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Abstract

Introduction: Oil and gas workers have been shown to be at increased risk of chronic diseases 
including cancer, asthma, chronic obstructive pulmonary disease, and hearing loss, among others. 
Technological advances may be used to assess the external (e.g. personal sensors, smartphone apps 
and online platforms, exposure models) and internal exposome (e.g. physiologically based kinetic 
modeling (PBK), biomonitoring, omics), offering numerous possibilities for chronic disease preven-
tion strategies and risk management measures. The objective of this study was to review the litera-
ture on these technologies, by focusing on: (i) evaluating their applicability for exposome research in 
the oil and gas industry, and (ii) identifying key challenges that may hamper the successful applica-
tion of such technologies in the oil and gas industry.
Method: A scoping review was conducted by identifying peer-reviewed literature with searches in 
MEDLINE/PubMed and SciVerse Scopus. Two assessors trained on the search strategy screened re-
trieved articles on title and abstract. The inclusion criteria used for this review were: application of 
the aforementioned technologies at a workplace in the oil and gas industry or, application of these 
technologies for an exposure relevant to the oil and gas industry but in another occupational sector, 
English language and publication period 2005—end of 2019.
Results: In total, 72 articles were included in this scoping review with most articles focused on omics 
and bioinformatics (N = 22), followed by biomonitoring and biomarkers (N = 20), external exposure 
modeling (N = 11), PBK modeling (N = 10), and personal sensors (N = 9). Several studies were iden-
tified in the oil and gas industry on the application of PBK models and biomarkers, mainly focusing 
on workers exposed to benzene. The application of personal sensors, new types of exposure models, 
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and omics technology are still in their infancy with respect to the oil and gas industry. Nevertheless, 
applications of these technologies in other occupational sectors showed the potential for application 
in this sector.
Discussion and conclusion: New exposome technologies offer great promise for personal moni-
toring of workers in the oil and gas industry, but more applied research is needed in collaboration 
with the industry. Current challenges hindering a successful application of such technologies include 
(i) the technological readiness of sensors, (ii) the availability of data, (iii) the absence of standardized 
and validated methods, and (iv) the need for new study designs to study the development of disease 
during working life.

Keywords:   biomonitoring and biomarkers; exposome; external exposure modeling; oil and gas industry; omics and bio-
informatics; personalized sensors; physiologically-based kinetic (PBK) modeling; technologies and tools

Introduction

Although there have been many successful efforts world-
wide to seek for new sources of cleaner energy, oil and 
gas still remain among the most important raw ma-
terials, with products based on these materials being 
widely used in modern society (Pickl, 2019). Oil and 
gas workers have been shown to be at increased risk of 
various types of diseases, including several types of can-
cers, asthma, chronic obstructive pulmonary disease, and 
hearing loss (Lim et al., 2012). It is therefore imperative 
that measures continue to be put in place in order to 
minimize the impacts of petrochemical industry related 
exposures. However, there is still limited available know-
ledge on the association between the complex exposures 
in the oil and gas industry and health (Bamber et al., 
2019).

Traditionally, occupational health research is based 
on the single-exposure-to-disease concept. With the 
introduction of the exposome paradigm defined as ‘the 
totality of exposures a person experiences during a life-
time’ (Wild, 2005), and subsequently the occupational 
exposome concept (Faisandier et al., 2011; Pronk et al., 
2020), a more holistic view was introduced and re-
search started to investigate the integrated effect of mul-
tiple exposures in relation to human health across the 
(working) life course. Applying an exposome approach 
in the oil and gas industry will help to better understand 

the associations between complex exposures and effects, 
and subsequently will help to better prevent workers 
from developing diseases. However, it is not straightfor-
ward to translate this concept into practice. Three large 
challenges, which hamper the practical application of 
the exposome approach, are (i) the assessment of most 
external exposures (the external exposome) need to be 
improved, (ii) measuring and relating biological effect 
responses to the external exposome is in its infancy, and 
(iii) dealing with the spatiotemporal nature of the life 
course continuum of the exposome is complex, including 
the unraveling of the contribution of the occupational 
and nonoccupational exposome components (Vrijheid, 
2014).

Exposome studies make use of a combination of tar-
geted and untargeted technologies to overcome these 
aforementioned challenges and to more holistically as-
sess external and internal exposures (Buck Louis et al., 
2017). Current technologies (further explained in the 
method section) often used in exposome studies include: 
(i) personal sensors, (ii) external exposure modeling, (iii) 
physiologically based kinetic (PBK) modeling, (iv) omics 
and bioinformatics, which involves the analysis of thou-
sands of biomolecules (at DNA, mRNA, protein, me-
tabolite level) and computer-assisted interpretation of 
the biological meaning in relation to exposure or health 
effects, and (v) biomonitoring and biomarkers (DeBord 

What’s Important About This Paper?

Oil and gas workers have been shown to be at increased risk of chronic diseases including cancer, asthma, 
chronic obstructive pulmonary disease, and hearing loss, among others. New exposome technologies like 
sensors and omics offer great promise for personal monitoring of workers in the oil and gas industry, and 
subsequently will help to better prevent workers from developing diseases. In this scoping review, we ex-
plore the current application of these technologies in this industry and identify challenges and barriers for 
future application. Results will help in reducing occupational diseases.
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et al., 2016; Haddad et al., 2019). Presently, no review 
is available to verify if well-designed exposome studies, 
involving the (partial or full) integration and application 
of the aforementioned technologies to document the ex-
ternal and internal exposome, have been executed within 
the oil and gas industry. However, we expect that some 
of these more common and established technologies 
may have been applied to assess (oil and gas) industry 
exposures.

In this scoping review, we aimed to address the fol-
lowing two questions: (i) What relevant technologies for 
exposome research have been used in the oil and gas in-
dustry and other relevant industrial settings, to monitor 
and manage external and internal exposures? (ii) What 
are the key challenges for a successful application of 
these technologies for future exposome studies in the oil 
and gas industry?

Methods

Scope
Within this scoping review, we focused on the oil and 
gas industry and the aforementioned five groups of tech-
nologies, these being personal sensors, external exposure 
modeling, PBK modeling, omics and bioinformatics, and 
biomonitoring and biomarkers. However, due to the po-
tential absence of literature describing the application of 
some of these technologies in the oil and gas industry we 
also considered the application of such technologies in 
industries where exposures relevant to the oil and gas in-
dustry were present. The methodology used is described 
in more detail below.

Definitions
The following definitions were used to focus the review:

	•	 Oil and gas industry (or petrochemical industry): is 
concerned with the production and trade of petro-
chemicals and is further divided in (i) the upstream 
sector (production and exploration of crude oil and 
natural gas), (ii) the midstream sector (processing, 
storing, and transport), and (iii) the downstream 
sector (refining, selling, and distribution) (Lu et al., 
2019).

	•	 Technologies considered:

	◦	 Personal sensor: a wearable device, which detects 
or measures a physical property and records, 
indicates, or otherwise responds to it. Such 
sensors can be used more widely over traditional 
methods because of lower costs, to capture ex-
posure variability over longer periods of time, 

e.g. to identify exposure hotspots and activities 
or behavior resulting in high exposures (Goede 
et al., 2020). Personal sensors for this review in-
clude both low-cost sensors (<500 euro) detecting 
exposures and sensors capable of detecting con-
textual information (e.g. location using GPS, ac-
tivities using video) that may be used to predict 
exposures.

	◦	 External exposure modeling: an in silico system 
trying to estimate representative exposure levels 
in a simplified way. External exposure models 
can be e.g. mathematic (using mathematical 
concepts), deterministic (using data for a single 
estimate), or probabilistic (using data to give 
a distribution of possible outcomes) (Goede 
et  al., 2020). Traditional occupational exposure 
models are often calibrated with time-integrated 
measurements and are capable of predicting task-
based or shift-based personal exposure estimates. 
However, these models are by definition a simpli-
fication of a realistic work environment, which is 
characterized by exposure fluctuations in place 
and time (Goede et  al., 2020). For exposome 
studies, more dynamic models, which take into 
account spatial and temporal resolution, may be 
more informative (Vineis et  al., 2020). External 
exposure models included within the scope of 
this review were based on three key modeling 
approaches that were previously identified as 
being essential in the context of new types of 
(sensor) high resolution data. These are (i) enrich-
ment of existing time-integrated exposure models 
with high resolution data, (ii) an extension of ex-
isting models to data-driven (empirical) models 
with a higher temporal resolution (time resolved 
models), and (iii) dispersion models modeling oc-
cupational exposures with more spatial resolu-
tion, similar to the approach for environmental 
exposome modeling (Goede et  al., 2020). More 
conventional exposure assessment models often 
used for regulatory purposes were excluded in 
this review but could be used to underpin newer 
models.

	◦	 PBK modeling: a mathematical modeling tech-
nique for predicting the absorption, distribution, 
metabolism, and excretion (ADME) of synthetic 
or natural chemical substances in humans (and 
other animal species). In the exposome context, 
there is a growing interest in PBK modeling and 
more specific physiologically based toxicokinetic 
(PBTK) and physiologically based toxicodynamics 
(PBTD) modeling for the interpretation of internal 
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exposome data as well as exposure reconstruction 
(Martínez et al., 2018).

	◦	 Biomonitoring and biomarkers: targeted ap-
proach (using modern analytical technology) to 
detect (known) markers of exposure (e.g. chem-
ical residues, metabolites), markers of (early) ef-
fect (e.g. DNA adducts, changes in methylation 
status of selected genes, expression of selected 
mRNAs and proteins) or single markers of sus-
ceptibility (e.g. genetic polymorphism, meta-
bolic phenotype).

	◦	 Omics and bioinformatics: high throughput an-
alytical technologies, emerging from the human 
genome sequencing efforts (Lander et  al., 2001; 
Venter et  al., 2001). Recent developments of 
omics technologies make it possible to more 
broadly study the effect(s) of exposure(s) by 
using an untargeted strategy to look at the bio-
logical system as a whole. For exposome research, 
data driven bioinformatics approaches can be 
used to distinguish exposed from non-exposed 
individuals. In addition, pathway or network 
biology-based bioinformatics approaches can be 
used to infer changes in biological mechanisms. 
These can be reflective of primary exposure (e.g. 
uptake, transport, metabolism), early biological 
(reversible) change and, depending upon the study 
design and time window between initial exposure 
and sampling, also reflect possible persistent bio-
logical changes that occur later in time and un-
derlie development of disease (Vinken, 2013). In 
this review, we focused on omics technologies that 
aim to detect exposure-related changes in genes 
(genomics), mRNA (transcriptomics), proteins 
(proteomics), and metabolites (metabolomics) 
in biological samples. Genomics is further di-
vided into technologies focusing on variability in 
DNA sequences in the genome (genotyping) and 
identifying factors influencing the gene expres-
sion (epigenomics) (Thomas et  al., 2002; Sellers 
and Yates, 2003; Callinan and Feinberg, 2006; 
Claudino et  al., 2007). Importantly, these geno-
mics technologies (and specially genotyping) were 
only included once applied to study in relation to 
the exposome.

Search strategy
For the development of the search strategy, the PRISMA 
guidelines were considered (Liberati et al., 2009; Moher 
et al., 2009). Keywords were defined and a prelim-
inary search was conducted per technology in the oil 

and gas industry, to ensure the identified peer-reviewed 
articles were within the scope of this review and as-
sess the number of articles of interest. When we iden-
tified less than five articles specific for the oil and gas 
industry (for a specific technology), the search was 
broadened to other industries with exposures also rele-
vant for the oil and gas industry. The exposures of most 
relevance included volatile organic compounds (VOCs), 
benzene, toluene, polycyclic aromatic hydrocarbons 
(PAHs), mercury, noise, (respirable crystalline) silica, 
and particulate matter (Witter et al., 2014). Based on 
the preliminary searches, a broader search was needed 
for the final search, for all technologies except for the 
technology category ‘biomonitoring and biomarkers’. 
Structured per technology, the exact search queries and 
the number of articles identified per search are avail-
able in the Supplementary Information SI1 in both 
MEDLINE/PubMed (https://pubmed.ncbi.nlm.nih.gov/) 
and SciVerse Scopus (https://www.scopus.com).

The inclusion criteria for articles identified in the final 
searches were as follows: published in a peer reviewed 
journal, English language, studies describing application 
of a technology in the oil and gas industry or based upon 
broader search terms application in the occupational set-
tings of relevance to oil and gas, research published be-
tween 2005 (which is the start of exposome era) and end 
of December 2019 and research on exposures relevant 
for the oil and gas industry. The enumeration of expos-
ures in the previous paragraph is not an exclusive list, so 
other exposures identified during the searches with rele-
vance for the oil and gas industry were also included in 
this review.

Articles were initially screened in the following se-
quence: (i) combining Medline and Scopus, (ii) removal 
of duplicates, (iii) title screening, (iv) abstract screening. 
This initial screening was undertaken by two asses-
sors independently who had been trained on the search 
strategy and were fully familiar with the scope and in-
clusion/exclusion criteria. The results of the screening 
process were compared and any disagreements dis-
cussed before finalizing the list of articles for which full 
copies were to be obtained. In the event of any uncer-
tainty during the abstract screening process, the full art-
icle was obtained and screened. RefWorks (https://www.
refworks.com/) was used to store the included refer-
ences. Data from the included articles were manually ex-
tracted into a data extraction file, storing among others 
information on the industry, the type of technology, the 
exposure(s) of interest, the number of workers involved. 
Quality of the articles was not individually assessed 
since the scoping review was focused on establishing the 
breadth of the application of exposome technologies in 
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(the oil and gas) industry, rather than any formal review 
off the study quality or possible bias. For each article, 
the data extraction was completed independently by 
two separate assessors. The results were compared and 
any major discrepancies were discussed and a consensus 
agreement was made.

Results

A total of 178 peer-reviewed articles were identified as 
potentially relevant. From these, only 72 (40%) articles 
were included in this review after application of the in-
clusion criteria (Fig. 1). Most articles were included on 
omics and bioinformatics (N = 22) and biomonitoring 
and biomarkers (N = 20), followed by external exposure 
modeling (N = 11), PBK modeling (N = 10), and per-
sonal sensors (N = 9). Only for biomonitoring and bio-
markers was the initial search focused exclusively on 
the oil and gas industry. For the other four technologies 
broader searches were conducted to also include occu-
pational settings and exposures of possible relevance to 
the oil and gas industry, since only a limited number of 
studies were identified with application in the oil and gas 
industry. The applied technologies at the workplace in 
the oil and gas industry and other sectors are summar-
ized in more detail in the following sections.

Personal sensors
In total, nine peer reviewed articles on personal sensors 
were included in this scoping review (Edwards et al., 
2005; Huang et al., 2010; Negi et al., 2011; Pancardo 
et al., 2015; Brown et al., 2016; Fathallah et al., 2016; 
Uejio et al., 2018; Zuidema et al., 2019b). None of the 

selected articles described an application of personal 
sensors in the oil and gas industry. Measured chemical 
exposures with sensors were diverse, including particu-
late matter (PM), carbon monoxide (CO), hydrocarbons 
and acids, formaldehyde, VOCs, nitrogen oxides (NOx), 
and ozone (O3) (Edwards et al., 2005; Negi et al., 2011; 
Fathallah et al., 2016; Zuidema et al., 2019b) (Table 1). 
In general, the number of workers involved was rela-
tively low [1–5 worker(s)], as these studies focused on 
either demonstrating or testing the feasibility of using 
low-cost sensors to collect personal exposure data.

In addition to the studies that focused on chem-
ical exposure, two studies applied the Thermochron 
iButton sensor to measure occupational heat exposure 
among municipal workers (Sugg et al., 2018; Uejio 
et al., 2018). The number of workers included in these 
two studies were relatively high (50 and 66), with the 
results showing the promise of applying a relatively large 
number of personal low-cost sensors, by developing 
local temperature maps for the study area. In addition, 
several low cost sensors, including an accelerometer and 
a heart rate monitor, were used to estimate occupational 
heat stress for outdoor workers (Pancardo et al., 2015).

Lastly, a feasibility study was conducted on the use of 
active radio frequency identification (RFID) technology 
for collecting time location data of indoor workers 
which can be used when linked with exposure data 
for identification of presence in e.g. exposure hotspots 
(Huang et al., 2010). These techniques were further 
developed in recent years (but not yet applied and de-
scribed in literature) and are promising to replace more 
time consuming methods in exposure assessment (e.g. 
observations, time/activity diaries) to collect time loca-
tion data (Mendoza-Silva et al., 2019).

Figure 1.  Overview results scoping review per technology. Note: one included article falls within two technology groups and was 
registered in both groups.
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External exposure modeling
In total, 11 peer-reviewed articles on external occupa-
tional exposure modeling incorporating high resolution 
data were included in this scoping review (Table 2) 
(Davies et al., 2008; Davis et al., 2009; Sarigiannis et al., 
2009; Flynn and Susi, 2010; Davis, 2012; Schaffernicht 
et al., 2017; Berman et al., 2018; Kuo et al., 2018; 
LeBlanc et al., 2018; Thomas et al., 2018). Only one 
of the selected articles described an application of ex-
ternal exposure modeling for the downstream oil and 
gas industry. For the first key modeling approach (en-
richment of current models), one application was iden-
tified (LeBlanc et al., 2018). In this study, the outcomes 
of two conventional exposure assessment models [Near 
Field/Far Field (NF/FF) exposure model (Nicas, 1996) 
and the Advanced Reach Tool V1.5 (ART) (Fransman 
et al., 2011)] were compared to the ART model with 
Bayesian adjustment (which is considered as an example 
of a relatively new approach). Models were tested for 
exposures to vapors emitted from low concentrations 
of a contaminant in a common solvent, e.g. benzene in 

mineral spirits, and revealed better performance after 
Bayesian adjustment with high resolution exposure 
measurements.

More applications described in literature were found 
for the second key modeling approach as described by 
Goede et al. (2020), which includes data-driven models 
at higher temporal resolution than traditional models 
predicting time-weighted average (TWA) exposures 
(Davies et al., 2008; Davis et al., 2009; Sarigiannis et al., 
2009; Flynn and Susi, 2010; Davis, 2012; Kuo et al., 
2018). Exposures of interest included respirable PM, 
elemental carbon (EC), (respirable crystalline) silica, 
welding fumes, noise and benzene, with models devel-
oped for a variety of workplaces including milling in-
dustry, trucking terminals, construction industry, oil and 
gas filling stations, and foundries (Table 2). Model de-
velopment was often based on a relatively large number 
of personal high-resolution measurements (15–547 
workers). The modeling technologies used were mainly 
regression models, but other techniques such as artifi-
cial neural networks and structural equation modeling 

Table 1.  Overview of applied personal sensor technologies.

Exposure, contextual info 
or health outcome

Industry/population Technology (only real time 
readings)

References

Exposure

  CO Firefighters (N = 4) Draeger Pac III CO monitors Edwards et al., 2005

Indoor/office workers (N = 5) CO-B4, Alphasense Zuidema et al., 2019b

  CO2 Copy room worker (N = 1) Multi-pollutant sensor node 

(not specified)

Fathallah et al., 2016

  Formaldehyde Copy room worker (N = 1) Multi-pollutant sensor node 

(not specified)

Fathallah et al., 2016

  Hydrocarbons and acids Cleaning workers, firefighters, and 

waste management workers (N = 4)

Sensor cartridge (not 

specified)

Negi et al., 2011

  NOx Indoor/office workers (N = 5) OX-B431, Alphasense Zuidema et al., 2019b

  O3 Indoor/office workers (N = 5) OX-B431, Alphasense Zuidema et al., 2019b

  PM2.5 Firefighters (N = 4) UCB particle monitor Edwards et al., 2005

Indoor/office workers (N = 5) GP2Y1010AU0F, Sharp 

Electronics

Zuidema et al., 2019b

  Temperature Outdoor cleaning workers (N = 20) Sensirion SHTC1 Pancardo et al., 2015

Outdoor municipal workers (N = 50) Thermochron iButton Uejio et al., 2018 

Outdoor municipal workers (N = 66) Thermochron iButton Sugg et al., 2018

Indoor/office workers (N = 5) AM2302, Adafruit Zuidema et al., 2019b

  VOCs Lab workers (N = 4) PID sensor Brown et al., 2016

Contextual information

  Location Steel industry (N = 5) Radio-frequency identifica-

tion (RFID) technology

Huang et al., 2010

Copy room worker (N = 1) Wifi tags Fathallah et al., 2016

Lab workers (N = 4) Ubisense UWB Brown et al., 2016

  Movement Outdoor cleaning workers (N = 20) Gene Activ accelerometer 

wristband

Pancardo et al., 2015
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were also used to predict personal exposure. Most of 
these studies describe the development of a model and 
subsequently explore the goodness-of-fit (accuracy) 
with other (independent) high resolution or TWA data. 
In general, the accuracy of the developed models was 
considered adequate for estimating personal exposure, 
but the application of the model was only recom-
mended by the authors for the scenarios captured in the 
training data.

Four peer-reviewed articles described dispersion models 
in an occupational setting with more spatial resolution 
(Schaffernicht et al., 2017; Berman et al., 2018; Thomas 
et al., 2018; Zuidema et al., 2019a), the third modeling ap-
proach which was considered in this review. Three of these 
publications were part of a larger research project in a 
heavy-vehicle manufacturing facility, implementing a (cali-
brated) sensor network and using the data for developing 
and optimizing kriging-based hazard mapping for several 

pollutants including PM and CO (Berman et al., 2018; 
Thomas et al., 2018; Zuidema et al., 2019a). The kriging 
method was used to interpolate data from measurement 
locations of the sensor network to unsampled locations, 
to be able to estimate personal exposures during e.g. a 
workday. Median biases ranged from 1% for noise ex-
posure up to 41% for PM exposure, largely explained by 
sensor stability over time (Zuidema et al., 2019a). In add-
ition, a combination of a continuously moving robot with 
sensors and stationary sensors in a foundry was used to 
apply the echo state map approach (a tool for time series 
analyses) (Schaffernicht et al., 2017). Spatial interpol-
ation was used by applying the Gaussian method, which 
is comparable to the methodology used by the aforemen-
tioned articles, to develop dynamic exposure maps. In this 
explorative study, the model showed good results for low 
dust concentrations but the sensor-based interpolation was 
more difficult during peaks in dust concentrations.

Table 2.  Overview of applied external exposure modeling technologies.

Exposure Industry/population Technology References

Enrichment of existing time-integrated exposure model

  Benzene Washing fluid (N = 2) Advanced REACH tool and 

Bayesian adjustment

LeBlanc et al., 2018

Data-driven (empirical) model with a higher temporal resolution

  Benzene Filling station employees (N = 15) Bayesian algorithm, artificial 

neural networks

Sarigiannis et al., 2009

  Elemental carbon Trucking terminals (N = 114) Structural equation model 

(SEM)

Davis et al., 2009

Trucking terminals (N = 547) Structural equation model 

(SEM)

Davis et al., 2012

  Noise Mill workers (N = 286) Regression model Davies et al., 2008

   (Respirable) PM Foundry (N = 236) Predictive models, multiple 

linear regression

Kuo et al., 2018

   (Respirable) Silica Foundry (N = 236) Predictive models, multiple 

linear regression

Kuo et al., 2018

  Welding fumes Construction (N = 58) Johnson system of multivariate 

probability distributions

Flynn et al., 2010

Occupational dispersion model with more spatial resolution

  CO, NOx, O3 Heavy vehicle manufacturing facility 

(N = 30)

Kriging-based hazard mapping Thomas et al., 2018 

Heavy vehicle manufacturing facility 

(N = 40)

Kriging-based hazard mapping Zuidema et al., 2019a

  (Respirable) PM Foundry (N = 1) Echo state maps and Gaussian 

Processes

Schaffernicht et al., 

2017

Heavy vehicle manufacturing facility 

(N = 82)

Kriging-based hazard mapping Berman et al., 2018 

Heavy vehicle manufacturing facility 

(N = 30)

Kriging-based hazard mapping Thomas et al., 2018

Heavy vehicle manufacturing facility 

(N = 40)

Kriging-based hazard mapping Zuidema et al., 2019a
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PBK modeling
In total, 10 peer-reviewed articles on PBK modeling were 
included in this scoping review with some manuscripts 
specific for the oil and gas industry (Table 3) (Dennison 
et al., 2005; Sarigiannis et al., 2009; Wang et al., 2009; 
Hays et al., 2012; Jongeneelen and Ten Berge, 2012; 
Heredia Ortiz et al., 2014; Mork et al., 2014; Marchand 
et al., 2015; Majumdar et al., 2016; Marchand et al., 
2016). Most of these studies focused on exposure to 
benzene (Sarigiannis et al., 2009; Wang et al., 2009; 
Hays et al., 2012; Majumdar et al., 2016) or on mixed 
exposure to toluene, ethylbenzene, and xylene (Dennison 
et al., 2005; Mork et al., 2014; Marchand et al., 2015, 
2016), followed by exposure to PAHs (Jongeneelen and 
Ten Berge, 2012; Heredia Ortiz et al., 2014) and chloro-
form as a VOC (Marchand et al., 2016). Dennison 
et al. (2005), Marchand et al. (2015) and (2016) used 
(partly) a PBK model previously published by (Tardif 
et al., 1997). Dennison et al. (2005) used this model to 
evaluate the potential toxicity from mixtures taking into 
account kinetic interactions of specific chemicals in these 
mixtures. The same model was further developed for 
predictions of urinary biomarkers and evaluated based 

on experiments with volunteers (Marchand et al., 2015, 
2016).

Two of the studies on exposure to benzene used data 
from subjects (N = 15 and 35) working in the down-
stream oil and gas industry at petrol filling stations 
(Sarigiannis et al., 2009; Majumdar et al., 2016). Most 
models available for benzene were six-compartment 
models including the liver, adipose tissue, richly perfused 
tissues, poorly perfused tissues, bone marrow (the main 
target organ for benzene toxicity), and the kidney. In one 
of the studies, a method was developed to calculate real 
time personal exposure to benzene using sensor data in 
artificial neural networks. This study assessed the asso-
ciation between exposure to benzene and cancer risks 
by using a benzene specific PBK model for employees at 
rural and urban filling stations (Sarigiannis et al., 2009). 
For a different working population (numbers not speci-
fied) exposed to benzene, a PBK model was used to con-
vert external exposure threshold limit values (TLVs) for 
benzene into biomonitoring equivalents (BE) for risk as-
sessment purposes (Hays et al., 2012). Lastly, to estimate 
cancer risks for workers in a foam production company 
exposed to benzene, a traditional PBK model was used 

Table 3.  Overview of applied PBK modeling technologies.

Exposure Industry/population Model description References

Benzene Filling station employees 

(N = 15)

Six compartment PBK model based on 

Medinsky et al. (1996); Yokley et al. 

(2006)

Sarigiannis et al., 2009

Foam production company 

(N = 20)

Six compartment PBK model evolved 

from Bois et al. (1996)

Wang et al., 2009

Workers (not specified) PBK model from Brown et al. (1998) Hays et al., 2012

Petrol pump workers and 

car drivers (N = 35)

Four compartment PBK model from 

Bernillon and Bois (2000)

Majumdar et al., 2016

Chloroform Volunteers with exposure 

relevant for workers 

(N = 14)

Four compartment PBK model partly 

based on Tardif et al. (1997)

Marchand et al., 2016

PAHs Workers (data from 

literature)

Generic, cross-chemical predictive 

toxicokinetic model from Jongeneelen 

and Berge (2011)

Jongeneelen et al., 2012 

Workers (N = 14) Four compartment PBK model con-

structed by the authors

Heredia Ortiz et al., 2014

Toluene, ethylbenzene, 

and xylene (mixtures)

Simulations with worker 

relevant exposures (N = 6)

Four compartment PBK model from 

Tardif et al. (1997)

Dennison et al., 2005

Volunteers with exposure 

relevant for workers (N = 5)

Four compartment PBK model partly 

based on Tardif et al. (1997)

Marchand et al., 2015

Volunteers with exposure 

relevant for workers 

(N = 14)

Four compartment PBK model partly 

based on Tardif et al. (1997)

Marchand et al., 2016

Toluene, styrene, and 

methyl chloride

Workers (not specified) Population-based PBK models from 

Jonsson and Johanson (2001)

Mork et al., 2014
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(Wang et al., 2009) with the model based on previous 
work (Bois et al., 1996).

The studies on exposure to PAHs focused on dif-
ferent metabolites (Jongeneelen and Ten Berge, 
2012; Heredia Ortiz et al., 2014). Jongeneelen and 
Ten Berge (2012) studied the urinary excretion of 
1-hydroxypyrene using a generic, cross-chemical PBTK 
model (IndusChemFate), while Ortiz et al. simulated the 
profiles of 3-hydroxybenzo(a)pyrene using a PBK model 
based on an animal study for benzo(a)pyrene.

Biomonitoring and biomarkers
In contrast to the other technologies reviewed, 
biomonitoring and biomarkers have been largely studied 
in the oil and gas industry, and no additional search terms 
spanning non-oil and gas industry settings were included. 
In total, 20 peer-reviewed articles on biomonitoring and 
biomarkers were included in this scoping review with 
application in the oil and gas industry (Table 4) (Farmer 
et al., 2005; Garte et al., 2005; Navasumrit et al., 2005; 
Roma-Torres et al., 2006; Hoet et al., 2009; Martins 
et al., 2009; Pesatori et al., 2009; Wickliffe et al., 2009; 
Carrieri et al., 2010, 2012; Basso et al., 2011; Fustinoni 
et al., 2012; Seow et al., 2012; Gonçalves et al., 2016; 
Kamal et al., 2016; Hajizadeh et al., 2018; Liang et al., 
2018; Ayas et al., 2019; Federico et al., 2019; Kirkhus 
et al., 2019). Predominantly, these studies focused on 
workers in the midstream or downstream sectors, ex-
posed to benzene. Only six articles described research on 
different exposures, which were petroleum derivatives, 
1,3 butadiene, PAHs, VOCs and drilling fluids, xylene, 
respectively (Martins et al., 2009; Wickliffe et al., 2009; 
Kamal et al., 2016; Hajizadeh et al., 2018; Ayas et al., 
2019; Kirkhus et al., 2019). The early relatively large 
studies on benzene (Number of workers: 110–623) used 
the urinary biomarkers of exposure S-phenylmercapturic 
acid (S-PMA), and trans,trans-muconic acid (t,t-MA), 
which are still commonly used for regulatory purposes 
via comparison with existing biological limit values 
(BLVs) (Farmer et al., 2005; Garte et al., 2005; Hoet 
et al., 2009; Carrieri et al., 2010). In addition, using 
markers of exposure but not for benzene, associations 
between exposure to VOCs and urinary metabolites 
were studied which included mandelic acid, phenol, and 
phenylglyoxylic acid (Hajizadeh et al., 2018).

Most of the peer-reviewed articles identified, used 
a combination of markers of exposure and markers 
of effect (Navasumrit et al., 2005; Roma-Torres et al., 
2006; Martins et al., 2009; Wickliffe et al., 2009; Basso 
et al., 2011; Fustinoni et al., 2012; Seow et al., 2012; 
Gonçalves et al., 2016; Kamal et al., 2016; Liang et al., 

2018; Ayas et al., 2019; Federico et al., 2019; Kirkhus 
et al., 2019). Three of these studies evaluated the effect 
of exposure and found exposure-induced effects on 
DNA strand breaks, cellular death, and repair capacity 
(Navasumrit et al., 2005; Roma-Torres et al., 2006; 
Martins et al., 2009). Three other studies reported 
the detrimental effect of exposure on functioning of 
lymphocytes (Wickliffe et al., 2009; Basso et al., 2011; 
Gonçalves et al., 2016). Additionally, serum proteins 
(plasminogen, platelet basic protein, and apolipoprotein 
B100) were identified as potential biomarkers of effects, 
associated with relatively low exposures of benzene 
(Liang et al., 2018), while three other pneumoproteins 
related to systemic inflammation (club cell protein 16, 
surfactant protein D, and C-reactive protein) were found 
to be significantly different in a population exposed to 
drilling fluids (Kirkhus et al., 2019). Furthermore, blood 
parameters were studied in petrochemical workers ex-
posed to PAHs and benzene, respectively (Kamal et al., 
2016; Federico et al., 2019). Also, (targeted) DNA 
methylation and the effect of benzene exposure was 
evaluated (Seow et al., 2012). In addition, the uptake 
of benzene and the effect of environmental and lifestyle 
factors on this uptake were evaluated (Fustinoni et al., 
2012).

Finally on the intensity of the effect, the influence of 
(glutathione S-transferase) polymorphisms on biological 
effect monitoring for workers exposed to benzene was 
studied (Pesatori et al., 2009; Carrieri et al., 2012). 
Results showed that S-PMA, but not t,t-MA can be used 
to monitor exposure, with GSTT1 null genotype having 
a low but significant influence on the aforementioned 
metabolite excretion markers (Carrieri et al., 2012). In 
addition, no effect on benzene hematotoxicity was de-
tected for CYP2E1 and NQO1 polymorphisms (Pesatori 
et al., 2009).

Omics and bioinformatics
In total, 22 peer-reviewed articles on omics and 
bioinformatics were included in this scoping review 
(Table 5) (Vermeulen et al., 2005; Lan et al., 2009; 
McHale et al., 2009, 2011; Broberg et al., 2010; Rihs 
et al., 2011; Alegría-Torres et al., 2013; Li et al., 2013; 
Pacheco et al., 2013; Thomas et al., 2013, 2014; Wei 
et al., 2013; Motts et al., 2014; Shen et al., 2014, 2016; 
Chuang et al., 2015; Walker et al., 2016; Zheng et al., 
2017; Sun et al., 2018; Zhang et al., 2018; Alhamdow 
et al., 2019; Li et al., 2019).

Six of these studies addressed the influence of 
(a) single nucleotide polymorphism(s) (SNP), as de-
tected by genotyping technologies, onto metabolism of 
chemicals or disease outcome, in relation to external 
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exposures (Lan et al., 2009; Broberg et al., 2010; Rihs 
et al., 2011; Li et al., 2013; Shen et al., 2014, 2016). 
Three of these studies were on workers (N = 340, 612, 
613, respectively) exposed to noise and noise-induced 

hearing loss (NIHL) (Li et al., 2013; Shen et al., 2014, 
2016). In these case–control cohorts, the associations 
between genetic variation (in GRHL2, Ser326Cys, and 
APE1) and NIHL were studied. From the genotyping 

Table 4.  Overview of applied biomonitoring technologies.

Exposure Industry/population Technology References

1,3 Butadiene Petrochemical workers (N = 30) HPRT gene mutant 

lymphocytes

Wickliffe et al., 2009

Benzene Gasoline filling station attendants 

(N = 623)

S-PMA Farmer et al., 2005

Petrochemical workers (N = 158) S-PMA, t,t-MA, DNA-SSB Garte et al., 2005

Occupational gasoline and factory 

workers (N = 125)

Blood benzene t,t-MA, 

DNA-SSB, repair capacity

Navasumrit et al., 2005

Petrochemical workers (N = 110) t,t-MA, S-PMA en urinary 

benzene

Hoet et al., 2009

Petrochemical workers (N = 203) Hematological out-

comes, t,t-MA, genetic 

polymorphisms

Pesatori et al., 2009

Petrochemical workers (N = 145) t,t-MA, S-PMA Carrieri et al., 2010

Petroleum refinery workers (N = 129) Cytokinesis block 

micronucleus, PBL

Basso et al., 2011

Petrochemical workers (N = 28) t,t-MA, S-PMA, GST 

genotypes

Carrieri et al., 2012

Petrochemical workers (N = 33) Urinary benzene, cotinine, 

creatinine

Fustinoni et al., 2012

Petrochemical workers (N = 208) Urinary benzene, S-PMA, 

t,t-MA, DNA methylation 

(LINE-1, MAGE, p15)

Seow et al., 2012

Petrochemical workers (N = 36) Genotoxicity in lymphocytes 

(chromosomal gaps, breaks, 

and aneuploid)

Gonçalves et al., 2016

Petrochemical workers (N = 532) PLG, PBP, ApoB100 and 

blood cell counts

Liang et al., 2018

Benzene, toluene, and 

xylene (BTX)

Petroleum refinery workers (N = 78) CA, MN, DNA damage, 

t,t-MA, HA, MHA

Roma-Torres et al., 2006

Drilling fluids, oil mist, 

oil vapor

Offshore drill floor workers (N = 65) CC-16, SP-D, CRP Kirkhus et al., 2019

PAHs Petrochemical workers (N = 55) 1-OHP yr, α- and 

β-naphthols, blood 

parameters

Kamal et al., 2016

Petroleum derivatives Petrol station attendants (N = 46) DNA damage and cellular 

death

Martins et al., 2009

Petroleum refinery workers (N = 50) MN and ONA Federico et al., 2019

VOCs (benzene, 

styrene, ethylbenzene, 

and phenol)

Petrochemical workers (N = 84) Urinary metabolite (phenol, 

MA, and PGA)

Hajizadeh et al., 2018

Xylene Petrochemical workers (N = 30) MN, MHA Ayas et al., 2019

1-OHPyr, 1-pyrenol; ApoB100, apolipoprotein B100; CA, chromosome aberrations; CC-16, club cell protein 16; CRP, C-reactive protein; DNA-SSB, DNA single 

strand breaks; GST, glutathione S-transferases; HA, hippuric acid; MA, mandelic acid; MHA, methylhippuric acid; MN, micronuclei; ONA, other nuclear anom-

alies; PBL, peripheral blood lymphocytes; PBP, platelet basic protein; PGA, phenylglyoxylic acid; PLG, plasminogen; S-PMA, S-phenylmercapturic acid; SP-D, surfac-

tant protein D; t,t-MA, urinary t,t-muconic acid.
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Table 5.  Overview per type of omics technology and per exposure on applied technologies.

Exposure per type  
of omics technology

Industry/population Technology References

Epigenomics

  Benzene Benzene-exposed workers (N = 76) Methylation analysis focused on 

specific CpG sites of ERCC3

Zheng et al., 2017

  PAHs Brickmakers (N = 39) Methylation analysis using 

pyrosequencing

Alegría-Torres  

et al., 2013

Genotyping, to address susceptibility toward external exposure

  Benzene Workers in shoe factories (N = 250) Analysis of 1536 SNPs in 411 genes Lan et al., 2009

  Bitumen Workers exposed to bitumen 

(N = 218)

Analysis of 18 SNPs in genes 

involved in PAHs and amine 

metabolism

Rihs et al., 2011

  Noise Workers with NIHL (N = 340) Analysis of polymorphisms in 

GRHL2 genes

Li et al., 2013 

Workers with NIHL (N = 612) Analysis of polymorphisms in 

hOGG1 Ser326Cys

Shen et al., 2014

Workers with NIHL (N = 613) Analysis of polymorphisms in APE1 Shen et al., 2016

  TDI Workers involved in production 

of polyurethane foams and paints 

(N = 70)

Analysis of polymorphisms in sev-

eral genes

Broberg et al., 2010

Metabolomics

  Benzene Painting workers and workers in 

shoe factories (N = 30)

Global metabolite profiles using 

MS, pathway analyses

Sun et al., 2018

  Metal fumes Welders (N = 11) Global metabolite profiles using 

MS, pathway analyses

Wei et al., 2013

  TCE TCE-exposed workers (N = 80) Analysis using metabolome-wide 

association study framework

Walker et al., 2016

Proteomics

  Benzene Workers in a shoe factory (N = 40) Protein-expression pattern analysis 

using SELDI-TOF

Vermeulen et al., 2005

Benzene-exposed workers 

(N = 165)

2D-DIGE and MALDI-TOF-MS Zhang et al., 2018

Benzene-exposed workers 

(N = 351)

2D-DIGE and MALDI-TOF-MS Li et al., 2019

  Mercury Miners (N = 371) ProtoArray analysis Motts et al., 2014

  Metal fumes Welders (N = 66) LC-MS/MS Chuang et al., 2015

  PAHs Secondhand smoke (SHS) exposed 

workers in restaurants (N = 96)

2D-DIGE MS Pacheco et al., 2013

Chimney sweeps (N = 118) Monoydroxylated metabolites of 

pyrene, phenanthrene, benzo[a] 

pyrene and benzo[a]anthracene, 

proximity extension assay

Alhamdow et al., 2019

Transcriptomics

  Benzene Workers in shoe factories highly 

exposed (N = 8)

Affymetrix and illumine microarray 

analysis

McHale et al., 2009

Workers in shoe factories (N = 125) Illumine microarray analysis McHale et al., 2011

Workers in shoe factories (N = 83) Illumine microarray analysis Thomas et al., 2013

Workers in shoe factories (N = 83) Illumine microarray analysis Thomas et al., 2014

2D-DIGE, two-dimensional difference gel electrophoresis; APE1, apurinic/apyrimidinic endonuclease 1; LC-MS/MS, liquid chromatography–tandem mass spectrom-

etry; MALDI-TOF-MS, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; MS, mass spectrometry; NIHL, noise-induced hearing loss; 

SELDI-TOF, surface-enhanced laser desorption ionization; SNPs, single nucleotide polymorphisms; TCE, trichloroethylene; TDI, toluene di-isocyanate.
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studies, only one focused on the (downstream) oil and 
gas industry with a study on asphalt workers exposed 
to bitumen (Rihs et al., 2011). In this research, the in-
fluence of polymorphisms in genes coding on urinary 
markers was evaluated, showing no significant effects on 
1-hydroxpyrene for the studied SNP.

Epigenomics technologies were used to study brick 
makers exposed to PAHs (N = 39) and benzene-exposed 
workers engaged in printing, shoe making, or painting 
(N = 76) (Alegría-Torres et al., 2013; Zheng et al., 
2017). With a cross-sectional study design, a pilot study 
in brick makers was conducted using DNA methyla-
tion analysis and identified epigenetic markers of PAHs 
exposure (IL-12 and P53 DNA methylation) (Alegría-
Torres et al., 2013). For the other population indications 
for CpG-related DNA methylation (ERCC3 promoter 
region) involved in epigenetic modifications were ob-
served, induced by benzene exposure and related to 
hematotoxicity (Zheng et al., 2017).

Four studies used transcriptomics technology and 
were part of a larger study (Vermeulen et al., 2005; Lan 
et al., 2009) which focused on workers in shoe factories 
exposed to benzene (McHale et al., 2009, 2011; Thomas 
et al., 2013, 2014). A method was developed and tested 
for this population, using two microarray platforms 
which makes it possible to identify more robust bio-
markers than by using a single-platform array (McHale 
et al., 2009). Furthermore, a different method on RNA-
sequencing technology was tested and used in a pilot 
study (Thomas et al., 2013). Subsequently, both methods 
were applied in a larger study (N = 125 and 83, respect-
ively) and focused on relatively low levels of benzene ex-
posure (McHale et al., 2011; Thomas et al., 2014).

The studies using proteomics technologies focused 
on workers exposed to benzene (Vermeulen et al., 2005; 
Zhang et al., 2018; Li et al., 2019), PAHs (Pacheco et al., 
2013; Alhamdow et al., 2019), mercury (Motts et al., 
2014), and metal fumes/PM2.5 (Chuang et al., 2015). 
Using agnostic approaches by screening broad protein 
expression, two potential biomarkers of early effects 
(expression of PF4 and CTAP-III proteins) were identi-
fied using surface-enhanced laser desorption ionization 
(SELDI)-TOF MS (Vermeulen et al., 2005), while two 
other studies identified in total ten proteins in a popu-
lation with chronic benzene poisoning, using 2D-DIGE 
and MALDI-TOF-MS (Zhang et al., 2018; Li et al., 
2019). The other four studies on proteomics used mass 
spectrometry for a similar purpose (identifying new 
biomarkers of exposure and/or early effect and under-
standing pathways of disease).

Three studies used metabolomics technologies for 
workers exposed to metal fumes, trichloroethylene (TCE) 

and benzene, respectively (Wei et al., 2013; Walker et al., 
2016; Sun et al., 2018). The study on metal fumes identi-
fied a dose-depending decreased amount of unsaturated 
fatty acids in a welder’s population, which can be used 
as a potential biomarker (Wei et al., 2013). For Chinese 
workers exposed to benzene with a low number of white 
blood cells, it was found that the fatty acid oxidation 
was involved in hematotoxicity (Sun et al., 2018). Lastly, 
a systemic metabolic response was observed associated 
with exposure to TCE (Walker et al., 2016).

Discussion

In summary, 72 articles were included in this scoping 
review on technologies relevant for exposome research. 
Some of these focused primarily on the oil and gas in-
dustry, but the majority were focused on other industrial 
sectors because of the lack of sufficient papers in the oil 
and gas industry. Exposures are not ignored in the oil 
and gas sector but more traditional methods are used 
driven by regulatory requirements. Since these methods 
are single chemical focused and data is often time in-
tegrated, results are of limited value for exposome re-
search. Interestingly, the oil and gas industry is used to 
applying the more invasive approaches (e.g. biomarkers 
for known carcinogens both for regulatory monitoring 
and for research) while it is theoretically easier to en-
courage the use of other noninvasive techniques. With 
new technologies evolving, it is expected that in the 
(near) future more relevant data for exposome research 
will be collected using a combination of both targeted 
and untargeted technologies to study more agnostically 
the external and internal exposome. Below we discuss 
per technology the identified key challenges and next 
steps (using additional literature beyond what was in-
cluded in the scoping review) for a successful applica-
tion in the oil and gas industry.

Personal sensors
From the peer-reviewed literature identified in this 
scoping review, we identified no reported applica-
tions of personal sensors in the oil and gas industry. 
We did identify papers on the use of personal sensors 
in pilot studies for other workers exposed to chem-
icals like PM, VOCs, formaldehyde, hydrocarbons and 
acids, and non-chemical stressors like heat and noise. 
In addition, the use of technologies for capturing real-
time location of workers in several industries have 
been described. The benefits of personal sensors over 
more traditional methods are clear as they could pro-
vide more high resolution data, potentially in (near) 
real-time at often lower costs and are often easy of use 
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(Goede et al., 2020). However, the main challenges for 
a successful large-scale application in the oil and gas 
industry are related to the robustness of the sensors, 
the measurement repeatability and the sensitivity and 
specificity of the sensor at low concentrations for regu-
latory purposes (Duarte et al., 2014; Castell et al., 
2017). In addition, ATEX certification (intended for 
use in potentially explosive environments) is a key 
requirement in the oil and gas industry, and it is es-
sential that this is taken into account prior to appli-
cation. Together with the aforementioned limitations 
of current sensors, technologies capable of measuring 
multiple (chemical) exposures (possibly in combin-
ation with nonchemical stressors), more in line with 
the exposome concept, are still limited and need pri-
ority from sensor developers, preferably integrating 
solutions in work clothes and helmets (Jovanov et al., 
2011; Pronk et al., 2020).

External exposure modeling
Similarly for the personal sensors, the use of new types 
of external exposure models based on high resolution 
data is limited with only one application identified in the 
oil and gas industry (Sarigiannis et al., 2009). Currently, 
only more traditional exposure models like ECETOC 
TRA and ART are largely used in the oil and gas in-
dustry for regulatory (REACH) purposes (Hesse et al., 
2018). Several peer-reviewed articles in other occupa-
tional sectors have described data-driven models capable 
of including both temporal and spatial resolution for 
PM, noise, and benzene. More data are needed, prefer-
ably in real-time to fully benefit from the potential of 
these new models for exposome research in the often 
highly dynamic environments characteristic of the oil 
and gas industry. As technology continues to evolve the 
application of sensors in workplace is likely to rise and 
data from these sensors can provide new possibilities for 
(new types of) exposure modeling like personal sensor 
networks (over currently used static networks) for de-
tection and early warning systems. For exposures asso-
ciated with more acute health effects and with personal 
sensors not available, other mathematic techniques like 
computational fluid dynamic (CFD) models could be 
applied to predict personal exposures starting to model 
at the source (e.g. leakage of a chemical) (Dong et al., 
2017).

PBK modeling
PBK models, being the crucial link between external 
and internal exposure assessment, are applied in the 
regulatory context in the oil and gas industry from a 

single chemical perspective (often benzene), mainly for 
extrapolation of kinetics between species, exposure 
routes and exposure scenarios (U.S. EPA., 2006). In this 
scoping review, we identified several peer-reviewed art-
icles describing applications in, or applicable to oil and 
gas industry workers, using often more complex PBK 
models for additional purposes including to conduct 
aggregated exposure assessment (for multiple routes 
of exposure) and the characterization of physiological 
and pharmacokinetic variability and uncertainty in e.g. 
predicting internal BLVs (Tan et al., 2018). In the near 
future, PBK models are expected to be used more regu-
larly in combination with biomonitoring data in the 
‘exposure reconstruction’ concept to estimate histor-
ical external personal exposures (Brown et al., 2015), 
which is currently ongoing in e.g. the European Human 
Biomonitoring Initiative (HBM4EU project). In general, 
the most important challenge for PBK technology is to 
develop reliable models for chemicals which are classi-
fied as data-poor with no or limited data on chemical 
specific tissue/plasma concentrations.

Biomonitoring and biomarkers
Biomonitoring is regularly applied in the oil and gas in-
dustry (even before 2005), with research mainly focusing 
on exposure to benzene and other VOCs with markers 
of exposure, effect and susceptibility to verify compli-
ance with a BLV. However, to study working-lifelong 
effects of exposures, longitudinal studies are needed in 
the oil and gas industry to study trends over time. With 
omics technologies identifying more new biomarkers in 
the (near) future, the storage of biological material in 
biobanks is recommended for petrochemical workers to 
be able to conduct future retrospective analyses (Bocato 
et al., 2019). In addition, with more markers of early 
disease development coming from omics research, more 
effective prevention will become possible by applying 
these biomarkers.

Omics and bioinformatics
Omics technologies have been applied in workers ex-
posed in particular in relation to benzene exposure in 
several industries including the oil and gas industry, 
with most of the identified studies on genotyping and 
proteomics, followed by changes in transcriptomics, 
epigenomics, and metabolomics. In addition, from other 
non-petrochemical studies, the successful application of 
omics to understand biological responses and suscepti-
bilities to noise and other chemical such as PAHs and 
metal fumes became evident. Despite the use of omics 
technologies in research, standardized and validated 
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omics technologies are largely missing (Sauer et al., 
2017), which is important in relation to ultimate regu-
latory application (e.g. compliance with an OEL). 
Furthermore, for the ultimate meaningful application 
of omics into the occupational setting, novel bioinfor-
matics and chemical analytical approaches are needed to 
(i) help identify differentially expressed biomolecules in 
a consistent manner, and (ii) aid in the further identifica-
tion of these using reference protein/chemical databases 
or advanced analytical chemistry. Last, by studying mul-
tiple endpoints and using a hypothesis-free (agnostic) 
study design, the interpretation of the study results re-
quires new statistical approaches for the interpretation 
of the high-dimensional data from high-throughput 
omics techniques, as false-positive results are more likely 
to occur (Vlaanderen et al., 2010).

Conclusions

The occupational exposome concept offers some great 
promise for the oil and gas industry to more effect-
ively reduce staff turnover by protecting workers from 
work-related diseases. The scoping review revealed 
that currently only PBK models and biomonitoring are 
(regularly) used for research and practical purposes 
in the oil and gas industry focused predominantly on 
workers exposed to benzene. The use of sensors, new 
types of exposure models, and omics/bioinformatics 
in this setting are in their infancy but are crucial for a 
successful application of the exposome concept, as it 
provides exposure and effect data at much higher reso-
lution. The current challenges identified, include the 
technological readiness of applications which can be 
applied at the workplace (personal sensors, omics data 
analyses), the availability of data (sensor data, time inte-
grated external exposure data, kinetics data), standard-
ized and validated methods (personal sensors, external 
exposure models, PBK models, omics), and new study 
designs for longitudinal (working-lifelong) studies. 
More applied research is needed to overcome these 
challenges, also considering more practical barriers like 
ethics and costs, with industry and researchers from 
different domains working together, and exposome les-
sons learned from petrochemical scenarios, can be ap-
plied to new energy sources, including the finding of 
the emerging risks.
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