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Abstract: The topic of underwater (UW) image colour correction and restoration has gained sig-
nificant scientific interest in the last couple of decades. There are a vast number of disciplines,
from marine biology to archaeology, that can and need to utilise the true information of the UW
environment. Based on that, a significant number of scientists have contributed to the topic of UW
image colour correction and restoration. In this paper, we try to make an unbiased and extensive
review of some of the most significant contributions from the last 15 years. After considering the
optical properties of water, as well as light propagation and haze that is caused by it, the focus is on
the different methods that exist in the literature. The criteria for which most of them were designed,
as well as the quality evaluation used to measure their effectiveness, are underlined.
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1. Introduction

The synthesis of an underwater (UW) image is an intricate procedure that is affected
by a plethora of effects that are usually ignored in images captured in air (e.g., uneven
spatial illumination, colour dependent attenuation, backscatter, etc.) [1]. For that reason,
many researchers are engaged with the topic of UW image processing and ways on how
to improve the overall quality of their work through the years, either from a geometric or
visualisation standpoint. Based on the above statement, the scope of colour correction in
UW images is a topic that has received considerable attention in the last decades.

An extensive review was conducted back in 2010 by Raimondo Schettini and Silvia
Corchs [2], where they evaluated and discussed the state-of-the-art. The authors divided
image processing into two different points of view; image enhancement and image restora-
tion. According to the authors, the goal of image enhancement is to generate a visually
appealing image without relying on any physical models. Image restoration techniques,
on the other hand, utilise the image formation model to restore the degraded image. Such
models utilise the optical properties of water, camera to object distance and camera-specific
information, such as the response function. Even though methodologies such as those
presented in [3–10] and thoroughly described by Schettini and Corchs, are considered out-
dated, they were the foundations for today’s advancements in UW image colour correction
and restoration. Since then, more methods have risen as well as new avenues regarding
UW image processing, such as various artificial intelligence algorithms.

1.1. Optical Properties of Water

As described by Wang et al., UW images always show a green-bluish colour cast,
which is driven by different red, green and blue light attenuation ratios [11]. The water
properties that control light attenuation of water and thus the scene appearance is depen-
dent on scattering and absorption. Attenuation coefficients control how the light decays
exponentially as a function of the distance that it travels [12]. Pure waters are optically
clear mediums with no suspended particles; only the interaction of light with molecules
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and ions causes light to be absorbed in pure water. [13]. Short visible wavelengths, such as
red, are absorbed first, followed by green and then blue. As a result, just 1% of the light
reaching the water’s surface reaches a depth of 100 m. [14].

The absorption and scattering coefficients of water have been a hot topic for many
years. Jerlov classified waters into three separate oceanic kinds and five unique coastal
kinds in 1951 [15]. Following Jerlov’s work many years later, methods such as the one
described in [16,17] aim to determine the inherent optical properties of Jerlov’s water types.

Instead of a colour correction technique in the RGB space, a mathematical model for
spectral analysis of water characteristics was proposed in [18]. On the same note, the optical
categorisation of natural water bodies was utilised by Akkaynak et al. [17] to determine
the positions of all physically important RGB attenuation coefficients for UW imaging. The
range of wideband attenuation coefficients in the ocean is restricted, and the authors demon-
strated that the usual transition from wavelength-dependent attenuation β(λ) to wideband
attenuation β(c) is not as simple as it appears contradicting the image formation model.

1.2. Image Haze

The goal of clear images captured UW is very significant in ocean engineering [19,20].
Other than the evaluation and determination of the physical properties of water and the
impact they have on the degradation of the colours of a scene, capturing UW images is
even more challenging due to haze. As Chiang and Chen describe in [21], “haze is caused
by suspended particles such as sand, minerals, and plankton that exist in lakes, oceans,
and rivers. As light reflected from objects propagates toward the camera, a portion of the
light meets these suspended particles”. Various techniques of removing the haze effect
from UW images and thus compensating for light scattering distortion were introduced in
the literature [7,10,22].

1.3. Recent Advancements and the Work of This Paper

The goal of this paper is to present and discuss modern contributions in the domain
of UW image colour enhancement and restoration. We will try to give an overview of
many significant contributions, discuss certain results and give our unbiased opinion
regarding the impact that the state of the art has on improving the way we observe the
UW environment. The selection of methodologies discussed in the paper was based on
relevancy to the topic, as well as the final visual results each method provides. Additionally,
the selection of each contribution was based on when it was published. The methods that
will be presented are mostly published from 2015 to 2020 since previous review papers focus
on methods published prior to that time frame. In total, 80 papers were screened related to
the topic of UW colour correction. Following that, a separation of classes was made where
three major classes were identified, separating the methods to image enhancement, image
restoration and artificial intelligence (AI). For image enhancement, 9 papers were selected,
the same as image restoration, where for AI, 13 papers were selected for review. The search
of the evaluated papers was performed mostly through the Google Scholar search engine.
Some of the search queries that were used are the following:

• Underwater Image Colour Correction
• Underwater Image Colour Restoration
• Underwater Image Colour Enhancement
• Underwater Image Colour Correction using AI
• Image Colour Restoration with Neural Networks
• Image Colour Correction using water physical properties
• Image Colour Correction in deer waters
• Colour Correction with ROV/AUV
• Image Formation Model and Colour Correction

The structure of the paper is as follows: Section 2 will give some overview of the
various contributions, while Section 3 will discuss the pros and cons of each category, as
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well as thoughts, problems and applicability for each one. Finally, in Section 4, conclusions
and suggestions are presented.

2. Various Contributions in Recent Years

This section will discuss in brief various UW image colour correction methods that
were contributed to throughout recent years. This section is divided into three subsections.
The subsections are dedicated to image enhancement methods, image restoration methods
and finally, artificial intelligence methods.

2.1. Image Enhancement Methods

As it is described by [2], to create a more visually appealing image, image enhancement
employs qualitative, subjective criteria rather than relying on a physical water characteris-
tics model. These methods are often easier and faster than deconvolution techniques.

Ancuti et al. [23] suggested a simple fusion-based approach for enhancing UW photos
using a single input by successfully blending multiple well-known filters. As the authors
state, their method proved successful in improving UW footage of dynamic situations. Ad-
ditionally, this study created a robust white balancing technique tailored for UW sceneries
that was also validated after an exhaustive evaluation. The method described is one of the
first that managed to demonstrate the practicality of an UW enhancement methodology
for many non-trivial applications, such as segmentation, image feature matching and de-
hazing. Although the approach produces acceptable results when dealing with images of
low depth, it is limited with images of deep scenes obtained with weak strobe and artificial
light. Even if some augmentation is possible in such circumstances, the blue hue persists.
Furthermore, insufficient lighting makes it difficult to consistently retrieve the scene’s far
reaches. The restriction of the suggested method is exacerbated even more with hardware
and polarisation-based approaches, which in general perform better in such instances due
to the additional information provided.

A first proposal for colour correction of UW images by using the lαβ colour space
is presented in [24]. To increase image contrast, chromatic components’ distributions are
white balanced, and histogram cut-off and stretching of the luminance component are
done. Under the assumption of a grey world and homogeneous lighting of the scene, the
experimental findings show that this strategy is successful. For close-range acquisition in a
downward direction, such as seabed mapping or recording artefacts in the foreground (UW
photography), or less complicated situations with less light change, these assumptions
are acceptable. The suggested solution takes a single image and does not require any
filters or prior scene information. The scene is considered to be consistently lighted by a
light source. This indicates that the light intensity is mostly steady across the image. In
addition, the authors translated their grey world hypothesis into lαβ space and tested it
on two UW images taken in distinct places. They proved that this approach is acceptable
for removing unwanted colour casts in UW imaging. Based on the experimental results,
greenish-blue components in the images are fully eliminated, even in grey tones. White
balancing of components α and β is used to adjust colour, while the luminance component
l is handled to increase the contrast. In comparison to simply altering the distributions
of colour channels around a grey point as in RGB space, correcting the colour casts with
regard to the white point in lαβ space appears to be more realistic. The authors argue that
the grey-world assumption in the lαβ space is turned into a “white-world” assumption
as a result of this transformation. This contribution has been and still is influential in
future researchers, as is indicated later in this paper. Figure 1 shows a comparison between
various correction methods.
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Even though this method is a strong tool for the 3D reconstruction and visualisation
of UW cultural heritage, it significantly depends on the presence of red in the scene. As is
shown in Figure 1, when the scene does not contain enough red, the corrected object seems to
look grey, as is shown in the last row in column 2 of Figure 1. Therefore, for the method to be
successfully applied, either the site must be in shallow waters, meaning that natural lighting
will be present, or there needs to be enough artificial lighting through the use of strobes.

Based on colour correction and a non-local prior, Wu et al. [25] suggested a specific
process for UW image restoration. To render and fix foggy UW images, they first remove the
colour distortion, followed by dehazing to eliminate the backscattering effects. This work’s
contributions are: (1) the introduction of a global background light estimation algorithm
based on quadtree subdivision and UW imaging optical properties; (2) the presentation of
an UW colour enhancement method using depth compensation that accounts for different
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rates of colour degradation; and (3) it applies a non-local prior to acquire a transmission
map. As it is explained by the authors, the dark channel of an underwater image will have
higher intensity in regions farther from the camera; the scene depth can be qualitatively
reflected by the dark channel. The authors propose a depth compensation method, in
which a multi-channel guided image filter (MGIF) is used to modify the depth image before
colour correcting it. Despite the fact that this technique makes use of the scene’s geometry,
the outcomes are comparable to those of the other approaches covered in this section.

For UW photos, a colour correcting approach based on local surface reflectance
statistics is described in [26]. This scheme decomposes the original colour distorted image
into several non-overlapped patches. For each patch, the illumination is estimated based
on statistics. Following the above, the true reflectance for each image block is obtained.
The method seems to provide some good results, with the most reliable being when the
number of patches used is big enough, as the colour of the scenery is smoothly restored,
whereas on the other hand, when the number of patches is small, the colour contrast of red
is very intense and creates an artificial and not realistic result. It needs to be mentioned
that the datasets used by the authors are downloaded from the internet, and based on the
examples shown in their work, the algorithm was only tested in images taken in shallow
waters with the presence of natural light.

In [27], the authors’ colour correcting approach is based on the use of the grey-world
assumption in the Ruderman-lαβ opponent colour space, considering the chrominance
variation across the scene. The authors proposed a local estimation of the illuminant colour
by average computation with a moving window around all pixels. By doing this, the
correction to the nonuniform illumination is adapted. In addition, the authors perform
contrast enhancement and colour saturation, using a perceptually uniform logarithmic
stretching that ensures a natural and plausible colour appearance. Bianco’s and Neumann’s
contributions have provided chromatically pleasing results. The results of the global
approach they used are especially encouraging since they can provide realistic results by
moving the overall average of α and β channels, while a cut-off of 1% of both luminance
histogram limits and stretching is used to improve the image contrast.

In Figure 2 the results from three real cases are presented. The results are very
promising since the colour of the scenery is restored, providing realistic results. It should
be mentioned here that this method also works well in shallow water due to the presence
of natural light and thus red colour.

Some other contributions on the topic of UW image enhancement methods exist
in the literature and are proposed by Nurtandio Andono et al. [28], Ancuti et al. [29],
Zhao et al. [30] and Peng et al. [31]. These contributions provide good results on image
enhancement using techniques such as the dark channel prior or the image blurriness to
compensate for the lack of scene depth.

As a common theme of this subsection, all the methods that were showcased work
relatively well in shallow waters, but none of them were tested in deep waters where the
presence of red is obsolete. Additionally, most of these methods show limitations in their
performance on objects that are far away from the camera.
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Figure 2. Three real cases of non-uniformly illuminated images processed with the proposed method
of Bianco and Neumann. (a,c,e) are the uncorrected images and (b,d,f) are the results after the
correction. Images from [27].

2.2. Image Restoration Methods

As described in [2], image restoration is an inverse problem based on image formation
models that try to restore a deteriorated image using a model of the degradation and the
original image formation. These approaches are rigorous, but they need a large number
of model parameters (such as attenuation and diffusion coefficients that describe water
turbidity), which sometimes are available in tables and might vary a lot, affecting the final
restored images. Another important required parameter is the camera to object distance,
which is also referred to as depth in many cases.

Bryson et al. [32] propose an automated method for rectifying colour discrepancy
in UW photos gathered from diverse angles while building 3D structure-from-motion
models. The purpose of this research is to image large scale biological environments,
which prohibits the use of colour charts due to the sensitivity of marine ecosystems to
seabed disturbances. The authors deploy a “grey-world” colour distribution to focus on
colour constancy. This means that surface reflectance has a grey-scale distribution that
is independent of scene geometry. The underwater images were collected using a stereo
camera setup on an AUV, with two 1360-by-1024-pixel cameras; the left camera was a
colour-Bayer sensor and the right camera a monochrome sensor. The authors explain and
test image transformation algorithms, such as grey world transformation:

Iy(u, v, λ) = m(λ)Ix(u, v, λ) + n(λ) (1)
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where Ix(u, v, λ), in given image x, is the initial intensity of a specific pixel (u, v) for band
λ in image x Iy(u, v, λ) is the intensity in image y, where m(λ) and n(λ) are scaling, and
offset constants. The mean µy(λ) and variance σ2

y (λ) of the pixel histogram are essentially
a function of the original transformation parameters and image statistics:

µy(λ) = m(λ)µχ(λ) + n(λ) (2)

σ2
y (λ) = m(λ)2σ2

χ(λ) (3)

where µχ(λ) and σ2
x(λ) are the mean and variance of a band in the original image. These

equations may then be utilised to create a linear transformation that produces an image
band with whatever mean and variance are needed:

m(λ) =

√
σ2

y

σ2
χ(λ)

(4)

n(λ) = µy − m(λ) µχ(λ) (5)

where µy and σ2
y are the required variance and mean. In the end, the author proposes an

image transformation accounting for range dependent attenuation for a given dataset of
UW images. The equations, in this case, are very similar to the grey-world transformation
that is showcased above:

Iy(u, v, λ) = m(u, v, λ, d)Ix(u, v, λ) + n(u, v, λ, d) (6)

m(u, v, λ, d) =

√
σ2

y

σ2
χ(u, v, λ, d)

(7)

n(u, v, λ, d) = µy − m(u, v, λ, d) µχ(λu, v, λ, d) (8)

where µχ(λu, v, λ, d) and σ2
x(λu, v, λ, d) for a depth d and a band λ are the mean and

variance of all intensities in a given batch of N images at the pixel position (u, v) for depth
d and band λ. The authors suggest that a potential method for estimating µχ(λu, v, λ, d)
and σ2

x(λu, v, λ, d) is to divide pixel intensities into given d (distance from the camera) bins
and obtain the mean and variance for each bin. Unfortunately, the approach necessitates
a large number of samples per bin, resulting in under-sampling of particular ranges and
pixel positions. To solve this, the authors used a different method, creating a scatter plot of
image intensity vs. range for each pixel position (Figure 3), measuring one point for every
image of the dataset. If µR is the surface’s predicted mean reflectance, then the average
image intensity acquired from pixels (u, v), band λ, and range d is:

µx(u, v, λ, d) = a(u, v, λ)µRe−b(u,v,λ)d + c(u, v, λ) (9)

where a(u, v, λ), b(u, v, λ) and c(u, v, λ) are pixel location and image band parameters. The
authors proceed to estimate the terms a(u, v, λ)µR (as one), b(u, v, λ) and c(u, v, λ) via a
non-linear least-square fit using Levenberg–Marquardt optimisation [33].
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Figure 3. Image pixel intensity decay based on camera-to-object distance from the centre pixel. Image
from [32].

The authors show through Figure 3 that the image intensity decays exponentially the
further an object is from the camera. Below, in Figure 4, the results of this colour restoration
method are shown and compared with standard non-depth-based correction techniques.
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compensation, (c) 3D texture of the scene using non-depth-based corrected textures and (d) 3D
texture of the scene with water attenuation corrected textures. Images from [32].

Based on the results shown above, this method seems effective since the image contrast
and intensities match the overall scene, and at the same time, the close regions of the images
are darker thanks to the restoration. One of the downsides of this method is the large
number of images and depth maps required.

Another method proposed in [34] by Galdran et al. is the automatic red-channel UW
image restoration. The study is carried out in two main parts. First, the pixels that reside
at the maximum scene depth with respect to the camera are chosen, assuming that the
deterioration is distance-dependent; this position naturally corresponds to the maximum
values in the original image’s red channel. In the case of UW scenarios, the one that has
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the lowest red component obtains the best results in their experiments. Here the authors,
although they mention the need of depth information of the scene, they do not describe
any workflows they applied to obtain it. The first step of the process aims at the estimation
of water light from the red channel. The following step is to estimate the transmission from
the red channel with a straightforward extension of the dark channel prior method [35].
The colour correction phase is carried out in two parts. First, the authors deal with the
vectorial transmission, where they distinguish three separate transmission maps and
three components of the water light, one for each colour. After this step, the attenuation
coefficients are estimated, and this procedure is described as Weighted WaterLight. Galdran
et al. tested their algorithm on various images aiming to recover the contrast and visibility
of the scenery. This method again seems to work very well for close-range objects but loses
its effectiveness on objects that are further from the camera. Additionally, based on the
images that are used, it needs the presence of natural lighting and specifically red.

In 2016, an interesting and detailed methodology was introduced in [36]. Here the
authors proposed a formation model for calculating the true colour of scenery taken from
an UW automated vehicle equipped with a stereo camera setup with strobes:

Iλ = k

[
C(a)a(λ)

i=1

∑
Nl

(
PΦιcosθie−b(λ)(rc+rli)

)
+ B(λ)

]
(10)

where:
C(a) = 1 + Cα2α2 + Cα4α4 + Cα6α6 (11)

Cα2, Cα4, Cα6 are polynomial coefficients and C(α) being a vignetting coefficient. PΦι

is the light source power, which can be set as P0ι = 1 as the authors suggest. θi is the angle
that the light hits the object, rc and rli are the distances of the object from camera and light
source. a(λ) is the albedo/reflectance of the object. b(λ) is the attenuation coefficient. B(λ)
is the backscattered signal, which can be modelled as:

(λ) =
β(λ)

b(λ)

[
1 − e−b(λ)rc

]
(12)

β(λ) is the backscattering coefficient.
The exposure constant is known from the recorded shutter speed of the camera, and

it is believed to be factor k, which is not clearly specified. Using several co-registered
measurements of each point from distinct image views, the authors approach concurrently
calculates the reflectance of the scene points as well as the camera/water parameters. This
approach computes a maximum-likelihood estimate for the unknown parameters (b, β,
Cα2, Cα4, Cα6, a1, a2, . . . , aN)T on the 3D terrain surface created by structure-from-motion
using non-linear least-square and Levenberg–Marquardt optimisation. After computing
the camera and water parameters, the reflectance of any point on the seafloor surface may
be calculated using the following formula:

a(λ) =
[

I(λ)
k

− B(λ)
][

C(a)
i=1

∑
Nl

(
PΦιcosθie−b(λ)(rc+rli)

)]−1

(13)

The mean image intensities (I) for the reprojected triangle in each image of each
triangle make up the observation vector z for a particular channel.

z =
[

I1
1 , I2

1 , . . . , IM1
1 , I1

2 , I2
2 , . . . , IM2

2 , I1
N , I2

N , . . . , IMN
N

]
(14)

Only the image intensities of a small number of surface points are used to estimate these
parameters. The authors evaluate their results with the use of calibrated colour charts. Since
there are no ground truth data, to evaluate the effectiveness of this method, the RGB values of
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calibrated colour charts that are present in the corrected scene are compared with the RGB
values of the same charts in the air. The results of this process are shown in Figure 5 below.
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formation model correction scheme and (d) UW image formation model correction scheme with
camera/strobe spectral processing. Images from [36]. The contents of this figure have been published
in “True Color Correction of Autonomous Underwater Vehicle Imagery”, Journal of Field Robotics,
Volume 33, Issue 6, published by John Wiley and Sons.
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The authors in [36] proposed a methodology that manages to restore the colour of
UW images as they are captured without the presence of water. Although the method is
very effective, it also requires a very specific and expensive setup with an autonomous UW
vehicle (AUV) equipped with a fully calibrated camera and strobe setup. Unfortunately, this
methodology is difficult to use for general cases of UW imagery where divers capture the
images due to the lack of info regarding the positions of the strobes with respect to the camera.

Akkaynak and Treibitz in [37] analyse the current UW image formation model (Equa-
tion (15)) and derive the physically valid space of backscatter using oceanographic measure-
ments as well as images acquired from NikonD810 and a Sony RX100 cameras, demonstrat-
ing that the wideband coefficients of backscatter differ from those of direct transmission,
despite the fact that the current model portrays them as the same. As a result, the authors
suggest a new UW image generation equation that takes these variations into account and
validates it using in situ UW experiments (Equation (16)).

Ic = Jc·e−βcz + B∞
c ·
(

1 − e−βcz
)

(15)

where:

Ic : the UW scenery
Jc : the unattenuated scenery
βc : wideband attenuation coe f f icient
z : distance f rom the camera
B∞

c : wideband veiling light

Ic = Jc·e−βD
c (vD)z + B∞

c ·
(

1 − e−βB
c (vB)z

)
(16)

where vD and vB the vector containing the coefficient dependencies vD = {z, ρ, E, Sc, β} and
vB = {E, Sc, b, β}.

βD
c : direct transmission attenuation coefficient

βB
c : backscatter attenuation coefficient

E : irradiance
Sc : sensor response
ρ : re f lectance o f the object

The same authors implemented their work in [38], creating a pipeline for colour
reconstruction. While the updated model is physically more accurate, it contains more pa-
rameters that make it challenging to use. The authors introduce the Sea-thru methodology
in this paper, which explains how to estimate these parameters for improved scene recov-
ery. Sea-thru is a key step toward allowing sophisticated computer vision and machine
learning algorithms to access vast UW datasets. The datasets used for these experiments
were captured using a Sony 7R Mk III with a 16–35 mm lens and a Nikon D810 with a
35 mm lens. This work has achieved excellent and perhaps the most promising results in
recent years. Provided it is described well enough to be replicated in a future paper or
made open access, it will contribute to several UW applications. The coefficient related to
backscatter varies with sensor, ambient lighting and water type, according to these two
studies. Additionally, it is different from the coefficient associated with the direct signal.
The authors used their own dataset of raw images with their corresponding depth maps in
order to test five different scenarios; S1: Simple contrast stretch, S2: Former model with an
incorrect estimate of Bc, S3: Former model, with a correct estimate of Bc and βD

c = βB
c = βc,

S4: Revised model, with a correct estimate of Bc, and Jc, S5: Sea-thru implementation.
Again, the authors here evaluated the effectiveness of the model with the use of colour
charts. As the authors conclude, Sea-thru is a key step in allowing strong computer vision
and machine learning algorithms to access vast UW datasets, which will aid in the domain
of UW research. One downside of this method though, is the need for natural light in the
scene. That means that this methodology, as viable as it is, can only be used on datasets
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captured above 20 m UW, making it obsolete for datasets where the presence of natural
light does not exist. The results produced by each scenario are shown in Figure 6.
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Figure 6. Results presented is Sea-thru. From left to right: raw images, depth maps, S1, S2, S3, S4
and S5 (Sea-thru). Image from [38].

The contributions from [37] have been utilised in [39]. In this study, the authors
proposed a system that calculates the attenuation coefficients required to solve the imaging
formation model equation, allowing the colour correction of images onboard an UW
robot. Here a colour chart of known calibrated values is utilised to estimate the direct and
backscattering attenuation coefficients and then allow for the estimation of the unattenuated
scene using the revised image formation model.

Bekerman et al. [12] have developed a method for measuring the attenuation param-
eters and veiling light directly from the images. The authors then use a typical image
dehazing approach to retrieve the whole physical model of the scene after the parameters
have been obtained. The transmission map, depth map, veiling light and undistorted scene
are all part of the physical model. This method was constructed based on the knowledge
that “the scattering of light in the medium between the object and the camera adds an
additive component to the image, meaning that the scattering increases as the distance
between the object and the camera grows”. Veiling light is the saturation value of this,
and it happens when there are no objects in the line of sight (LOS). The veiling light value
is commonly computed from visible sections in the image that include no objects and is
considered to be constant across the scene. Because this assumption is not robust, the
authors have contributed to the aforementioned method.
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A study regarding image restoration methods was conducted by Berman et al. [40],
where the authors, due to the lack of ground truth data for UW sceneries, took multiple
stereo images that contain colour charts. These charts were then used in stereo pair images
to obtain the true distance from the camera.

A very recent contribution regarding UW image restoration was published in [41].
Here the authors proposed a novel algorithm based on the complete UW image formation
model. Their work consists of the estimation of the transmission with the observation
that the scene distance is inversely proportional to the geodesic colour distance from the
background light.

2.3. Artificial Intelligence Methods

The domain of machine and deep learning (ML and DL) has bloomed the last decade
and has contributed a lot in the field of marine sciences and thus the UW environment.
Through this impact, many tools and algorithms were developed for the purpose of UW
image restoration.

A first approach to AI implementation was introduced many years ago with the
introduction of stochastic processes, such as Markov Random Field (MRF). The problem of
colour restoration using statistical priors is addressed by [42] using an energy minimisation
approach; this is used for the colour recovery of UW images. The concept is founded on the
assumption that an image may be modified as a sample function of a stochastic process, i.e.,
as an MRF. They see colour correction as a problem of utilising the training image patches
to give a colour value to each pixel of the input image that best describes its surrounding
structure. The authors use UW web images as “ground truth” or acquisition of UW video by
an aquatic robot. The “ground truth” images that the authors use are images downloaded
from the internet that represent various UW sceneries with realistic colours. The results
of [42] are divided into two scenarios. Scenario 1 uses “ground truth” images, depletes them,
and finally applies the algorithm. Scenario 2 uses “ground truth”, images with artificial
light from the robot and trains the algorithm to correct depleted images accordingly. In
this case, the depleted images are taken without the presence of light at frame t+δt, where
the “ground truth” images are taken at frame t. For Scenario 1, the authors produced
results using different training sets. The “ground truth” datasets for this work were the
afformentioned internet images. In scenario 2, even though the method depends on frames
with light as ground truth data, the algorithm produces visually good results.

Based on the results presented by the authors, the methodology works very well in
both scenarios. Unfortunately, some issues arise regarding reproducing the results of the
study in other cases. For Scenario 1, the algorithm is trained on a specific dataset, meaning
that the results produced are based on that. This means that if the algorithm is applied to
images captured under different environments, the results might heavily deviate from the
truth. Additionally, for Scenario 2, the need for such specific equipment is discouraging for
most cases.

In [43], the authors developed a spatial chromatic-MRF model that only considers
the spatial domain of images and is chromatic since the model’s variables only consider
the scene’s chromatic information, ignoring the luminance channel L in the CIELab colour
space. Their model is based on [42]. This work presents two different results. One is
Visual Attention White World Assumption (VAWWA), in which they estimate illuminant
based on a relevant mask constructed from points of interest found using the method
described in [44], and one with MRF-Bayesian Belief Propagation (BP) with Automatic
Colour Adaptive Training.

The use of MRF is also utilised in [45] to restore the colour of UW video. A multiple
colour space analysis and processing phase is performed to automatically recover the
colour in an image frame of a video sequence that will be used as a training set in the MRF
model. Based on current colour restoration approaches documented in the literature, the
authors suggest an automated methodology to build a viable training set for an MRF aimed
to recover the colour in a video sequence. The whole strategy is adaptive in nature, with the
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goal of creating a dynamic training set that reacts to changes in UW sceneries. It is assumed
that the histograms of the scenes in a video series may be used to detect whether there
is a substantial change in the chromatic channels α and β of the lαβ colour space (of the
colour deprived frames). This incident may then be used as an indicator by the algorithm
to adjust the training set and proceed with the restoration of the following batch of frames
with comparable chromaticity. The base of building the training set is Adapted White-
World Assumption with Contrast Limited Adaptive Histogram Equalisation (CLAHE)
and illuminant adjustment. At every substantial change of scene, the training set creation
procedure begins by applying a gamma correction on the RGB colour deficient frame and
converting it to the lαβ colour space. This has a result of colour shifting that is corrected.
Based on the results presented in [43] and [45], the WWA method that is proposed produces
satisfying results, but when the conditions are challenging, the final result suffers, as is
stated by the authors. Visual Attention White World Assumption (VAWWA) eliminates
ambient light in an image quite well, however, in some circumstances, the remotion tends
to eliminate other colours that are not part of the lighting, resulting in a greyish image.

In [46], the authors created a multiterm loss function that includes adversarial loss,
cycle consistency loss and SSIM (Structural Similarity Index Measure) loss, which was
inspired by Cycle-Consistent Adversarial Networks. They introduce a new weakly super-
vised model for UW image colour correction that translates the colour from UW scenes
to air scenes without the need for explicit pair labelling. The model directly outputs a
coloured image as if it was taken without the water. The results that the authors present
are somewhat visually pleasing and also can improve the performance of feature image
matching algorithms. Additionally, a user study was conducted in order to evaluate the
performance of the method since there is no measure specifically established for UW image
colour correction.

The authors in [47] created the UW Denoising Autoencoder (UDAE) model, a deep
learning network built on a single denoising autoencoder employing U-Net as a Convolu-
tional Neural Network (CNN) architecture, as a contribution to restoring the colour of UW
images. The suggested network considers accuracy and computation cost for real-time im-
plementation on UW visual tasks utilising an end-to-end autoencoder network, resulting in
improved UW photography and video content. The authors propose a UDAE network that
is specialized in UW colour restoration, and they suggest that they achieve faster processing
than the state of the art methods. They create a synthetic dataset using a generative deep
learning method. The dataset has a combination of different UW scenarios. The results
provided can improve the visual aesthetic of a scene and give relatively good results in real
UW scenes, even though the training of the algorithm was done using synthesized datasets.
In Figure 7, the results of this method compared with the results from UW Generative
Adversarial Network (UGAN) [48] are shown.
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Figure 7. One example presented by Hashisho et al. (a) is the input image, (b) the result produced by
UGAN and (c) the result produced by UDAE. Images from [47].

As it is supported by the authors, in many cases UDAE can provide as good or even
better results than UGAN. This method can preserve the details of the images providing
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a realistic result, but it is not effective in all real scenarios since the training is done by
utilising synthesised UW images and not real sceneries.

Other Generative Adversarial Networks (GAN) based studies that are considered as
important contributions are the CycleGAN [49], MyCycleGAN [50], WaterGAN [51], UW-
GAN [52] and UGAN [48], as well as the work proposed by Yang et al. [53], Liu et al. [54]
and Gulrajani et al. [55].

3. Discussion

All the methods that were discussed in Section 2 have contributed significantly over
the years. Specifically, each of the three categories have extensively been researched. Each
category has its pros and cons, best and worst case of implementation, problems and
limitations. In this section, we discuss and give our thoughts for all three categories in an
unbiased manner. Table 1 gives a short description, characteristics and datasets that certain
methods were applied on, as well as what kind of quality assessment was conducted by
each of the authors listed.

Image enhancement methods, although they are usually simpler and faster and
can produce pleasing results, they do not rely on any physical water properties or any
formation model. That means that in many cases, the criteria for the enhancement are
subjective. These factors lead to different behaviours according to the scene. That can
lead to certain limitations when we apply a specific method to non-favourable scenes
with varying conditions as well as datasets captured with different sensors. As a result
of the above, a method tailored for a specific dataset might fail to reproduce good results
for another. Since there is no ground truth information for comparison, the evaluation
is usually done through visual inspection of the final result, or in some cases, with the
use of colour charts, even though the latter is more commonly used in the cases of image
restoration techniques.

In contrast to image enhancement techniques, image restoration recovers a dete-
riorated image using a model of the degradation and the original image formation. To
accomplish that, the methods require various parameters, such as attenuation and diffusion
coefficients, as well as the camera to object distance across the whole scene. Additionally,
in many of the methods that were presented in Section 2.2, camera-specific information,
such as the response function, is essential for image restoration. These techniques produce
very realistic results and are able to represent the UW scenery as if it is captured in the
air. Although many methods have contributed significantly to the topic of UW colour
correction, they are difficult to replicate, either because of the unique scenarios under which
the methods were applied or due to the lack of substantial information provided by the
contributors. Regarding the former, based on the contributions that have been reviewed,
each method was constructed based on specific equipment and scenery as well as the
physical properties of water. Due to these factors, trying to replicate any of these methods
might lead to suboptimal or false results. Additionally, a major limitation in these methods
appears when we deal with scenes that are at depths greater than 20 m UW. In these cases,
the presence of natural light is almost non-existent, which means that methods that rely on
natural lighting to be present, such as the one described by [17,37,38], become obsolete. In
that case, methods such as the ones described in [32,36] are suited to address the issue of
UW image colour correction. Although these methods produced very good and realistic
results, they are extremely difficult to implement due to the need for very specific and
expensive equipment, such as AUVs with fully calibrated cameras and strobe systems that
allow researchers to identify information regarding the angle that the strobe lights hit the
surface, as well as the distance between the cameras and the strobes. The methods we
reviewed suffer from the same issue regarding the evaluation as the methods related to
image enhancement, which is the lack of true information regarding the colours of the
scene. The evaluation in most cases is done through some comparisons and statistical
analysis of the RGB values of colour charts UW in the restored images and in the air.
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As it was explained above, the rise of artificial intelligence methods has contributed,
in the last few years, significantly to the topic of UW image colour correction. Many
techniques, such as CNN, GAN, MRF and many more, have been developed and utilise
large datasets in order to train algorithms that can predict the true colour of the UW scene.
As it is explained, such methods require an enormous number of images paired with the
appropriate “ground truth” information in order to achieve satisfying predictions. This
on its own is considered a major limitation due to the lack of ground truth. Similar to
the methods that were showcased in Section 2.3, most contributions either use online
datasets that do not carry any information related to the scene geometry, or they utilise
synthetic/artificial datasets to achieve the desired results. Even though these methods
can provide some relatively realistic results, they cannot be considered superior to image
restoration methods due to the lack of water’s physical properties and image formation
model as well as the scene geometry. Regarding the evaluation, in the case of AI methods,
that is done in its majority through visual inspection, or in specific cases through the
effectiveness that they provide in subsequent processes, such as image feature matching.

Based on the reviewed papers, the absence of a common performance indicator is
noticeable. Certain papers lack the quantitative evaluation overall, where others address it
via various individual metrics for the performance evaluation. Some of the papers that were
reviewed, such as [23,43,45], used different individual performance metrics from each other
for quantitative evaluation, where others, such as [36–38], used metrics derived from statistical
analysis between the results and ground truth. Specifically, the lack of universal performance
indicators is the source of issues related to the quantitative comparison between the reviewed
methods, highlighting, even more, the lack of a benchmark case that can be utilised for these
types of comparisons. Furthermore, a common practice for evaluating the effectiveness of the
contributions described in this paper is either performing a visual inspection or subsequent
procedures. This approach can potentially lead to unreliable outcomes since no independent
criterion seems to exist that allows an objective comparison. Recently, many contributions
related to UW image colour correction with the use of AI methods [56–59] try to address this
issue by utilising large UW databases, along with their chromatically corrected counterparts.
Such a database is the one provided by Li et al. [60].

Table 1. Brief description of the main methods described in Section 2.

Method Description Characteristics and Dataset Image Quality Evaluation Quantitative Metrics

Image Enhancement Methods

Ancuti et al. [23]

“A framework based on
fusion that combines

many filters to enhance
UW images based on a
single input. A robust

white balancing technique
specialized for UW

scenes”

“White balancing, and
fusion of several

applications such as image
compositing multispectral

video enhancement
defogging and HDR

imaging of UW Degraded
Images”

“Comparison with other
methods and evaluation
based on feature point

matching quality”

“Image Quality Metric as
proposed by [61]. The metric
estimates the Loss of visible
contrast, Amplification of

invisible features and
Contrast reversal”

Bianco et al. [24]
“Colour correction of UW
images by using the lαβ

colour space”

“Transformation of UW
images from the RGB colour

space to the lαβ colour
space”

“Comparisons with other
colour spaces and
effectiveness in 3D

reconstruction application”

—

Wu et al. [25]

“A systematic approach
for UW image restoration
based on colour correction

and nonlocal prior”

“Eliminate UW image colour
distortion to make the

corrected UW images look
like hazy, and then use a

dehazing approach to
remove backscattering”

“Visual Inspection and
comparison with two other

methods”
—
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Table 1. Cont.

Method Description Characteristics and Dataset Image Quality Evaluation Quantitative Metrics

Liu et al. [26]

“Colour correction scheme
based on local surface

reflectance statistics for
UW images”

“Image Segmentation and
Illumination estimation on

UW degraded images using
different image patches”

“Application of the method
on images downloaded from
the internet and comparison
with four other approaches”

—

Bianco et al. [27]

“UW Image colour
correction based on the
gray-world assumption

applied in the
Ruderman-lαβ opponent

colour space”

“Adaptation of the correction
to the nonuniform

illumination using a local
estimation of the illuminant

color by average computation
with a moving window
around all pixels. This is

applied to Images captured in
different depths and working

distances”

“Comparison of the local
approach the authors

developed with a global
approach through visual

inspection”

—

Image Restoration Methods

Bryson et al. [32]

“Exploitation of the 3D
structure of the scene

generated using
structure-from-motion
and photogrammetry

techniques accounting for
distance-based

attenuation, vignetting
and lighting pattern, and
improves the consistency

of photo-textured 3D
models”

“Colour Correction method
applied to UW images

captured by an AUV collected
in two different UW

environments. The colour
correction relies to the gray

world assumption while
considering the scene’s

geometry”

“Comparison of image
texture standard deviation

for the same corrected
textures and comparison of
3D photo-textured sceneries

utilizing standard and
complete water attenuation
colour corrected textures”

“Measuring the
inconsistency in

overlapping images of
common Objects”

Galdran et al. [34]

“A Red Channel approach
for UW photos is

presented, which may be
seen as a version of the
Dark Channel approach
for atmospheric image

dehazing”

“Pixels of UW images that lie
at the maximum scene depth
are picked with respect to the
camera. Then the transmission

from the Red channel is
estimated by extending the

Dark Channel prior method”

“Visual Inspection and
comparison with five other

methods. The comparison is
carried out through
statistical analysis”

“Calculation of relative
dispersion between colour

channels and their
standard deviation thus

obtaining 2 different
scores, µdiff and σdiff.

Additionally the
coefficient λ is introduced
which is considered as a
measure of saturation”

Bryson et al. [36]

“A formation model for
calculating the true colour
of scenery taken from an
UW automated vehicle

with strobes is proposed”

“The model takes into account
the vignetting, attenuation,

backscatter coefficient as well
as the system geometry

meaning that there is
information regarding the

angle that the light from the
strobes hits the object”

“Visual Inspection and the
use of calibrated colour

charts”

“Evaluation of normalized
image intensities on the
corrected images with

ground truth values using
Macbeth colour chart”

Akkaynak and
Treibitz [37]

“Introduction of a revised
UW image formation
model that takes into

account wideband
coefficients of backscatter
are different than those of

direct transmission”

“Application of the model in
various UW scenes captured in

shallow waters. The images
captured are then

photogrammetrically
processed to acquire the scene
geometry. Using the camera to
object distance as well as the

true RGB values of colour
charts in the scene, the

coefficients of the revised
model are estimated”

“Visual inspection and
statistical analysis using

ground truth RGB values of
colour charts. The

evaluation is done for seven
scenarios”

“Statistical analysis of
errors through the use of
colour charts in various

scenarios”
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Table 1. Cont.

Method Description Characteristics and Dataset Image Quality Evaluation Quantitative Metrics

Akkaynak and
Treibitz [38]

“Application of the
revised formation model
introduced in [37] with

some minor changes
creating a pipeline for
colour reconstruction”

“Multiple datasets in shallow
waters from 5 to 15 m UW are

used in order to apply the
pipeline of Sea-thru”

“Visual inspection and
statistical analysis using

ground truth RGB values of
colour charts. The

evaluation is done for 4
other scenarios that then are
compared with the results

provided by Sea-thru”

“RGB angular
error ψ between the six

grayscale patches of each
chart and a pure gray

colour, averaged per chart.
Lower ψ value indicates

better correction.”
“Average errors for the

dataset are: raw: 20.57, S1:
12.49, S2: 14.38, S3: 21.77,

S4: 4.13, S5: (Sea-thru)
6.33”

Artificial Intelligence Methods

Torres-Méndez et al.
[42]

“Colour restoration of
AUV acquired images

using statistical priors and
Markov Random Fields”

“Two scenarios are applied: (1)
UW web images “ground

truth” and then are distorted
for training. (2) acquisition of
UW video by AUV with and

without strobes”

“Visual Inspection and
comparison with ground

truth values”

“CIElab Euclidean
distance differences is the
similarity measure used to
select possible candidates
to define the compatibility

functions and also to
evaluate the performance

of this method.
Additionally, mean

absolute residual (MAR)
error between the ground

truth and the colour
corrected images is

computed to evaluate the
performance of the

algorithm”
“For 4 different examples
the MAR errors are 9.43,

9.65, 9.82, and 12.20,
respectively”

Ponce-Hinestroza
et al. [43]

“A Spatial
Chromatic-MRF Model

that accounts for the
spatial domain of the

images”

“Real UW videos and images
are used to apply with Visual

Attention White World
Assumption (VAWWA) and

MRF-BP”

“Visual Inspection and a
similarity measure from

statistical analysis”

“They define a similarity
measure S

which is an Euclidean
norm between a current

vector of
statistical parameters and

the same vector in the
previous frame”

“S > 0.01 for a feasible
training for the MRF

model”

Ponce-Hinestroza
[45]

“An automatic way to
generate a training set for
a MRF designed to recover

the colour in a video
sequence based on

existing colour restoration
techniques reported in

literature”

“A multiple colour space
analysis and processing stage

is done to automatically
recover the colour in an image

frame of an UW video
sequence to be used as a

training set in the MRF model”

“Visual Inspection and
comparison with other

known methods from the
literature”

“They define a similarity
measure S

which is an Euclidean
norm between a current

vector of
statistical parameters and

the same vector in the
previous frame”

“S > 0.01 for a feasible
training for the MRF

model”
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Table 1. Cont.

Method Description Characteristics and Dataset Image Quality Evaluation Quantitative Metrics

Li et al. [46]

“A weakly supervised
model for UW image

colour correction, which
maps the colour from the

scenes of UW into the
scenes of air without any

explicit pair labels”

“The model takes as input an
UW image and directly

outputs a coloured image as if
it was taken without the

water”

“Visual Inspection and user
study were implemented”

“The user study utilized
metric from 1 (worst) to 8
(best). The scores for the

method introduced
applied in 5 images is as
follows: 7.5, 7.5, 6.2, 6.2,

6.6”

Hashisho et al. [47]

“A UDAE model was
developed, which is a
deep learning network

based on a single
denoising autoencoder
using U-Net as CNN

architecture”

“A synthetic dataset is
constructed using a generative

deep learning method. The
dataset has a combination of

different UW scenarios”

“Visual Inspection and
comparison with UGAN

algorithm”

“Three metrics were used
for comparison with

UGAN. MSE, SSIM and
MS-SSIM-L1. MSE and

MS-SSIM-L1 give a score 0
for identical images, while

SSIM
gives a score 1. For UDAE

the metric values were
0.0028, 0.9653, 0.0753

where for UGAN were
0.0061, 0.9186, 0.1415”

The best papers based on this current review cannot be identified from quantitative
comparisons due to the lack of common metrics as previously stated. However, regarding the
impact of visual results as well as the residuals from ground truth data, the best methods that
were identified are [36,38]. These two methods utilise the full scene’s 3D geometry as well as
the water’s physical properties, and both provide very realistic results on the colour corrected
images, each one in different scenarios respectively (deep waters with the use of ROV and
artificial light vs. shallow waters with the presence of natural light).

4. Conclusions

In this paper, we tried to provide a coherent and unbiased literature review on method-
ologies engaged with the topic of UW image colour correction from the last 10–15 years,
something that has not be done in such an extent since 2010. As it has been showcased in
this paper, the advancements in the field of UW image colour correction and restoration
have progressed significantly in recent years. Many contributions have produced signifi-
cant results in terms of the reconstruction of a realistic scene without the presence of water.
The methods vary from stochastic based to methods that fully utilise the water’s physical
properties and the scene’s geometry. Although certain methods and tools provide results
beyond expectations, it could be said that none can be applied universally by researchers
and experts. That is due to the unique scenario that each case was evaluated and applied on
or due to the very specific and sometimes expensive equipment that was used. Potentially,
a case can be made that methods utilising the physical properties of water and scene
geometry can be fused with artificial intelligence methods. Since there is a lot of work in
AI methods nowadays and a bloom in UW data sets, this approach could be promising.
Since the main problem of ML and DL workflows is the existence or not of “ground truth”
data, methods that utilise the UW formation model can bypass this issue and provide a
“ground truth”. This will potentially allow for a universal approach and solution regarding
UW image colour restoration without the use of very specific equipment or without the
need of knowing the physical properties of water in any scenario. Thus, it is safe to say
that the combination of AI with image restoration techniques that utilise specific or various
image formation models might be the best solution. This will also allow scientists in the
domains of marine biology, archaeology or even video games, the latter through virtual and
augmented reality applications, to have a more approachable way of obtaining a realistic
representation of the UW environment. Moreover, this kind of fusion will enable the use
and colour restoration of archived UW datasets.
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