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Abstract: The development of functional nanomaterials exhibiting cost-effectiveness, biocompatibil-
ity and biodegradability in the form of nanoadditives, nanofertilizers, nanosensors, nanopesticides
and herbicides, etc., has attracted considerable attention in the field of agriculture. Such nanoma-
terials have demonstrated the ability to increase crop production, enable the efficient and targeted
delivery of agrochemicals and nutrients, enhance plant resistance to various stress factors and act
as nanosensors for the detection of various pollutants, plant diseases and insufficient plant nutri-
tion. Among others, functional magnetic nanomaterials based on iron, iron oxide, cobalt, cobalt
and nickel ferrite nanoparticles, etc., are currently being investigated in agricultural applications
due to their unique and tunable magnetic properties, the existing versatility with regard to their
(bio)functionalization, and in some cases, their inherent ability to increase crop yield. This review
article provides an up-to-date appraisal of functionalized magnetic nanomaterials being explored in
the agricultural sector.

Keywords: agriculture; functionalized magnetic nanomaterials

1. Introduction

In the last few years, nanotechnology has been establishing an increasingly strong pres-
ence in the agricultural sector, aiming to: (a) reduce the use of agrochemicals by employing
stimuli-responsive, smart nanodelivery systems, (b) identify and quantify various pollu-
tants of both organic and inorganic nature, plant diseases and plant nutrition deficiency
with high accuracy and at extremely low detection limits using nanosensors, (c) enhance
the effectiveness of priming agents in improving plant growth and productivity, and
(d) improve plant protection against abiotic stress factors [1]. Magnetic nanomaterials char-
acterized by tunable chemical compositions (including pure metals, metal oxides, ferrites
and metal alloys), multi-functionalities, sizes, morphologies and magnetic properties, have
been developed by employing various synthetic methodologies. In particular, magnetic
metal oxide NPs including Fe3O4 and γ-Fe2O3 exhibiting low toxicity and high stability,
have attracted considerable attention in diverse research fields including biomedicine,
catalysis, environmental remediation, etc. [2].

This review focuses on functional magnetic nanomaterials designed for use in agricul-
tural applications (Figure 1), with their use being of particular importance due to current
climate change scenarios and pollution levels linked with anthropogenic activities. More
precisely, up-to-date examples of magnetic nanomaterials employed as: (i) effective ad-
sorbents for the removal of antibiotics, pesticides and toxic metal ions from contaminated
wastewater, (ii) soil fertility promoters, enhancing the uptake of nutrients in crop plants and
magneto-assisted soil restoration agents enabling the removal of toxic soil contaminants,
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(iii) biosensors, (iv) seed priming agents, (v) smart plant treatment-delivery systems and
gene transfection agents in plants, are presented and discussed.
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2. Agricultural Wastewater Treatment Using Magnetic Nanomaterials

The high complexity of agricultural wastewater in terms of chemical composition,
due to the presence of both non-biodegradable organic and inorganic contaminants in-
cluding toxic metal ions, pesticides, herbicides, fungicides and antibiotics, has prompted
researchers worldwide to develop innovative materials for preventing their spread into
the environment, and consequently, the severe environmental consequences and negative
impacts on human health. Even at extremely low concentrations, such water contaminants
may cause allergies, respiratory and cardiovascular problems, and may lead to irreversible
organ damage [3].

Nanomaterials having at least one dimension below 100 nm exhibiting tunable
nanomorphologies and multifunctionalities have emerged as highly promising adsor-
bents for the removal of toxic metal elements and organic contaminants found in extremely
low concentrations in wastewater [4–8]. Their high specific surface area and diversity with
respect to surface functionalization provide unique physicochemical properties to these
materials, rendering them highly effective in water remediation processes. Functionalized
magnetic nanoparticles (MNPs) have been employed as adsorbents for the removal of toxic
metal ions, pesticides and antibiotics from wastewater and agricultural wastewater [9]
(Figure 2). In addition to their high surface area and the functionalization of their sur-
face with appropriate adsorption moieties enabling the removal of contaminants via the
development of electrostatic interactions, π-stacking and cation-π-interactions, hydrogen
bonding, metal ion complexation, etc., their inherent magnetic properties provide an addi-
tional advantage, being the facile separation of the adsorbent and recovery from aqueous
solutions upon completion of the adsorption process by means of an externally applied
magnetic field. In addition, their catalytic performance can also be used synergistically to
the adsorption process, resulting in the degradation of agricultural wastewater organic
pollutants [10–20]. Since the main scope of this review article is to provide an overview on
the use of magnetic nanomaterials in various aspects of agriculture, this study focuses on
the most recent work published in the last two years.
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2.1. MNP-Mediated Removal of Toxic Metal Ions

The wastewater problem has attracted the attention of many scientists, trying to solve
a very important health problem to all living organisms. Different toxic metals such as Pb2+,
Ni2+, Zn2+, Cr3+, Cu2+, and Cd2+ have been causing serious environmental and health
problems even at low concentrations. Thus, many studies have been carried out for the
development of new technologies that could efficiently remove toxic metals from agricul-
tural wastewater. Some of the most promising technologies are coagulation/flocculation,
ion exchange, flotation, membrane filtration, chemical precipitation, electrochemical treat-
ment, and adsorption [9,21]. Among those, the adsorption technique seems to be the
most convenient due to its simplicity, high availability and low cost. One of the main
problems encountered in this case is the regeneration and separation of the adsorbent
from the wastewater. Magnetic nanomaterials have been introduced as a very promising
and reliable solution for the removal of toxic metal ions from wastewater. Their magnetic
properties enable the removal of the adsorbent from the water by applying an external
magnetic field. Although it is important to choose the most efficient ion removal tech-
nique based on different variables including the metal ion concentration, operational cost,
wastewater characteristics, etc. [22,23], several characteristics and requirements that should
be presented by a material to be considered as a good metal ion adsorbent include the high
selectivity towards specific metal ions, adsorption capability at low pH, easy metal ion
desorption, fast adsorption/desorption rates, high adsorption capacity, regeneration and
reusability and good mechanical properties [24].

Table 1 provides a list of literature examples dealing with magnetic Fe3O4 or γ-Fe2O3-
based adsorbents that were evaluated as substrates for the removal of harmful metal ions
including Cu(II), Ni(II), Zn(II), Cd(II), Hg(II), Co(II), Pb(II), As(V), Cr(III) and Cr(VI), etc.,
from synthetic aqueous media, industrial and agricultural wastewater.
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Table 1. Literature examples of MNP-based adsorbents employed in the removal of toxic metal ions from wastewater.

Magnetite (Fe3O4)-Based Adsorbents

Metal Ion Adsorbent Type References

Cu(II)

Amino-functionalized Fe3O4 NPs [25]
Fe3O4-chitosan NPs [26]

Fe3O4 NPs [27]
Saccharomyces cerevisiae-functionalized chitosan-coated Fe3O4 NPs [28]

Azomethine functionalized Fe3O4 NPs [29]
Oxidized mesoporous carbon-based magnetic composite [30]

Ni(II)

Fe3O4 NPs [31]
Fe3O4 NPs [32]

Amino acid functionalized Fe3O4 NPs [33]
EDTA-modified Fe3O4 NPs [34]

Zn(II)
Amino-functionalized magnetic nanoparticles [35]

Magnetite silica core-shell nanoparticles [36]

As(V)
Fe3O4-NP impregnated chitosan beads [37]
Fe3O4-coated boron nitride nanosheets [38]

Fe3O4 NPs [39]

Cd(II)

Citric acid coated magnetic nanoparticles [40]
Maize tassel-magnetite nanohybrid adsorbent [41]

Fe3O4 NPs [42]
Fe3O4 NPs [43]
Fe3O4 NPs [44]
Fe3O4 NPs [45]

Magnetic (Fe3O4) PVA/laponite nanocomposite [46]

Hg(II) Poly(1-vinylimidazole)-grafted Fe3O4@SiO2 [47]
2-mercaptobenzamide modified itaconic acid-grafted-magnetite

nanocellulose composite [48]

Co(II) Sulfhydryl and carboxyl functionalized magnetite nanocellulose composite [49]

Cu(II), Ni(II), Zn(II) Sodium dodecyl sulphate coated magnetite nanoparticles [50]

As(V), Cr(VI) Ionically modified (phosphonium silane) magnetic nanoparticles [51]

Pb(II)

Melamine-based dendrimer amine grafted-Fe3O4 [52]
Sulfur-modified magnetic nanoparticle [53]

SiO2/(3-aminopropyl)triethoxysilane-coated magnetite nanoparticles [54]
Graphene oxide/Fe3O4 [55]

Reduced glutathione-functionalized core-shell Fe3O4/SiO2 NPs [56]
Magnetic sodium alginate polyelectrolyte nanospheres [57]

3-aminopropyltrimethoxysilane functionalized magnetic sporopollenin
(MSp@SiO2NH2) based silica-coated graphene oxide (GO) [58]

Fe3O4/Graphene Oxide Nanocomposite [59]

Ni(II), Pb(II) Cyanopropylsilane-functionalized titanium oxide Fe3O4 NPs [60]

Cd(II), Pb(II) Biomagnetic membrane capsules [61]

Ag(I), Cd(II), Hg(II), Pb(II) Silica shell-functionalized Fe3O4 NPs bearing mercaptopropyl
(monofunctional) and mercaptopropyl-and-alkyl groups (bifunctional) [62]

Cr(III) Magnetic alkaline lignin−dopamine nanoparticles [63]

Cr(VI) Modified polypyrrole/m-phenylediamine (PPy-mPD) composite,
decorated with magnetite (Fe3O4) NPs [64]

Maghemite (γ-Fe2O3)-Based Adsorbents

Cu(II)
Glycine-functionalized maghemite nanoparticles [65]

Calcium alginate/maghemite hydrogel beads [66]

Cd(II)
Bacteria-coated maghemite NPs [67]

γ-Fe2O3/TiO2/PVA-alginate beads [68]

Cr(VI) γ-Fe2O3 NPs [69,70]
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Table 1. Cont.

Magnetite (Fe3O4)-Based Adsorbents

Metal Ion Adsorbent Type References

Cs(I) γ-Fe2O3 PVA–alginate beads [71]

Ni(II) Clay-enriched γ-Fe2O3 NPs [72]

Ba(II) γ-Fe2O3/TiO2/PVA-alginate beads [73]

Cu(II), Cr(VI) Polypyrrole/γ-Fe2O3 and polyaniline/γ-Fe2O3 magnetic nanocomposites [74]

Cu(II), Zn(II), Pb(II) γ-Fe2O3 nanotubes [75]

Pb(II)
γ-Fe2O3 NPs [76]

Spherical iron oxide (γ-Fe2O3) methyltrimethoxysilane nanocomposite [77]

Of all heavy metals that are highly ranked as toxic and hazardous for the environment
and living organisms, lead (Pb) is definitely one of the most hazardous due to its high toxic-
ity, lack of biodegradability and high abundance in wastewater [76]. Pb is commonly used
in many fields and applications such as electroplating, microelectronics, manufacturing of
batteries, metals’ colorant, etc. The high demand and usage, along with its toxic properties
render it one of the most dangerous heavy metals for living systems. Because of that, many
studies have focused on the removal of Pb(II) from aqueous media.

In one such example, Fatemeh et al. reported on the preparation of melamine-based
amine magnetic Fe3O4 nanoparticles (MBA-Fe3O4) for the removal of Pb(II) from aqueous
solutions. The magnetic nanoparticles were synthesized solvothermally, followed by the
grafting of the melamine-based amine on their surfaces. The Pb(II) removal percentage was
85.6% under optimum conditions and the metal ion adsorption process was endothermal
and spontaneous. Moreover, the authors demonstrated the stability of these adsorbents
since only ~7% of the adsorption capacity was lost after five consecutive adsorption–
desorption cycles [52].

Maghemite nanotubes were prepared by means of microwave irradiation and used
in the removal of Cu(II), Zn(II) and Pb(II) from aqueous media [75]. The maximum
adsorption was found to be 111.11, 84.95 and 71.42 mg g−1, respectively, demonstrating the
high efficiency of maghemite nanotubes as metal ion adsorbents from natural groundwater.

Ni(II) ions that are released in the aquatic ecosystem as an industrial waste of different
processes applied in batteries, electronics, metal processing, etc., may result in severe health
problems in cases where they exceed the concentration of 0.01 mg L–1 in drinking water.

Pannenrselvan and co-workers described the preparation of a magnetic-based ad-
sorbent for the removal of Ni(II) from aqueous solution. More precisely, magnetic Fe3O4
nanoparticles were impregnated onto tea waste [31]. The adsorbent was tested under
different experimental conditions, i.e., pH, initial Ni(II) concentration and temperature,
demonstrating its dependence on these variables. The adsorption capacity was found to be
38.3 mg g−1 showing that Fe3O4 magnetic nanoparticles impregnated onto tea waste can
efficiently remove Ni(II) from agricultural biomass wastewater.

The co-precipitation method was used by Gautam et al., for the synthesis of nanoscale
(5–15 nm) Fe3O4 superparamagnetic nanoparticles for the removal of Ni(II) from aqueous
solutions [32]. The obtained results showed that the nanoparticles can act as highly efficient
Ni(II) adsorbents due to their high adsorption capacities (209 to 362 mg g−1), low-cost
facile magnetic separation and reusability. Concerning the latter, the magnetic adsorbents
retained high adsorption capacity (85%) in the first four cycles.

Chromium ions and particularly Cr(VI), are highly toxic to aquatic life and to humans,
leading to genetic defects, skin irritation, carcinogenicity, etc. Magnetic nanomaterials
based on modified polypyrrole/m-phenylediamine (Ppy-mPD) composites prepared via
in situ oxidative polymerization and further decorated with magnetite nanoparticles were
used for the removal of Cr(VI) [64]. The maximum adsorption capacity was found to be
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555.6 mg g−1, showing that the Ppy-mPD/Fe3O4 magnetic nanocomposites can be very
promising for the removal of chromium from wastewater.

Dai et al. reported on the preparation of a cost-effective and eco-friendly alkaline
lignin (AL)/dopamine (DA)-based magnetic adsorbent of the type AL-DA/Fe3O4 NPs,
for the removal of Cr(III) from wastewater [63]. Alkaline lignin was functionalized with
dopamine molecules by following the nanoprecipitation method. A maximum capacity of
44.56 mg g−1 was reported while the magnetic character of these materials led to a high
magnetic recovery and hence regeneration and reuse for five adsorption/desorption cycles.

Cadmium is an element that is extensively employed in the industrial production of
batteries, pigments, solar panels, etc. According to the World Health Organization (WHO)
and Environmental Protection Agency, a limit of 0.003 mg L−1 has been set for the allowable
concentration limit of Cd(II) in drinking water. Among others, the presence of Cd(II) may
cause kidney malfunction, high blood pressure and severe damage of specific tissues.

Citric acid-coated magnetite nanoparticles with a particle size ranging from 15–27 nm
were tested towards their efficacy in the removal of Cd(II) from aqueous media [40]. The
maximum adsorption capacity recorded at 298 K, 303 K and 308 K was 10.81, 11.45 and
12.56 mg g−1 respectively, while a 96% removal efficiency was reported under the optimum
adsorbent dosage (0.2 g L−1), initial Cd(II) concentration (25 mg L−1), temperature (308 K),
pH (5) and contact time (40 min).

Imran et al. reported on the preparation of biomagnetic membrane capsules (BMMCs)
that were synthesized by encapsulating phytogenic magnetic nanoparticles into polyvinyl
alcohol and sodium alginate matrix via crosslinking [61]. These materials were evaluated as
substrates for the removal of toxic Pb(II) and Cd(II) from water. The maximum adsorption
capacities recorded at pH 6.5 were 548 and ~611 mg g−1 for Pb(II) and Cd(II) respectively.
Regeneration was achieved by treating the adsorbents with HNO3 and they were repeatedly
used for seven cycles, retaining their initial adsorption capacity.

2.2. MNP-Mediated Removal of Pesticides and Antibiotics

The extensive use of organic compounds in the agricultural sector has led to major
environmental concerns. Due to their toxicity and non-biodegradability, agricultural chem-
icals including pesticides and antibiotics exhibit non-selective toxicity and they accumulate
in the environment including water and soil [78,79].

A number of research groups have been focusing on the investigation of functional
magnetic nanomaterials as agricultural wastewater adsorbents for the removal of the afore-
mentioned harmful organic contaminants [17]. The adsorption mechanism is usually based
on the development of electrostatic interactions, π-stacking, donor-acceptor interactions,
hydrophobic interactions, etc. [9].

Table 2 provides a list of bibliographic references focusing on the development of
different types of magnetic nano-adsorbents employed in agricultural wastewater remedia-
tion processes for the removal of pesticides. The latter are extensively used in controlling
and repelling pests, preventing plant diseases, and enhancing crop quality and produc-
tion yield [80]. Moreover, a brief description of selected, recently published literature
examples follows the table, discussing MNP-mediated removal of pesticides from agricul-
tural wastewater.
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Table 2. Literature examples of magnetic nanoparticle-based adsorbents employed in the removal of pesticides from
agricultural wastewater.

Removal of Pesticides

Adsorbent Type Pollutant Reference

Mesoporous silica nanoparticles/iron oxide nanocomposite Organochlorine pesticides [81]

Mixed hemimicelle SDS-coated magnetic chitosan nanoparticles Pesticides (diazinon, phosalone, chlorpyrifos) [82]

Magnetic mesoporous CoFe2O4/SiO2(Meso-CoFe2O4/SiO2)
composites Chlorpyrifos [83]

Magnetic Fe2O3/TiO2 monolithic photocatalyst Pesticide (Fipronil) and remazol brilliant red X-3BS (RbX) dye [84]

β-Cyclodextrin Polymers Decorated with Fe3O4 NPs Pesticides (4-chlorophenoxyacetic acid (4-CPA) and
2,3,4,6-tetrachlorophenol (TCF)) [85]

Magnetic (Fe3O4) chitosan beads Chlordimeform insecticide [86]

Core–shell structured Fe3O4/hexagonal mesoporous silica
microspheres 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) [87]

Co–Ni/chitosan/Fe3O4 2,4-dichlorophenoxyacetic acid [88]

Fe3O4-functionalized partially carbonized cellulose nanocrystals
Triazine and triazole pesticides (simazine, ametryn, prometryn,
terbutryn, atrazine, triadimenol, epoxiconazole, myclobutanil,

triadimefon and tebuconazole)
[89]

ZnO@SiO2@Fe3O4 NPs Diazinon pesticide [90]

Carbon-coated Fe3O4 nanoparticles Organophosphorus pesticides (fenitrothion, diazinon, and ethion) [91]

Phenyl-modified magnetic graphene/mesoporous silica Avermectin, Imidacloprid, Pyridaben, Dichlorvos, Acetamiprid,
Dursban, Isocarbophos and Phoxim [92]

Magnetic covalent aromatic polymer (Fe3O4-NH2-CAP) Phenylurea herbicides (metoxuron, monuron, chlortoluron,
isoproturon, monolinuron, buturon) [93]

FeO-modified palygorskite Linuron [94]

Magnetic molecularly imprinted polymer (MMIP) on
mesoporous silica (mSiO2)-coated Fe3O4 nanoparticles Atrazine [95]

3D graphene oxide/Fe3O4 2,4-dichlorophenoxyacetic acid [96]

4-aminoacetanilide-modified magnetic NPs Clodinafop-propargyl herbicide [97]

Carbon-encapsulated iron (Fe/C); carbon-encapsulated cobalt
(Co/C) p-Nitrophenol [98]

Fe3O4-carbon nanospheres
Triazole fungicides (penconazole, uniconazole, paclobutrazol,

triazolone, tebuconazole, hexaconazole, triticonazole and
epoxiconazole)

[99]

Magnetic Zr-based metal organic frameworks
(UiO-66/Fe3O4@SiO2) Triclosan and triclocarban [100]

TiO2-based (Fe3O4, SiO2, reduced graphene oxide) photocatalysts Imazalil [101]

Organically-modified Fe3O4 NPs Deltamethrin [102]

Singh and co-workers developed a ferromagnetic Fe2O3/TiO2 monolithic photocatalyst
that was used as a substrate for the photodegradation of Fibronil [84]. The latter is a widely
used agricultural pesticide and also employed in veterinary and household applications.
More precisely, a photo-Fenton process was applied to evaluate the photocatalytic perfor-
mance of the above-mentioned catalyst in the degradation of Fibronil by means of UV-vis
spectrophotometry. Under the optimum experimental conditions, the maximum Fibronil
degradation efficiency achieved was 88.71%. Moreover, the Fe2O3/TiO2 monolith could be
successfully reused in four consecutive runs without losing its photocatalytic efficacy.

Recently, the synthesis of magnetic (Fe3O4) chitosan that was subsequently surface-
decorated with Co–Ni nanoparticles [88] was reported, resulting in a bimetallic nanocatalyst
exhibiting high efficiency towards the degradation of water contaminants including the
pesticide 2,4-dichlorophenoxyacetic acid (2,4-D). The latter is attributed to the generation
of hydroxyl radicals that promote the degradation of organic water contaminants [88]. For
determining the experimental conditions resulting in the highest possible degradation
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efficiency, the authors investigated the effect of various parameters including the amount of
oxidant (H2O2) and catalyst, solution pH and initial pesticide concentration. The synergistic
effect of the two metals (Co and Ni) in the bimetallic Co–Ni@CS@Fe3O4 nanocatalyst
resulted in a 95.50% 2,4-D degradation efficiency. In addition, the magnetic properties of
the nanocatalyst facilitated its recovery by means of an external magnet while its successful
reusability was also demonstrated in eight subsequent runs.

The self-assembly of Fe3O4 NPs onto the surfaces of carbon nanospheres resulted in
a novel magnetic adsorbent that was used in the extraction of eight triazole fungicides
from environmental water samples, demonstrating a high extraction percentage (above
80%) in all cases [99]. The enantiomers of the triazole fungicides under investigation were
quantified by employing chiral LC-MS/MS, while the reusability of these adsorbents was
experimentally verified, since high extraction yields were retained after ten adsorption–
desorption cycles.

Finally, Zr-based magnetic metal organic frameworks (MMOFs) were synthesized
solvothermally via the immobilization of the UiO-66 MOF onto core-shell Fe3O4/SiO2 NPs
(Figure 3) [100]. These materials were further evaluated as adsorbents for two fungicides
namely Triclosan (TCS) and triclocarban (TCC) that are frequently found in wastewater as
well as in ground and drinking water. The adsorption mechanism involved the develop-
ment of hydrogen bonding, hydrophobic and π–π interactions between the two fungicides
and MMOFs. Very high adsorption capacities (i.e., 476.27 mg g−1 and 602.40 mg g−1

corresponding to TCS and TCC respectively), short adsorption equilibrium time (0.4 h) and
excellent reusability (eleven repeated adsorption–desorption cycles) were demonstrated by
these systems.
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Antibiotics are antimicrobial compounds that prevent various diseases in animals
and humans by inhibiting the growth and spread of bacteria, fungi and other infectious
pathogens [103–106].
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The use of antibiotics in the agricultural sector has led to severe environmental con-
tamination [107,108]. Different categories of magnetically-functionalized materials have
been employed as adsorbents for the removal of antibiotics from wastewater including
tetracycline, sulfonamide, quinolones, sulfamethoxazoles, etc. [9]. These include magnetic
microspheres [109,110], magnetic molecularly imprinted polymers [111–115], magnetic
nanoparticles [116–119], magnetic carbon-based materials [120–128] and magnetic MOFs
and covalent organic frameworks [129,130].

Ternary single core double shell structured magnetic microspheres of the type Fe3O4
@SiO2@Fe–pamoate were synthesized and used in the extraction and preconcentration
of five sulfonamide antibiotics (sulfadiazine, sulfamerazine, sulfadimidine, sulfisoxazole,
and sulfathiazole) from tap, river and rain water [109]. High performance liquid chro-
matography (HPLC) was used in sample analysis, thus allowing low detection limits
(0.08–0.12 ng mL−1). All antibiotics could be recovered at high percentages (ranging be-
tween 86.3% to 99.7%) from the three different water samples.

Molecularly imprinted polymers consisting of maghemite, silica, and poly
(N-isopropylacrylamide-co-acrylamide-co-ethylene glycol dimethacrylate), combining molec-
ular recognition, thermoresponsive and superparamagnetic properties were reported by
L. Xu et al. [111]. The antibiotic sulfamethazine was used as a template for the synthesis of
these materials. For comparison purposes, the non-imprinted polymer analogue was also
fabricated in the absence of sulfamethazine. Batch experiments were contacted as a function
of temperature and contact time to study the selective adsorption of sulfamethazine (from
a mixture of four different antibiotics) in the presence of the above-mentioned molecu-
larly imprinted magnetic adsorbents. The molecularly imprinted materials exhibited a
two-times higher equilibrium adsorption capacity (Qe) than the non-imprinted material
and temperature-responsive adsorption capacity. Most importantly, temperature-triggered
release of sulfamethazine was demonstrated at T > LCST, due to the destruction of the
H-bond interactions taking place between the polymer adsorbent and the antibiotic.

Surface oxidized nano-cobalt wrapped by nitrogen-doped carbon nanotubes were
used as hosts for surface-oxidized cobalt NPs and the resulting magnetic nanocompos-
ites were tested as adsorbents for the removal of the antibiotic tetracycline (TC) and the
organic dye rhodamine B (RhB) from organic wastewater (Figure 4) [120]. The maximum
adsorption capacity was 679.56 mg g−1 and 385.60 mg g−1 for RhB and TC respectively.
Recyclability/reusability was also demonstrated at a good level since the adsorbent re-
tained high adsorption capacities (75% and 84% for TC and RhB respectively) after four
repeated cycles.
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Very recently, Yang and co-workers reported on the synthesis of magnetic Fe3O4-N-
doped carbon sphere composite catalyst, starting from a renewable and environmentally
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friendly chitosan–Fe complex [122]. The resulting catalytic material was used in the removal
and catalytic degradation of tetracycline (TC) by activating peroxymonosulfate. While
PMS alone led to a 50% removal of TC within an hour, a 97% TC degradation efficiency was
recorded at 25 ◦C in the presence of the magnetic Fe3O4-N-doped carbon sphere composite
catalyst under optimum conditions.

Finally, in a very recent publication dealing with TC removal, Au NP-functionalized N,
O-doped magnetic porous carbon frameworks derived from pine-needles were fabricated
and used as adsorbents and catalytic substrates for the degradation of TC in the presence
of H2O2 as presented in Figure 5 [129].
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In the presence of only H2O2, a very low TC degradation percentage was recorded
(13%) within 30 min, whereas a 96% TC degradation efficiency and 0.133 min−1 degradation
rate was observed within 10 min by introducing the functionalized magnetic carbon porous
frameworks in the system. According to the authors, the accumulation of TC molecules
within the internal cavities of the porous material having a high specific surface area
provides a confined microenvironment that is ideal for the catalytic degradation process
to occur. Moreover, the Fe2+ and Au0 catalytic centers promote the activation of H2O2
towards the generation of reactive radical species including ·OH and ·OH2, that lead to
complete TC degradation.

3. Magneto-Assisted Soil Restoration, Soil Fertility and Smart Plant-Treatment
Delivery Systems

The presence of highly toxic heavy metal ions and organic pollutants in soil is a severe
threat to public health, while their removal from contaminated soil is extremely difficult.
As a consequence, researchers worldwide have been focusing on the development of novel
approaches that would enable the effective removal of such contaminants from soil. Among
others, extraction technologies and immobilization processes have been employed towards
this purpose [131–143].

Magnetic nanomaterials play a significant role in processes related to soil fertility,
soil restoration and eventually plant growth [144]. Such nanomaterials have been evalu-
ated as additives in enhancing soil fertility as well as a means for the magneto-assisted
removal of toxic soil contaminants such as harmful metal ions, polyaromatic hydrocarbons
(PAHs) and other detrimental organic substances, thus promoting soil restoration. In the
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following section, literature examples dealing with the use of different types of magnetic
nanomaterials in soil restoration and fertility are presented and discussed.

3.1. Magneto-Assisted Soil Restoration-Metal Ion Removal

Nanoparticle-mediated soil treatment for the removal of toxic metal ions has been of
high interest in recent decades [145]. Cadmium (Cd) and arsenic (As) are considered to be
some of the most toxic metallic elements exhibiting high transfer probability from paddy
soil to particular grains such as rice grains. This is highly dangerous since the accumulation
of cadmium in rice may cause severe health problems in humans, especially in populations
in which rice is a major nutrition in their daily diet. Zerovalent iron nanoparticles have
been used in the removal of cadmium ions from cadmium-contaminated paddy soil [146].
In addition to the high adsorption efficiency of Fe NPs towards Cd(II), their magnetic
properties allowed for the removal of the Cd-adsorbed NPs from the soil slurry, by means
of an externally applied magnetic field.

Baragano and co-workers have reported the use of commercially available, spherical
Fe3O4 magnetic nanoparticles having an average NP size of 20 nm and a 90 m2/g sur-
face area, in the remediation of As-containing soils [147]. More precisely, contaminated
soil was treated with different NP percentages, ranging from 0.2–5%. According to the
authors, the As-immobilization takes place through an inner-sphere surface complexation
mechanism. The toxicity characteristic leaching procedure (known as TCLP test) combined
with the Tessier sequential extraction procedure [148] were used to determine the removal
efficiency towards As, demonstrating a 92.3% decrease in As at the highest (5%) MNP
dose. Moreover, the pH of the soil was not significantly influenced in the presence of the
Fe3O4 NPs (pH = 8.23: control; pH = 8.37: 5% MNPs), whereas Fe availability was retained
at low levels, thus preventing phytotoxicity. Although a slight increase in the electrical
conductivity values was observed, reaching 0.58 dS/m at the highest MNP dose (5%), this
value was lower than 2 dS/m, which may have a negative impact on plants due to salinity.

In another study, nano-Fe/CaO, nano-Fe/Ca/CaO and nano-Fe/Ca/CaO/PO4 were
evaluated as heavy metal immobilizing agents for soils after grinding with heavy metal-
contaminated soil [149]. With simple grinding, 65–80% heavy (As, Cd, Cr, and Pb) metal
immobilization can be achieved in soil, whereas the introduction of nano-Fe/Ca/CaO
results in a significant increase in the heavy metal immobilization percentage (95–99%). In
addition, the magnetic properties of the nano-Fe/Ca/CaO additive enables the magnetic
separation of soil.

Core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid metal chelating
moieties were employed as adsorbents for the immobilization and magnetic separation of
Cd and Zn ions from different farmland soils [150]. The metal ion recovery rates differed,
depending on the type of soil (paddy soil, upland soil, and paddy–upland rotation soil),
ranging from 23.4–65.2%, corresponding to metal ion removal efficiencies varying between
2.2–12.2% for Cd and 1.9–4.7% for Zn. This in turn led to the reduction in the uptake of Cd
and Zn ions from rice, at the same time retaining the rice yield at the desired levels.

Flower-like MoS2/Fe3O4 magnetic nanohybrids produced via a two-step solvothermal
process were evaluated as adsorbents for the selective removal of Pb(II) and Hg(II) from
wastewater and metal ion-contaminated soil [151]. These materials demonstrated high
adsorption capacity (i.e., 264 mg g−1 for Pb(II) and 429 mg g−1 for Hg(II)) due to the
development of strong interactions between the S2- sites of the adsorbents and the Hg(II)
and Pb(II) ions. The magnetic properties of the MoS2/Fe3O4 hybrid systems enabled their
easy recovery upon applying an external magnet.

3.2. Magneto-Assisted Soil Restoration-Removal of Organic Contaminants

The removal of polyaromatic aromatic hydrocarbons (PAH), petroleum hydrocarbons
(PH) and other organic contaminants including surfactants and organic-based agricul-
tural pollutants from contaminated soils is of high concern due to their high toxicity that
eventually leads to severe health and environmental consequences [152].
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Commercially available Fe3O4 NPs were evaluated as soil remediation agents for
the removal of polyaromatic hydrocarbons (PAHs) and total petroleum hydrocarbons
(TPH) [147]. More precisely, a significant decrease in the TPH and PAH content was
observed in the presence of magnetite NPs even at very low percentages (i.e., 0.2%) reaching
49% and 89% respectively. In addition, no negative impact on soil parameters (including
pH and electrical conductivity) was observed, while soil phytotoxicity was significantly
reduced upon treatment with 1%, 2% and 5% Fe3O4 NPs, which resulted from the effective
immobilization of the soil contaminants.

Asgharzadeh et al. employed Fe3O4 magnetic nanoparticles as nanocatalysts for the
removal of pyrene from contaminated soil via the electrokinetic Fenton process. Under the
optimum experimental conditions (pH = 3; Fe3O4 dosage: 1 g/L; H2O2 = 10 mM; voltage:
30 V) a high pyrene removal percentage (87%) was achieved [153].

In a final example, MNP-modified zeolites were synthesized and evaluated in the
magnetic solid phase extraction of different types of benzophenones from environmental
aqueous and soil samples [154]. Concerning the latter, good recoveries were achieved on
benzophenone-contaminated lakeshore and garden soil samples containing 75.8 ng g−1

and 67.2 ng g−1 benzophenone content respectively, upon treatment with the magnetically-
modified zeolites.

3.3. Soil Fertility and Smart Treatment Delivery Systems in Plants

During the last few years, nanotechnology has been strongly entering the agricultural
sector, aiming to improve soil fertility and consequently enhance the uptake of nutrients
in crop plants via the development of nanoparticles that could be employed as effective
fertilizers [155].

In the work reported by Yoon et al. [156], Fe0 nanoparticles were introduced in soil as
ecological nanofertilizers, in order to investigate their impact on the growth of Arabidopsis
thaliana that was used as a model species. By treating the soil with nanoscale Fe0, a
significant increase in the plant biomass (~40%) was recorded, due to the enhancement of
the photosynthesis process and the increased accumulation of nutrients.

EDTA-grafted Fe3O4 NPs were synthesized and further tested as biocompatible
nanofertilizers in sunflower plants. The nanofertilizers were applied either through spray
or soil amendment, with the latter being more effective in most investigated parameters, i.e.,
number of leaves, plant height and chlorophyll content. In addition, a dramatic increase
in the Fe-content detected in EDTA-grafted Fe3O4 NPs-treated plants reaching ~140%
compared with untreated plants, was reported, demonstrating the potential use of such
magnetic fertilizers in plants exhibiting Fe-deficiency [157]. Keratinase is a proteolytic
enzyme which promotes the degradation of keratin. β-keratinase-bound MNPs were
synthesized and used in the enzymatic hydrolysis of chicken feathers, converting them
into organic products that could be valuable in seed germination and plant growth. More
precisely, chicken feather hydrolysate was incorporated in different doses in soil, followed
by the introduction of Bengal gram (Cicer arietinum L.) seeds. According to the obtained
experimental data, the produced organic fertilizer introduced in soil resulted in enhanced
germination of Bengal gram, which belongs to the chickpea family (dictated by the in-
crease in plant height and fresh biomass) and to an increase in the microbial population in
soil [158].

Besides the introduction of MNPs in soil, some groups reported on the treatment of
crop plants with magnetic nanomaterials under hydroponic conditions [159,160]. In one
such example, nanohexaferrites containing Ca and Mg (Sr0.96Mg0.02Ca0.02Fe12O19) were
synthesized and evaluated as additives in hydroponically-treated barley plants [160]. More
precisely, such additives were incorporated at appropriate concentrations in the hydroponic
system containing the seedlings, followed by their transfer to a greenhouse maintained
under specific environmental conditions, for three weeks. Based on the obtained results,
the Ca- and Mg-enriched nanohexaferrites at specific concentrations led to an increase in
the germination rate, tissue growth, biomass, protein content and chlorophyll pigments
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in comparison with the control, untreated samples. In addition, NP uptake by the plant
was demonstrated since increased concentrations of Fe, Ca, Mg and Sr were detected in the
plants’ leaves compared with the untreated plants.

The properties of functionalized nanoparticles allow for their accumulation and guid-
ance to specific areas of the plant, followed by the release of the plant treatment agent [161].
Consequently, they can be employed for the systematic delivery of plant growth regulators,
fertilizers, herbicides, pesticides, etc. For better storage and controlled release, a number of
mechanisms are involved including encapsulation and entrapment via ionic, hydrophobic
and hydrogen bonding interactions, the use of polymer coatings and the development of
weak bond attachments. These mechanisms assist in the stability against degradation in the
environment and ultimately the applied amount of the plant treatment reagent is reduced,
minimizing the chemical runoff and alleviating environmental issues. By understanding
the molecular and conformational mechanisms of the delivery nanoparticle structure, tar-
geted structures and the soil material, nanoscale carriers have the ability to be designed
in such a way that they can attach the plant roots to the soil structure and organic matter.
The benefit of these nanoscale carriers is the slow uptake of the active ingredients, thus
reducing the amount of inputs and the excess waste [162].

MNPs attract high attention as smart treatment delivery systems in plants due to their
magnetic core, which allows them to allocate the nanoparticles to the place of interest using
magnets. Fe3O4 and Fe2O3 are considered to be the most ideal magnetic nanoparticles
for a range of fundamental investigations and field applications due to their large surface
area, nanoscale size, high thermal stability, low toxicity and low sedimentation rates [163].
Various studies focus on the use of Fe3O4 and Fe2O3 nanoparticles as fertilizers, in order
to replace the current conventional Fe fertilizers. Fe nanoparticles have also been used in
hydroponic applications [164–166] and in field conditions [167,168].

Iron is a vital element for plant growth, as well as for humans and animals. It plays
an essential role in cell metabolism, photosynthesis and respiration. Iron deficiency may
cause leaf yellowing and reduced photosynthetic capacity, due to the need for iron in the
synthesis of specific chlorophyll-protein in chloroplasts [169]. Iron nanoparticles act as an
essential element, activating the oxidation defence system, scavenging reactive oxygen
species (ROS), adsorbing heavy metals, and promoting root surface iron film formation.

There is a range of publications reporting on the effective use of a variety of MNPs
having the unique ability to penetrate the plant cell wall, transferring biomolecules in plant
cells and utilizing their magnetic character as a guide for carriage and localization. Fe2O3
MNPs have been used by Shankramma and his colleagues [170] to enhance the growth
of Solanum lycopersicum (tomato) and biomineralization. Studies have also interpreted
the potential of magnetic nanoparticles enhancing seedling growth, such as the use of
magnetite nanoparticles on Phaseolus vulgaris L. for increased germination and seedling
development [171]. Magnetite also had noticeable results on oak seedlings, increasing the
germination percentage and growth parameters, due to the enzyme peroxidase-like activity
that Fe3O4-NPs possess [172]. Interesting results have been observed by Pariona et al. [173]
with the use of hematite and ferrihydrite nanoparticles, increasing the growth of maize
and chlorophyll content, with no adverse effect found to cause any stress or toxicity.

A rather smart delivery system has been developed by Saleem et al. [174], using
coated magnetic nanomaterials with conventional fertilizers for improved nutrient use
efficiency. The nanoparticles used were potassium ferrite (KFeO2) bearing an additional
coating, namely diammonium phosphate fertilizer, and they were evaluated for the release
of P, N, Fe and K supplementation in loam soil and clay loam for up to 60 days.

Iron-oxide magnetic nanoparticles-coupled β-keratinase have also been used in the
production of liquid nitrogen fertilizer by degrading chicken feathers [158]. After 48 h
of incubation, a degradation of 80–93% of chicken feather keratin was accomplished. A
rather sustainable method of eco-friendly organic fertilization was recommended, due to
the release of low volatile compounds after degradation. Filtered, sterilized chicken-feather
hydrolysate was applied on Bengal gram and a significant increase in seedling length
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and growth, seed germination, and interestingly, also in the soil’s microbial population,
was observed.

Iron nanoparticles, synthesized using bacterial supernatant rich in auxin complex
(indole-3-acetic, IAA), have been evaluated as a plant nanofertilizer, presenting great results
in germination rates in maize plantlets, as well as in root growth and fresh weight [175].

MNPs have also been studied on sunflower seedlings for the genetic impact on root tip
cells. Fe3O4, CoFe2O4, and ZnFe2O4 were applied on germinated sunflower seeds and were
found to cause a reduced mitosis rate and considerably enhanced levels of chromosomal
aberrations in all situations [176].

Tombuloglu et al. [177] investigated CoNdFe magnetic nanoparticles administered
hydroponically to barley plants on germination state and on early growing stages. The
positive results of the study included enhanced germination growth by ~31%, root and
shoot tissue growth by 8% and 16%, respectively, biomass by ~21%, carotenoids by ~22%
and total chlorophylls by 20%, compared with untreated samples.

A thorough study was conducted using magnetic nickel ferrite (NiFe2O4) on barley
(Hordeum vulgare L.). The particular work studied the effects on growth, nutrient uptake and
magnetic behaviour [159]. A significant increase in nickel and iron content was observed in the
leaves, compared with controls. Additionally, magnesium, calcium, sodium manganese and
potassium content of the leaf were increased, due to the nanoparticles’ treatment. Furthermore,
carotenoids increased by ~51%, chlorophylls by ~50% and soluble protein by ~35%.

In another study reported by Iannone and her colleagues [178], magnetite nanoparti-
cles were loaded with citric acid and applied in soybean and alfalfa. The end result was an
improved growth, increased root and shoot weight and enhanced chlorophyll content and
catalase activity [178].

Sebastian et al. [179] investigated the adsorption properties of magnetite nanoparticles
and showed a decrease in Na and Cd content in rice plants. Additionally, they achieved
growth promoting effects as a result of increased biomass, oxidative stress tolerance and
osmolyte content.

An interesting application of magnetic lignin-based nanoparticles (M/ALFe) involved
the removal of phosphate from wastewater and further use as a slow-release compound
nanofertilizer (M/ALFeP) [180]. In addition, an Fe3O4@Chitosan-AgNP nanocomposite
was used for the reduction of anthropogenic pollutant p-nitrophenol to p-aminophenol
and it was also found to have excellent antifungal activity against agricultural pathogens,
including Aspergillus niger, Pyricularia sp. and Colletotrichum coccodes [181].

Research on the prevention of plant diseases with nanomaterials in fact represents a
hot spot in current efforts, often linked with the regulation of phytohormonal levels. For
example, green nanoparticles of barium ferrite (BaFe12O19), or, as Thakur and the rest of
the team called it, magnetoplumbite, were synthesized and used on in vitro studies to test
their antifungal activity against plant pathogenic fungi. A 76.67% inhibition of mycelial
growth was detected at 600 mg/L of barium ferrite, against Fusarium oxysporum [182].
Similarly, Fe3O4 NPs have been applied on tobacco (Nicotiana benthamiana) and several
studies were carried out including their uptake, physiological effects and plant resistance
response against Tobacco mosaic virus (TMV). The nanoparticles were applied by foliar
spray and successfully accumulated throughout the plant. The end result was the increase
in fresh and dry weights, plant antioxidants activation and upregulated biosynthesis of
salicylic acid (SA) along with induction of SA-responsive genes (PR1 and PR2; [183]).
Fe2O3 or TiO2 NPs have also been used to investigate plant growth promotion and viral
infection resistance using Turnip mosaic virus (TuMV) in tobacco plants [184], as well as
against Podosphaera pannosa in rose plants by altering the content of endogenous hormones,
particularly zeatin riboside [185]. Interestingly, MNPs have recently been implicated in
studies involving GMOs such as Bt-transgenic cotton, whereby Fe2O3 NPs increased the
Bt-toxin in leaves and roots compared with non-transgenic counterparts [186].

Biochar is a carbon-rich material produced from biomass by pyrolysis under reduced
oxygen environment [187]. It is usually applied by mixing the carbon-rich matter with a
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range of soil types. This application improves soil quality in different ways, depending on
the properties of biochar, soil types and crops [188,189]. Biochar types provide a variation in
elemental composition, including C, H, N, O, P, S, K, Mg, Ca, Si and Na, with the presence
of carbon in higher amount. The elemental composition in biochar differs depending on
the varieties of materials used and pyrolysis greatly affects the physicochemical properties,
its reactivity and stability in soil [190].

Different studies have incorporated magnetic nanoparticles in order to enhance the
properties of biochar. Magnetic nanophase iron exhibited great enhancement in biochar
properties, particularly those involving P cycling [191,192]. Moreover, it has been shown
that Terra Preta soils are already magnetic, having a high concentration of iron nanopar-
ticles [193,194]. High concentrations of iron nanoparticles have shown the possibility of
increasing nutrient availability, decomposition of organic matter in soil, seed germination
rates and plant disease resistance [195].

4. Magnetic NPs as Gene Transfection Agents in Plants

In recent decades, plant modification and transformation has been broadly studied
and investigated for creating new crop varieties with new superior traits for higher yields,
better quality and stress resistance [196,197]. The technology of plant transfection is facing
a lot of challenges as the current methods require regeneration from tissue culture with
complicated, time consuming and arduous processes [198]. MNPs as gene carriers were
tested on mouse cell transfection in the 1970s [199]. There is a range of new technologies
dealing with plant transfection using MNPs, with ideal and highly efficient methods of
transferring genes using magnetic force.

An interesting study by Zhao et al. [197] performed gene transfection through the
pollen, or “pollen magnetofection”, of exogenous DNA loaded with polyethyleneimine-
coated Fe3O4, as DNA carriers, with the presence of magnetic field. Delivery of the
exogenous gene through the membrane and inside the pollen was made possible by taking
the advantage of the cotton’s pollen size and the thinner wall. The end result was that
transgenic plants were generated through the transformed seeds, with the integration
of the DNA into the genome and successfully expressed and steadily transferred to the
offspring. The presented system had the benefit of being genotype independent, culture-
free, fast, simple and with the ability of transforming multiple genes. As a culture-free and
genotype independent system, this innovative transfection method is simple and capable
of multi-gene transformation.

5. Biosensing

Biosensor technology involves the use of biological molecules including enzymes,
proteins, antibodies, etc. as recognition elements for the detection of different analytes [200].
In the agricultural sector, there is a need for the development of new materials that could be
used as biosensors for the monitoring of moisture and soil pH, the identification of diseases
appearing in crops, as well as the detection and in-situ analysis of various pollutants such
as pesticides, herbicides, antibiotics, pathogenic bacteria and heavy metals in crops, soils
and groundwater [201–206].

Among others, inorganic nanoparticles of various types (metallic, ceramic, quantum
dots) have been extensively explored as sensors in the agricultural and food sector due
to their nanoscale dimensions and unique physicochemical properties promoting high
sensitivity, selectivity, and fast response time [207–209].

The specific advantages exhibited by magnetic nanomaterials employed in biosensing
processes in comparison with other types of nanoparticulates including low cost, high
stability, lack of toxicity and environmental friendliness, prompted many researchers to
work on the development of magnetic biosensing platforms to be applied in the agricultural
sector [210,211].

A sensitive, fast and simple detection method for organophosphorus pesticides such
as chlorpyrifos was developed by constructing an immune-electrochemistry sensor based
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on a thin layer electrode consisting of polyaniline-coated Co3O4 magnetic NPs, which
enabled the voltammetric monitoring of the concentration of chlorpyrifos in agricultural
products [212].

A magnetic immuno-chromatographic test strip was developed and combined with
a tunnelling magnetoresistance (TMR) magnetic sensitive sensor signal detection for the
detection of ricin, which is a toxic carbohydrate-binding protein that is found in the beans
of the castor oil plant [213]. Fe3O4 nanoparticles exhibiting superparamagnetic properties
and high saturation magnetization (Ms ~76 emu/g) were functionalized with anti-ricin
monoclonal antibodies and assembled into the immuno-chromatographic test strip.

In another study, a colorimetric biosensor based on cubic magnetic Fe3O4 NPs was con-
structed and further used in the detection of nopaline synthase (NOS) gene sequences in ge-
netically modified plants [214]. At first, cubic Fe3O4 NPs with dimensions ranging between
125 to 375 nm were functionalized with Au NPs. Capture DNA (cDNA) was anchored onto
the Au NP surfaces, followed by the attachment of resulting Fe3O4@Au@cDNA on hemin-
functionalized reduced graphene oxide nanosheets (H-GN) to yield Fe3O4@Au@cDNA@H-
GN nanocomposites. The sensing mechanism was based on the fact that in the presence
of nopaline synthase (NOS) gene sequences, cDNA hybridizes with its complementary
sequence forming double-stranded DNA which is held weakly onto the surfaces of H-GN,
thus resulting in the separation of H-GN from MNPs and its transfer to the solution as
schematically presented in Figure 6. After removing the MNPs by means of an externally
applied magnetic field, incubation with 3,3′,5,5′-tetramethylbenzidine (TMB)/H2O2 leads
to a color change from colorless to blue, owned to the catalytic oxidation of TMB in the pres-
ence of H-GN that is found free in solution. This “turn-on” colorimetric biosensor exhibited
a linear detection range within 0.5–100 nM and a very low detection limit (~0.20 nM). Most
importantly, it has been demonstrated that it can be successfully used in the detection
of the target NOS in genetically modified tomatoes and hence a powerful approach for
identifying GM plants.
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An electrochemical sensor was developed by Inamuddin and co-workers, consisting of
functionalized MWCNTs/CoFe2O4 nanocomposites deposited in a glassy carbon electrode
and further decorated with cytochrome c [215]. The biosensor was used in the detection of
amygdalin, which is a natural chemical compound that is present in fruit seeds including
apricots, apples, peaches, almonds, etc. This chemical substance undergoes enzymatic
hydrolysis in the presence of β-glucosidase, resulting in the release of toxic cyanide anions.

In addition, magnetic nanoparticles have also been used in the development of sensors
for the detection of harmful metal ions [216,217] and toxic organic compounds including
polycyclic aromatic hydrocarbons (PAHs) [218], antibiotics [219], fungicides [220], etc.

6. Magnetic NPs in Seed Priming

Seed priming is a pre-sowing treatment that puts seeds in a solution with natural or
synthetic compounds for a specific period of time before germination. Priming creates
a physiological state in the seed that strengthens its growth capacity leading to more
tolerant plants against various biotic or abiotic stresses [221,222]. There are several other
benefits for seeds, including improved water use efficiency, better nutrient uptake, rapid
and uniform germination, increased germination rate, and accelerated shoot and root
elongation [223,224]. Germination occurs in three phases after the dry seeds are sown:
(I) imbibition, (II) activation, and (III) emergence [225]. The procedure of seed priming is
known for controlled imbibition and induction of the pre-germinative metabolism, without
radicle emergence. Seed priming is capable of regulating phytohormones, reprogramming
gene expression, and inducing the metabolism of important antioxidant enzymes [221,226].
It offers homeostasis of abscisic acid, gibberellins, auxins, ethylene, control and determina-
tion of seed germination or dormancy and maintenance of seed [227,228]. The expression
of different antioxidants, such as catalase (CAT), superoxide dismutase (SOD), ascorbate
peroxidase (APX), and peroxidase (POD), is usually enhanced during seed priming meth-
ods. These antioxidants protect cellular membranes against the harmful effects of ROS
and help mitigate environmental stressors and improve seed germination and seedling
growth [225,229].

The effectiveness of the priming solution which varies from crop to crop, depends
on the optimization of usage of priming agents. Non-suitable priming may also decrease
the storability of the seed. Extended treatment of seeds during priming may lead to
increased oxidative injury to DNA irreversibly affecting the seed viability and performance.
For that reason, well timed and with appropriate dosage priming treatment is extremely
important considering its vital role in seed enhancement and viability [230]. Some of the
commonly used methods of seed priming are hydropriming [231], osmopriming [232],
hormopriming [233], matrix priming and pregerminated seeds [225,234].

Seed nanopriming is a relatively new technology that uses nanomaterials, mainly
nanoparticles, for seed priming that could be used to improve seed germination, growth,
and plant protection from abiotic and biotic stress factors [1,235,236]. Furthermore, nanopar-
ticles are expected to minimize chemical input and avoid wastage by replacing the con-
ventionally used bulk form of organic and inorganic materials. In addition, the smaller
size of the nanoparticles compared with conventional seed growth enhancers, can achieve
better spreading and increase uptake efficiency of the plant [235]. Moreover, nanoparticles
can replace conventional high dosage herbicides and pesticides known to exert phytotoxic
effects on several crops by polluting the soil.

Different types of nanomaterials, including polymeric (cellulose, gelatin, pullulan,
chitosan, alginate, and gliadin) [237] and metallic (Fe, Ag, TiO2, Au, Cu, FeS2, Zn, and
ZnO) [238] nanoparticles, have shown potential as seed nanopriming agents, resulting
in the stimulation of plant growth and improvement in morphological and metabolic
traits [235,238].

In plants, iron plays an important role in chlorophyll biosynthesis, photosynthesis,
and respiration. Iron oxide (FeO) NPs have an important role in germination, efficient
growth of plants, and yield increase. Exogenous FeO NPs reduce iron deficiency and
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increase chlorophyll a and b, important for preserving the structure and function of chloro-
plasts [239]. FeO NPs are also applied as nanofertilizers to enhance accessibility of iron to
plants, to control the antioxidant enzymes and phytohormones function and boost plant
biomass, height, and root length [167]. N-Fe2O3 sorghum seed soaking at 10 mg L−1 and
at 100 mg L−1 improved the seedling vigor index compared with the control. In addition,
seed priming with n-Fe2O3 (500 mg L−1) alleviated the negative effects of salinity stress
(150 mmol NaCl solution) by improving growth, photosynthesis, photosystem II efficiency,
relative water content and decreasing membrane damage [240].

Copper (Cu) is an essential element for plant growth and photosynthetic reactions.
Cu is necessary for plant growth and metabolism, and its deficit in plants is revealed by
curled leaves. However, higher than the optimum concentration can result in toxicity
effects [241]. Deposition of Cu NPs from a series of products that contain Cu may have
toxic effects on ecosystems and especially aquatic ones [242]. On the other hand, lower
concentration of CuO NPs was reported to give better seedling growth, germination, and
metabolism of Vigna radiata (L.) [243]. The synergistic effects of Cu and Fe NPs on the plant
growth and grain yield of three wheat varieties were analyzed, and it was concluded that
Cu NPs increased the number of grains per spike and 1000 grain weight. Furthermore,
glycolysis and protein degradation-related proteins were mainly induced by Cu and Fe
NPs exposure [244].

It is demonstrated in several studies already mentioned, that metallic NPs are able to
promote germination, growth, yield of plants and protect plants from negative effects of
biotic and abiotic stresses. A relatively high number of reports are focusing on understand-
ing the mechanisms that are responsible for the positive effects on plants, as well as the
interactions that occur between them in the soil. It is a challenging puzzle, which involves
different reactions of various plant species under various experimental conditions and
environments as well as the behaviour of metallic NPs. It is crucial to thoroughly examine
and understand the accumulation of NPs in several organisms, particularly in plants, soil
microorganisms, mycorrhiza, and even vertebrates, in addition to their subsequent effects.
The release of metal ions from NPs, which can be used by plants as micronutrients (Zn,
Fe, and Cu, etc.) is the main source of the positive effects but also a field that needs more
research, mostly due to their nature. Other non-metallic NPs that are more environmen-
tally friendly by definition, are already being used extensively, such as carbon-based and
silica-based established medicinal drug carriers [245], with numerous examples in seed
priming [246–249]. However, metallic NPs seem to have more potential, a pool full of
compounds and opportunities for countless combinations that need to be explored always
with the necessary knowledge of their mechanism.

7. Conclusions

The current review highlights the immense potential of magnetic nanomaterials for ap-
plication in agricultural activities towards improved plant growth, nutrition, and protection
against exogenous stressors, as well as effective adsorbents for the removal of numerous
pollutants in agroecosystems. This is attested by the constantly increasing number of re-
ports appearing in support of such sustainable approaches. In any case, there are a number
of important questions that remain unanswered regarding our knowledge of the uptake
capacity, ecotoxicity and mode of action of different nanomaterials including magnetic NPs.
Additional research using state-of-the-art technological platforms is therefore needed to
decipher the interaction between nanomaterials, plants and soil. Furthermore, potential
additive or synergistic effects obtained by the integration of more than one functionalized
NP formulation should be evaluated, ultimately aiming to downstream application trials
under real field conditions, in order to develop and optimize ‘green’, NP-based agricultural
practices, thus opening new and exciting directions in future agriculture.
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