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Abstract: Soil erosion is a constant environmental threat for the entirety of Europe. Numerous studies
have been published during the last years concerning assessing soil erosion utilising Remote Sensing
(RS) and Geographic Information Systems (GIS). Such studies commonly employ empirical erosion
models to estimate soil loss on various spatial scales. In this context, empirical models have been
highlighted as major approaches to estimate soil loss on various spatial scales. Most of these models
analyse environmental factors representing soil-erosion-influencing conditions such as the climate,
topography, soil regime, and surface vegetation coverage. In this study, the Google Earth Engine
(GEE) cloud computing platform and Sentinel-2 satellite imagery data have been combined to assess
the vegetation-coverage-related factor known as cover management factor (C-factor) at a high spatial
resolution (10 m) considering a total of 38 European countries. Based on the employment of the
RS derivative of the Normalised Difference Vegetation Index (NDVI) for January and December
2019, a C-factor map was generated due to mean annual estimation. National values were then
calculated in terms of different types of agricultural land cover classes. Furthermore, the European
C-factor (CEUROPE) values concerning the island of Crete (Greece) were compared with relevant
values estimated for the island (CCRETE) based on Sentinel-2 images being individually selected at a
monthly time-step of 2019 to generate a series of 12 maps for the C-factor in Crete. Our results yielded
identical C-factor values for the different approaches. The outcomes denote GEE’s high analytic and
processing abilities to analyse massive quantities of data that can provide efficient digital products
for soil-erosion-related studies.
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1. Introduction

Soil erosion is a physical process that constitutes a major environmental threat in
the European continent and worldwide [1]. xtensive research initiatives have been ap-
plied to support the study of soil erosion monitoring, assessment and mitigation in recent
years [2,3]. Geospatial technologies such as Remote Sensing (RS) and Geographic Infor-
mation Systems (GIS) have played a crucial role in this task, offering the opportunity to
researchers to explore extensive regions on various time and spatial scales. Multiple mod-
elling approaches have been developed and utilised for soil erosion assessment. Empirical
models can be characterised as the most widely applied and accepted worldwide [4]. The
Universal Soil Loss Equation (USLE) and its revised version (Revised Universal Soil Loss
Equation—RUSLE) constitute the main representatives of empirical models [5].
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The aforementioned empirical models are commonly based on integrating natu-
ral and human-induced environmental factors describing the main components of the
erosion process. One of them is the cover management factor (C-factor), which can be
expressed as a soil loss relation of a given plot of land covered with specified vegetation
to a bare seedbed-prepared plot ploughed up and down along the slope gradient [6–8].
Being affected by rainfall conditions and human interventions in a region, C-factor is
negatively related to soil loss rates [9]. To estimate the C-factor, different approaches
have been employed, such as applying uniform values from literature to land use/cover
classes [10] or generating vegetation indices such as the Normalised Difference Vegeta-
tion Index (NDVI) [11]. Usually, NDVI is directly correlated to the C-factor by a linear or
exponential regression [12]. However, previous studies have observed that NDVI-based
estimation of the C-factor is usually sensitive to various biophysical variables, such as
soil regime, topographic features, and vegetation phenology [13]. Thus, discrepancies
are usually identified between the NDVI-based and literature-based factor values [14].

Google Earth Engine (GEE) is a cloud computing platform that specialises in process-
ing satellite imagery and provides tremendous image data support. This high-performance
computing infrastructure enables researchers to easily and quickly access more than thirty
years of freely distributed public archives for developing RS-based applications [15]. GEE
is open, easy to develop algorithms, and can batch process image data quickly, reducing the
cost and complexity of geospatial data analysis compared with traditional image processing
tools. Through GEE, algorithms and results are freely shared and validated. The function
of mass data storage, which can quickly invoke and batch process huge amounts of data,
makes GEE an ideal tool to assess and map phenomena on national, continental or even
global scales.

The main objective of this study is to explore the capabilities of GEE to effectively
estimate C-factor related to land cover on a European scale by using NDVI data products
from Sentinel-2 satellite images. C-factor values were estimated and mapped for 38 Euro-
pean countries, as well as for their different agricultural lands represented by different land
cover classes. In this context, we mainly focused on agricultural and pasture land classes
since (a) the agricultural areas are more prone to soil erosion, (b) the NDVI approach is
more efficient on these classes and (c) the soil loss phenomena have an economic impact
on these land use classes, thus providing valuable information. Additionally, in order
to estimate the accuracy of the proposed methodological framework, the results of the
European-scale assessment were compared with the results derived both from relevant
research works [10,16] as well as from the regional-scale assessment of C-factor values as
estimated in the island of Crete, Greece.

2. Materials and Methods

This study was conducted for 38 countries of Europe, covering the continent’s
main part from Portugal to the west, the European part of Russia to the east, Nor-
way to the north and Greece to the south. Thus, a total amount of 36,936 Sentinel-2
satellite images, covering the period between 1 January 2019 and 31 December 2019,
were analysed to estimate the C-factor across Europe. The Sentinel-2 Multi-Spectral
Instrument (S2-MSI) mission was launched by the European Space Agency (ESA) in
2015. Two satellites (2A and 2B) were placed in orbit, which combined provided an
approximately five-day revisit time. Sentinel 2-MSI has spatial resolutions ranging
from 10 to 60 m and thirteen spectral bands that cover the visible (coastal, blue, green
and red), near-infrared (B8 and NIR), red-edge (RedEdge1, RedEdge2, and RedEdge3),
shortwave-infrared (SWIR), and water and cirrus regions [17]. The overall methodol-
ogy applied in the GEE environment is presented in Figure 1.
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Figure 1. Flowchart of the methodology in GEE environment.

A significant number of Sentinel-2 images (10 m spatial resolution) were employed
in the GEE platform to create an overall NDVI-based C-factor mosaic for Europe. Crucial
parameters for accomplishing the specific task were determining a universal cloud coverage
threshold of <20% and the atmospheric correction for all the images to be used. After
selecting, semi-automatically, the appropriate images, the overall mosaic was developed.
At the next step, the NDVI was calculated as follows:

NDVI =
(NIR − RED)

(NIR + RED)
(1)

In cases of images overlapping, the mean NDVI value was considered. Then, the
C-factor was estimated according to the following equation [17]. According to [15], the
NDVI exponential function gives more accurate results than the linear regression NDVI
approach that describes +0. The linear relationship between the NDVI and the C-factor is
as follows:

C = exp
[
−a ∗ NDVI

(b − NDVI)

]
(2)

where a and b are fitting parameters with values 2 and 1, respectively. This equation
has been used in numerous research efforts to generate C-factor [18–20], some of them
applied in the European continent [18], making the choice of the specific values ideal
for our study. The estimated C-values were then cartographically visualised as a map
to show the spatial distribution of the factor across Europe (Figure 2). The vegetation
coverage and, consequently, the corresponding NDVI values are inversely proportional
to soil erosion phenomena, which means that areas with high NDVI values are less
prone to soil erosion (low C-values). Furthermore, topographical variations also affect
the NDVI-derived C-values by affecting both the (a) spectrum reflectance property of
the surface and (b) the greenness of the vegetation [19].
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Figure 2. C-factor map for Europe. The red box indicates the pilot area of Crete island used for comparison. The map
indicates the allocation of C-factor all over Europe and corresponding land cover classes.

In terms of further processing, a random dense point sampling (5000 points for each
county) was carried out over the European C-factor product to estimate the mean C-value
agricultural land cover classes defined by the “CORINE” 2018 database (Tables 1 and 2) on
a national level. The “CORINE” database is the de facto standard option for land use/cover
(LULC) monitoring at the European level. It consists of an inter-annual LULC dataset for
Europe, produced by national agencies and coordinated by the European Environment
Agency (EEA) [21]. This paper focuses mainly on arable land classes because: (a) the NDVI
approach can give more efficient results in these areas and (b) the soil loss has a negative
effect on agricultural areas, and this may provide valuable info on a European scale.

Table 1. Description of agricultural land cover classes, according to “CORINE” database.

CORINE Land Cover Code Description

211 Non-irrigated arable land
212 Permanently irrigated land
221 Vineyards
222 Fruit trees and berry plantations
223 Olive groves
231 Pastures
241 Annual crops associated with permanent crops
242 Complex cultivation patterns
243 Agriculture areas with significant areas of natural vegetation
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Table 2. Mean C-factor values for the European countries and their various agricultural land cover classes.

Country Overall
CORINE Land Cover Code

211 212 221 222 223 231 242 243

Albania 0.145 0.197 0.125 0.118 0.098 0.083 0.22 0.16 0.157
Austria 0.107 0.184 - 0.172 - - 0.076 0.053 0.052
Belgium 0.064 0.136 - - 0.044 - 0.034 0.059 0.046
Bosnia &

Herzogovina 0.071 0.131 0.061 0.044 - 0.083 0.058 0.051

Bulgaria 0.185 0.301 0.212 0.148 - 0.175 0.126 0.119
Croatia 0.116 0.157 0.175 0.158 - 0.148 0.085 0.091 0.059
Cyprus 0.389 0.495 0.44 0.376 0.292 0.421 0.288 0.411 0.369

Czech Republic 0.128 0.171 - 0.211 0.123 - 0.091 0.083 0.086
Denmark 0.07 0.089 - - 0.088 - 0.055 0.057 0.06
Estonia 0.146 0.19 - - 0.174 - 0.135 0.131 0.102
Finland 0.274 0.292 - - - 0.01 0.191 0.26
France 0.13 0.165 - 0.202 0.094 - 0.06 0.083 0.068

Germany 0.073 0.123 - 0.094 0.052 - 0.056 0.04 0.071
Greece 0.204 0.299 0.212 0.184 0.101 0.156 0.232 0.216 0.156

Hungary 0.172 0.212 - 0.196 0.087 0.12 0.119 0.086
Iceland 0.154 0.04 - - - - 0.208 0.215 -
Ireland 0.054 0.11 - - - - 0.019 0.06 0.028

Italy 0.179 0.237 0.224 0.234 0.111 0.168 0.151 0.176 0.104
Latvia 0.141 0.151 - - 0.228 - 0.102 0.131 0.09

Lithuania 0.108 0.152 - - 0.085 - 0.091 0.127 0.084
Luxembourg 0.062 0.089 - 0.087 - - 0.031 0.057 0.045

Malta 0.373 0.363 - 0.338 - - 0.377 0.411 0.381
Montenegro 0.093 0.108 - - 0.067 0.021 0.18 0.109 0.087
Netherlands 0.075 0.169 - - 0.072 - 0.032 0.071 0.033

North Macedonia 0.255 0.35 0.321 0.324 0.16 - 0.276 0.278 0.172
Norway 0.166 0.238 - - - - 0.054 0.169 0.204
Poland 0.103 0.162 - - 0.062 - 0.075 0.128 0.09

Portugal 0.221 0.302 0.154 0.254 0.232 0.245 0.262 0.219 0.169
Romania 0.154 0.243 0.137 0.177 0.073 - 0.124 0.135 0.084

Serbia 0.165 0.225 - 0.219 0.137 - 0.156 0.151 0.098
Slovakia 0.132 0.2 - 0.094 0.14 - 0.079 0.19 0.086
Slovenia 0.067 0.114 - 0.045 0.118 0.062 0.043 0.053 0.037

Spain 0.4 0.463 0.372 0.353 0.384 0.4 0.215 0.267 0.317
Sweden 0.157 0.164 - - - - 0.158 0.182 0.123

Switzerland 0.101 0.059 - 0.098 0.174 - 0.119 0.047 0.111
United Kingdom 0.049 0.124 - - 0.018 - 0.03 0.046 0.027

Europe - 0.2 0.238 0.206 0.126 0.189 0.118 0.132 0.114

3. Results and Discussion

The overall C-factor results denote that the higher mean values for 2019 are observed
in the island countries of Europe and specifically Cyprus and Malta. Furthermore, except
for the case of Finland, where quite high values are indicated (maybe this is a drawback due
to the presence of snow cover), countries of southern Europe such as Spain, Portugal, North
Macedonia and Greece seem to also be prone to soil erosion due to high corresponding
C-factor values. On the other hand, countries of northern Europe such as Iceland, the UK
and Belgium have generally low values ranging around 0.05.

C-factor values were also estimated concerning the “CORINE” agricultural classes
for each country. It is worth mentioning that particular focus was given on arable land
classes (codes of “211” and “212”) where the soil erosion process has higher economic
effects. In this vein, high C-values were indicated for the “non-irrigated arable land”
class (code of “211”) in countries of southern Europe such as Greece, Cyprus and
Malta rather than central Europe (e.g., Switzerland, Poland), where values were found
to range around 0.04. Regarding the rest of the agricultural classes, a similar (to
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arable land) response was revealed for “vineyards” and “complex cultivation patterns”
(codes of “221” and “242”, respectively) where, again, southern Europe presents
greater values than central and northern Europe. The overall results concerning the
estimation of C-factor in Europe were compared to the results of [10], where both
land cover and management practice parameters, as estimated from literature values,
were incorporated in the overall analysis. Although country-level differences may be
observed between the two methodologies, the overall mean values in terms of Corine
land cover classes are quite similar. Thus, for our study, the mean C-value compared
to the results of [10] is: (a) 0.20 vs. 0.27 for class 211; (b) 0.238 vs. 0.298 for class 212;
(c) 0.2069 vs. 0.298 for class 221; (d) 0.126 vs. 0.20 for class 222; (e) 0.1892 vs. 0.208
for class 223; (f) 0.118 vs. 0.111 for class 231; (g) 0.15 vs. 0.139 for class 242; and (h)
0.114 vs. 0.119 for class 243. Although the estimation of NDVI-based C-factor has
specific limitations, such as the lack of incorporation of management practices in the
overall methodology, it manages to give emphasis on the temporal variation of NDVI
sensitivity and contributes to the calculation of C-factor in extended areas.

Comparison to Regional Assessment

In order to assess the overall credibility of the applied methodology for European-
scale assessment, the island of Crete in Greece—the largest Greek island and fifth-
largest Mediterranean island—was used as a pilot area for larger-scale (regional)
assessment. In particular, 12 Sentinel-2 satellite images were “handpicked” and anal-
ysed in the GEE environment for NDVI (Equation (1)), and thus C-factor estimation
(Equation (2)) at the monthly time-step of 2019 (Figure 3) was estimated. The main
criterion of imagery selection was the low cloud cover percentage of the images in the
pilot area. In this context, Crete was used as a “controlled” pilot area, where a single
image for every single month of 2019 was selected, avoiding the random incorporation
of numerous images as in the European example.

The C-factor results derived from the Cretan assessment (CCrete) were compared
with those from the European assessment (CEurope). Evaluation of regression fit was
carried out using Pearson’s correlation coefficient to investigate the correlation be-
tween CEurope and CCrete values. This coefficient is a measure of linear dependence
between two variables, xi and yi, with values ranging between [−1 +1] (a value of 1 if
the two sample variables are identical, and a value of -1 if they are completely uncor-
related) [22]. The Pearson correlation coefficient between CEurope and CCrete (annual
mean value) was found to be around 0.7, indicating a moderate-to-high correlation
between the two assessments of different scales. Regarding their response to the exam-
ined land cover classes, the CEurope and CCrete values were generally consistent, with
relatively minimal differences between them. Specifically, the two-factor assessments
gave almost identical results for the classes coded by “212”, “223”, “242”, and “243”
(Figure 4). Furthermore, their differences concerning classes of “211”, “221”, “222”,
and “231” could be considered to be within the standard deviation error, related to
the fact that these classes cover smaller areas in the island. All of the above revealed
that, in the NDVI-based approach, the semi-automatic development of a continental
C-factor mosaic offered more or less similar results to a regional factor product that
was developed using only selected Sentinel-2 images.
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In addition, the results of both approaches seem to agree with the Greek C-factor
results estimated by a literature-based approach in the work of Panagos et al. [10] and
Karydas et al. [16]. According to the specific works, the mean C-factor value (0.28) for
arable lands in Greece and Crete, respectively, was very close to both CEurope and CCrete
values (0.26 and 0.24, respectively). Although the spatial resolution (100 m) in the analysis
of [8] is much higher than this one of Sentinel-2 imagery data (10 m) used in this study, the
comparison can provide answers to the common debate between the efficiency of either
NDVI-based or literature-based approach for C-factor assessment. In general, the NDVI-
based approach overcomes the main disadvantage of the literature-based approach, which
usually incorporates static C-factor values ignoring the chronological and spatial dynamics
of land use components [23,24]. Therefore, approaches that use Earth Observation (EO) data
in the cloud computing environment appear as an alternative to minimise this limitation
and provide freely available data of an adequate spatio-temporal resolution.

4. Conclusions

Empirical modelling is the most widely used approach for soil erosion assessment and
soil and water conservation planning. One of the most crucial parameters in the majority
of empirical models is the soil-erosion-related C-factor. This study presents a sophisticated
way to assess and map the C-factor within the GEE cloud computing environment using
Sentinel-2 imagery data.

From a general perspective, the overall methodology forms a sufficient framework for
assessments on coarse scales such as those of the European continent but based on detailed,
high-quality data (with a spatial resolution of 10 m). However, it has to be pointed out that
the NDVI approach has specific limitations, such as that it focuses only on land and crop
cover and not on soil management. The GEE’s ability to analyse a massive amount of data
(more than 35,000 satellite images) and provide efficient digital products with minimal
computer time processing consumption is highlighted.

Furthermore, the potential of the synergistic use of Sentinel-2 imagery data and
the GEE environment is pointed out to provide fast and efficient results for soil
erosion monitoring.

Future research work will focus on further in situ soil loss data collection for
more accurate validation of this study’s findings and the production of additional
erosion-influencing factors within the GEE environment to be incorporated in empirical
modelling approaches.
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