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ABSTRACT 
 
The objective of this work is to investigate the possibility of using artificial neural networks 
for the prediction of air pressure coefficients across the openings in a light weight single-sided 
naturally ventilated test room. Experimental values have been used for the training of the 
network. The outside local temperature, wind velocity and direction are monitored. The 
pressure coefficients at the top and bottom of the openings have been estimated from the 
recorded data of air pressures and velocities across the openings together with indoor air 
temperatures. The collected data together with the air heater load and a factor indicating 
whether the opening is in the windward (1) or leeward (0) direction are used as input to the 
neural network and the estimated pressure coefficients as the output. A general regression 
neural network (GRNN) was employed with one hidden slab. The training was performed 
with satisfactory accuracy and correlation coefficients of 0.9539 and 0.9325 have been 
obtained for the two coefficients respectively. Satisfactory results have been obtained when 
unknown data were used as input to the network with correlation coefficients of 0.9575 and 
0.9320 respectively.  
 
 
1. INTRODUCTION 
 

Natural ventilation is becoming an increasingly important design strategy for non-domestic 
buildings. The main reason is that the primary energy consumption in buildings is reduced 
which consequently results in reduced CO2 emissions. To achieve thermal comfort in 
naturally ventilated buildings it is important to predict the airflow inside the building due to 
both stack and wind effects. Matthews and Rousseau (1994 a, b) used a flow network model 
which took account of both wind and buoyancy forces. It was found that the changes in air 
temperature along the flow path were not easy to predict and that empirical room air 
temperature profiles were necessary for the evaluation of thermal comfort. Also recent 
experimental studies at Loughborough University (Eftekhari and Pinnock, 1998) 
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demonstrated that airflow is dependent on the direction of the wind and it is difficult to 
predict in a single-sided naturally ventilated office.  

When designing a naturally ventilated building, knowledge of wind pressures on the 
external openings is often required to allow prediction of ventilation performance. The ability 
to effectively predict the combined wind and stack effects would considerably enhance the 
performance of natural ventilation in buildings. 

The British Standard Method (BS 5925, 1980) proposes formulae for the calculation of the 
airflow in single sided and cross ventilation configurations. The method assumes two-
dimensional flow through a building and ignores all internal partitions. Another simplified 
method for single-sided ventilation with openings at different levels or the same height is 
proposed by Santamouris and Asimakopoulos (1994). The current guidelines on the design of 
natural ventilation (CIBSE, 1997) are incomprehensive and more models and data are 
required. These simplified models have limited application and cannot be considered of 
general validity; they should always be used within the limits of their applicability (Limam 
and Allard, 1996). 

One method to predict the airflow is artificial neural networks, which can estimate input-
output functions, without a mathematical model of how output depends on input. They are 
model-free estimators and learn from experience with numerical sample data (Swingler, 
1996).  

Neural networks are widely accepted as a technology offering an alternative way to tackle 
complex and ill-defined problems. They can learn from examples, are fault tolerant in the 
sense that they are able to handle noisy and incomplete data, are able to deal with non-linear 
problems, and once trained can perform prediction at very high speed. The power of neural 
networks in modelling complex mappings and in system identification has been demonstrated 
(Kohonen, 1984; Narendra and Parthasarathi, 1990; Ito, 1992). This work encouraged many 
researchers to explore the possibility of using neural network models in real world 
applications such as in control systems, in classification, and modelling complex process 
transformations (Kah et al., 1995; Kreider and Wang, 1995; Pattichis et al., 1995; Curtis et 
al., 1995; Chong et al., 2000). 

Successful application of neural networks in different areas has been reported extensively 
(Kalogirou et al., 1996; 1997). Kindangen (1996) reported the use of artificial neural 
networks in naturally ventilated buildings, where the effect of opening configurations was 
investigated. It was shown that this method provides reliable results in the cases where many 
parameters were taken into account. In another work of the authors neural networks have been 
used to predict the air flow and temperature distribution inside the same single-sided naturally 
ventilated test room used here (Kalogirou et al., 1999). 

The objective of this research is to use neural networks to predict the pressure coefficients 
inside a single-sided naturally ventilated test room. This is considered as an important 
parameter for the determination of airflow into the test cell as a result of its natural 
ventilation. The room is a portable cabin (Portakabin, 1994) with a volume of 22.2 m3 located 
in a sheltered area. The ventilation rate into the room was controlled by adjusting four sets of 
louvres. The local outside air temperature and wind velocity and direction are monitored. To 
investigate airflow inside the room, the air pressures and velocities across the openings 
together with indoor air temperature and velocity at four locations and six different levels are 
measured. From these data the required pressure coefficients at the top and bottom of the 
openings are estimated. 
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2. EXPERIMENTAL TECHNIQUE 
 
2.1 Test Room 

An existing portable cabin of light mass is used as a test room for natural ventilation at 
Loughborough University, which is fitted with four sets of horizontal slats metal louvres. 
Each unit had overall dimensions of 125 cm wide, 80 cm high and 20 cm deep and contained 
5 of 12 cm wide adjustable louvre blades. Relative to the internal dimensions the louvres 
covered just over 60% of the bulkhead area with a capability, when fully open, to provide an 
aperture equivalent to approximately 28% of the bulkhead area. The adjustable louvres were 
fitted to ensure that significant ventilation entered the test room. 

In order to accurately regulate the degree of opening of the louvre blades while controlling 
each louvre unit or bank individually to any configuration a motor actuator was required for 
each unit. The motors were driven by a 24 V d.c. supply with a positioning signal ranging 
from 0 to 10 volts. The motors provided a return signal ranging from 2 to 10 volts to indicate 
their position. In the set up used 2 volts represented fully open and 10 volts fully closed. It 
also incorporated a 0 to 10 volt voltmeter that could be switched between the motors to 
measure the return signal and, hence, allowed the motor to position accurately and 
consistently. 

To measure the indoor air flow distribution the room was divided into four zones and for 
each zone the temperature and velocity stratification were measured. During summer the 
internal heat loads inside the room were three computers, one multichannel flow analyser and 
two 58 W fluorescent luminaires. Over the winter period additional 2kW or 4 kW heaters 
were used.  Due to the sheltered position of the test room there was no solar gain into the 
room. During the experiments the size of the opening at the top and bottom was 0.07 m2 and 
0.12 m2 respectively with a 1.25 m distance between the centre of the openings. This area, i.e., 
the specific louvre position, was constant throughout the experiments. Details of the U-values 
and the thermal capacity of the test room are described fully elsewhere (Eftekari, 1998). 
  
2.2 Instrumentation and data acquisition 

Due to the sheltered nature of the test room, the external environmental weather conditions 
local to the test room were measured. Weather station sensors were mounted locally, which 
measured the wind velocity, direction, outside air temperature, and other parameters like 
humidity and pressure, which are not used in the present study. Inside the room, the air 
velocity through the louvre opening, air pressure and temperature across the room were 
measured. The direction and airflow at the openings were measured using four ultrasonic air 
flow meters. The total pressure at top and bottom levels inside and outside across the louvres 
was recorded using low pressure differential transducers manufactured by Furness type 
FC044. The reference pressure for all pressure measurements was the static pressure inside 
the room taken at approximately 1m from the floor. Type 54N10 multichannel flow analyser 
was used for the measurements of the inside air temperature and velocity at four locations and 
six levels above the floor. The positioning of indoor sensors is shown in Figure 1. 

The ultrasonic anemometers that were used are the BIRAL 3-axis logging type. The 
logging ultrasonic anemometer consists of a sensing head with six ultrasonic transducers 
arranged in three pairs, surmounting a cylindrical electronic base housing. The onboard 
electronics provide all ultrasonic processing and vector computations required to calculate 
wind data. 

The measurement characteristics for the time period and range of measured data are: 
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• Wind speed accuracy: ±3% 
• Wind speed offset: ±0.02 m/s 
• Direction accuracy: ±3° 
 
The ultrasonics were used to measure the direction of the airflow into/out of the room. 
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Figure 1. Location of the sensors inside the test room. 

 
2.3 Experimental Pressure Coefficient (Cp) 

The wind pressure distribution on a building envelope is usually described by 
dimensionless pressure coefficient – the ratio of the surface dynamic pressure to the dynamic 
pressure in the undisturbed flow pattern measured at a reference height, caused by impinging 
wind on the specific building surface. The pressure coefficient at any point K(x,y,z) with the 
reference dynamic pressure pdyn corresponding to the height zref for a given wind direction φ 
can be described by: 

)z(p
)z(pp

),z(C
refdyn

oK
refpK

−
=φ        (1) 

where po(z) is the outside pressure at height z (Pa). 
 
The dynamic pressure corresponding to reference height is given by:  

)z(
2
1)z(p ref

2
orefdyn ν⋅ρ=        (2) 
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If Equation (2) is substituted in Equation (1), the final form for pressure coefficient 
equation can be obtained. 

)z(
2
1

)z(pp
),z(C

ref
2

o

oK
refpK

ν⋅ρ

−
=φ        (3) 

where ν is the wind speed (m/s). 
 

The Cp values for both tests were determined according to the equation (3) based on the 
measured wind speed and pressure values. 
 
3. DATA COLLECTION AND PRE-PROCESSING 
 

Experimental values have been used for the training of the network. The outside local 
temperature, wind velocity and direction were monitored. The air pressures and velocities 
across the openings together with indoor air temperature and velocity at four locations and six 
different levels were measured. From the measured data (pressures and wind velocity) at the 
top and bottom of the openings the pressure coefficients were estimated. These data together 
with the air heater load, ambient temperature and a factor indicating whether the opening is in 
the windward (1) or leeward (0) direction were used as input to the neural network and the 
estimated pressure coefficients as the output. Seven tests of 5-6 hours duration have been 
performed in total. Readings were taken every 1-2 minute for the whole testing period. A total 
of 1791 patterns were available in total. From these, 1289 patterns were used for training and 
322 patterns for testing the network whereas 10% of the data (180 patterns) were randomly 
selected and used for validation. 

 
4. ARTIFICIAL NEURAL NETWORK 
 

According to Haykin (1994) a neural network is a massively parallel distributed processor 
that has a natural propensity for storing experiential knowledge and making it available for 
use. It resembles the human brain in two respects: the knowledge is acquired by the network 
through a learning process, and inter-neuron connection strengths known as synaptic weights 
are associated with the knowledge. Instead of complex rules and mathematical routines, 
ANN’s are able to learn the key information patterns within a multidimensional information 
domain. In addition, inherently noisy data does not seem to present a problem, since they are 
neglected. 

ANN models represent a new method in system prediction. An ANN operates like a “black 
box” model, requiring no detailed information about the system. Instead, they learn the 
relationship between the input parameters and the controlled and uncontrolled variables by 
studying previously recorded data, similar to the way in which a non-linear regression might 
perform. An advantage of using ANNs is their ability to handle large and complex systems 
with many interrelated parameters.  

Various network architectures have been investigated to find the one that could provide the 
best overall performance. The architecture, among those tested, that gave the best results and 
was adopted for the present work is shown in Figure 2. It is a general regression neural 
network architecture, which has one hidden slab.  
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Figure 2. Neural network architecture employed. 
 

General Regression Neural Networks (GRNN) are known for the ability to train quickly on 
sparse data sets. In numerous tests it was found that GRNN responds much better than 
backpropagation to many types of problems, although this is not a rule.  It is especially useful 
for continuous function approximation. GRNN can have multidimensional input, and it will 
fit multidimensional surfaces through data. 

A GRNN network is a three-layer network that contains one hidden neuron for each 
training pattern (see Figure 2). There are no training parameters such as learning rate and 
momentum as there are in Backpropagation networks, but there is a smoothing factor that is 
applied after the network is trained. The smoothing factor determines how tightly the network 
matches its predictions to the data in the training patterns.  

If more than 2000 patterns are available in the training data set, then GRNN may become 
too slow to be feasible unless a very fast machine is available. The reason is that applying a 
GRNN network requires a comparison between the new pattern and each of the training 
patterns. 

For GRNN networks, the number of neurons in the hidden layer slab is usually the number 
of patterns in the training set because the hidden layer consists of one neuron for each pattern 
in the training set.  This number can be made larger if one may want to add more patterns, but 
it cannot be made smaller. The number of neurons in the input layer (Slab 1) is the number of 
inputs corresponding to the ambient temperature, wind speed and direction, factor Iw 
indicating whether the opening is in the windward or leeward direction and the heater load. 
The number of neurons in the output layer (Slab 3) corresponds to the number of outputs, i.e., 
the pressure coefficients Cp at the top and bottom of the opening. 

The smoothing factor for each link, shown by the thick arrows in Figure 2, can be 
modified. Different smoothing factors can be used in order to find which works best. For the 
present work the same smoothing factor was applied to all links and the factor obtained after 
training is equal to 0.09929. 

The GRNN is trained using a genetic algorithm (GA). Genetic algorithms use a “fitness” 
measure to determine which of the individuals in the population survive and reproduce.  Thus, 
survival of the fittest causes good solutions to evolve. A genetic algorithm works by selective 
breeding of a population of “individuals”, each of which is a potential solution to the problem.  
In this case, a potential solution is a set of smoothing factors, and the genetic algorithm is 
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seeking to breed an individual that minimizes the mean squared error of the test set.  The 
larger the breeding pool size, the greater the potential of it producing a better individual.  
However, the networks produced by every individual must be applied to the test set on every 
reproductive cycle, so larger breeding pools take longer.  After testing all of the individuals in 
the pool, a new “generation” of individuals is produced for testing. Unlike Backpropagation 
networks which propagate training patterns through the network many times seeking a lower 
mean squared error between the network’s output and the actual output or answer, GRNN 
training patterns are only presented to the network one time.  

  The input smoothing factor is an adjustment used to modify the overall smoothing to 
provide a new value for each input.  At the end of training, the individual smoothing factors 
may be used as a sensitivity analysis tool; the larger the factor for a given input, the more 
important that input is to the model, at least as far as the test set is concerned.  Inputs with low 
smoothing factors are candidates for removal for a later trial.  

Individual smoothing factors are unique to each network. The numbers are relative to each 
other within a given network and they cannot be used to compare inputs from different 
networks.  

If the number of input, output, or hidden neurons, is changed however, the network must 
be retrained. This may occur when more training patterns are added because GRNN networks 
require one hidden neuron for each training pattern. 

All the data sets used to the neural network are scaled from their numeric range into the 
numeric range that the neural network deals with efficiently. In the present case all the data 
were scaled from –1 to 1. For the GRNN an activation function is only required in the input 
layer slab. The activation function used is linear.  

The training was performed with satisfactory accuracy and correlation coefficients of 
0.9539 and 0.9325 have been obtained for the pressure coefficients at the bottom and top of 
the openings respectively. The closer these values are to unity the better is the mapping of the 
patterns of the training data set. 

The contribution factors of the various input parameters are shown in Figure 3. These 
factors are estimated from the smoothing factors and indicate the contribution of each input 
parameter to the learning of the neural network and are estimated by the network. It is of 
interest to note that the parameter with the greatest contribution is the wind speed. The second 
most important parameter is the wind direction (see Figure 3). These findings although agree 
with theory are estimated by the network which doesn’t know the importance of each input 
parameter. 
 
5. RESULTS / VALIDATION 
 

Once a satisfactory degree of input-output mapping has been achieved, the network 
training is frozen and a set of completely unknown test data was applied for verification. The 
validation data sets comprise data completely unknown to the network. The correlation 
coefficients were equal to 0.9575 and 0.9320 for the two pressure coefficients respective; both 
values are close to unity indicating a high degree of prediction accuracy.  
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Figure 3. Contribution factors of the various input parameters. 

 
A comparison of the predicted results with the actual values for the pressure coefficients at 

the bottom and top of the opening is shown in Figures 4 and 5 respectively.  As can be seen in 
Figures 4 and 5, the lines representing the actual figures and the results predicted by the 
network are so close that they are indistinguishable. About two hours were required for the 
training of the network on a Pentium 450 MHz machine. The subsequent predictions for the 
validation cases required less than a second on the same machine; so a quick estimation time 
is obtained without sacrificing accuracy.  
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Figure 4. Comparison of the actual and ANN results for the pressure coefficient at the bottom of the opening. 
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Figure 5. Comparison of the actual and ANN results for the pressure coefficient at the top of the opening. 
 
6. CONCLUSIONS 
 

The objective of this research was to predict the pressure coefficients at the top and bottom 
of the opening of a light weight test room, which is naturally ventilated using artificial neural 
networks. The test room is situated in a relatively sheltered location and is ventilated through 
adjustable louvres. Experimental values have been used for the training of the network. The 
outside local temperature, wind velocity and direction are monitored. The pressure 
coefficients at the top and bottom of the openings have been estimated from the recorded data 
of air pressures and velocities across the openings together with indoor air temperature and 
velocity. The collected data together with the air heater load and a factor indicating whether 
the opening is in the windward (1) or leeward (0) direction are used as input to the neural 
network and the estimated pressure coefficients as the output. A general regression neural 
network (GRNN) was employed with one hidden slab. The training was performed with 
satisfactory accuracy and correlation coefficients of 0.9539 and 0.9325 have been obtained for 
the two pressure coefficients respectively. Satisfactory results have been obtained when 
unknown data were used as input to the network with correlation coefficients of 0.9575 and 
0.9320 respectively. 

It is of interest to note that the contribution factors estimated by the network shows that the 
parameter with the greatest contribution is the wind speed. This finding although agrees with 
theory it is estimated by the network which doesn’t know the importance of each input 
parameter. 

The work presented in this paper primarily aims to show the suitability of neural networks 
to perform such predictions. In order to make the method more usable the training database 
needs to be enriched with readings from actual measurements from a number of applications. 
Predictions to actual buildings can be performed provided that a number of suitable sensors 
are installed together with a data acquisition system in order to create a database with 
combinations of possible weather and other operating conditions, and the required output. 
This can subsequently be used to train a suitable neural network of the type described in the 
present paper to predict the indoor air temperature of the building and/or any other required 
parameter. The greatest advantage of the present method is that it doesn’t depend on analytic 
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models to predict the wind velocity and direction but it uses actual measurements to predict 
the required parameters. This is strengthened by the fact that the source to any natural 
ventilation system is the wind the velocity and direction of which is continuously changing.  
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NOMENCLATURE
 
Cp        pressure coefficients [-] 
p          pressure [Pa] 
z           height [m] 
φ          wind direction [rad] 
ρ          air density [kg/m3] 
 
Subscripts: 
atm        atmospheric 
dyn        dynamic 
ref          reference 
o                 outside 
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