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Abstract: - Artificial intelligence (AI) systems comprise three major areas, artificial neural networks (ANNs), 
genetic algorithms (GA) and fuzzy logic. The major objective of this paper is to illustrate how artificial 
intelligence techniques might play an important role in modelling and prediction of the performance of 
renewable energy systems in buildings. The paper outlines an understanding of how neural networks, genetic 
algorithms and fuzzy systems operate by way of presenting a number of problems in the different disciplines of 
renewable energy applications in buildings. The various applications are presented in a thematic rather than a 
chronological or any other order. Results presented in this paper, are testimony to the potential of artificial 
intelligence as a design tool in many areas of renewable energy engineering. 
 
1  Introduction 
Artificial Intelligence (AI) is a term that in its 
broadest sense would indicate the ability of a 
machine or artefact to perform the same kinds of 
functions that characterise human thought. The term 
AI has also been applied to computer systems and 
programs capable of performing tasks more complex 
than straightforward programming, although still far 
from the realm of actual thought.  
      For the estimation of the flow of energy in 
buildings and the performance of renewable energy 
systems, analytic computer codes are often used. The 
algorithms employed are usually complicated 
involving the solution of complex differential 
equations. These programs usually require large 
computer power and need a considerable amount of 
time to give accurate predictions. Data from 
renewable energy systems being inherently noisy are 
good candidate problems to be handled with AI. 
      When dealing with research and design 
associated with renewable energy (RE) there are 
often difficulties encountered in handling situations 
where there are many variables involved. To 
adequately model and predict the behaviour of RE 
systems requires consideration of nonlinear 
multivariate inter-relationships, often in a 'noisy' 
environment. For example in the prediction of 
performance of a solar system from the point of view 
of energy efficiency, there are numerous variables 
involved and the precise interactions to each other 
are not fully understood or cannot easily be 
modelled. In addition RE systems receive their 
inputs from the sun, wind, waves etc, the strength 
and duration of which are highly variable. 
      Analytical techniques have been very successful 
in the study of the behaviour of engineering systems 

such as heat transfer, thermal processes, and other 
areas. While the analytical models have been 
valuable in understanding principles and useful 
where less than optimal designs were acceptable 
with the advent of digital computers, numerical 
methods became much more attractive than 
analytical solutions, as they could handle more 
complex and realistic situations.  
      Numerical methods have their limitations as 
well. They cannot easily account for practical 
limitations, they tend to perform well at analysing a 
situation but not so well as a designer's tool for 
quickly looking at options. Additionally, the number 
of variables that can be considered is still limited and 
numerical solutions cannot usually be obtained 
directly. Frequently complex systems for which there 
is no exact model of behaviour need to be designed. 
Furthermore, designers have to design or deal with 
complex systems whose expected performances are 
completely unknown. Much of the complexity is due 
to the multi parameter and multi criteria aspects of a 
system’s design which are not easily handled using 
rules of thumb, analytical methods, physical models 
or numerical methods. 
      Many of the renewable energy problems are 
exactly the types of problems and issues for which 
AI approach appear to be most applicable. In these 
models of computation attempts are made to 
simulate the powerful cognitive and sensory 
functions of the human brain and to use this 
capability to represent and manipulate knowledge in 
the form of patterns. Based on these patterns neural 
networks for example model input-output functional 
relationships and can make predictions about other 
combinations of unseen inputs. Neural networks 
have the potential for making better, quicker and 
more practical predictions than any of the traditional 
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methods. Artificial neural networks (ANNs) are 
collections of small individually interconnected 
processing units. Information is passed between 
these units along interconnections. An incoming 
connection has two values associated with it, an 
input value and a weight. The output of the unit is a 
function of the summed value. ANNs while 
implemented on computers are not programmed to 
perform specific tasks. Instead, they are trained with 
respect to data sets until they learn patterns used as 
inputs. Once they are trained, new patterns may be 
presented to them for prediction or classification. An 
ANN can automatically learn to recognize patterns in 
data from real systems or from physical models, 
computer programs, or other sources. It can handle 
many inputs and produce answers that are in a form 
suitable for designers.  
      Genetic algorithms (GA) are inspired by the way 
living organisms adapt to the harsh realities of life in 
a hostile world, i.e., by evolution and inheritance. 
The algorithm imitates in the process the evolution 
of population by selecting only fit individuals for 
reproduction. Therefore, a genetic algorithm is an 
optimum search technique based on the concepts of 
natural selection and survival of the fittest. It works 
with a fixed-size population of possible solutions of 
a problem, called individuals, which are evolving in 
time. A genetic algorithm utilizes three principal 
genetic operators:  selection, crossover, and 
mutation.   
      Approximate reasoning has proven to be in many 
cases more successful control strategy than 
classically designed controlled scheme. Fuzzy logic 
is used mainly in control engineering. It is based on 
fuzzy logic reasoning which employs linguistic rules 
in the form of IF-THEN statements. Fuzzy logic and 
fuzzy control feature a relative simplification of a 
control methodology description. This allows the 
application of a “human language” to describe the 
problems and their fuzzy solutions. In many control 
applications, the model of the system is unknown or 
the input parameters are highly variable and 
unstable. In such cases, fuzzy controllers can be 
applied. These are more robust and cheaper than 
conventional PID controllers. It is also easier to 
understand and modify fuzzy controller rules, which 
not only use human operator’s strategy but, are 
expressed in natural linguistic terms. 
      AI analysis is based on past history data of a 
system and is therefore likely to be better understood 
and appreciated by designers than other theoretical 
and empirical methods. AI may be used to provide 
innovative ways of solving design issues and will 
allow designers to get an almost instantaneous expert 
opinion on the effect of a proposed change in a 
design. 

      The objective of this paper is to briefly introduce 
the three major areas of AI, i.e., ANNs, GA and 
fuzzy logic and to present various applications in 
renewable energy applications in buildings. The 
applications are presented in a thematic rather than a 
chronological or any other order. The majority of the 
applications presented are related with ANNs. This 
will show the capability of AI as tools in renewable 
energy systems prediction and modelling. 
 
2  Artificial Neural Networks 
The concept of neural network analysis has been 
discovered nearly 50 years ago, but it is only in the 
last 20 years that applications software has been 
developed to handle practical problems. The history 
and theory of neural networks have been described in 
a large number of published literature and will not be 
covered in this paper except for a very brief 
overview of how neural networks operate.  
      ANNs are good for some tasks while lacking in 
some others. Specifically, they are good for tasks 
involving incomplete data sets, fuzzy or incomplete 
information, and for highly complex and ill-defined 
problems, where humans usually decide on an 
intuitional basis. They can learn from examples, and 
are able to deal with non-linear problems. 
Furthermore they exhibit robustness and fault 
tolerance. The tasks that ANNs cannot handle 
effectively are those requiring high accuracy and 
precision as in logic and arithmetic.  
      ANNs have been applied successfully in various 
fields of mathematics, engineering, medicine, 
economics, meteorology, psychology, neurology, 
and many others. Some of the most important ones 
are; in pattern, sound and speech recognition, in the 
analysis of electromyographs and other medical 
signatures, in the identification of military targets 
and in the identification of explosives in passenger 
suitcases. They have also being used in weather and 
market trends forecasting, in the prediction of 
mineral exploration sites, in electrical and thermal 
load prediction, in adaptive and robotic control and 
many others. Neural networks are used for process 
control because they can build predictive models of the 
process from multidimensional data routinely collected 
from sensors. 
      According to Haykin (1994) a neural network is 
a massively parallel distributed processor that has a 
natural propensity for storing experiential knowledge 
and making it available for use. It resembles the 
human brain in two respects; the knowledge is 
acquired by the network through a learning process, 
and inter-neuron connection strengths known as 
synaptic weights are used to store the knowledge. 
      Artificial neural network (ANN) models may be 
used as an alternative method in engineering analysis 



 

and predictions. ANN mimic somewhat the learning 
process of a human brain. They operate like a “black 
box” model, requiring no detailed information about 
the system. Instead, they learn the relationship 
between the input parameters and the controlled and 
uncontrolled variables by studying previously 
recorded data. ANN can also be compared to 
multiple regression analysis except that with ANN 
no assumptions need to be made about the system to 
be modelled. Neural networks usually perform 
successfully where other methods do not, and have 
been applied in solving a wide variety of problems, 
including non-linear problems such as pattern 
recognition, that are not well suited to classical 
methods of analysis. Another advantage of using 
ANNs is their ability to handle large and complex 
systems with many interrelated parameters. They 
seem to simply ignore excess data that are of 
minimal significance and concentrate instead on the 
more important inputs. Instead of complex rules and 
mathematical routines, artificial neural networks are 
able to learn the key information patterns within a 
multidimensional information domain. In addition, 
neural networks are fault tolerant, robust, and noise 
immune (Rumelhart et al., 1986).   
      A schematic diagram of a typical multilayer 
feedforward neural network architecture is shown in 
Fig. 1. The network usually consists of an input 
layer, some hidden layers and an output layer. In its 
simple form, each single neuron is connected to 
other neurons of a previous layer through adaptable 
synaptic weights. The number of input and output 
parameters and the number of cases influence the 
geometry of the network. The network consists of an 
'input' layer of neurons, with one neuron 
corresponding to each input parameter a 'hidden' 
layer or layers of neurons and an output layer of one 
neuron for each output. A neuron, also called 
processing element, is the basic unit of a neural 
network and performs summation and activation 
function to determine the output of that neuron (Fig. 
2). The number of neurons in the hidden layer is 
approximately the average of the inputs and outputs 
though it does depend also on the number of training 
cases. Too many hidden layer neurons can result in 
'over-training' (or lack of generalization) and lead to 
large 'verification' errors. Too few neurons can result 
in large 'training' and 'verification' errors. Knowledge 
is usually stored as a set of connection weights 
(presumably corresponding to synapse efficacy in 
biological neural systems).  
      Training is the process of modifying the 
connection weights in some orderly fashion using a 
suitable learning method. The network uses a 
learning mode, in which an input is presented to the 
network along with the desired output and the 

weights are adjusted so that the network attempts to 
produce the desired output. The weights after 
training contain meaningful information whereas 
before training they are random and have no 
meaning. 
      Figure 2 illustrates how information is processed 
through a single node. The node receives weighted 
activation of other nodes through its incoming 
connections. First, these are added up (summation). 
The result is then passed through an activation 
function, the outcome is the activation of the node. 
For each of the outgoing connections, this activation 
value is multiplied with the specific weight and 
transferred to the next node. 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Schematic diagram of a multilayer feed 
forward neural network. 

 
 

 
 
 
 
 
 
 
 

 
Fig. 2. Information processing in a neural network 

unit. 
 
      A training set is a group of matched input and 
output patterns used for training the network, usually 
by suitable adaptation of the synaptic weights. The 
outputs are the dependent variables that the network 
produces for the corresponding input. It is important 
that all the information the network needs to learn is 
supplied to the network as a data set. Starting from 
an initially randomised weighted network system, 
input data is propagated through the network to 
provide an estimate of the output value. When each 
pattern is read, the network uses the input data to 
produce an output, which is then compared to the 
training pattern, i.e., the correct or desired output. If 
there is a difference, the connection weights (usually 
but not always) are altered in such a direction that 
the error is decreased. After the network has run 
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through all the input patterns, if the error is still 
greater than the maximum desired tolerance, the 
ANN runs again through all the input patterns 
repeatedly until all the errors are within the required 
tolerance. When the training reaches a satisfactory 
level, the network holds the weights constant and 
uses the trained network to make decisions, identify 
patterns, or define associations in new input data sets 
not used to train it. 
      Several algorithms are commonly used to 
achieve the minimum error in the shortest time. 
There are also many alternative forms of neural 
networking systems and, indeed, many different 
ways in which they may be applied to a given 
problem. The suitability of an appropriate paradigm 
and strategy for application is very much dependent 
on the type of problem to be solved.  
      The most popular learning algorithms are the 
back-propagation and its variants (Rumelhart et al., 
1986; Werbos, 1974). The Back-Propagation (BP) 
algorithm is one of the most powerful learning 
algorithms in neural networks. The training of all 
patterns of a training data set is called an epoch. The 
training set has to be a representative collection of 
input-output examples. Back-propagation training is 
a gradient descent algorithm. It tries to improve the 
performance of the neural network by reducing the 
total error by changing the weights along its 
gradient. More details of the BP algorithm can be 
found in Kalogirou (2001). 
      Neural networks obviate the need to use complex 
mathematically explicit formulas, computer models, 
and impractical and costly physical models. Some of 
the characteristics that support the success of 
artificial neural networks and distinguish them from 
the conventional computational techniques are 
(Nannariello and Fricke, 2001): 
• The direct manner in which artificial neural 

networks acquire information and knowledge 
about a given problem domain (learning 
interesting and possibly non-linear relationships) 
through the 'training' phase. 

• Neural networks can work with numerical or 
analogue data that would be difficult to deal with 
by other means because of the form of the data or 
because there are so many variables. 

• Neural network analysis can be conceived of 
as a 'black box' approach and the user does not 
require sophisticated mathematical knowledge. 

• The compact form in which the acquired 
information and knowledge is stored within the 
trained network and the ease with which it can be 
accessed and used. 

• Neural network solutions can be robust even 
in the presence of 'noise' in the input data. 

• The high degree of accuracy reported when 
artificial neural networks are used to generalize 
over a set of previously unseen data (not used in 
the 'training' process) from the problem domain. 

      While neural networks can be used to solve 
complex problems they do suffer from a number of 
shortcomings. The most important of them are: 
• The data used to train neural nets should 

contain information, which ideally, is spread 
evenly throughout the entire range of the system. 

• There is limited theory to assist in the design 
of neural networks. 

• There is no guarantee of finding an 
acceptable solution to a problem. 

• There are limited opportunities to rationalize 
the solutions provided. 

 
2.1 Network Parameters Selection 
When building the neural network model the process 
has to be identified with respect to the input and 
output variables that characterise the process. The 
inputs include measurements of the physical 
dimensions, measurements of the variables specific 
to the environment, equipment, and controlled 
variables modified by the operator. Variables that do 
not have any effect on the variation of the measured 
output are discarded. These are estimated by the 
contribution factors of the various input parameters. 
These factors indicate the contribution of each input 
parameter to the learning of the neural network and 
are usually estimated by the network, depending on 
the software employed. 
      The first step is to collect the required data and 
prepare them in a spreadsheet format with various 
columns representing the input and output 
parameters. Three types of data files are required; a 
training data file, a test data file and a validation data 
file. The former and the latter should contain 
representative samples of all the cases the network is 
required to handle, whereas the test file may contain 
about 10% of the cases contained in the training file. 
During training the network is tested against the test 
file to determine accuracy and training should be 
stopped when the mean average error remains 
unchanged for a number of epochs. This is done in 
order to avoid overtraining, in which case, the 
network learns perfectly the training patterns but is 
unable to make predictions when an unknown 
training set is presented to it. 
      The basic operation that has to be followed to 
successfully handle a problem with ANNs, is to 
select the appropriate architecture and the suitable 
learning rate, momentum, number of neurons in each 
hidden layer and the activation function. This is a 
laborious and time-consuming method but as 
experience is gathered some parameters can be 



 

predicted easily thus shortening tremendously the 
time required. 
 
3  Genetic Algorithms 
The genetic algorithm (GA) is a model of machine 
learning, which derives its behavior from a 
representation of the processes of evolution in 
nature. This is done by the creation within a 
machine/computer of a population of individuals 
represented by chromosomes. Essentially these are a 
set of character strings that are analogous to the 
chromosomes that we see in the DNA of human 
beings. The individuals in the population then go 
through a process of evolution. 
      GAs are used for a number of different 
application areas. An example of this would be 
multidimensional optimization problems in which 
the character string of the chromosome can be used 
to encode the values for the different parameters 
being optimized. 
      In practice, therefore, this genetic model of 
computation can be implemented by having arrays of 
bits or characters to represent the chromosomes. 
Simple bit manipulation operations allow the 
implementation of crossover, mutation and other 
operations.  
      When the GA is executed, it is usually done in a 
manner that involves the following cycle. Evaluate 
the fitness of all of the individuals in the population. 
Create a new population by performing operations 
such as crossover, fitness-proportionate reproduction 
and mutation on the individuals whose fitness has 
just been measured. Discard the old population and 
iterate using the new population. One iteration of this 
loop is referred to as a generation. The structure of 
the standard genetic algorithm is shown in Fig. 3 
(Zalzala and Fleming, 1997). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3 The structure of standard genetic algorithm 
 
With reference to Fig. 3, in each generation 
individuals are selected for reproduction according to 

their performance with respect to the fitness 
function. In essence, selection gives a higher chance 
of survival to better individuals. Subsequently 
genetic operations are applied in order to form new 
and possibly better offspring. The algorithm is 
terminated either after a certain number of 
generations or when the optimal solution has been 
found. More details on genetic algorithms can be 
found in Goldberg (1989), Davis (1991) and 
Michalewicz (1996). 
      The first generation (generation 0) of this process 
operates on a population of randomly generated 
individuals. From there on, the genetic operations, in 
concert with the fitness measure, operate to improve 
the population. 
      During each step in the reproduction process, the 
individuals in the current generation are evaluated by 
a fitness function value, which is a measure of how 
well the individual solves the problem. Then each 
individual is reproduced in proportion to its fitness; 
the higher the fitness, the higher its chance to 
participate in mating (crossover) and to produce an 
offspring. A small number of newborn offspring 
undergo the action of the mutation operator. After 
many generations, only those individuals who have 
the best genetics (from the point of view of the 
fitness function) survive. The individuals that 
emerge from this ‘survival of the fittest’ process are 
the ones that represent the optimal solution to the 
problem specified by the fitness function and the 
constraints. 
      Genetic algorithms (GA) are suitable for finding 
the optimum solution in problems were a fitness 
function is present. Genetic algorithms use a 
“fitness” measure to determine which of the 
individuals in the population survive and reproduce. 
Thus, survival of the fittest causes good solutions to 
progress. A genetic algorithm works by selective 
breeding of a population of “individuals”, each of 
which could be a potential solution to the problem. 
The genetic algorithm is seeking to breed an 
individual, which either maximizes, minimizes or it 
is focused on a particular solution of a problem. 
      The larger the breeding pool size, the greater the 
potential of it producing a better individual.  
However, as the fitness value produced by every 
individual must be compared with all other fitness 
values of all other individuals on every reproductive 
cycle, larger breeding pools take longer time. After 
testing all of the individuals in the pool, a new 
“generation” of individuals is produced for testing.  
      During the setting up of the GA the user has to 
specify the adjustable chromosomes, i.e. the 
parameters that would be modified during evolution 
to obtain the maximum value of the fitness function. 

Begin (1) 
t = 0  
Initialize Population P(t)  
Evaluate fitness of Population P(t)  
While (Generations < Total Number) do begin (2) 

t = t + 1  
   Select Population P(t) out of Population P(t-1) 

Apply Crossover on Population P(t) 
Apply Mutation on Population P(t) 
Evaluate fitness of Population P(t)  

         end (2) 
end (1) 
x  



 

Additionally the user has to specify the ranges of 
these values called constraints.  
      A genetic algorithm is not gradient based, and 
uses an implicitly parallel sampling of the solutions 
space. The population approach and multiple 
sampling means that it is less subject to becoming 
trapped to local minima than traditional direct 
approaches, and can navigate a large solution space 
with a highly efficient number of samples. Although 
not guaranteed to provide the globally optimum 
solution, the GAs have been shown to be highly 
efficient at reaching a very near optimum solution in 
a computationally efficient manner. 
      The genetic algorithm is usually stopped after 
best fitness remained unchanged for a number of 
generations or when the optimum solution is 
reached. 
 
4  Fuzzy Logic 
Fuzzy logic is a logical system, which is an 
extension of multi-valued logic. Additionally fuzzy 
logic is almost synonymous with the theory of fuzzy 
sets, a theory that relates to classes of objects without 
sharp boundaries in which membership is a matter of 
degree. Fuzzy logic is all about the relative 
importance of precision, i.e., how important is to be 
exactly right when a rough answer will work. Fuzzy 
inference systems have been successfully applied in 
fields such as automatic control, data classification, 
decision analysis, expert systems and computer 
vision. Fuzzy logic is a convenient way to map an 
input space to an output space, as for example, 
according to how hot the water is required adjust the 
valve to the right setting, or according to the steam 
outlet temperature required adjust the fuel flow in a 
boiler. From these two examples it can be 
understood that fuzzy logic mainly has to do with the 
design of controllers. 
      Conventional control is based on the derivation of 
a mathematical model of the plant from which a 
mathematical model of a controller can be obtained. 
When a mathematical model cannot be created then 
there is no way through classical control to develop a 
controller. Other limitations of conventional control 
are (Reznik, 1997): 
Ø Plant nonlinearity. Nonlinear models are 

computationally intensive and have complex 
stability problems. 
Ø Plant uncertainty. Accurate models can not be 

created due to uncertainty and lack of perfect 
knowledge. 
Ø Multi-variables, multi-loops and 

environmental constrains. Multi-variable and multi-
loop systems have complex constrains and 
dependencies. 
Ø Uncertainty in measurements due to noise. 

Ø Temporal behaviours. Plants, controllers, 
environments and their constrains vary with time. 
Additionally, time delays are difficult to model. 

The advantages of fuzzy control are (Reznik, 1997): 
Ø Fuzzy controllers are more robust than PID 

controllers as they can cover a much wider range of 
operating conditions and can operate with noise 
and disturbances of different natures. 
Ø Their development is cheaper than that of a 

model-based or other controller to do the same 
thing. 
Ø They are customisable since it is easier to 

understand and modify their rules and also are 
expressed in natural linguistic terms. 
Ø It is easy to learn how these controllers 

operate and how to design and apply them in an 
application. 
Ø They can model nonlinear functions of 

arbitrary complexity. 
Ø It can be built on top of the experience of 

experts. 
Ø It can be blended with conventional control 

techniques. 
      Fuzzy control should not be used when 
conventional control theory yields a satisfactory result 
and when an adequate and solvable mathematical 
model already exists or can easily be created. Fuzzy 
logic was initialled in 1965 in the States by Professor 
Lofti Zateh (1973). In fact, Zadeh’s theory not only 
offered a theoretical basis for fuzzy control, but also 
establishes a bridge connecting artificial intelligence to 
control engineering. Fuzzy logic has emerged as a tool 
for controlling industrial processes, as well as 
household and entertainment electronics, diagnosis 
systems and other expert systems. Fuzzy logic is 
basically a multi-valued logic that allows intermediate 
values to be defined between conventional evaluations 
like yes/no, true/false, black/white, large/small, etc. 
Notions like “rather warm” or “pretty cold” can be 
formulated mathematically and processed in 
computers. Thus, an attempt is made to apply a more 
human-like way of thinking in the programming of 
computers.  
      A fuzzy controller design process contains the 
same steps as any other design process. One needs 
initially to choose the structure and parameters of a 
fuzzy controller, test a model or the controller itself 
and change the structure and/or parameters based on 
the test results (Reznik, 1997). A basic requirement for 
implementing fuzzy control is the availability of a 
control expert who provides the necessary knowledge 
for the control problem (Nie and Linkens, 1995). More 
details on fuzzy control and practical applications can 
be found in (Mamdani, 1974; Sugeno, 1985). 
      The linguistic description of the dynamic 
characteristics of a controlled process can be 



 

interpreted as a fuzzy model of the process. In addition 
to the knowledge of a human expert, a set of fuzzy 
control rules can also be derived by using experimental 
knowledge. A fuzzy controller avoids rigorous 
mathematical models and is consequently more robust 
than a classical approach in cases which cannot be or 
are with great difficulties precisely modelled 
mathematically. Fuzzy rules serve to describe in 
linguistic terms a quantitative relationship between 
two or more variables. Processing of the fuzzy rules 
provides a mechanism for using them to compute the 
response to a given fuzzy controller input.  
      The basis of a fuzzy or any fuzzy rule system is 
the inference engine responsible for the inputs 
fuzzification, fuzzy processing and defuzzification of 
the output. A schematic of the inference engine is 
shown in Fig. 4. Fuzzification means that the actual 
inputs are fuzzified and fuzzy inputs are obtained. 
Fuzzy processing means that the inputs are processed 

according to the rules set and produces fuzzy 
outputs. Defuzzification means to produce a crisp 
real value for a fuzzy output which is also the 
controller output. The fuzzy logic controller’s goal is 
to achieve a satisfactory control of a process. Based 
on the input parameters the operation of the 
controller (output) can be determined. The typical 
design scheme of a fuzzy logic controller is shown in 
Fig. 5 (Reznik, 1997). The design of such a 
controller contains the following steps: 
1. Define the inputs and the control variables. 
2. Define the condition interface. Inputs are 

expressed as fuzzy sets. 
3. Design the rule base. 
4. Design the computational unit. Many 

readymade programs are available for this purpose. 
5. Determine the rules for defuzzification, i.e., to 

transform fuzzy control output to crisp control 
action. 
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Fig. 4 Operation of a fuzzy controller 
 

Fig. 5 Basic configuration of fuzzy logic controller 



 

      The possibility of integrating neural networks 
and fuzzy logic was considered quite recently into a 
new kind of system called neuro-fuzzy control where 
several strengths of both systems are utilised and 
combined appropriately. 
      More specifically by neuro-fuzzy control it is 
meant (Nie and Linkens, 1995): 
1. The controller has a structure resulting from 

a combination of fuzzy systems and artificial 
neural networks. 

2. The resulting control system consists of 
fuzzy systems and neural networks as 
independent components performing different 
tasks, and 

3. The design methodologies for constructing 
respective controllers are hybrid ones coming 
from ideas in fuzzy and neural control. 

      In this case a trained neural network can be 
viewed as a means of knowledge representation. 
Instead of representing knowledge using IF-THEN 
localised associations as in fuzzy systems, a neural 
network stores knowledge through its structure, and 
more specifically its connection weights and local 
processing units in a distributed or localized manner. 
Many commercial software (like Matlab) include 
routines for neuro-fuzzy modelling. 
      The basic idea behind a neuro-fuzzy technique is 
to provide a method for the fuzzy modeling 
procedure to learn information about a data set, in 
order to compute the membership function 
parameters that best allow the associated fuzzy 
inference system to track the given input/output data. 
A neural network, which maps inputs through input 
membership functions and associated parameters, 
and then through output membership functions and 
associated parameters to outputs, can be used to 
interpret the input/output map. The parameters 
associated with the membership functions will 
change through a learning process. Generally, the 
procedure followed is similar to any neural network 
technique described in section 2. 
 
5  Applications of ANN in Renewable 
    Energy Applications in Buildings 
ANN’s have been used by various researchers and by 
the author for modelling and predictions in the field 
of renewable energy systems in buildings. This field 
includes models for predicting solar radiation and 
wind, renewable energy systems that can be applied 
in buildings, control of building renewable energy 
systems and naturally ventilated buildings. This 
paper presents various such applications in a 
thematic rather than a chronological or any other 
order.  
 

5.1 Solar Water Heating Systems 
 
a) Modelling of solar domestic water heating 

(SDHW) systems 
An ANN has been trained based on 30 known cases 
of systems, varying from collector areas between 
1.81m2 and 4.38m2 (Kalogirou et al., 1999a). Open 
and closed systems have been considered both with 
horizontal and vertical storage tanks. In addition to 
the above, an attempt was made to consider a large 
variety of weather conditions. In this way the 
network was trained to accept and handle a number 
of unusual cases. The data presented as input were 
the collector area, storage tank heat loss coefficient 
(U-value), tank type, storage volume, type of system, 
and ten readings from real experiments of total daily 
solar radiation, mean ambient air temperature, and 
the water temperature in the storage tank at the 
beginning of a day for each system. The network 
output is the useful energy extracted from the system 
and the stored water temperature rise. Unknown data 
were used to investigate the accuracy of prediction. 
Typical results are shown in Tables 1 and 2 for the 
useful energy extracted from the system and the 
stored water temperature rise respectively. These 
include systems considered for the training of the 
network at different weather conditions (systems 11 
and 12) and completely unknown systems (systems 
15, 32 and 43). 
  

Table 1 Comparison between actual and predicted 
results for the useful energy extracted (Qout). 

System 
Actual 

Qout  
(MJ) 

ANN predicted 
Qout 
(MJ) 

% 
difference 

11 20.6 
19.0 

20.6 
19.3 

0.0 
1.5 

12 22.3 
17.1 

22.4 
18.4 

0.4 
7.1 

15 20.5 
12.2 

22.4 
12.7 

8.5 
3.9 

32 16.2 
15.6 

16.6 
15.4 

2.4 
-1.3 

43 23.1 
32.7 

22.6 
35.9 

-2.2 
8.9 

 
Predictions within 7.1% and 9.7% were obtained 
respectively (Kalogirou et al., 1999a). These results 
indicate that the proposed method can successfully 
be used for the estimation of the useful energy 
extracted from the system and the stored water 
temperature rise. The advantages of this approach 
compared to the conventional algorithmic methods 
are the speed, the simplicity, and the capacity of the 
network to learn from examples. This is done by 
embedding experiential knowledge in the network. 



 

Additionally, actual weather data have been used for 
the training of the network, which leads to more 
realistic results as compared to other modelling 
programs, which rely on typical meteorological year 
(TMY) data that are not necessarily similar to the 
actual environment in which a system operates. 

 
Table 2 Comparison between actual and predicted 
results for the temperature rise of the water in the 

storage tank 

System 

Actual 
temperature  

(°C) 

ANN 
predicted 

temperature 
(°C) 

% 
difference 

11 64.1 
61.0 

62.6 
60.8 

-2.3 
-0.3 

12 53.0 
45.1 

52.2 
45.6 

-1.5 
1.1 

15 60.9 
47.9 

62.4 
44.8 

2.4 
-6.9 

32 45.7 
44.1 

42.8 
41.5 

-6.8 
-6.3 

43 45.1 
56.5 

41.1 
57.0 

-9.7 
0.9 

 
b) Performance prediction of a thermosyphon solar 

domestic water heating system.  
An ANN has been trained using performance data 
for four types of systems, all employing the same 
collector panel under varying weather conditions 
(Kalogirou et al., 1999b). The output of the network 
is the useful energy extracted from the system and 
the stored water temperature rise. Predictions with 
maximum deviations of 1MJ and 2.2°C were 
obtained for the two output parameters respectively. 
Random data were also used both with the 
performance equations obtained from the 
experimental measurements and with the artificial 
neural network to predict the above two parameters. 
The predicted values thus obtained were very 
comparable. These results indicate that the proposed 
method can successfully be used for the estimation 
of the performance of the particular thermosyphon 
system at any of the different types of configurations 
used here.  
 
c) Solar domestic water heating systems long-term 
performance prediction 
Thirty thermosyphon SDWH systems have been 
tested and modelled according to the procedures 
outlined in the standard ISO 9459-2 at three 
locations in Greece (Kalogirou and Panteliou, 2000). 
From these, data for twenty-seven systems were used 
for training and testing the network while data for 
the remaining three for validation. Two ANNs have 
been trained using the monthly data produced by the 

modelling program supplied with the standard. 
Different networks were used due to the nature of the 
required output, which is different in each case. The 
first network was trained to estimate the solar energy 
output of the system (Q) for a draw-off quantity 
equal to the storage tank capacity and the second one 
to estimate the solar energy output of the system (Q) 
and the average quantity of hot water per month (Vd) 
at demand temperatures of 35°C and 40°C. The input 
data in both networks are similar to the ones used in 
the program supplied with the standard. These were 
the size and performance characteristics of each 
system and various climatic data. In the second 
network the demand temperature was also used as 
input. The statistical coefficient of multiple 
determination (R2-value) obtained for the training 
data set was equal to 0.9993 for the first network and 
0.9848 and 0.9926 for the second for the two output 
parameters respectively. Unknown data were 
subsequently used to investigate the accuracy of 
prediction. Predictions with R2-values equal to 
0.9913 for the first network and 0.9733 and 0.9940 
for the second were obtained (Kalogirou and 
Panteliou, 2000). Comparative graphs are shown in 
Figs 6 and 7. 

Fig. 6 Actual (modelled) against ANN predicted 
values for the validation data set for the solar energy 

output (Q) (Network #1). 
 
A similar approach was followed for the long-

term performance prediction of three forced 
circulation type solar domestic water heating 
(SDWH) systems (Kalogirou, 2000). The maximum 
percentage differences obtained when unknown data 
were used were 1.9% and 5.5% for the two networks 
respectively.  
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(a) Solar energy output (Q) 

(b) Monthly hot water quantity (Vd) 
 

Fig. 7 Actual (modelled) against ANN predicted 
values for the validation data set. (Network #2) 

 
d) Thermosyphon system long-term performance 

prediction using the dynamic system testing 
method and artificial neural networks 

The performance of a solar hot water thermosyphon 
system was tested with the dynamic system method 
according to Standard ISO/CD/9459.5. The system is 
of closed circuit type and consists of two flat plate 
collectors with total aperture area of 2.74 m2 and of a 
170-litre hot water storage tank. The system was 
modelled according to the procedures outlined in the 
standard with the weather conditions encountered in 
Rome. The simulations were performed for hot water 
demand temperatures of 45 and 90°C and volume of 
daily hot water consumption varying from 127 to 
200 litres. These results have been used to train a 
suitable neural network to perform long-term system 
performance prediction (Kalogirou and Panteliou, 
1999). The input data were learned with adequate 
accuracy with correlation coefficients varying from 
0.993 to 0.998, for the four output parameters. When 
unknown data were used to the network, satisfactory 
results were obtained. The maximum percentage 
difference between the actual (simulated) and 
predicted results is 6.3%. These results prove that 
artificial neural networks can be used successfully 

for this type of predictions. A comparison of the 
actual and ANN predicted results for the delivered 
power are shown in Fig. 8. 
 

Fig. 8 Comparison of actual (simulated) data with 

ANN predicted data for delivered power 
 

e) Identification of the time parameters of solar 
collectors 

Lalot (2000) used ANNs for the identification of 
time parameters of solar collectors. Two parameters 
fully describe the static behaviour whereas two other 
parameters are necessary to fully describe the 
dynamic behaviour of a flat plate collector. The 
discrimination ability of the network however was 
not very high when a second order system was 
considered. It has been shown that collectors may be 
considered as third order systems. A radial basis 
function (RBF) neural network is used to accurately 
identify pure third order systems. The neural network 
was validated by the computation of the Euclidean 
distance between the collectors and their models, 
depending on the number of learning steps. Finally it 
was shown that the neural networks are able to 
discriminate collectors that have close parameters: 
the proposed network identified a difference of two 
percent for one parameter. 
 
f) Model of a solar thermal plant  
Lopez-Baldan et al. (2002) presented an application 
of modelling and identification techniques for 
obtaining two fuzzy models of a solar domestic hot 
water system. The models have been generated in 
order to estimate the energy supplied by a thermal 
solar system and the output temperature of the water, 
respectively. The methods have been applied by 
using only the experimental input/output data taken 
from the process. 
 
 
 
 
5.2 Photovoltaic Systems 
 
a) Peak power tracking for PV supplied dc motors 
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Veerachary and Yadaiah (2000) applied an ANN for 
the identification of the optimal operating point of a 
PV water pumping system. A gradient descent 
algorithm is used to train the ANN controller for the 
identification of the maximum power point of a solar 
cell array and gross mechanical energy operation of 
the combined system. The input parameter to the 
neural network is solar insolation and the output 
parameter is the converter chopping ratio 
corresponding to the maximum power output of the 
PV cells or gross mechanical energy output of the 
combined PV system. The error in the ANN 
predictions is less than 2% for centrifugal and 7% for 
volumetric pump loads respectively. According to 
the authors the ANN provides a highly accurate 
identification/tracking of optimal operating points 
even with stochastically varying solar insolation.  
 
5.3. Solar Radiation and Wind Speed 
Prediction 
 
a) Prediction of maximum solar radiation 
The prediction of solar radiation is very important 
for many solar applications. This is particularly 
important in solar electric generating systems, where 
accurate predictions of solar radiation allow for a 
better planning of the operation of an auxiliary 
system, especially in cases where steam boilers that 
require many hours to warm-up are used. 
      Due to the very nature of solar radiation, many 
parameters can influence both its intensity and its 
availability and therefore it is difficult to employ 
analytical methods for such predictions. For this 
reason, multivariate prediction techniques are more 
suitable. In this respect, artificial neural networks are 
utilised due to their ability to be trained with past 
data in order to provide the required predictions. 
      The input data that are used in the present 
approach are those which influence mostly the 
availability and intensity of solar radiation, namely, 
the month, day of month, Julian day, season, mean 
ambient temperature and mean relative humidity 
(RH). For example, increased value of relative 
humidity may mean either increased moisture in the 
atmosphere or cloudiness, both leading to a reduction 
of available radiation. Additionally, the input data, 
i.e. mean temperature and RH can be predicted with 
other statistical or analytical methods and used in the 
present modelling approach. 
      A multilayer recurrent architecture employing the 
standard back-propagation learning algorithm has been 
applied as shown in Fig. 9. This methodology is 
considered suitable for time series predictions. Using 
the hourly records for one complete year, the 
maximum value of radiation and the mean daily values 
of temperature and relative humidity (RH) were 

calculated. The respective data for 11 months were 
used for the training and testing of the network, 
whereas the data for the remaining one month, 
consisting of values for the first two weeks of July and 
the last two weeks of December, were used for the 
validation of the network.  
      The training of the network was performed with 
adequate accuracy. Subsequently, the “unknown” 
validation data set produced very accurate 
predictions, with a correlation coefficient between 
the actual and the ANN predicted data of 0.9867. 
Also, the sensitivity of the predictions to ±20% 
variation in temperature and RH give correlation 
coefficients of 0.9858 to 0.9875, which are 
considered satisfactory (Kalogirou et al., 2002). This 
is considered as an adequate accuracy for such 
predictions.  
      As the Meteorological Service collects more data 
in the coming years, these will be used to retrain the 
network so as to produce a useful operational tool for 
radiation prediction. It is anticipated that this 
prediction methodology will be improved further, as 
the training database expands covering more unusual 
cases. 

Fig. 9 multilayer recurrent architecture 
 

b) Determination of solar irradiance 
Negnevitsky and Le (1995) combined an expert 
system and an ANN for the evaluation of the thermal 
rating and temperature rise of overhead power lines. 
The ANN has been used to determine the hourly 
solar irradiance depending on astronomic and 
meteoroclimatic conditions. 
c) Prediction of global radiation in locations with no 

direct measurement instrumentation 
Alawi and Hinai (1998) have used ANNs to predict 
solar radiation in areas not covered by direct 
measurement instrumentation. The input data to the 
network are the location, month, mean pressure, 
mean temperature, mean vapour pressure, mean 
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relative humidity, mean wind speed and mean 
duration of sunshine. The ANN model predicts solar 
radiation with an accuracy of 93% and mean 
absolute percentage error of 7.3. 
 
d) Estimation of global solar radiation 
Mohandes et al. (1998) used data from 41 collection 
stations in Saudi Arabia. From these data for 31 
stations were used to train a neural network and the 
data for the other 10 for testing the network. The 
input values to the network are latitude, longitude, 
altitude and sunshine duration. The results for the 
testing stations obtained are within 16.4% and 
indicate the viability of this approach for spatial 
modelling of solar radiation.  
 
e) Daily insolation forecasting 
Kemmoku et al. (1999) used a multistage ANN to 
predict the insolation of the next day. The input data 
to the network are the average atmospheric pressure, 
predicted by another ANN, and various weather data 
of the previous day. The results obtained shown a 
prediction accuracy of 20%. 
 
f) Solar resource estimation  
Reddy and Ranjan (2003) used Artificial Neural 
Network based models for estimation of monthly 
mean daily and hourly values of solar global 
radiation. Solar radiation data from 13 stations 
spread over India around the year have been used for 
training and testing the ANN. The solar radiation 
data from 11 locations (six from South India and five 
from North India) were used for training the neural 
networks and data from the remaining two locations 
(one from South India and one from North India) 
were used for testing the estimated values. The 
results of the ANN model have been compared with 
other empirical regression models. The solar 
radiation estimations by ANN are in good agreement 
with the actual values and are superior to those of 
other available models. The maximum mean 
absolute relative deviation of predicted hourly global 
radiation tested is 4.07%. The results indicate that 
the ANN model shows promise for evaluating solar 
global radiation possibilities at the places where 
monitoring stations are not established. 
 
g) Solar energy potential  
Sozen et al. (2005) presented a new formula based 
on meteorological and geographical data was 
developed to determine the solar-energy potential in 
Turkey using artificial neural-networks (ANNs). 
Scaled conjugate gradient (SCG) and Levenberg–
Marquardt (LM) learning algorithms and a logistic 
sigmoid transfer function were used in the network. 
Meteorological data for four years (2000-2003) from 

18 cities spread over Turkey were used as data in 
order to train the neural network, shown in Fig. 10. 
Meteorological and geographical data (latitude, 
longitude, altitude, month, mean sunshine duration, 
and mean temperature) were used in the input layer 
of the network. Solar radiation is the output 
parameter. One-month test data for each city was 
used, and these month data were not used for 
training. The ANN models show greater accuracy for 
evaluating solar-resource possibilities in regions 
where a network of monitoring stations has not been 
established in Turkey. This study confirms the ability 
of the ANN to predict solar-radiation values 
precisely. 

 
Fig. 10 Neural network architecture for estimating 

solar radiation 
 
h) Forecast of solar irradiance  
Cao and Cao (2005) used artificial neural network 
combined with wavelet analysis for the forecast of 
solar irradiance. This method is characteristic of the 
pre-processing of sample data using wavelet 
transformation for the forecast, i.e., the data 
sequence of solar irradiance as the sample is first 
mapped into several time-frequency domains, and 
then a recurrent BP network is established for each 
domain. The forecasted solar irradiance is exactly the 
algebraic sum of all the forecasted components 
obtained by the respective networks, which 
correspond respectively to the time-frequency 
domains. Discount coefficients are applied to take 
account of different effect of different time-step on 
the accuracy of the ultimate forecast when updating 
the weights and biases of the networks in network 
training. On the basis of combination of recurrent BP 
networks and wavelet analysis, a model is developed 
for more accurate forecasts of solar irradiance. An 
example of the forecast of day-by-day solar 
irradiance is presented, the historical day-by-day 
records of solar irradiance in Shanghai constituting 
the data sample. The results show that the accuracy 
of the method is more satisfactory than that of the 
methods reported before. 
 
i) Wind speed prediction 
A suitable artificial neural network was trained to 
predict the mean monthly wind speed in regions of 
Cyprus where data are not available. Data for the 
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period 1986-1996 (11 years) have been used to train 
the network whereas data for the year 1997 were 
used for validation. Both learning and prediction 
were performed with an acceptable accuracy. Two 
multilayered artificial neural network architectures 
of the same type have been tried one with five 
neurons in the input layer (month, wind speed at 2m 
and 7m for two stations) and one with eleven. The 
additional input data for the 11-inputs network are 
the x and y coordinates of the meteorological 
stations. The 5-inputs network proved to be more 
successful in the prediction of the mean wind speed.  
      A comparison of the mean wind speed at the two 
levels (2m and 7m) for the two networks is shown in 
Table 3. As can be the network using only 5 input 
parameters is more successful, giving a maximum 
percentage difference of only 1.8% (Kalogirou et al., 
1999d).  

 
Table 3 Maximum percentage differences of the 

annual results of the two networks 

 
The two networks can be used for different types of 
jobs, i.e., the network having five inputs can be used 
to fill missing data from a database whereas the one 
having eleven inputs can be used for predicting mean 
wind speed in other nearby locations. In the former, 
the station can be located within the area marked by 
the three stations (interpolation) or outside 
(extrapolation). 
 
 
 
 
 
5.4 Optimisation of buildings 
 
a) Optimisation of building thermal design and 
control  
Wright et al. (2002) showed that the design of 
buildings is a multi-criterion optimization problem 
where there is always a trade-off that needs to be 
made between capital expenditure, operating cost, 
and occupant thermal comfort. This paper 
investigates the application of a multi-objective 
genetic algorithm (MOGA) search method in the 

identification of the optimum pay-off characteristic 
between the energy cost of a building and the 
occupant thermal discomfort. Results are presented 
for the pay-off characteristics between energy cost 
and zone thermal comfort, for three design days and 
three building weights. Inspection of the solutions 
indicates that the MOGA is able to find the optimum 
pay-off characteristic between the daily energy cost 
and zone thermal comfort. It can be concluded that 
multi-criterion genetic algorithm search methods 
offer great potential for the identification of the pay-
off between the elements of building thermal design, 
and as such can help the building design process. 
 
5.5 Naturally ventilated buildings 
 
a) Predicting air flow in a naturally ventilated test 
room 
The air flow distribution inside a lightweight test 
room, which is naturally ventilated was predicted 
using artificial neural networks (Kalogirou et al., 
1999). The test room is situated in a relatively 
sheltered location and is ventilated through 
adjustable louvres. Indoor air temperature and 
velocity are measured at four locations and six 
different levels. The outside local temperature, 
relative humidity, wind velocity and direction are 
also monitored. The collected data are used to 
predict the airflow across the test room. 
Experimental data from a total of 32 trials have been 
collected. Data for 28 of these were used for the 
training of the neural network whereas the data for 4 
trials were used for validation of the network. The 
data were recorded at 2 minutes intervals and the 
length of each trial varied but were generally 12 
hours duration (Kalogirou et al., 1999c). A multi 
layer feedforward neural network was employed 
with three hidden slabs. Satisfactory results for the 
indoor temperature and combined velocity have been 
obtained when unknown data were used as input to 
the network. A comparison between the actual and 
the ANN predicted data for the indoor air 
temperature are shown in Fig. 11. 
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Fig. 11 Comparison between actual and ANN 
predicted data for indoor air temperature 

 
b) Control in naturally ventilated buildings for 
summer conditions  
Eftekhari and Marjanovic (2003) developed a fuzzy 
controller for naturally ventilated buildings. The 
process of designing a supervisory control to provide 
thermal comfort and adequate air distribution inside 
a single-sided naturally ventilated test room is 
described. The controller is based on fuzzy logic 
reasoning and sets of linguistic rules in forms of IF-
THEN rules are used. The inputs to the controller are 
the outside wind velocity, direction, outside and 
inside temperatures. The output is the position of the 
opening. A selection of membership functions for 
input and output variables are described and 
analysed. The control strategy consisting of the 
expert rules is then validated using experimental data 
from a naturally ventilated test room. The test room 
is located in a sheltered area and air flow inside the 
room, the air pressures and velocities across the 
openings together with indoor air temperature and 
velocity at four locations and six different levels 
were measured. Validation of the controller is 
performed in the test room by measuring the air 
distribution and thermal comfort inside the room 
with no control action. These data are then compared 
to the air temperature and velocity with the controller 
in action. The initial results presented show that the 
controller is capable of providing better thermal 
comfort inside the room. 
 
6  Conclusions 
From the above system descriptions one can see that 
ANNs, GAs and fuzzy systems have been applied in 
a wide range of fields for modelling and prediction 
in renewable energy systems. What is required for 
setting up such systems is data that represents the 
past history and performance of the real system and a 
suitable selection of AI model. The selection of this 
model is done empirically and after testing various 

alternative solutions. The performance of the 
selected models is tested with the data of the past 
history and performance of the real system.  
      Surely the number of applications presented here 
is neither complete nor exhaustive but merely a 
sample of applications that demonstrate the 
usefulness of artificial intelligence models. Artificial 
intelligence models like all other approximation 
techniques have relative advantages and 
disadvantages. There are no rules as to when this 
particular technique is more or less suitable for an 
application. Based on the work presented here it is 
believed that AI offers an alternative method which 
should not be underestimated. 
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