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Abstract

In this paper, we give an explicit asymptotic construction of a class of solitary waves,

widely known as gap-solitons in other physical contexts, for a certain three-layered fluid

flow. The essential ingredients are the existence of a spectral gap between two branches

of the dispersion relation, and the development of a set of envelope equations to describe

weakly nonlinear waves, whose carrier frequency and wavenumber belong to the centre of

this gap. Here we describe the gap-soliton solutions to this set of envelope equations. For

the special case of particular interest when the envelope and carrier speeds are identical,

so that the gap-soliton is a steady travelling wave of the full fluid system, we show that

there is large class of such gap-solitons.

Keywords:

1 Introduction

It is well-known that in fluid flows, there are two main classes of solitary waves. Each of these

can be regarded as a bifurcation from those points in the linear spectrum where the group ve-

locity and phase velocity are equal (see, for instance, [1, 2, 3]). When this bifurcation occurs in

the long-wave limit, that is at the zero wavenumber limit, it typically leads to the Korteweg-de
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Vries equation, and its well-known solitary wave solutions. The alternative situation is when

the bifurcation occurs at a finite non-zero wavenumber. In this case, the outcome for weakly

nonlinear waves is related to the nonlinear Schrödinger (NLS) equation, and leads to envelope

solitary waves; these waves have an underlying rapidly varying oscillation, contained within a

smoothly varying envelope; consequently their decaying tails are also oscillatory. In both these

scenarios, the bifurcation occurs into the “gap” in the wavenumber space, that is for phase

velocities for which the linear dispersion relation does not have any real wavenumber solutions.

In this paper, we are concerned with the second case, but for that special situation when there

are two branches of the dispersion relation in close proximity, so that the gap is narrow in a

sense which will be defined precisely below. Such situations are well-known in nonlinear op-

tics, and lead to the so-called gap-soliton solutions (see, for instance, [4]). However, apart from

an initial study by Grimshaw and Malomed [5] of a certain model system consisting of two

coupled Korteweg-de Vries equations, there presence in fluid flows has yet to be determined.

In Grimshaw and Christodoulides [6] (hereafter GC) we identified the circumstances when a

spectral gap can arise in a three-layered fluid flow, and developed a set of envelope equations to

describe weakly nonlinear waves associated with such a gap. Here we extend that analysis to

show explicitly that these envelope equations allow for a large class of solitary wave solutions,

which we shall call gap-solitons.

To set the scene, let us suppose that the spectral gap is centred at a wavenumber k0 and

corresponding frequency ω0. Then in the vicinity of k0, ω0 the linear dispersion relation takes

the generic form

(ω − ω0 − V1(k − k0)(ω − ω0 − V2(k − k0)) = γ2 , (1)

where γ is a small parameter describing the width of the spectral gap. Here V1,2 are the group

velocities at k = k0 of each branch in the limit γ = 0, and it is understood that V1 6= V2. The

limit when V1 − V2 = O(γ) requires a different treatment from that we consider here, and typi-

cally leads to a set of coupled NLS equations (see, for instance, [7] and the references therein).

The situation is sketched in Figure 1 for the case when V1 = −V2.

In the limit when γ = 0, the dispersion relation (1) collapses to two intersecting straight lines,
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Figure 1: A typical spectral gap, where W = ω − ω0, K = k − k0.

corresponding to two uncoupled wave modes. There are two cases to consider, depending on

whether the system supports one or two wave modes at the resonance point ω = ω0, k = k0 (see

GC). Our concern here is with the latter case, where the wave modes can be represented by

A(x, t) exp (ik0x− iω0t) , B(x, t) exp (ik0 − iω0t) . (2)

Here A(x, t), B(x, t) are the slowly-varying envelopes, and as shown in GC are expected generi-

cally to satisfy a coupled equation set of the form

i(At + V1Ax) + γB + N1 = 0 , (3)

i(Bt + V2Bx) + γA + N2 = 0 . (4)

Here the form of the linear terms is dictated by the linear dispersion relation (1), while N1, N2

represent cubic nonlinear terms of the general form |A|2A, |B|2A,B2A∗, etc where ∗ denotes the

complex conjugate, together with a set of terms of the general form MA, etc, where each M

represent a mean-flow variable, satisfying an equation of the form

Mt + V0Mx = |A|2x , (5)

where V0 is a long-wave phase speed.

For any specific fluid flow system, the aim then is to determine the presence of the linear

resonance conditions where there are two independent wave modes at the resonance point, and
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then to determine the specific forms of N1, N2. This program was carried out by GC for a

three-layered fluid flow. Here we continue that analysis by showing explicitly that the resulting

envelope system does indeed support a large family of gap-solitons. In section 2 we give a

brief summary of the envelope equations. Then in section 3 we obtain the explicit gap-soliton

solutions. Particular interest attaches the case when the speed of the gap-soliton is exactly equal

to the phase speed ω0/k0 of the carrier wave, as in this case we have established the existence,

at least asymptotically, of a steady traveling solitary wave solution of the full system. This issue

is taken up in section 5, where we find a large class of such solutions. We conclude in section 6.

2 Formulation and weakly nonlinear analysis

For convenience, we present a summary of the analysis in GC of a three-layered fluid flow. The

fluid is composed of three layers, each of constant density ρi and with a basic constant horizontal

velocity Ui (i = 1, 2, 3), as shown in Figure 2. The two interfaces are described by z = η(x, t)

and z = H2 + ζ(x, t). We assume that the fluid is inviscid and incompressible and that the flow

in each layer is irrotational and two-dimensional, with velocity potentials φi (i = 1, 2, 3). The

governing equations are then given by

φixx + φizz = 0 , (i = 1, 2, 3) (6)

subject to the boundary conditions

φ1z = 0 , (z = −H1) (7)

φ3z = 0 , (z = H2 +H3) (8)

where wi = φiz are the vertical perturbation velocities in each layer.

At the two interfaces the kinematic conditions are given respectively by

ηt + (Ui + ui)ηx = wi , (i = 1, 2) at z = η , (9)

ζt + (Ui + ui)ζx = wi , (i = 2, 3) at z = H2 + ζ , (10)
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Figure 2: A sketch of the coordinate system for a three-layered fluid.

while the dynamic conditions are given respectively by

ρ1(φ1t + U1φ1x +
1

2
|∇φ1|2 + gη) − ρ2(φ2t + U2φ2x +

1

2
|∇φ2|2 + gη) =

σηxx
(1 + η2

x)
3/2

, (11)

ρ2(φ2t + U2φ2x +
1

2
|∇φ2|2 + gζ)− ρ3(φ3t + U3φ3x +

1

2
|∇φ3|2 + gζ) =

σ′′ζxx
(1 + ζ2

x)
3/2

, (12)

where ui = φix are the horizontal perturbation velocities in each layer and σ, σ′ are the surface

tension coefficients at each interface.

In GC we performed a weakly nonlinear analysis that studied solutions to the system (6)−(12)

above of the form

η = αA(X, T )eiθ + α2A2(X, T )e2iθ + c.c.+ α2η̄(X, T ) +O(α3) , (13)

ζ = αB(X, T )eiθ + α2B2(X, T )e2iθ + c.c.+ α2ζ̄(X, T ) +O(α3) , (14)

where θ = kx − ωt, c.c. denotes the complex conjugate and the slow variables are defined by

X = α2x and T = α2t.

At the leading order the linearized system is obtained

D1A+ EB = 0 , EA+D3B = 0 , (15)

where D1(ω, k), D3(ω.k), E(ω, k) are defined in the Appendix by (56, 57, 58). This has the

required form for a resonance between two wave modes, as discussed in the Introduction. We
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are concerned here with the case when there are two distinct modes at the resonance point, and

so we require that D1 = D2 = E = 0, which is achieved by the requirements

ω = kU2 , (16)

g(ρ1 − ρ2) + σk2 =
ρ1k(U2 − U1)

2

T1
, (17)

g(ρ2 − ρ3) + σ′k2 =
ρ3k(U2 − U3)

2

T3
. (18)

The solution of this equation set determines the resonant frequency ω0 and resonant wavenumber

k0. Hereafter we shall omit the “0” subscript for simplicity. Without loss of generality, we may

set U2 = 0 and choose U3 > 0. Then the resonance condition (16) becomes ω = 0, and the

remaining conditions reduce to

U1 = ∓{T1

k

g(ρ1 − ρ2)

ρ1

+
σk2

ρ1

}1/2 , (19)

U3 = {T3

k

g(ρ2 − ρ3)

ρ3
+
σ′k2

ρ3
}1/2 . (20)

The choice of sign in (19) corresponds to a shear flow (U1 < 0) or a jet flow (U1 > 0) respec-

tively. For a given wavenumber k, the conditions (19, 20) define the basic velocities for which

a resonance can occur. Alternatively, elimination of k defines a functional relationship between

U1, U3 for which a resonance of this type can occur.

GC showed that the weakly nonlinear unfolding of this resonance leads to a coupled system of

evolution equations, given by

iD1ω(AT + V1AX) + γB + µ1|A|2A+ ν1Aη̄ − kD1ωAū1 = 0 , (21)

iD3ω(BT + V3BX) + γA+ µ3|B|2B + ν3Bζ̄ − kD3ωBū3 = 0 , (22)

Here D1ω, D3ω denote derivatives with respect to ω, evaluated at the resonant wavenumber (see

59), while V1, V3 are the group velocities on each interface at the resonant wavenumber, and

are given by (60, 61) in the Appendix. The parameter γ > 0 is a tuning parameter for the

resonance, formally defined by E = α2γ, so that ω = αkΩ, where γ = ρ2kΩ
2/S2. The remaining

coefficients, and the equations for the mean flow variables are given in the Appendix. Our

concern here is to obtain steady travelling wave solutions of this equation set, analogous to the

gap-soliton solutions found by Grimshaw and Malomed (1994) in a model problem.
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3 Solitary waves

We seek travelling wave solutions of (21, 22) of the form

A(X, T ) = R(ξ)eiφ(ξ)e−iΩT , (23)

B(X, T ) = S(ξ)eiψ(ξ)e−iΩT , (24)

m̄(X, T ) = m̄(ξ), (25)

where ξ = X − V T , R, S are real-valued amplitudes and φ, ψ are real-valued phases, while

m̄ denotes the mean-flow variables presented in the Appendix. We shall assume further that

R, S → 0 as ξ → ±∞, so that these will be solitary waves, that is gap-solitons.

Substitution of (23, 24, 25) into the mean flow equations (62)−(67) yields the following system

of ordinary differential equations.

(U1 − V )η̄′ +H1ū′1 =
2kU1

T1
(|A|2)′ , (26)

−V η̄′ − C = 0 , (27)

−V ζ̄ ′ +H2ū
′

2 − C = 0 , (28)

(U3 − V )ζ̄ ′ +H3ū
′

3 = −2kU3

T3
(|B|2)′ , (29)

ρ1(U1 − V )ū′1 + ρ2V ū
′

2 + g(ρ1 − ρ2)η̄
′ = −ρ1U

2
1k

21 − T 2
1

T 2
1

(|A|2)′ , (30)

−ρ2V ū
′

2 − ρ3(U3 − V )ū′3 + g(ρ2 − ρ3)ζ̄
′ = ρ3U

2
3k

2 1 − T 2
3

T 2
3

(|B|2)′ , (31)

where ′ denotes differentiation with respect to ξ. Using the solitary-wave boundary condition,

the solution of this system is

η̄ = ηA|A|2 + ηB|B|2 , (32)

ζ̄ = ζA|A|2 + ζB|B|2 , (33)

ū1 = u1A|A|2 + u1B|B|2, (34)

ū3 = u3A|A|2 + u3B|B|2, (35)

where the coefficients are given in the Appendix. Then substitution of (23, 24, 25) into (21, 22)

yields

iD1ω(V1 − V )R′ −D1ω(V1 − V )φ′R + (µ1 + ν1ηA − kD1ωu1A)|R|2R
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+(−ν1ηB − kD1ωu1B)|S|2R + ΩD1ωR = −γSei(ψ−φ) , (36)

iD3ω(V3 − V )S ′ −D3ω(V3 − V )ψ′S + (µ3 + ν3ζB − kD3ωu3B)|S|2S

(−ν3ζA − kD3ωu3A)|R|2S + ΩD3ωS = −γRei(φ−ψ) . (37)

First, the imaginary parts of (36, 37) give

D1ω(V1 − V )R′ = γS sin Φ , (38)

D3ω(V3 − V )S ′ = −γR sin Φ . (39)

where Φ = φ − ψ. These can be integrated, assuming that both R, S → 0 as ξ ±∞, to show

that

D1ω(V1 − V )R2 = −D3ω(V3 − V )S2 . (40)

It follows that for a solution to exist we must have

D1ω(V1 − V )D3ω(V − V3) > 0 . (41)

Next we see that (38, 39) reduce to

(R2)′ = γ̃R2 sin Φ . (42)

where

γ̃ = ± 2γ
√

D1ω(V1 − V )D3ω(V − V3)
, (43)

and here ± corresponds to sign{D1ω(V1 − V )}, where without loss of generality, we have as-

sumed that R, S have the same sign (otherwise the transformation Φ → Φ+π restores the same

analysis which follows below).

Second, the real parts of (36, 37) give

−D1ω(V1 − V )φ′ + (µ1 + ν1ηA − kD1ωu1A)R2 + (−ν1ηB − kD1ωu1B)S2

+ΩD1ω = −γ S
R

cos Φ , (44)

−D3ω(V3 − V )ψ′ + (µ3 + ν3ζB − kD3ωu3B)S2 + (−ν3ζA − kD3ωu3A)R2

+ΩD3ω = −γR
S

cos Φ , (45)
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Then, using (40) we get

Φ′ = WR2 + γ̃ cos Φ − Ω̃ , (46)

where

W =
(ν1ηB + kD1ωu1B + ν3ζA + kD3ωu3A)

D3ω(V3 − V )

+
(µ1 + ν1ηA − kD1ωu1A)

D1ω(V1 − V )
+

D1ω(V1 − V )

D2
3ω(V3 − V )2

(µ3 + ν3ζB − kD3ωu3B) (47)

and

Ω̃ = Ω
V3 − V1

(V1 − V )(V − V3)
.

Note that W changes sign with sign{D1ω(V1 − V )} and so it will be useful to write W̃ = ±W
accordingly.

Finally, we can eliminate R to obtain a single second order equation for Φ, whose first integral

is

(Φ′)2 =
1

2
γ̃2 cos 2Φ − 2γ̃Ω̃ cos Φ + C.I. (48)

The constant of integration C.I. is found by letting ξ → ±∞ in (46) to get

C.I. =
1

2
γ̃2 + Ω̃2 .

Equations (46, 48) can then be combined to show that

Φ′ = −γ̃ cos Φ + Ω̃ , (49)

and

WR2 = 2Φ′ , (50)

Integration of (49) then yields

tan
Φ

2
= α[tanhKξ]±1 , (51)

where

α2 =
γ̃ − Ω̃

γ̃ + Ω̃
and K = −1

2
α(γ̃ + Ω̃) .
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Note that we must have γ̃2 > Ω̃2 and the “±” case in (51) holds for W (γ̃ − Ω̃) < (>) 0

respectively, that is, as W̃ < (>) 0. Finally, from (50) we get the solitary-wave solution

WR2 = −(γ̃ − Ω̃)
2sech2(Kξ)

1 + α2 tanh2(Kξ)
, for W̃ < 0 , (52)

WR2 = (γ̃ − Ω̃)
2sech2(Kξ)

tanh2(Kξ) + α2
, for W̃ > 0 . (53)

In each case there are two solutions for R, identical except for the sign, so that one may be

interpreted as an elevation wave (say R > 0) and the other is then a depression wave (R < 0).

With R known we can use (40) to determine S2, and finally S, where we recall that the sign

of S is required to be the same as that of R. But we now see from (51) that in the “+”-case,

W̃ < 0, Φ = 0 at the wave crest where ξ = 0, and so the two interfaces are in phase. In the

opposite “−”-case, W̃ > 0, Φ = ±π at the wave crest, and the two interfaces are now out of

phase.

In general, this solution contains three free parameters, V , Ω, γ and although these are con-

strained by (41) for V and by the requirement that γ̃2 > Ω̃2, there still remains a very large

parameter space, in addition to the system parameters (the basic fluid densities, flow velocities

and layer depths). Hence to make some progress, we shall consider a reduced class of solutions

in the next section.

4 Steady solutions (V = 0, Ω = 0)

Although the solitary-wave envelope is steady, the complete solution (13, 14) is not steady unless

we also put V = 0, Ω = 0, noting that the carrier wave has a phase velocity ω/k and here the

resonance condition (16) with U2 = 0 requires us to set ω = 0. With V = 0, the condition (41)

reduces to (see (59))

U1V1U3V3 < 0, (54)
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or, on substituting for the group velocities V1,3 from (60, 61),

(∆1 −
2σkT1

ρ1U
2
1

)(∆3 −
2σ′kT3

ρ3U
2
3

) < 0 , (55)

where

∆1 = 1 − kH1T1

S2
1

, ∆3 = 1 − kH3T3

S2
3

.

Note that in the absence of surface tension (that is σ = σ′ = 0) the condition (55) cannot be

satisfied for any system parameters. But the condition can be satisfied if σ is sufficiently large

(small) and σ′ is sufficiently small (large). Note that for Ω = 0, α = 1, K = −γ̃/2 and the

solitary waves exist for all γ > 0.

We next present two representative cases, one for σ′ = 0 and one for nonzero surface ten-

sion coefficients. Here we use dimensionless variables, denoted by a “hat” overbar, based on a

length scale H2 and a velocity scale
√
gH2. The following notation is introduced to describe

dimensionless surface tension,

σ̂ =
σk2

g(ρ1 − ρ2)
, σ̂′ =

σ′k2

g(ρ2 − ρ3)
.

In both cases we set k = 1m−1,H2 = 50m,H1 = H3 = 500m and ρ1,2,3 = 1010, 1000, 990 kgm−3

respectively. In the first case σ̂′ = 0 yields Û3 = 0.014 and V̂3 = 0.007. Then the effect of varying

σ̂ is shown in Table 1. The “−”(“+”)-sign for Û1 corresponds to a shear(jet)-flow case. It is

clear that steady solitons exist for values of σ̂ > 1 and fall in the “+”-case in (51) for moderate

magnitudes of surface tension. For large values of σ̂ (> 3.31) one observes “−”-case solitons.

Next, in the second case we set σ̂′ = 0.40 so that Û3 = 0.017 and V̂3 = 0.004. The effect of

varying σ̂ is shown in Table 2. Again, the “−”(“+”)-sign for Û1 corresponds to a shear(jet)-flow

case. Steady solitons exist for values of σ̂ > 1 and fall into the “+”-case for σ̂ < 1.38. Then for

larger magnitudes of surface tension, one observes “−”-case solitons.
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σ̂ Û1 V̂1 sign(W̃ ) valid

0 ∓0.0141 ∓0.0070 − N

0.20 ∓0.0154 ∓0.0051 − N

0.40 ∓0.0167 ∓0.0036 − N

0.51 ±0.0173 ∓0.0028 + N

0.99 ∓0.0199 ∓0.00005 + N

1.01 ∓0.0200 ±0.00005 − Y

1.50 ∓0.0222 ±0.0022 − Y

2.00 ∓0.0244 ±0.0041 − Y

2.50 ∓0.0263 ±0.0056 − Y

3.30 ∓0.0292 ±0.0078 − Y

3.31 ∓0.0292 ±0.0078 + Y

Table 1: Region of valid solutions for σ̂′ = 0 when k = 1m−1, H2 = 50m, H1 = H3 = 500m,

based on the criterion (55). The symbol “Y” means valid, and the symbol “N” means not valid.

Plots of some typical steady gap-solitons (as described above) are now presented. Figures 3

and 4 show the real and imaginary parts of the amplitudes Â and B̂ on the lower and upper

interfaces, respectively, for σ̂ = 1.01 and σ̂′ = 0 (see Table 1) falling into the “+”-case. The

solitons (elevation ones) are clearly in phase.

Then, in Figures 5 and 6 we show the analogous plots for the case σ̂ = 1.50 and σ̂′ = 0.40 (see

Table 2) falling into the “−”-case. The solitons (one depression and one elevation) are clearly

now out of phase. An important feature of these gap-solitons is that, unlike the usual solitons

of the NLS equation, there is a significant phase variation, particularly noticeable in Figures 5

and 6. That is, the total spatial wavenumber is k + φ′, k + ψ′ for A,B respectively, where from

(44, 45) we se that the terms φ′, ψ′ are proportional to R2.
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σ̂ Û1 V̂1 sign(W̃ ) valid

0 ∓0.0141 ∓0.0070 − N

0.20 ∓0.0154 ∓0.0051 − N

0.40 ∓0.0167 ∓0.0036 − N

0.51 ±0.0173 ∓0.0028 + N

0.99 ∓0.0199 ∓0.00005 + N

1.01 ∓0.0200 ±0.00005 − Y

1.35 ∓0.0216 ±0.0016 − Y

1.38 ∓0.0217 ±0.0017 + Y

1.50 ∓0.0222 ±0.0022 + Y

2.00 ∓0.0244 ±0.0041 + Y

2.50 ∓0.0263 ±0.0056 + Y

3.30 ∓0.0292 ±0.0078 + Y

Table 2: As for Table 1, except that now σ̂′ = 0.40.

5 Conclusion

We recall from section 1 that the general aim here is, for any specific fluid flow system, to

determine the presence of the linear resonance conditions where there are two independent wave

modes at the resonance point, then to determine the resulting envelope system of equations,

and finally to demonstrate that this system supports gap-soliton solutions. For the three-layered

fluid flow described in section 2 (see Figure 2) the envelope system was derived by GC, and we

have presented a summary of that analysis in section 2 leading to the equation system (21,

22). Then in section 3 we have exhibited explicitly the gap-soliton solutions of that system.

Particular interest attaches to the case when the envelope and carrier speeds are identical, so

that gap-soliton is then a steady travelling-wave solution of the full fluid system. This case was

discussed in section 4, where we have shown that this three-layered fluid model can exhibit a

large class of such gap-soliton solutions. Although the existence of gap-solitons is well-known in

other branches of phsyics, such as nonlinear optics, we believe that is the first time they have

been found in a fluid flow.
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Figure 3: Steady gap-solitons for σ̂ = 1.01, σ̂′ = 0 when k = 1m−1, H2 = 50m, H1 = H3 = 500m

on the lower interface (W̃ < 0).
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Figure 4: As for Figure 3, on the upper interface.

A Appendix

From GC, the quantities D1, D2, E are given by

D1(ω, k) = g(ρ1 − ρ2) + σk3 − {ρ1(ω − kU1)
2

kT1
+
ρ2(ω − kU2)

2

kT2
} , (56)

D3(ω, k) = g(ρ2 − ρ3) + σ′k3 − {ρ2(ω − kU2)
2

kT2

+
ρ3(ω − kU3)

2

kT3

} , (57)

E(ω, k) =
ρ2(ω − kU2)

2

kS2

, (58)

where Ti = tanhkHi and Si = sinh kH1 for i = 1, 2, 3. At resonance, these give

D1ω =
2ρ1U1

T1
, D3ω =

2ρ3U3

T3
, (59)
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Figure 5: Steady gap-solitons for σ̂ = 1.50, σ̂′ = 0.40 when k = 1m−1, H2 = 50m, H1 = H3 =

500m on the lower interface (W̃ > 0).
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Figure 6: As for Figure 5, on the upper interface.

The group velocities at the resonant wavenumber are given by

V1 =
1

2
U1{1 −

kH1T1

S2
1

} − σkT1

ρ1U1
, (60)

V3 =
1

2
U3{1 −

kH3T3

S2
3

} − σ′kT3

ρ3U3
. (61)

.

The mean flow variables satisfy the equation set

η̄T + U1η̄X +H1ū1X =
2kU1

T1

|A|2X , (62)

η̄T − C = 0 , (63)

ζ̄T +H2ū2X − C = 0 , (64)

ζ̄T + U3ζ̄X +H3ū3X = −2kU3

T3
|B|2X , (65)
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obtained from averaging the kinematic boundary conditions at each interface, while the variable

C is related to the mean vertical velocity in the middle layer. The system is closed by averaging

the pressure boundary conditions at each interface to get

ρ1(ū1T + U1ū1X) − ρ2ū2T + g(ρ1 − ρ2)η̄X = −ρ1U
2
1k

21 − T 2
1

T 2
1

|A|2X , (66)

ρ2ū2T − ρ3(ū3T + U3ū3X) + g(ρ2 − ρ3)ζ̄X = ρ3U
2
3k

2 1 − T 2
3

T 2
3

|B|2X . (67)

The remaining coefficients in the evolution equations (21, 22) are given by

µ1 =
1

D1(2ω, 2k)
{−ρ2

1U
4
1k

4 9 + 4T1 + 4T 3
1 − T 4

1

2T 4
1

+ 2ρ1U
2
1k

3[g(ρ1 − ρ2) + 4σk2]
1

T 2
1

}

−2ρ1U
2
1k

31 + T1 − 2T 2
1

T 3
1

− 3

2
σk4 , (68)

µ3 =
1

D3(2ω, 2k)
{−ρ2

3U
4
3 k

49 + 4T3 + 4T 3
3 − T 4

3

2T 4
3

+ 2ρ3U
2
3k

3[g(ρ2 − ρ3) + 4σ′k2]
1

T 2
3

}

−2ρ3U
2
3k

3 1 + T3 − 2T 2
3

T 3
3

− 3

2
σ′k4 , (69)

ν1 = ρ1U
2
1k

2 1 − T 2
1

T 2
1

, ν3 = −ρ3U
2
3 k

21 − T 2
3

T 2
3

. (70)

Finally, the coefficients arising in the solitary-wave solution of the mean flow equations are given

by

ηA = −ρ1[U
2
1k

2 1 − T 2
1

T 2
1

+ (U1 − V )
2kU1

T1H1
][g(ρ2 − ρ3) + ρ3

(U3 − V )2

H3
− ρ2

V 2

H2
]
1

d
, (71)

ηB = −ρ2ρ3
V 2

H2
[U2

3k
2 1 − T 2

3

T 2
3

− (U3 − V )
2kU3

T3H3
]
1

d
, (72)

ζA = ρ1ρ2
V 2

H2

[U2
1 k

21 − T 2
1

T 2
1

+ (U1 − V )
2kU1

T1H1

]
1

d
, (73)

ζB = ρ3[U
2
3k

21 − T 2
3

T 2
3

− (U3 − V )
2kU3

T3H3
][g(ρ1 − ρ2) − ρ1

(U1 − V )2

H1
− ρ2

V 2

H2
]
1

d
, (74)

u1A =
1

ρ1(U1 − V )
[(ρ2

V 2

H2
− g(ρ1 − ρ2))ηA − ρ2

V 2

H2
ζA − ρ1U

2
1k

2 1 − T 2
1

T 2
1

] , (75)

u1B =
1

ρ1(U1 − V )
[(ρ2

V 2

H2
− g(ρ1 − ρ2))ηB − ρ2

V 2

H2
ζB] , (76)

u3A =
1

ρ3(U3 − V )
[(−ρ2

V 2

H2

− g(ρ2 − ρ3))ζB + ρ2
V 2

H2

ηB − ρ3U
2
3k

21 − T 2
3

T 2
3

] , (77)

u3B =
1

ρ3(U3 − V )
[(−ρ2

V 2

H2

− g(ρ2 − ρ3))ζA + ρ2
V 2

H2

ηA] , (78)

d = [g(ρ1 − ρ2) − ρ1
(U1 − V )2

H1

− ρ2
V 2

H2

][g(ρ2 − ρ3) + ρ3
(U3 − V )2

H3

− ρ2
V 2

H2

] − ρ2
2

V 4

H2
2

. (79)
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