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Abstract - The performance of a flat plate collector depends on the collector efficiency factor (F΄). The 
value of the collector efficiency factor depends on a number of parameters like the riser pipe diameter, the 
distance between the riser pipes, the type of materials of construction and thickness, and many others. For 
a collector of fixed width the efficiency increases by increasing the number of riser tubes. However, by 
increasing the number of tubes the cost of the collector is also increased. Therefore the objective of the 
work presented here is to find the optimum number of tubes. For this purpose a genetic algorithm is used 
which is inspired by the way living organisms adapt to the harsh realities of life in a hostile world. A 
genetic algorithm is an optimum search technique based on the concepts of natural selection and survival 
of the fittest. The cost of the extra tubes considered is compared against the extra value of the energy 
collected by considering average weather conditions for 20 years (mean life of the system) and two types 
of conventional sources of energy i.e., light fuel oil (LFO) and electricity. The results show that a smaller 
number of tubes than the traditional number (10-12) have been obtained for the case where light fuel oil is 
considered and the number is insensitive to the pipe size, whereas an increased number is obtained in the 
case where electricity is considered. This is because electricity is 3.5 times more expensive than LFO. 
 

 
1. INTRODUCTION 
 
    Genetic algorithms are inspired by the way living 
organisms adapt to the harsh realities of life in a hostile 
world, i.e., by evolution and inheritance. The algorithm 
imitates the process the evolution of population by 
selecting only fit individuals for reproduction. Therefore, 
a genetic algorithm is an optimum search technique based 
on the concepts of natural selection and survival of the 
fittest. It works with a fixed-size population of possible 
solutions of a problem, called individuals, which are 
evolving in time. A genetic algorithm utilizes three 
principal genetic operators: selection, crossover, and 
mutation.   
    During each step (called a generation) in the 
reproduction process, the individuals in the current 
generation are evaluated by a fitness function value, 
which is a measure of how well the individual solves the 
problem. Then each individual is reproduced in 
proportion to its fitness: the higher the fitness, the higher 
its chance to participate in mating (crossover) and to 
produce an offspring. A small number of newborn 
offspring undergo the action of the mutation operator. 
After many generations, only those individuals who have 
the best genetics (from the point of view of the fitness 
function) survive. The individuals that emerge from this 
‘survival of the fittest’ process are the ones that represent 
the optimal solution to the problem specified by the 
fitness function and the constraints. More details on 
genetic algorithms are given later in this paper.  
    A number of researchers have used genetic algorithms 
as optimisation tools of solar energy systems. 
 

    Genetic algorithms have been used as a design support 
tool by Loomans and Visser (2002) for the optimization 
of large hot water systems. The tool calculates the yield 
and the costs of solar hot water systems based on 
technical and financial data of the system components. 
The genetic algorithm allows for the optimization of 
separate variables as the collector type, the number of 
collectors, the heat storage capacity and the collector heat 
exchanger area. 
    Kalogirou (2002) used also genetic algorithms together 
with a neural network for the optimization of the design 
of solar energy systems. The method is presented by 
means of an example referring to an industrial process 
heat system. The genetic algorithm is used to determine 
the optimum values of collector area and the storage tank 
size of the system which minimize the solar energy price. 
According to the author the solution reached is more 
accurate than the traditional trial and error method and 
the design time is reduced substantially. 
    Krause et al. (2002) present a study in which two solar 
domestic hot water systems in Germany have been 
optimized by employing validated TRNSYS models in 
combination with genetic algorithms. Three different 
optimization procedures are presented. The first concerns 
the planning phase. The second one concerns the 
operation of the systems and should be carried out after 
about one year of data is collected. The third one 
examines the daily performance considering predictions 
of weather and hot water consumption and actual 
temperature level in the storage tank. 
    The objective of the present work is to determine the 
optimum number of the collector riser tubes. This is a 
complex problem because such decision depends on 



many factors which are interrelated between themselves. 
For this purpose an evolution strategy based on genetic 
algorithms is used to determine the optimum solution. 
 
2. ANALYSIS 
 
    In this section various relations that are required in 
order to determine the useful energy collected and the 
interaction of the various constructional parameters on 
the performance of a collector are presented. 
    The useful energy collected from a collector can be 
obtained from the following formula: 
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where FR is the heat removal factor given by: 
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    In Eq. (2) F΄ is the collector efficiency factor which is 
calculated by considering the temperature distribution 
between two pipes of the collector absorber and by 
assuming that the temperature gradient in the flow 
direction is negligible (Duffie and Beckman, 1991). This 
analysis can be performed by considering the sheet tube 
configuration shown in Fig. 1, where the distance 
between the tubes is W, the tube diameter is D, and the 
sheet thickness is δ. As the sheet metal is usually made 
from copper or aluminum which are good conductors of 
heat, the temperature gradient through the sheet is 
negligible, therefore the region between the centerline 
separating the tubes and the tube base can be considered 
as a classical fin problem. By following this analysis the 
equation to estimate F΄ is given by: 
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    The collector overall heat loss coefficient can be 
obtained from: 
 

UL=Ut+Ub+Ue   (4) 
 
i.e., it is the heat transfer resistance from the absorber 
plate to the ambient air. 
    A physical interpretation of F΄is that it represents the 
ratio of the actual useful energy gain to the useful energy 
gain that would result if the collector absorbing surface 
had been at the local fluid temperature. It should be noted 
that the denominator of equation (3) is the heat transfer 
resistance from the fluid to the ambient air. This 
resistance can be represented as 1/Uo. Therefore another 
interpretation of F΄ is: 
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    In Equation (3), Cb is the bond conductance which can 
be estimated from knowledge of the bond thermal 
conductivity kb, the average bond thickness γ, and the 
bond width b. The bond conductance on a per unit length 
basis is given by: 

 

γ
bkC b

b =    (6) 

 
    The bond conductance can be very important in 
accurately describing the collector performance and 
generally it is necessary to have good metal-to-metal 
contact so that the bond conductance is greater that 30 
W/mK and preferably the tube should be welded to the 
fin. 

   
Fig. 1 Flat-plate sheet and tube configuration 
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    Factor F in Eq. (3) is the standard fin efficiency for 
straight fins with rectangular profile, obtained from: 
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where n is given by: 
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    The collector efficiency factor is essentially a constant 
factor for any collector design and fluid flow rate. The 
ratio of UL to Cb, the ratio of UL to hfi, and the fin 
efficiency F are the only variables appearing in Eq. (3) 
that may be functions of temperature. For most collector 
designs F is the most important of these variables in 
determining F΄. The factor F΄ is a function of UL and hfi, 
each of which has some temperature dependence, but it is 
not a strong function of temperature. Additionally, the 
collector efficiency factor decreases with increased tube 
center-to-center distances and increases with increases in 
both material thicknesses and thermal conductivity. 
Increasing the overall loss coefficient decreases F΄ while 
increasing the fluid-tube heat transfer coefficient 
increases F΄. 
    Therefore it is obvious from the above analysis that by 
increasing F΄ more energy can be intercepted by the 
collector. By keeping all other factors constant increase 
of F΄ can be obtained by decreasing W. However, 
decrease in W means increased number of tubes and 
therefore extra cost would be required for the 
construction of the collector. The optimum is estimated 
here by using a genetic algorithm to maximise the energy 
savings, i.e., the extra energy collected against the extra 
cost of the collector (resulting from the increased number 
of riser tubes). 
 
3. GENETIC ALGORITHM 
 
    The genetic algorithm (GA) is a model of machine 
learning, which derives its behavior from a representation 
of the processes of evolution in nature. This is done by 
the creation within a machine/computer of a population 
of individuals represented by chromosomes. Essentially 
these are a set of character strings that are analogous to 
the chromosomes that we see in the DNA of human 
beings. The individuals in the population then go through 
a process of evolution. 
     It should be noted that evolution as occurring in nature 
or elsewhere is not a purposive or directed process, i.e., 
there is no evidence to support the assertion that the goal 
of evolution is to produce Mankind. Indeed, the processes 
of nature seem to end to different individuals competing 
for resources in the environment. Some are better than 

others are, those that are better are more likely to survive 
and propagate their genetic material. 
    In nature, the encoding for the genetic information is 
done in a way that admits asexual reproduction typically 
results in offspring that are genetically identical to the 
parent. Sexual reproduction allows the creation of 
genetically radically different offspring that are still of 
the same general species. 
    In an over simplified consideration, at the molecular 
level what happens is that a pair of chromosomes bump 
into one another, exchange chunks of genetic information 
and drift apart. This is the recombination operation, 
which in GAs is generally referred to as crossover 
because of the way that genetic material crosses over 
from one chromosome to another. 
    The crossover operation happens in an environment 
where the selection of who gets to mate is a function of 
the fitness of the individual, i.e. how good the individual 
is at competing in its environment. Some GAs use a 
simple function of the fitness measure to select 
individuals (probabilistically) to undergo genetic 
operations such as crossover or asexual reproduction, i.e., 
the propagation of genetic material remains unaltered. 
This is fitness - proportionate selection. Other 
implementations use a model in which certain randomly 
selected individuals in a subgroup compete and the fittest 
is selected. This is called tournament selection. The two 
processes that most contribute to evolution are crossover 
and fitness based selection/reproduction. Mutation also 
plays a role in this process.  
    GAs are used for a number of different application 
areas. An example of this would be multidimensional 
optimization problems in which the character string of the 
chromosome can be used to encode the values for the 
different parameters being optimized. 
    In practice, therefore, this genetic model of 
computation can be implemented by having arrays of bits 
or characters to represent the chromosomes. Simple bit 
manipulation operations allow the implementation of 
crossover, mutation and other operations.  
    When the GA is executed, it is usually done in a 
manner that involves the following cycle (Zalzala and 
Fleming, 1997). Evaluate the fitness of all of the 
individuals in the population. Create a new population by 
performing operations such as crossover, fitness-
proportionate reproduction and mutation on the 
individuals whose fitness has just been measured. Discard 
the old population and iterate using the new population. 
One iteration of this loop is referred to as a generation. 
The structure of the standard genetic algorithm is shown 
in Fig. 2. 
 
 
 

 



 
 
 
 
 
 
 

 
 
 

 
 
 
 

 
Fig. 2 The structure of standard genetic algorithm 

 
    With reference to Fig.2, in each generation individuals 
are selected for reproduction according to their 
performance with respect to the fitness function. In 
essence, selection gives a higher chance of survival to 
better individuals. Subsequently genetic operations are 
applied in order to form new and possibly better 
offspring. The algorithm is terminated either after a 
certain number of generations or when the optimal 
solution has been found. More details on genetic 
algorithms can be found in Goldberg (1989). 
    The first generation (generation 0) of this process 
operates on a population of randomly generated 
individuals. From there on, the genetic operations, in 
concert with the fitness measure, operate to improve the 
population. 
    Genetic algorithms (GA) are suitable for finding the 
optimum solution in problems were a fitness function is 
present. Genetic algorithms use a “fitness” measure to 
determine which of the individuals in the population 
survive and reproduce. Thus, survival of the fittest causes 
good solutions to progress. A genetic algorithm works by 
selective breeding of a population of “individuals”, each 
of which could be a potential solution to the problem. The 
genetic algorithm is seeking to breed an individual, which 
either maximizes, minimizes or it is focused on a 
particular solution of a problem. In this case, the genetic 
algorithm is seeking to breed an individual that 
maximizes the energy saving resulting from the number 
of riser pipes used. 
     The larger the breeding pool size, the greater the 
potential of it producing a better individual.  However, 
the fitness value produced by every individual must be 
compared with all other fitness values of all the other 
individuals on every reproductive cycle, so larger 
breeding pools take longer time. After testing all of the 
individuals in the pool, a new “generation” of individuals 
is produced for testing.  
    A genetic algorithm is not gradient based, and uses an 
implicitly parallel sampling of the solutions space. The 
population approach and multiple sampling means that it 
is less subject to becoming trapped to local minima than 

traditional direct approaches, and can navigate a large 
solution space with a highly efficient number of samples. 
Although not guaranteed to provide the globally optimum 
solution, GAs have been shown to be highly efficient at 
reaching a very near optimum solution in a 
computationally efficient manner. 
    During the setting up of the GA the user has to specify 
the adjustable chromosomes, i.e. the parameters that 
would be modified during evolution to obtain the 
maximum value of the fitness function. In this work, only 
one is used, i.e. the number of riser tubes. Additionally 
the user has to specify the range of this parameter called 
constraint. In the present work, this constraint is equal to 
2-15 pipes in step of 1 pipe. The cost of the extra tubes 
considered is compared against the extra value of the 
energy collected by considering average weather 
conditions for 20 years (mean life of the system). The 
energy collected is estimated by using the various 
equations presented in section 2. The amount of the extra 
energy collected is transferred into monetary value by 
considering as conventional source of energy both light 
fuel oil and electricity. By subtracting the riser tube cost 
from the energy price the energy saving can be estimated 
and this value is the fitness function which is maximised.  
    The genetic algorithm parameters used in the present 
work are: 

 Population size=50 
Population size is the size of the genetic breeding pool, 
i.e., the number of individuals contained in the pool. If 
this parameter is set to a low value, there would not be 
enough different kinds of individuals to solve the 
problem satisfactorily. On the other hand, if there are too 
many in the population, a good solution will take longer 
to be found because the fitness function must be 
calculated for every individual in every generation. 

 Crossover rate=90% 
Crossover rate determines the probability that the 
crossover operator will be applied to a particular 
chromosome during a generation. 

 Mutation rate=1% 

Genetic Algorithm 
Begin (1) 

t = 0 [start with an initial time] 
Initialize Population P(t) [initialize a usually random population of individuals] 
Evaluate fitness of Population P(t) [evaluate fitness of all individuals in population] 
While (Generations < Total Number) do begin (2) 

t = t + 1 [increase the time counter] 
Select Population P(t) out of Population P(t-1) [select subpopulation for offspring production] 
Apply Crossover on Population P(t) 
Apply Mutation on Population P(t) 
Evaluate fitness of Population P(t) [evaluate new fitness of population] 

end (2) 
end (1) 



Mutation rate determines the probability that the mutation 
operator will be applied to a particular chromosome 
during a generation. 

 Generation gap=96% 
Generation gap determines the fraction of those 
individuals that do not go into the next generation. It is 
sometimes desirable that individuals in the population be 
allowed to go into next generation. This is especially 
important if individuals selected are the most fit ones in 
the population. 

 Chromosome type=continuous 
Populations are composed of individuals, and individuals 
are composed of chromosomes, which are equivalent to 
variables.  Chromosomes are composed of smaller units 
called genes. There are two types of chromosomes, 
continuous and enumerated. Continuous are implemented 
in the computer as binary bits.  The two distinct values of 
a gene, 0 and 1, are called alleles. Multiple chromosomes 
make up the individual. Each partition is one 
chromosome, each binary bit is a gene, and the value of 
each bit (1, 0, 0, 1, 1, 0) is an allele. Enumerated 
chromosomes consist of genes, which can have more 
allele values than just 0 and 1. There are two different 
types of enumerated chromosomes; ‘repeating genes’ and 
‘unique genes’. Unique genes have to be used in cases 
that each gene is used only once and repeating genes 
where chromosomes can have repeating genes like 
2,3,2,4,5,2,3 or even 2,2,2,2,2,2,2. 
    The genetic algorithm is usually stopped after best 
fitness remained unchanged for a number of generations 
or when the optimum solution is reached. In this work the 
genetic algorithm was stopped after best fitness remained 
unchanged for 75 generations. 
 
4. RESULTS 
 
    As described above, the cost of the extra tubes 
considered is compared against the extra value of the 
energy collected by considering average weather 
conditions for 20 years (mean life of the system).  

    Relations 1 to 8 above were used together with other 
characteristics and economic parameters of the system in 
combination with a genetic algorithm program to find the 
optimum number of riser tube (adjustable chromosome) 
that maximises the energy saving of the system (fitness 
function). The whole model was set – up in a spreadsheet 
program in which the various parameters and equations 
(like Eqs. 1 to 8) are entered into different cells. The 
adjustable chromosome is also set in a different cell and 
the fitness function is the cell that contains an equation 
giving the energy savings of the system for a twenty 
years period. It should be noted that, the spreadsheet file 
described above need to be constructed once. The only 
changes required for different problems (different pipe 
size or type of fuel) would be to modify the cells with the 
input parameters and the cell containing the fuel price. 
    The input parameters are shown in Table 1 whereas the 
parameters estimated are 1/UL (from Eq. 4), n (from Eq. 
8), F (from Eq. 7), F΄ (from Eq. 3), FR (from Eq. 2), Qu 
(from Eq. 1), and ∆Qu, which is equal to Qu-Qref, a 
reference useful energy estimated with N=1 (one riser 
pipe). Finally the energy price is estimated, according to 
the useful energy collected and the price of the fuel 
considered, and the energy saving, which is equal to the 
energy price minus the riser tube cost. This final relation 
is the fitness function which the program, seeks to 
maximize by changing the number of tubes (adjustable 
chromosome). As can be seen, although this is a 
relatively simple problem with only one adjustable 
chromosome, each variation of the chromosome causes 
recalculation of all the above equations in the sequence 
indicated. The cost of each riser tube, shown in Table 1, 
refers to the current price taken from local solar collector 
manufacturers. A fixed collector width of one meter is 
considered in this work. Therefore the distance W (in 
meters) for each number of riser tubes (N) is estimated 
from the following equation: 
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Table 1. Input parameters 
Parameter Value 
Heat loss coefficient (UL) 
Absorber thermal conductivity (k) 
Absorber (fin) thickness (δ) 
Distance between riser tubes (W) 
Riser tube outside diameter (D) 
Riser tube inside diameter (Di) 
Bond conductance (Cb) 
Heat transfer coefficient inside absorber tube (hfi) 
Mass flow rate (m) 
Specific heat capacity (cp) 
Transmittance-absorptance produce (τα) 
Temperature difference (∆T) [=Ti-Ta] 
Solar radiation (I) 
Cost of each riser tube (2m long) 

8 W/m2K 
385 W/mK (copper) 
0.5 mm 
Estimated from number of tubes, using Eq. (9) 
0.009, 0.012, 0.015 mm 
0.008, 0.0105, 0.0135 mm 
30 W/mK 
300 W/m2K 
0.015 kg/s 
4180 J/kgK (water) 
0.7 
25°C (mean value) 
500 W/m2 (mean value) 
C£3/tube 



    The solution reached by applying the method 
suggested here gives the results shown in Table 2. It 
should be noted that the traditional number of tubes 
employed is 10-12 and the usual size of pipe is 15 mm. 
As can be seen from the results presented in Table 2 a 
smaller number of tubes than the traditional number has 
been obtained for the case where light fuel oil is 
considered and the number is insensitive to the pipe size, 
whereas an increased number is obtained in the case 
where electricity is considered. This is because electricity 
is 3.5 times more expensive than light fuel oil. Therefore 
when electricity is used, as a more expensive fuel is 
replaced with solar energy, an increased number of tubes 
is found to be more viable. It should be noted that for 
each run of the program the optimum solution was 
reached in less than 15 seconds on a Pentium 400 MHz 
machine, which is very fast. 
 

Table 2. Results of the optimization program 
Optimum number of tubes Pipe size (mm) Electricity Light fuel oil 

9 
12 
15 

13 
12 
11 

7 
7 
7 

 
5. CONCLUSIONS 
 
    As it is shown in this paper the performance of a flat 
plate collector depends on the collector efficiency factor 
(F΄) which depends on a number of parameters like the 
riser pipe diameter, the distance between the riser pipes, 
the type of materials of construction and thickness. For a 
collector of fixed width the efficiency increases by 
increasing the number of riser tubes. However, by 
increasing the number of tubes the cost of the collector is 
also increased.  
    To find the optimum number of tubes a genetic 
algorithm is used. The cost of the extra tubes considered 
is compared against the extra value of the energy 
collected by considering average weather conditions for 
20 years (mean life of the system) and two types of 
conventional sources of energy (light fuel oil and 
electricity). The solution reached by applying the method 
suggested here is given for both fuels and for a number of 
pipe sizes. As it is shown in this paper a smaller number 
of tubes than the traditional number (10-12) have been 
obtained for the case where light fuel oil is considered 
and the number is insensitive to the pipe size whereas an 
increased number of tubes is obtained in the case where 
electricity is considered. This is because electricity is 3.5 
times more expensive than light fuel oil. Therefore when 
electricity is used, as a more expensive fuel is replaced 
with solar energy, an increased number of tubes is found 
to be more viable. 
 
NOMENCLATURE 
 
A Collector area, m2 

b Bond width , m 
Cb  Bond conductance, W/mK 
cp  Specific heat capacity, J/kgK 
D  Riser tube outside diameter, m 
Di  Riser tube inside diameter, m 
F΄ Collector efficiency factor 
F Fin efficiency 
FR Heat removal factor 
hfi  Heat transfer coefficient inside absorber tube, 

W/m2K 
I  Solar radiation, W/m2 
k  Absorber thermal conductivity, W/mK 
kb  Bond thermal conductivity, W/mK 
m  Mass flow rate, kg/s 
N Number of riser tubes 
Qu Rate of useful energy collected, W 
Ta Ambient temperature, K 
Ti Collector inlet temperature, K 
Ub Bottom heat loss coefficient, W/m2K 
Ue Edges heat loss coefficient, W/m2K 
Uo Heat transfer coefficient from fluid to ambient 

air, W/m2K 
UL  Overall heat loss coefficient, W/m2K 
Ut Top heat loss coefficient, W/m2K 
W  Distance between riser tubes, m  
 
Greek 
γ Average bond thickness, m 
δ  Absorber (fin) thickness, m 
∆T  Temperature difference [=Ti-Ta], K 
τα  Transmittance-absorptance produce  
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