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ABSTRACT 
 
This paper presents a new method to optimise solar energy systems in order to maximise their 
economic benefits. The system is modelled with TRNSYS computer program. An artificial neural 
network is trained using a small number of annual TRNSYS simulation results, to learn the 
correlation of collector area and storage tank size on the auxiliary energy required by the system 
and thus on the net solar energy price. Subsequently a genetic algorithm is employed to estimate the 
optimum size of these two parameters, which maximise the net solar energy price, thus the design 
time is reduced substantially and the solution obtained is more accurate that the trial and error 
method used traditionally in these optimisations. 
 
Keywords: Artificial neural networks, genetic algorithms, solar thermal systems 
 
1. INTRODUCTION 
 
In any solar energy installation, it is necessary 
to optimise the collector area in order to 
maximise the economic benefits of the system. 
In this work, economic benefits are considered 
as the lowest solar energy price, i.e., solar 
energy produced at the lower possible cost. The 
objective of this work is to present a method 
for the optimisation of solar energy systems 
based on two artificial intelligence techniques; 
namely, artificial neural networks and genetic 
algorithms. For this purpose, an artificial neural 
network is trained to learn the correlation of 
collector area and storage tank on the net solar 
energy price and a genetic algorithm is 
employed to estimate the optimum size of these 
two parameters by minimizing the net solar 
energy price of the installation. Thus, the 
design time could be reduced substantially and 
the optimum solution eventually reached is 
more correct than the solution reached by trial 
and error. The importance of this selection 
method is to make solar applications more 
viable and thus more attractive to potential 
users. 
 
2. CHARACTERISTICS OF INDUSTRIAL 

PROCESS HEAT SYSTEM 
 
As an example, an industrial process heat (IPH) 
system shown schematically in Fig. 1 is 

considered. The system consists of an array of 
collectors, a circulating pump and a storage 
tank. It includes also the necessary controls and 
thermal relief valve, which relieves energy 
when storage tank temperature is above a 
preset value. The system is once through, i.e., 
there is no hot water return to storage, thus 
used hot water is replaced by mains water. 
When the temperature of the stored water is 
above the required process temperature, this is 
mixed with mains water to obtain the required 
temperature. If no water of adequate 
temperature is available in the storage tank its 
temperature is topped-up with an auxiliary 
heater before use. For the modelling and 
simulation of the system, the well-known 
program TRNSYS is employed [1].  
 
The system considered is one where 2000 kg/hr 
of hot water are used at a temperature of 85°C 
(load). The load pattern and other system 
characteristics are shown in Table 1. Flat plate 
collectors are employed for this system, which 
are by far the most used type of solar collector. 
Flat plate collectors are usually permanently 
fixed in position and require no tracking of the 
sun. The collectors should be oriented directly 
towards the equator, facing south in the 
northern hemisphere and north in the southern. 
The characteristics of the collectors considered 
are shown in Table 2. 



Table 1 Characteristics of the basic system 
Parameter Value/Type 
Load temperature 
Load flow rate 
Use pattern 
 
Collector to storage distance 
Piping UA value  
Piping diameter 
Relief valve set temperature 

85°C 
2000 l/hr 

5 days a week, 8.00-16.00 hours each day, 
load used for the first ¾ of each hour 

30m 
20 W/°C 
75mm 
100°C 

 
Table 2 Characteristics of the collector system 

Parameter Value 
Type of collector 
Fixing of risers on absorber plate 
Absorber coating 
Glassing 
Efficiency mode 
Flow rate per unit area at test conditions 
(I) Intercept efficiency  
(S) Negative of first-order coefficient of the efficiency 
(bo) Incidence angle modifier constant 

Flat-plate 
Embedded 

Black mat paint 
Low-iron glass 
n vs (Τi - Τa)/ΙΤ 
0.015 kg/s-m2 

0.792 
6.67 W/m2 °C 

0.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Schematic diagram of the solar collector system 
 
3. SYSTEM MODEL 
 
For the modelling of the system the well-
known program, TRNSYS is employed. 
TRNSYS is employing the standard collector 
performance equation in which the intercept (I) 
and slope (S) factors, shown in Eq. 1, are used 
to model the collector.  
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where G is the global solar radiation, kατ is the 
incidence angle modifier and ∆T is equal to Ti-
Ta, i.e., inlet temperature to the collector minus 

ambient temperature. The following model for 
the incidence angle modifier is employed: 
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where bo is a constant and θ is the angle of 
incidence. The useful energy extracted from the 
collectors is given by: 

( ) ( )ατ ταu R L i aQ F A k G U T T= − −⎡ ⎤⎣ ⎦               (3) 

where FR is the heat removal factor and τα is 
the tranmsittance-absorptance product. 
The total useful energy for the whole year is 
obtained from: 
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and the auxiliary energy required, Qaux is: 

,aux load u a lossQ Q Q Q= − −              (5) 

where Qload is the energy required by the load 
and Qloss is the energy lost from the storage 
tank and pipes. 
 
As can be seen from the above equations the 
energy obtained from the solar collector field 
depends on the inlet temperature to the 
collector Ti, which depends on the load pattern 
and the losses from the storage tank and pipes. 
 
The present investigation was conducted 
through the use of a Typical Meteorological 
Year (TMY) for Nicosia, Cyprus. This was 
generated from hourly measurements, of solar 
irradiance (global and diffuse on horizontal 
surface), ambient temperature, wind speed and 
direction, and humidity ratio, for a seven-year 
period, from 1986 to 1992 using the Filkenstein 
- Schafer statistical method [2]. The 
measurements were recorded by the Cyprus 
Meteorological Service at the Athalassa region, 
an area at the suburbs of the town of Nicosia. 
The TMY is considered as a representative year 
for the Cypriot environment. Using this 
approach the long-term integrated system 
performance can be evaluated and the dynamic 
system’s behaviour can be obtained.  
 
The economic analysis is performed in order to 
obtain the annual cost of the system and the net 
solar energy price (NSEP). The investment cost 
of the solar system is obtained from: 

VCACCC vafs ++=               (6) 
where Cf is the area independent cost, Ca is the 
area dependent cost, both applied to the solar 
collectors, and Cv is the cost of storage per m3 
of storage volume. 
 
For the operation cost (Co), maintenance and 
parasitic costs are considered. The former are 
estimated to be 2% of the initial investment. 
The latter account for the energy required 
(electricity) to drive the solar pump.  The total 
annual cost is given by: 

os CCC += α                (7) 

where α is the annuity given by: 
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where i is the inflation rate and N is the number 
of years the system is operational, i.e., life of 
the system (20 years). 
 
The net energy collected from the collector 
(Qnet) is obtained by subtracting the annual 
amount of auxiliary energy from the annual 
amount of conventional fuel required to cover 
the load for a fuel only system, i.e., 

net load auxQ Q Q= −               (9) 
Finally, the solar energy price, in £/kWh, is 
obtained by: 

netQ
CNSEP =              (10) 

 
4. SYSTEM SIMULATION 
 
With the aid of TRNSYS and the TMY for 
Nicosia, Cyprus, a number of simulations were 
performed. The optimisation parameter used is 
the net solar energy price (NSEP), i.e., the 
optimum system is the one, which gives 
minimum NSEP. As the load pattern is the 
same for all the cases considered, the 
parameters on which the performance of the 
system depends are the collector area and the 
storage tank volume. By increasing the 
collector area more solar energy is collected 
but the solar system costs more, whereas by 
increasing the storage tank volume more 
energy can be stored but the losses from the 
storage tank to the environment are increased. 
Small storage tank volumes exhibit lower 
environmental losses but increase the losses of 
energy though the relief valve as they can 
easily reach the relief valve setting. 
 

Various simulations were performed for a 
number of collector areas and a range of 
storage tank volumes. In this way, a database is 
created with the combination of the collector 
area and storage volume on auxiliary energy 
required by the system, for various cases. The 
idea is to create a small database of 
combinations of values and use these values to 
create a fitness function for the NSEP. The data 
collected from the present system from 7 runs 



of TRNSYS are shown in Table 3. As can be 
seen from Table 3 as the collector area and the 
storage tank are increased the auxiliary energy 
required is reduced because the solar system 
can collect and store more solar energy, but the 
system costs more. It is important to cover the 
low and upper extreme ends of the cases to be 
investigated plus some intermediate values. 
This is important for two reasons; first, the 
neural network learns all the range of possible 
values and thus it will not need to extrapolate 
and second the scaling functions for the input 
and output data need to be determined only 
once, based on the minimum and maximum 
values of the parameters in the dataset. For 
those extreme conditions, rules of thump can 
be used such as storage tank between 40 and 
300 litres per square meter of collector area. 

 
Table 3 Training dataset 

Area (A) 
[m2] 

Storage tank volume (V)  
[m3] 

Qaux  
[kJx108] 

100 
100 
200 
300 
400 
500 
500 

10 
30 
30 
20 
10 
10 
30 

6.447 
6.288 
4.623 
3.606 
3.058 
2.508 
2.124 

 
The traditional method for finding the optimum 
solution is to perform many runs of TRNSYS 
and decide by trial and error the characteristics 
of the system, which gives the optimum 
solution. This method may lead to solutions far 
away from the optimum as the method strongly 
depends on the intuition of the engineer and the 
peculiarities of the system and of the site 
weather conditions. Additionally depending on 
the computer system frequency and the 
complexity of the system, each run might need 
several minutes to hours to be performed. 
Thus, it is required for the present system not 
only to be able to find the optimum solution 
but also to reduce the time required for such 
task to be performed. 

 
5. METHOD DESCRIPTION 
 
A different approach to optimise the system 
based on artificial intelligence systems is 
suggested in this paper. The idea is to use 

genetic algorithms to find the optimum values 
of collector area and storage tank volume, 
which will minimise the net solar energy price 
of the system. For this purpose, an accurate 
correlation of collector area and storage tank 
volume on the auxiliary energy required to 
cover the load is required. In this work a neural 
network is used which when trained gives a 
complex polynomial equation correlating these 
parameters. The neural network and the genetic 
algorithm are briefly described in this section. 
 
5.1 Group Method Data Handling (GMDH) 
Neural Network (NN) 
 
There are various methods that can be used to 
model the data, i.e., correlate the collector area 
and storage tank volume with the auxiliary 
energy required. These could be based on 
simple regression analysis, multiple regression 
analysis, neural networks and many others. In 
this work, the neural network method is 
selected because of its accuracy. One type of 
neural networks, which is very suitable for the 
present application, is the group method of data 
handling (GMDH) neural network, which was 
used to model the data. GMDH works by 
building successive layers with links that are 
simple polynomial terms. These polynomial 
terms are created by using linear and non-linear 
regression. The initial layer is simply the input 
layer. The first layer created is made by 
computing regressions of the input variables 
and then choosing the best ones. The second 
layer is created by computing regressions of the 
values in the first layer along with the input 
variables. Again, only the best are chosen by 
the algorithm called survivors. This process 
continues until the network stops getting better 
(according to a prespecified selection criterion) 
 
The resulting network can be represented as a 
complex polynomial description of the model. 
The complexity of the resulting polynomial 
depends on the variability of the training data. 
In some respects GMDH, it is very much like 
using regression analysis, but it is far more 
powerful than the latter. GMDH can build very 
complex models while avoiding overfitting 
problems. A by-product of GMDH is that it 
recognizes the best variables as it trains. 



The GMDH network is implemented with 
polynomial terms in the links and a genetic 
component to decide how many layers are 
built. The result of training at the output layer 
can be represented as a polynomial function of 
the inputs. The layer building GMDH 
procedure continues as long as the evaluation 
criteria continue to diminish. GMDH algorithm 
then checks if this is so and continues or stops 
training. There may also be other conditions, 
which determine when training is stopped.   
 
5.2 Genetic Algorithm 
 
A genetic algorithm is an optimum search 
technique based on the concepts of natural 
selection and survival of the fittest. It works 
with a fixed-size population of possible 
solutions of a problem, called individuals, 
which are evolving in time. A genetic 
algorithm utilizes three principal genetic 
operators:  selection, crossover, and mutation. 
Genetic algorithms (GA) are suitable for 
finding the optimum solution in problems were 
a fitness function is present. Genetic algorithms 
use a “fitness” measure to determine which of 
the individuals in the population survive and 
reproduce. Thus, survival of the fittest causes 
good solutions to progress. A genetic algorithm 
works by selective breeding of a population of 
“individuals”, each of which could be a 
potential solution to the problem.  In this case, 
the genetic algorithm is seeking to breed an 
individual that in this case minimizes the net 
solar energy price of the IPH system. 
 
During each step (called a generation) in the 
reproduction process, the individuals in the 
current generation are evaluated by a so-called 
fitness function value, which is a measure of 
how well the individual solves the problem. 
Then each individual is reproduced in 
proportion to its fitness: the higher the fitness, 
the higher its chance to participate in mating 
(crossover) and to produce an offspring. A 
small number of newborn offsprings undergo 
the action of the mutation operator. After many 
generations, only those individuals who have 
the best genetics (from the point of view of the 
fitness function) survive. The best individual 
provides an optimum or near optimum solution 
to the problem. 

The larger the breeding pool size, the greater 
the potential of it producing a better individual.  
However, the networks produced by every 
individual must be applied to the test set on 
every reproductive cycle, so larger breeding 
pools take longer time. After testing all of the 
individuals in the pool, a new “generation” of 
individuals is produced for testing.  
 
During the setting up of the GA the user has to 
specify the adjustable chromosomes, i.e., the 
parameters that would be modified during 
evolution to obtain the minimum value of the 
fitness function. In this work, these are the 
collector area and the storage tank volume. 
Additionally the user has to specify the ranges 
of these values. It is important that the ranges 
specified to be the same as the extreme cases 
used when setting up the neural network. In the 
present work, these are equal to 100-500m2 for 
the collector area and 10-30m3 for the storage 
tank volume. 
 
6. OPTIMUM SOLAR SYSTEM 
 
The training dataset (Table 3) were learned by 
the NN with very good accuracy (R2-value 
equal to 0.9986). A plot of the actual 
(modelled) and network predicted data is 
shown in Fig. 3. It should be noted that a 
multiple linear regression method could only 
produce correlation with R2=0.9653 which is 
not acceptable for the kind of predictions 
required in this type of problems. A similar 
figure for data, which are completely unknown 
to the network and used for validation of the 
ability of the network to produce accurate 
results is shown in Fig. 4. It should be noted 
that in this case also the network provided good 
predictions with R2=0.9906. 
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Fig. 3 Comparison of actual (modelled) and 
NN predicted data for the training dataset 
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Fig. 4 Comparison of actual (modelled) and 
NN predicted data for the validation dataset 

 
The final equation obtained from GMDH is:  
 
Y=- 0.29565 - 0.93105 N1 + 0.32545 N1

2 - 
0.07628 N2

3                (11) 
 
All the data required by the GMDH need to be 
scaled from –1 to 1. Therefore, parameters N1 
(collector area), N2 (storage volume) as well as 
Qaux, obtained form Y (Eq. 11) needs to be 
scaled in the same interval. This is done with: 

( )min

max min
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x x
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= −
−

           (12) 

Figure 5 shows the fitness function against the 
number of generations during the running of 
the genetic algorithm program. As can be seen 
the best fitness is found at the 45th generation, 
which is very fast. It should be noted however 
that the shape of the graph depends on the 
initial conditions. The particular case presented 
is for initial collector area equal to 100m2 and 
initial storage tank volume equal to 30m3. As 
can be seen after about 12 generations values 
near the optimum ones have been obtained. 
 
The optimum solution reached is; collector area 
equal to 227.7m2 and storage tank size equal to 
13.2m3. The net solar energy price for this 
solution is 0.038471 £/kWh, whereas the net 
solar energy price of a more practical solution 
with A=230m2 and V=13m3 are 0.038473 
£/kWh. This performance of the GMDH 
network to predict Qaux for this case is very 
good as it is shown by the point marked on Fig. 
4, which compares the auxiliary energy 
predicted with the neural network with that 
obtained from TRNSYS. This case is checked 
on purpose to evaluate the prediction accuracy 
for the optimum case.  
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Fig. 5 Evolution of the best fitness  

 
It should be noted that both the training of the 
neural network and the genetic algorithm 
program required just a few seconds to be 
performed whereas each run of TRNSYS 
requires 2.5 minutes, all on a Pentium 400 
MHz machine. Thus, by reducing the number 
of runs of TRNSYS the time required to find 
the optimum solution is greatly reduced and the 
solution reached is more correct than by using 
the traditional trial and error method which 
most of the times relies on the intuition of the 
user to find a good solution. 

 
7. CONCLUSIONS 
 
A new optimisation method is presented in this 
paper. Initially the system is modelled with 
TRNSYS and GMDH neural network, which 
was trained at high accuracy, as the R2-value 
obtained is 0.9986. Subsequently a genetic 
algorithm was used to select the combination 
of system components, i.e., solar collector area 
and storage tank volume, which minimises the 
net solar energy price of the system. It is 
believed that the present method would 
decrease the time required by design engineers 
to find the optimum solution and in many cases 
to obtain a selection, which could not be easily 
spotted by traditional trial and error method, 
which in most of the cases depends on the 
intuition of the engineer. 
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