, in fact, exist for all ¢ > 0, given appropriate
depths.

For TWs, a + 8 may vanish only for values of T"/T" < 1.2838. For 7"/T > 1.2838, o + 3 is always
positive. For SWs, o may vanish only when T"/T' < 1.8354. For T"/T > 1.8354, « is always positive.
Degeneracy @ = 0 (responsible for M Ws) may be present for T"/T < 1.1839 only.

Figure 2 shows the (T',T")-plane for cases ¢ = 0.1, ¢ = 0.5 and p = 0.99. Curves @ = 0, @ + f = 0 and
B = 0 partition the plane into four regions. Numbers in each region correspond to a different branching
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(6) o a=0

0.8 F 1 4
a+pf=0

0.6 f 2 =

4
TI

0.4 F =0 -

0.2 F -
2

0 1 1 1 1

0 1 ‘ L 1 1
0 0.2 0.4 0.6 0.8 1
T

Figure 2. Signs of coefficients o + # and « in the parameter plane for different values of p. (1) a+8> 0, @ < 0,
(2)a+p>0,a>0,3)a+f<a<0,(4)a<a+f<0. (a) g=0.1, (b) ¢g=0.5, (c) g = 0.99.
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a sw W a sw
1 Tws 3
wd w? wd w”
a sw a Tw
- 2 TW* ’ sw 4
wd w? wd w?

Figure 3. Corresponding branching behavior for TW#* and SW for four regions shown in Figure 2 (a denotes
amplitude).

behavior shown in Fig. 3. As demonstrated, for high values of p (Fig. 2(c)), case which may be of
interest to the oceanographer or the limnologist, M Ws may only exist for a limited range of 7" and T"
(i.e for a limited range of depths of the two fluids) while for low values of ¢ (Fig. 2(a)), they exist for all
T. The same applies for TWs and SWs with branching behavior as in 3 and 4 of Fig. 3.

4. Multiple scales analysis

We now turn attention to modulational stability of interfacial waves. In order to study nonlinear
interactions of small-amplitude waves, we follow the well-known method of multiple scales expansions.
Note that y-dependence is considered hereafter. Spatial and temporal scales are introduced as follows:

X=¢x, Y=¢y, T=¢t, T=¢,

where ¢ is a small ordering parameter given (for example) by kA, with k£ and A being respectively the
wavenumber and the wave amplitude. We assume that £ << min{(k6)?, (k6')?}, where k6 and ké’ are
o(1).

We then consider asymptotic expansions of 7, ¢ and ¢’ in ¢ as follows:

o n n )
Z Z Z Enn[nml]ex(mlcz:—lwt), (19)

n(z,y,t;e) =
n=lm=-nl=-n
(e o] n n
$(z, v,z t8) = D, D Y EPumyelmEamn (20)
=1m_—nl_—n
¢’(9:,y,z,t;€) = E E Ze ¢/ 1(mks—lwt)’ (21)
n=lm=-nl=-n

where *{nmi) = *(nmi)(2, X, Y, T, 1) = ¥n(—m)(-n)] (With bar denoting complex conjugate) and w henceforth
denotes linear frequency.

Substituting (19)-(21) into (1)-(4) and collecting coefficients of successive powers of € (up to order 3

which suffices for our purpose), we obtain sets of perturbation equations. Use of these equations at
orders ¢, 2 and &2 provides expressions for #nmi) and qunm,]. For details see Christodoulides and Dias

(1995).

The next step is to obtain expressions for coefficients 7j,m; through the dynamic boundary condition
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(4). Collecting coefficients of ei(mkz=1wt) (for all m, ), at each order of ¢ results in,

Mooy = 0, 0
MiE)) = :!::”—r(A* — 0A™®), (22)
and
1 " 2gkw = 4tF ' +F —
Mzo0) = —'g—r(¢[1oo]7'—e¢[mo]7- ( =P [T(A At +4-4 )—T/(ATA*+ + A~ A )]
k2 2 2Tw? +12 -2 Q 2 2QTUJ 1412 -
A [N P R (1472 - ) (4P 1A,
1 : ;
Mei(+1)] = ;[(ﬂ:wD* S Ai) - Q(:tl.l-l-)Dli - .Afz:—h)],
k2 2y 2Tw?\ o, 2 20Tw? o e
N220] = g_r(l—T P )A A ~ ( -T? + =y )A A
ok(T — TNw _ _
_%(‘Aﬁ‘A’ + A AI+), (23)
2iw k(T -Thw?, ,— —
M202] = —(J oJ') + Lo LR A ( )2 ) (ATA= 4+ A-A')
k2 g, 2Tw?\ ,  — gk 2, 20T W%\, ——
- —(1+72+ k)AA = £ (1+77+ s )4 A,
k(T - TNw
Moz(z2)) = :i:——(F* - oF'*) + ST =T (gr)z) AxAE
k2 2 2Tw2 i’ ka 2 2QTIw2 I:!::
+E(1—T grk )A - 2gr(1—Tl - grk )A !

where r=1— p.

Now, in order to determine the unknown amplitudes in (22)—-(23), use is made of the kinematic conditions
(3). At order € we obtain

A% = —FA* (24)
and the dispersion relation (recall § 3)
g _ grkTT’
=TaoT (25)

Consequently the group velocity (useful in what follows) is given by

_ dw _ gr[TT(T" + T) + k8(1 — THT" + gk8'(1 - T*)T?] "

Order €? yields
a4 =0, @)

where we have introduced variables y* = X F ¢, T, natural transformations for TWs, as mentioned in
the introduction.

Finally, at order €3 are recovered evolution equations in P00} ¢[100] and A%. In particular, form =1 =0,
we obtain

#0077 — e¢{100)7T — 897 (p1001xx + Bp100)YY) a(|A+2 - A~ [H)x,

/ - 28
00Tt — 9¢[1oo]77 + 619"(¢f100]xx + ¢|I:100]YY) = d(JATP -4 P)x, (28)
where
k? 29rTT"
a = Zr{e( =TT - (1 - 72T + L1},
k? 2ng T
¢ = {e(1-TH - o1 - T - E=},
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and form=1,1==+1,

d 2k
2ldA;!- = —'chA;y + CA;"'X"' + T‘;} < TI¢[100]X + QT¢E10°]X >x- At
+f < $noor — 0bfro0ir >x- AT+ BlATPAY 45 < |AT) > - AT,
[100]
. d _ - 2kw _
—-2dA7 = —S*Z_Ayy tediy-— T < T'$a00x + eT100x >x+ A (29)
+f < Prooir = 8100 >x+ AT +AIATLPAT 45 < [AY]P >4 A7,
where
T + oT
d = s
Ocg
¢ = —dg
w?k 2\12 /2\2
f = -W((I_T )T = o(1 = T)T%),
; _k4((1 _ T2)T/2 - g(l — T/2)T2)2
- TB(T" 4 oT)
4
—ﬁmg—ﬂm{r‘*(—g + 1072 — 9T*) + o®T*(=9 + 10T"2 — 9T"*) + o(18T*T"?

FATT'S — 6T2T" — 6T4T'2 4 ATST' — TST'S 4 2T4T' — 8T5T’3)} ,
. k4((1 - T2)T/2 — 9(1 - TIZ)T2)2 B k4((1 + TZ)TIZ - 9(1 + TIZ)T2)2

¢ = T3(T" + ¢T) T(T" + oT)
Note that the other amplitudes in (22)-(23) have been eliminated along the way. In particular, D* has

been eliminated by demanding that expansions (19)—(21) remain asymptotic for z and ¢ of O(¢~2) which
is the case if and only if the spatial averages (over a period) < Dx* >yF are zero.

TS
—4k*T? — ziglc‘*F )

Next, following the arguments of Pierce and Knobloch (1994), ¢[100) and ¢f100] may be decomposed as

follows:
foo; = St(xT)+4"(x7)+%(n) 7T,
Pog = YT+~ (x)+¥'(r)T.
Note that it is not difficult to show that unknown functions % and 9’ are identically zero for TWs. They
are, however, necessary for SWs which cannot avoid explicit dependence on time at leading order and
are actually related to the mean level of the interface between the two fluids (M[200) in (23)). Substituting
(30) into (28) and averaging over a period in Y, we obtain

< ¢fi >y = i(plAiI"))y )
<HE >y = x{pJatP), (31)

(30)

where
(ec2 —&'gr)a — oc a’ , c2a—(c2—ébgr)d

p= 66'(gr)? — c2(60 + 6')gr’ P= 68'(gr)? — c2(bo+ 6")gr’
provided that c2 # 6&’gr/(8¢ + §') (which is actually the case for the waves under investigation).

To determine % and ', which are related to the mean fluid level, we require that the latter be zero (this
assures that the total volume of the system remains unaltered - see Pierce and Knobloch 1994), that is
(< 7[200) >X)y = 0. Then, .

k2
Y — oy = {172(-(1 =TT 4 o(1 = T")T?) + co(p - gp')} (IATP > + < |ATP >p-)y - (32)

Finally, upon rescaling as follows

™=, A, = AR, Y ),

$E0 Y, ) = 650E, Y, ), 6 E( Y ) = ¢ (R Y ),
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and dropping the stars, (29) and (28) yield the desired system of evolution equations:

(C 597')¢ —ec? - 6gr¢YY = za|ldA]?
(ec = 6’yr)¢ c’gqs —§lgréiE, = Fd| A*P (33)
and
AT = —ch Ty +eAL + hATPAT 4+ < |AF]? >, AF
2kwT
+f( — oy )A* £ {(2kw —cof)oE +( 1‘_‘; +cof)od'E }A* (34)

2kwT
£{(@hw + cof) < 6 >x H T — cofle < 6F >y }4*,
where 9 — gy’ (recall: present only for SWs) is given in (32).

System (33)—(34) reduces to equations (1) in Pierce and Knobloch (1994) when ¢ = 0 (setting their
g =0). When the Y-dependence is absent, (33)—(34) reduce to

+iAF = AL, + plAT A 4 v < |AE]? >y AT + £ < |AT? >y A%, (35)

where
b= bt [k - o+ (BT ey f)er]
v o= f[ER T o - T 4 - )],
£ = j+(2kwp+ —— 2'“ er') + f[T,2 (1-THT"? +0(1 - T’2)T2)]

For TWs (A~ =0 or A* = 0), the averaged terms vanish and coefficient y in (35) is in agreement with
a + (3 in the nonlinear dispersion relation (16) (except for the group velocity term). In addition, (35)
recovers (3.5) in Tanaka (1982). For SWs (At = A™), the coefficient of the cubic term in (35) becomes
g+ v+ & and is in agreement with « in (17). :

5. Stability with respect to modulations

In this section a threefold study of the stability with respect to modulations is attempted. It is natural
to consider modulations either in both the longitudinal (x) and transverse (Y) directions, or in the
longitudinal direction only, or in the transverse direction only.

(a) Stability Criteria

The analysis is based on stability criteria, derived separately for each case. The derivation is omitted
here since it follows a pattern similar to the one in Pierce and Knobloch (1994) for water waves. The
following conditions are obtained:

(a) Longitudinal modulations:
ep<0. (36)

This condition is valid for both TWs and SWs and is identical to the criterion (24) derived by Pierce and
Knobloch (1994) for water waves. The same condition was derived for interfacial waves both by Nayfeh
(1976) (for capillary—gravity TWs in infinite-depth) and by Grimshaw and Pullin (1985) (for gravity
TWs). Violation of (36) for traveling water waves results in the well-known Benjamin—Feir instability.

(b) Longitudinal and transverse (oblique) modulations:

e<0, u>0, h>0, h2-j32>0, (37)

IUTAM Symposium on Limnology, Broome, Australia, 1995 10


paul.christodoulides
Typewritten Text
IUTAM Symposium on Limnology, Broome, Australia, 1995         10


09 F

0.8
1 L
0.7 F

0.6

0.5 1 1 1 1 1 1 L 1 1
0.5 0.6 0.7 0.8 0.9 1

T

Figure 4. Stability diagram with respect to longitudinal modulations. Curve p; is plotted for three different
values of g. From left to right: g = 0.1, 0.5, 0.99. Both TWs and SWs are stable on the left of z; and unstable

on its right.

Again these are conditions valid for both TWs and SWs except for the last one which is only required
for SWs.

(¢) Transverse modulations:
h>0, h?—j2>0. (38)

These are conditions identical to the criterion (37) in Pierce and Knobloch (1994) for water waves.
Condition h? — j2 > 0 is only valid for SWs.

The stability criteria having been established, the effects of the two important physical parameters (second
layer and finite depth) on the stability are studied, with particular attention given to the density ratio
effects.

(b) Stability of gravity waves in finite depth

This case has been thoroughly studied by Tanaka (1982) and Grimshaw and Pullin (1985) for TWs, but
to our knowledge there are no results for SWs.

The problem of interfacial gravity waves as described in § 2 is a 3-parameter problem, its parameters being
0, k6 and ké’. Therefore, fixing density ratio g, stability diagrams may be obtained in the (T',T")-plane
for all three cases described above. Such diagrams are obtained for three different values of ¢ namely 0.1,
0.5 and 0.99 (Boussinesq limit).

(a) The results for longitudinal modulations are presented in Fig. 4. Note that e > 0 for all . Hence,
stability is established when p < 0. For each value of ¢ there exists exactly one critical curve u; through
which p changes sign. This curve acts as barrier and all waves (meaning both TWs and SWs) on its left
are stable while all waves on its right are unstable. In Fig. 4, curve p; is plotted for the three values
of ¢ mentioned above. Note that for a better visualization, not the whole (7',7")-plane is shown. It is
clear that the larger the ¢ the larger the stable area in the (7',7")-plane, demonstrating the stabilizing
role of p. On the other hand, it is illustrated that letting both 7" and 7" tend to 1 (i.e. the two depths to
infinity) has a destabilizing effect. Finally, note that for the special case ¢ = 0 (water waves - not shown)
the critical value is k6 = 1.363 in agreement with Whitham’s (1967) value.

(b) As e > 0 regardless of g, the first condition of (37) is violated and hence all waves are unstable with
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Figure 5. Stability diagrams with respect to transverse modulations for three different values of ¢. (a) ¢ = 0.1,
(b) @ = 0.5, (c) g =0.99. (A: stability regions for both TWs and SWs, T: stability regions for TWs only).
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respect to oblique modulations. This verifies Grimshaw and Pullin’s (1985) results for gravity TWs.

(c) When only transverse modulations are considered, the results are shown in Fig. 5. For p = 0.1,
there are two critical curves: h; consisting of two legs and corresponding to the vanishing of coefficient
h, and ji consisting of four legs (two “insidednd two “outside”h;) corresponding to the vanishing of
coefficient h? — j2. Notice that the results are (naturally) reminiscent of Fig. 2. Traveling waves are
stable everywhere outside k1, while SWs are stable in a smaller region of the plane as illustrated in Fig.
5(a). In the limiting case where both fluids are deep (T" = 7' = 1) TW are stable whereas SWs are
unstable. For T' =1 (k§ — c0), all waves are stable for 7" < 0.114, whereas for 7" = 1 (ké’ — co), all
waves are stable for ' < 0.7415. For g = 0.5 (Fig. 5(b)), h1 has become a loop as have the two legs
of j1 inside it. The stability pattern remains the same. The two extreme values in the (7,T")-plane are
(1, 0.3584) and (0.6203, 1). Increasing the density ratio to o = 0.99 (Fig. 5(c)), results in the two loops
having decreased in size. Consequently T'Ws are stable in a larger region than before. Moreover, the two
extreme points in the (7,7")-plane have moved to (1, 0.498) and (0.502, 1). Comparing this case to case
(a), one concludes that interfacial waves in oceans or lakes are more stable than interfacial waves of small
density ratio (which behave like surface waves) when the lower fluid is much deeper than the upper fluid,
but less stable when the upper fluid is deeper than the lower fluid.

Finally, comparing the stability regions in Fig. 5 to the regions in Fig. 2, one may draw the conclusion
that all stable periodic (traveling or standing) waves have the physical property of increasing amplitudes
with increasing angular frequency (Fig. 3 (2)).
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