

Magnetism and superconductivity in expanded fullerides

M. Menelaou,^{1,2} Y. Takabayashi,^{1,3} Peter J. Baker,⁴ K. Prassides,^{1,5}

¹ WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
 ² Cyprus University of Technology, Limassol, Cyprus
 ³ Nagoya Institute of Technology, Nagoya, Japan
 ⁴ The ISIS Facility, Rutherford Appleton Laboratory, UK
 ⁵ Osaka Prefecture University, Osaka, Japan

Second EUt+ Workshop on Nanomaterials and Nanotechnologies Cartagena, Spain 1-2 February, 2022

Overview of the talk

Fulleride Superconductivity - A₃C₆₀ superconductors

Structural and magnetic characterization of $Rb_xCs_{3-x}C_{60}$

Transverse-field muon spin rotation (TF-μ⁺SR) technique

Summary

Evolution of superconducting properties of $Rb_xCs_{3-x}C_{60}$ compositions

Global phase diagram of the *fcc* A₃C₆₀ fullerides

Synthesis of *fcc* Rb_xCs_{3-x}C₆₀ fullerides

Heat treatments

R. H. Zadik et al., Science Adv. 1, e1500059 (2015)

(x) (3-x) $(0.35 \le x \le 2)$

Rb_xCs_{3-x}C₆₀ reproducibly synthesised using a solid state annealing route

Phase pure samples >1 g

Good stoichiometry control

 $fcc A_3 C_{60}$

R. H. Zadik et al., Science Adv. 1, e1500059 (2015)

Temperature dependence of the magnetization for Rb_xCs_{3-x}C₆₀ compositions

R. H. Zadik et al., Science Adv. 1, e1500059 (2015)

Superconducting properties as functions of packing density

Electronic phase diagram of the *fcc* A₃C₆₀ fullerides

Transverse-field muon spin rotation (TF-µ*SR) technique

Why TF-µ*SR?

The muon acts as a microscopic probe of the local magnetic field distribution in the vortex state and provides a direct way to measure the London penetration depth, λ

$$\frac{1}{\lambda^2} = \frac{4 \pi n_s e^2}{m^* c^2} \times \frac{1}{1 + \frac{\xi}{\ell}}$$

when: $\xi \ll \ell$ clean limit $\xi \gg \ell$ dirty limit

$$\sigma(0) \propto \frac{1}{\lambda^2} \propto \frac{n_s}{m^*} (\frac{1}{1 + \frac{\xi}{\ell}})$$

- σ : relaxation rate n_s : superfluid density m^* : effective mass ξ : coherence length ℓ : mean free path
- The temperature dependence of the relaxation rate, σ contains information on the pairing mechanism (s- or d-wave, weak/strong coupling, clean/dirty limit)

Y. J. Uemura et al., Physica C 235-240, 2501 (1994)

GOAL

Investigate the superconducting properties of $Rb_xCs_{3-x}C_{60}$ compositions across the superconductivity dome:

> underexpanded (x = 2) optimally expanded (x = 1) overexpanded (x = 0.5)

 $TF-\mu^+SR$ spectra

Rb₂CsC₆₀

$$(H_{c1} = 10 \text{ mT} < H_{ext} = 30 \text{ mT} < H_{c2} = 68 \text{ T})$$

 $T = 50 \text{ K} > T_c = 31.8 \text{ K}$ $\sigma = 0.03 \text{ }\mu\text{s}^{-1}$ $T = 3 \text{ K} < T_c = 31.8 \text{ K}$ $\sigma = 0.54 \text{ }\mu\text{s}^{-1}$

 $Rb_{0.5}Cs_{2.5}C_{60}$: different behavior, data analysis in progress

If we assume "clean limit"

Compound	σ(0) (µs ⁻¹)	λ(0) (Å)	n _s /(m*/m _e) (cm ⁻³)	T _F (K)
$*Na_2CsC_{60}$	0.11	8000	0.4×10^{20}	315
$K_{3}C_{60}$	0.32	4800	1.2×10^{20}	470
$*Rb_{3}C_{60}$	0.42	4200	1.6×10^{20}	650
$\mathrm{Rb}_{2}\mathrm{CsC}_{60}$	0.55	3660	2.1×10^{20}	790
$ m RbCs_2C_{60}$	0.54	3680	2.1×10^{20}	830
${ m Rb}_{0.5}{ m Cs}_{2.5}{ m C}_{60}$	0.63	3400	2.5×10^{20}	890

* Y. J. Uemura *et al.*, Physica C **235-240**, 2501 (1994)

Y. J. Uemura et al., Nature 352, 605 (1991)

 $T_c vs \sigma(0)$ for fcc fullerides

Superconducting properties in addition to TF-µ+SR

T_c vs effective Fermi temperature, *T_F* (Uemura plot)

Summary

fcc Rb_xCs_{3-x}C₆₀ superconductors

$TF\text{-}\mu^{+}SR$

- $x = 0.5 \qquad \qquad x = 1 \qquad \qquad x = 2$
- s-wave superconductors
- strongly coupled systems
- O large enhancement of the gap in Rb_2CsC_{60}
- similar trend as high-T_c cuprates and other exotic superconductors

Acknowledgements

Prassides group (AIMR, Tohoku University)

- Y. Takabayashi
- T. Nakagawa

Prassides group (Durham University) R. H. Zadik

P. J. Baker (ISIS, RAL)

