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Abstract: Mapping surface ceramics through systematic pedestrian archaeological survey is consid-
ered a consistent method to recover the cultural biography of sites within a micro-region. Archaeolo-
gists nowadays conduct surface survey equipped with navigation devices counting, documenting,
and collecting surface archaeological potsherds within a set of plotted grids. Recent advancements
in unmanned aerial vehicles (UAVs) and image processing analysis can be utilised to support such
surface archaeological investigations. In this study, we have implemented two different artificial
intelligence image processing methods over two areas of interest near the present-day village of
Kophinou in Cyprus, in the Xeros River valley. We have applied a random forest classifier through
the Google Earth Engine big data cloud platform and a Single Shot Detector neural network in the
ArcGIS Pro environment. For the first case study, the detection was based on red–green–blue (RGB)
high-resolution orthophotos. In contrast, a multispectral camera covering both the visible and the
near-infrared parts of the spectrum was used in the second area of investigation. The overall results
indicate that such an approach can be used in the future as part of ongoing archaeological pedestrian
surveys to detect scattered potsherds in areas of archaeological interest, even if pottery shares a very
high spectral similarity with the surface.

Keywords: potsherds; detection; pedestrian survey; remote sensing archaeology; single shot detector;
artificial intelligence; random forest; Google Earth Engine; Cyprus

1. Introduction

Scatters of fragmented pottery found on the surface are considered as archaeological
proxies, evidence of past human activity, and indicators for sub-surface archaeological
features [1,2]. As a non-destructive method, intensive surface survey has been widely
adopted by archaeologists since the 1960s to record potsherds, lithics, and architectural
features [3–6]. Since the late 1970s, ‘new wave surveys’ in Greece and other parts of the
Mediterranean moved away from earlier topographical approaches and the extensive
survey tradition and formed the first generation of intensive regional surveys [7,8]. A
regional survey, however, faces clear difficulties when one attempts to compare survey data
in relation to the variables of each project, such as the area covered, its methodology, and
scope [9]. Archaeological survey is rigorous and multidisciplinary, while the main charac-
teristics of most surface survey projects are the close-order field-walking and recording
of surface artefacts, collection of representative samples, data analysis, digital archiving,
and self-criticism [7,8]. The exploration and understanding of landscape evolution, human
interaction with the landscape, and settlement history from early prehistory to early mod-
ern times remains of paramount importance, and a common aim between different survey
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projects across the Mediterranean, from Spain and Italy to Greece and Cyprus [4,10–15].
As Orengo and Garcia-Molsosa [16] argue, surface survey, along with remote sensing and
geophysics, are considered as some of “the most popular and reliable approaches for the
detection and characterisation of archaeological sites”.

Although this may vary between different projects, archaeologists usually investigate
rectangular units (e.g., transects sized 100 × 100 m, sampling surface potsherds and other
artefacts every 10 m at the x-axis). Nowadays, with the aid of handheld navigation units
(i.e., Global Navigation Satellite Systems, GNSS), field surveyors record potsherds, lithics,
and architectural remains during systematic field-walking. This method is considered
quite efficient, especially when field-walkers are trained or as they become familiar with
the archaeological context of the area (in cases when there has been previous archaeological
exploration of some kind, when there are obvious indications about the chronology of
the site, etc.). However, some limitations do exist beyond subjective observation, as the
method can be time-consuming, determined by the extent of the surface that needs to be
surveyed in a certain (usually limited) amount of time, the intensity of field-walking, and
the interval between field-walkers, which can potentially increase the coverage [1,2].

Over the past few years, especially after the democratisation of photogrammetric tools
and equipment [17–19], with the availability of open-source or low-cost photogrammetric
software, high-resolution imagery with centimetre resolution has revolutionised archaeo-
logical practices [20–25]. Digital camera sensors embedded in low-cost unmanned aerial
vehicles (UAVs) can collect very high-resolution stereo pairs of images in a short time.
Thus, orthophotos can be generated over specific areas of interest, minimising elevation
and camera distortions [26]. UAVs have been widely adopted for archaeological purposes
in the recent past, as indicated by the relevant literature [27–29].

In parallel, artificial intelligence image-based methods have also been populated in the
relevant literature, while their use is considered a hot topic for supporting archaeological
research [30–36]. The recently published work of Orengo and Garcia-Molsosa [16] com-
prises a milestone in this direction. Orengo and Garcia-Molsosa [16] have demonstrated
the great potential using the Google Earth Engine big data cloud platform, already men-
tioned in [37], for detecting potsherds at the archaeological site of Abdera (ca. 7th to 3rd
C BC). Their work was based on the acquisition of high-resolution UAVs red–green–blue
(RGB) images and the application of the random forest classification. Recently, the authors
also improved their previous work by developing a novel framework for the detection of
surface pottery [38].

The scope of our study is twofold: on the one hand, it aims at evaluating the initial
approach of Orengo and Garcia-Molsosa [16], providing further insights regarding the
robustness of their approach, while on the other, we aim to push research by integrating
multispectral cameras, covering images beyond the visible part of the spectrum, and ap-
plying deep learning detection methods. In order to achieve the aforementioned objectives,
two areas in the Xeros River valley in Cyprus were selected, where intensive archaeologi-
cal survey was conducted by the Artefact and Landscape Studies Laboratory (ArtLandS
Lab) in the framework of the Settled and Sacred Landscapes of Cyprus archaeological project
(SeSaLaC) of the Archaeological Research Unit of the University of Cyprus [39]. SeSaLaC
comprises an inter- and multi-disciplinary field project conducted between 2014 and 2020
in the Xeros valley (Larnaca District), an area of 2500 ha in size, situated 20 kilometres
south-west of Larnaca and 7 km inland from the south coast of the island. The aim was to
identify, map, and interpret traces of human activity in the Xeros valley from early prehis-
tory to early modern times in order to examine the interaction of secular and religious space
with the natural environment. The ultimate objective has been to investigate the political,
religious, and settlement identities of the island through the application of advanced field
methodologies and techniques. In addition to the widely employed methods of intensive
surface survey, such as the systematic counting of pottery finds and the recording of pottery
densities, a range of informed methods and interdisciplinary approaches were employed,
including geophysical prospection, geoarchaeology, digital Humanities and Anthropology,
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in order to explore relevant research questions. Along with previous systematic survey
projects in Cyprus, such as those on the Troodos and Pyla-Koutsopetria [14,15], SeSaLaC
constitutes one of the new generation intensive surface survey programmes, adopting a
more systematic methodology in landscape archaeology and developing a more intensive
approach to surface coverage, collection, and recording of archaeological data and finds.
Thanks to the topographical characteristics of the Xeros valley, SeSaLaC’s fundamental
difference to previous surveys on the island [14] was that it did not cover surveyable
patches of the landscape but its totality, as it is defined by a continuous series of hills to the
east, the foothills of Troodos to the north, and Pentaschoinos River to the west. Moreover,
the absence of collection limitations [15] allowed the careful sampling of representative
and sufficient numbers of ceramic artefacts for detailed study and analysis.

The current work is organised as follows: the selected two cases studies, and the
archaeological context is first provided, following by a description of the overall methodol-
ogy implemented here. Section 3 describes the results obtained from the two case studies,
while the next section (Section 4) aims to discuss the overall results, indicating potential
further investigations for the future. The paper ends with the Section 5.

2. Case Studies and Methodology
2.1. Case-Study Areas

The archaeological field project in the Xeros River valley has employed a range of
informed methods of intensive field survey. These include the systematic counting of
pottery densities in transects running north–south throughout the survey area, aerial pho-
tography, micro-topographical surveys, and the in situ digital recording of archaeological
information and monuments [4,5], using the technical equipment of ArtLandS Lab. The
transects plotted throughout the Xeros valley comprise continuous zones of 150 m in width
at 150 m intervals; walkers, lined up within each transect-unit (150 × 150 m), were spaced
15 m from one another. The survey team of each unit recorded the number of ceramic
finds and lithics visible on the surface, along with potential architectural remains and the
degree of visibility. Concentrations of surface archaeology identified and recorded by the
survey team in the transects were regarded as places of special archaeological interest, they
were revisited and divided into smaller units or grids of 25 × 25 m, and a finer survey was
conducted by a group of field-walkers spaced at 5 m from one another [4,5].

The sample unit (175 × 175 m) in Area 6, and the one in Area 20 (25 × 25 m), shown
in Figure 1, were selected due to their high pottery distribution and density. According
to the results of the archaeological field campaigns in Area 6, the team of archaeologists
counted approximately 2400 pottery fragments, while in area 20 the field-walkers identified
and counted 300 potsherds. The largest preserved width of the identified surface pottery
fragments ranges from approximately 3 cm to 20 cm, while the colour of their surface also
varies, from reddish-orange to brown, depending on firing (Figure 2).
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Figure 1. The survey area in the Xeros River valley (marked with the yellow line) under investigation by SeSaLaC and 
ArtLandS Lab (University of Cyprus), with the selected Areas 6 and 20 used as pilot case-studies for detecting surface 
pottery scatters using high-resolution UAV images. 

  
Figure 2. Examples of unwashed surface potsherds as recovered from the field in Areas 20 and 6, respectively (Photos: A. 
Vionis, ArtLandS Lab©). 

2.2. Methodology 
Initially, regular UAV flights were undertaken using the DJI Phantom 3 Professional 

system attached with the FC300X_3.6_4000x3000 (RGB) camera. The specific system was 
used as part of the wider flight campaign to create an overall mosaic of the entire survey 
area in the Xeros valley. The flights were performed in different periods for supporting 
the general needs of ArtLandS Lab’s research activities. A subset of this mosaic over Area 
20—taken in the summer of 2020—was used for the needs of this pilot study. A year later, 
in summer 2021, a new campaign over Area 6 was performed, using the DJI P4 Multispec-
tral system and the FC6360_5.7_1600x1300 camera. Figure 3 shows a photo taken during 
the latest campaign using the DJI P4 multispectral camera. 
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pottery scatters using high-resolution UAV images.
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Figure 2. Examples of unwashed surface potsherds as recovered from the field in Areas 20 and 6, respectively (Photos: A.
Vionis, ArtLandS Lab©).

2.2. Methodology

Initially, regular UAV flights were undertaken using the DJI Phantom 3 Professional
system attached with the FC300X_3.6_4000x3000 (RGB) camera. The specific system was
used as part of the wider flight campaign to create an overall mosaic of the entire survey
area in the Xeros valley. The flights were performed in different periods for supporting
the general needs of ArtLandS Lab’s research activities. A subset of this mosaic over Area
20—taken in the summer of 2020—was used for the needs of this pilot study. A year later, in
summer 2021, a new campaign over Area 6 was performed, using the DJI P4 Multispectral
system and the FC6360_5.7_1600x1300 camera. Figure 3 shows a photo taken during the
latest campaign using the DJI P4 multispectral camera.
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Figure 3. A photo taken during the UAV multispectral campaign over Area 6 in 2021.

Stereo pairs from the high-resolution images were collected from both campaigns and
then processed to create orthomosaics over the two case studies. Ground control points
using Global Navigation Satellite Systems (GNSS) were used to estimate the cameras’
internal and external orientation parameters. The Digital Surface Model (DSM) was
initially produced in commercial software, namely ArcGIS Drone2Map (powered by Pix4D)
for Area 20 and the Pix4Dmapper (v.4.6.4) for Area 6, using Structure from Motion (SfM)
techniques. Consequently, a textured RGB and a multispectral mosaic were generated
for Areas 20 and 6, respectively. The latest mosaic (over Area 6) was a four-spectral band
imagery, covering both the visible part of the spectrum (RGB) and the near-infrared part
of the spectrum (NIR). For the first mosaic, the Intel(R) Core (T.M.) i7-9700K CPU, with
32GB RAM, was used, while for the second we used the Intel(R) Core (T.M.) i7-8700 CPU
with 64GB RAM. The processing time was more than 2 h for both mosaics. The results
(textured mosaics) from both Areas (20 and 6) are shown in Figure 4. The spatial resolution
(pixel size) of the orthomosaics for Area 20 was estimated to be at 3.5 cm with a mean
reprojection error of 0.274 pixels while for Area 6 this was estimated to be at 9.5 cm with a
mean reprojection error of 0.193 pixels.

Once the mosaics were generated, image-processing techniques may be applied to
detect potsherds scattered on the ground. For the purposes of this article, we followed
two different approaches for each case-study area. For Area 20, which was shot with an
RGB sensor camera, the Random Forest classifier at the Google Earth Engine big data
cloud platform was used after Orengo and Garcia-Molsosa’s published study [16]. At the
environment of the Google Earth Engine, a training sample was given to the model by
selecting areas of interest (points) for two classes: ‘ceramics’ (class 1) and ‘other’ (class 0).
Once the training sampling was performed, the random forest classifier was applied—the
results were then exported to a local computer. For the second case study, the ArcGIS Deep
Learning tools of the ArcGIS Pro were used. The multispectral image was inserted into the
ArcGIS Pro environment, and training samples were selected as before. Then, the Single
Shot Detector (object-based) algorithm was trained using a RES-Net 152 network. The
(trained) algorithm was applied for the entire multispectral image. We should also mention
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that the training and evaluation process was carried out continually for improving the
overall detection rate.
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Figure 4. Mosaics used in this study: Area 20 (left) and Area 6 (right).

The outcome (binary image) was compared with the result of intensive archaeological
surface exploration, i.e., the number of potsherds recorded by field-walkers during the
archaeological field campaigns. A direct comparison was also made for pattern distribution
analysis correspondence. The results are presented in the following paragraph.

3. Results
3.1. Detection of Potsherds in RGB High-Resolution Mosaic (Area 20)

Using the Google Earth Engine code by Orengo and Garcia-Molsosa [16], the random
forest classifier (number of trees = 100) was applied to Area 20 in the Xeros valley. As
noted above, the classifier was trained using image samples for two classes: ‘ceramics’
as class 1 and ‘other’ as class 0. Beyond the RGB spectral bands, additional bands were
also generated using texture and gradient analysis (see more in [16]). The random forest
probability map was produced, providing the similarity (confidential level) of a pixel being
in class 1 (ceramics). Setting a value of 0.7 as a threshold at the confidential level, the binary
map was exported (0 = other and 1 = ceramics). The image was then converted into a
vector (points) for better visualisation and processing.

Figure 5 (left) shows the probability map of the distribution of the potsherds detected
in Area 20, using the random forest classification. Higher probability (i.e., closer to class 1
rather than class 0) is indicated with blue, while lower probability (i.e., class 0) is shown
in light yellow. Figure 5 (right) shows the final binary classification outcomes using as a
threshold the value 0.7. Pixels identified as ‘ceramics’ (class 1) are shown in darker shades.
The red square indicates the boundaries of the area of interest.

As the area of interest (Area 20) was relatively homogenous, with no significant noise
(except for certain spots with low vegetation, see Figure 4, left), the fragmented ceramics
were easily marked during image interpretation for the needs of the training purposes. In
addition, the background noise was relatively uniform (white textured soil), minimising
potential errors in the classification process.

The results, after converting the raster binary classification into vector point data, are
shown in Figure 5 (right). Using the GIS environment (ArcGIS Pro), it was calculated that
the overall number of fragmented surface ceramics in Area 20 is 383, while the pedestrian
survey results reported 300 counts. Thus, the correspondence between the image-based
approach with the data recovered by the archaeological field-team was more than 78%,
providing a high level of agreement with the field-surface datasets. However, we should
also note that this difference in the number of potsherds counted through both methods
is minimal, considering that a field-walker, even in cases when members of a field-team
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are spaced at 5 m from each other, has an effective high-resolution visibility of only 1–2
m in width [2]. Therefore, in terms of observable variable against predicted value we
have the following numbers: observable variable from foot surveys equals to 300 ceramics,
however the predicted number of ceramics—given the foot survey characteristics—raises
this number to 375. This number is close to the number detected by the random forest
classification (97% match).
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In addition, the density of the sherds detected in these areas can be calculated using
spatial analysis tools in the GIS environment. A higher density of potsherds is highlighted
in Figure 6 with dark purple colour.
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3.2. Detection of Potsherds in High-Resolution Multispectral Mosaic (Area 6)

In the second case study (Area 6), an initial approach as those of Area 20 was imple-
mented using the RGB orthophoto. However, the results were not encouraging, as the
false detection rate—compared to the ground truthing—was very high. The results from
this analysis are shown in the Annex (Figure A1 in Appendix A). The low performance
of the approach, was already indicated in the work of [16] and can be associated with the
different environmental and archaeological context of Area 6 (see also Section 4).

To further investigate the potential detection of archaeological surface ceramics, an
alternative approach was investigated here, as already described before. Instead of an RGB
high resolution mosaic, a multispectral UAV orthomosaics was analysed in the ArcGIS
Pro environment, using deep learning approaches. In this area, the Single Shot Detector
neural network algorithm was applied. This method uses a fully convolutional approach in
which the network can identify all objects within the image in one pass, using a pre-trained
image classification network [40]. Examples from the training process are shown in Figure
7. The authors have manually selected ground-truthing, while the prediction images show
the results after the overall training. On the top left of Figure 7, we can see a true–false
example, while a false–true detection is shown on the top right of Figure 7. In the rest of
the examples given in Figure 7, we can observe a true–true detection. As stated above, this
process was repeated several times by selecting appropriate samples from the multispectral
image. In addition, in the case of the Single Shot Detector, we only used a single class
(‘ceramics’), in contrast to the previous example (in Area 20), where we used two classes
(‘ceramics’ and ‘other’).
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Once we trained the detector using images’ samples, the algorithm was applied to the
whole dataset. The outcomes of this analysis are shown in Figure 8. Potsherds are shown
as red dots, whereas the different colours indicate the confidence value of the detection.
More than 300 potsherds were found scattered mainly on the southeast corner of the area
of interest. In contrast, the results from the pedestrian field-survey indicated a rather more
significant number of potsherds (observed ceramics through foot surveys: 2406, predicted
count for ceramics for the area: 3007). This difference observed between the detection and
the ground truthing is discussed in the following section.
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4. Discussion

The results from Area 20 confirm previous outcomes and attempts by Orengo and
Garcia-Molsosa [16]. For the specific case study, we have replicated the approach proposed
by them [16], and the findings presented are very close to the results reported for plot 591
(see results and discussion section in [16]). Therefore, the analysis of the sampled unit
in Area 20 in the Xeros valley confirms—in a different environment and archaeological
context from the one used in [16]—that automatisation and machine learning approaches
can be used to detect scattered potsherds. However, as also noted by [16], limitations still
exist, and further improvements can be made, which has been also reported for the Area 6.

In this direction, we have used a multispectral camera instead of an RGB sensor, aiming
to capture the near-infrared part of the spectrum. Near-infrared has been widely used
for agricultural [41] and archaeological purposes, especially for detecting archaeological
cropmarks [42–46]. In addition, a deep learning method is applied, aiming to detect
potsherds automatically in a single class. Despite the several attempts made through
the parametrisation of the Single Shot Detector algorithm and the training samples, the
detection rate remained relatively low compared to the ground-truthing record (300 against
2406 potsherds in Area 6). Table 1 summarizes the results (detection of ceramics) per
case study.

Table 1. Summarized results from Area 20 and Area 6.

Foot Surveys
UAV DetectionCount Prediction 1

Area 20 300 375 383
Area 6 2406 3007 300

1 Estimated number if the area was fully covered from the archaeologists during the survey.
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The differences observed in Table 1 for Area 6, between the image processing results
and the ground-truthing probably link with two parameters. The first regards the spatial
resolution of the multispectral mosaic, which was estimated at 9.5 cm. This resolution
could be improved by shifting the height of the flight (from approximately 20 m to 10 m
above the surface). However, this would affect the size of the coverage in a single flight.
The second, more critical, aspect concerns the potsherds (spectral) signatures in the ground
surface of Area 6, where their reflectance is not so distinguishable from the colour of the
soil in the background (in contrast to Area 20). That is, Area 20 comprises a multi-period
site, with the majority of the surface ceramics dated to the Early Middle Bronze Age; the
colour of Cypriot Bronze Age pottery ranges from dark red to brown, thus, very different
and distinguishable from the local soil (pale/light brown during the dry summer months).
Along with fragments of Bronze Age pottery, potsherds of other periods present in Area
20, including coloured glazed-wares of the medieval to early modern eras, constituting
a multi-coloured carpet of scattered ceramics that are notably different from the soil in
the background. On the contrary, Area 6 comprises a single-period site, dated to Late
Antiquity, with a large concentration of well-fired table- and storage-wares in two or three
main fabrics, the colour of which ranges from pale orange to light brown, thus remarkably
similar to the colour of the soil.

Figure 9a shows a sample of unwashed potsherds found scattered in Area 6, collected
during the UAV flight campaign of 2021, while Figure 9b–e show the reflectance of the
image, at the blue (Figure 9b), green (Figure 9c), red (Figure 9d), and near-infrared (Figure
9e) bands, as captured from the DJI P4 Multispectral system. The spectral confusion
between the potsherds with the background soil is evident in the diagram of Figure 10. The
diagram shows the backscattered reflectance of three main classes of the area, namely soil,
crops, and ceramics (potsherds), over the different parts of the spectrum (blue–green–red–
near infrared). The spectral distance of the ceramics with the rest of the classes is relatively
low, less than 10% (e.g., ceramics and soil at band 4), thus, prohibiting a clear spectral
pattern of surface ceramics for the given Area.
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Figure 9. Example of photo taken from the UAV multispectral sensor: (a) RGB image; (b) blue band; (c) green band; (d) red
band; (e) NIR band.
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Figure 10. Reflectance values (in %) for three main classes of Area 6: background soil, crops, and
ceramics, for the visible (blue–green–red) and near-infrared part of the spectrum.

Despite this limitation, it should be emphasised that the spectral confusion between
potsherds and the background soil is not uncommon in archaeological research. We
should note here that the same confusion is sometimes noted amongst field-walkers, when
vegetation cover, geological materials (e.g., stones and pebbles), and, most importantly,
dust and light confine potsherd visibility [2]. Therefore, the detection of potsherds through
high-resolution images could be further improved by expanding the spectral capacity of
the camera sensors.

Beyond the total number of ceramic fragments counted through the different methods,
the distribution of potsherds can be estimated from the image analysis. The distribution of
potsherds and their density across the surface of Area 6 is shown in Figure 11. A higher
concentration of the detected potsherds is indicated in purple in Figure 11, while the thinner
density of potsherds is highlighted in blue. As evidenced from this analysis, a high density,
indicating a higher number of surface potsherds, is mapped in the southeast part of the
unit under investigation, covering almost one-quarter of the total surface. On the contrary,
the northern half of the unit in Area 6 presents a very low concentration. A remarkably
similar pattern is reported from the archaeological field-survey, as shown in Figure 12.
This conclusion is highly important as, despite the relatively small number of potsherds
detection using the Single Shot Detector algorithm, the distribution of the surface finds is
very similar to the situation recorded by the team of archaeologists during field survey,
enabling further experiments and improvements in the future.



Land 2021, 10, 1365 12 of 16

Land 2021, 10, x FOR PEER REVIEW 12 of 17 
 

Beyond the total number of ceramic fragments counted through the different meth-
ods, the distribution of potsherds can be estimated from the image analysis. The distribu-
tion of potsherds and their density across the surface of Area 6 is shown in Figure 11. A 
higher concentration of the detected potsherds is indicated in purple in Figure 11, while 
the thinner density of potsherds is highlighted in blue. As evidenced from this analysis, a 
high density, indicating a higher number of surface potsherds, is mapped in the southeast 
part of the unit under investigation, covering almost one-quarter of the total surface. On 
the contrary, the northern half of the unit in Area 6 presents a very low concentration. A 
remarkably similar pattern is reported from the archaeological field-survey, as shown in 
Figure 12. This conclusion is highly important as, despite the relatively small number of 
potsherds detection using the Single Shot Detector algorithm, the distribution of the sur-
face finds is very similar to the situation recorded by the team of archaeologists during 
field survey, enabling further experiments and improvements in the future. 

 
Figure 11. Potsherd distribution using the Single Shot Detector algorithm in Area 6. Areas indicated with purple colour 
show a higher concentration of potsherds, while those in blue indicate thinner ceramic concentrations. 

Figure 11. Potsherd distribution using the Single Shot Detector algorithm in Area 6. Areas indicated with purple colour
show a higher concentration of potsherds, while those in blue indicate thinner ceramic concentrations.

Land 2021, 10, x FOR PEER REVIEW 13 of 17 
 

 
Figure 12. Potsherd distribution from the ground-truthing pedestrian survey in Area 6. Areas indicated with purple colour 
show a higher concentration of potsherds, while those in blue indicate thinner ceramic concentrations. 

5. Conclusions 
The aim of this study has been to investigate the potential of RGB and multispectral 

high-resolution UAV orthomosaics to detecting fragmented ceramics at archaeological 
sites or larger areas of potential archaeological interest. Thus, advanced image processing 
methods have been implemented, namely the random forest classifier (for Area 20) and 
Single Shot Detector (for Area 6). The overall results were compared with the archaeolog-
ical surface-survey records. 

For Area 20, a similar approach proposed by Orengo and Garcia-Molsosa [16] was 
adopted and implemented. The results were found very encouraging as the overall detec-
tion rate was nearly 80%, and more than 97% if we consider the predicted counts given 
the foot survey properties (i.e., distance of the members of the field team). On the contrary, 
the detection rate at Area 6 was relatively low. This can be explained through two different 
reasons, as elaborated above (see Discussion), indicating that the archaeological context 
and the spectral similarity of the fragments can play a critical role in the overall accuracy. 

Nevertheless, an interesting outcome was the image-based approach’s ability to de-
fine potsherd distribution over Area 6 remarkably successfully, despite the confined num-
ber of detections. The simulated distribution (Figure 11) fits well with the ground-truthing 
outcomes (Figure 12). 

The overall findings, along with those published by Orengo and Garcia-Molsosa ([16] 
and [38]), showcase that low altitude remote sensing sensors can be revolutionary in the 
domain of archaeological field survey. Such methodologies have the great potential to 
support future archaeological field projects by being truly cost-effective, especially in 
cases when there is a limited research timescale and an urgent need for recording fast 
disappearing archaeo-landscapes due to modern development in the Euro-Mediterranean 
region. However, preparations should be taken before flight operations with the UAV 

Figure 12. Potsherd distribution from the ground-truthing pedestrian survey in Area 6. Areas indicated with purple colour
show a higher concentration of potsherds, while those in blue indicate thinner ceramic concentrations.



Land 2021, 10, 1365 13 of 16

5. Conclusions

The aim of this study has been to investigate the potential of RGB and multispectral
high-resolution UAV orthomosaics to detecting fragmented ceramics at archaeological
sites or larger areas of potential archaeological interest. Thus, advanced image processing
methods have been implemented, namely the random forest classifier (for Area 20) and
Single Shot Detector (for Area 6). The overall results were compared with the archaeological
surface-survey records.

For Area 20, a similar approach proposed by Orengo and Garcia-Molsosa [16] was
adopted and implemented. The results were found very encouraging as the overall detec-
tion rate was nearly 80%, and more than 97% if we consider the predicted counts given the
foot survey properties (i.e., distance of the members of the field team). On the contrary, the
detection rate at Area 6 was relatively low. This can be explained through two different
reasons, as elaborated above (see Discussion), indicating that the archaeological context
and the spectral similarity of the fragments can play a critical role in the overall accuracy.

Nevertheless, an interesting outcome was the image-based approach’s ability to define
potsherd distribution over Area 6 remarkably successfully, despite the confined number
of detections. The simulated distribution (Figure 11) fits well with the ground-truthing
outcomes (Figure 12).

The overall findings, along with those published by Orengo and Garcia-Molsosa
([16] and [38]), showcase that low altitude remote sensing sensors can be revolutionary in
the domain of archaeological field survey. Such methodologies have the great potential
to support future archaeological field projects by being truly cost-effective, especially in
cases when there is a limited research timescale and an urgent need for recording fast
disappearing archaeo-landscapes due to modern development in the Euro-Mediterranean
region. However, preparations should be taken before flight operations with the UAV
sensors (e.g., spatial resolution, the spectral resolution of the camera, etc.) and during
image analysis for ceramic detection.

Further improvements can be made in this direction in the future, enabling the cov-
erage of even larger areas with a higher success rate. Potsherd detection can be further
increased by developing sophisticated remote sensing algorithms for better spectral en-
hancement, minimising background noise. In addition, light detection and ranging (LiDAR)
or colour-infrared (CIR) datasets collected from UAV sensors can be further elaborated, as
this approach can provide centimetre 3D products, corresponding thus to practical needs
of archaeological surveys and documentation practices.
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