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Abstract

Under the constraints of fossil-fuel reserves depletion and climate change, the expansion
of intermittent renewable generation creates a lot of power integration issues which unde-
niably disturb the overall system stability. Optimally planned, electricity storage systems are
capable of managing the variability and uncertainty of renewable energy sources, guaran-
teeing power balance and ensuring feasible and economical operation. Here, the outcomes
derived by a Genetic algorithm-driven priority list approach is provided, which effectively
quantifies the impact of intermittent renewable energy sources on total production cost
and the benefits of electricity storage. The experimental evaluation on three benchmark
scenarios shows that cost improvements exist in terms of thermal generation improve-
ment, lower renewable generation curtailment and load shedding avoidance cost. Zinc-air
battery offers the highest net present value at relatively low PV penetration levels. Increased
penetration levels favour Li-ion batteries followed by Pb-acid and Vanadium-redox flow
batteries. In general, the viability of each storage device depends on the renewable pene-
tration level, promoting the technologies with lower capital costs at limited shares, whereas
at higher contribution frameworks systems with higher performance features become
preferable.

1 INTRODUCTION

The depletion of fossil-fuel reserves, global warming and asso-
ciated extreme weather conditions have motivated European
Union to expand the share of intermittent renewable energy
sources (RES) for electricity production. This transformed
power grids into active complex systems with bidirectional flows
that increase the uncertainty at both generation, transmission
and distribution sections. In addition, the imposed electrifica-
tion of transport and heating/cooling sectors is responsible
for the radical reshaping of electricity demand profiles, making
the day-ahead scheduling an even more challenging optimiza-
tion task for modern power systems. Besides achieving min-
imum total production cost, the today’s generation schedule
must satisfy a larger set of different complex constraints. These
include generation constraints in the presence of renewable gen-
eration, network constraints affected by the distributed energy
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resources, bilateral contracts enclosing independent electricity
provision, corrective security actions in sudden load variation
or outage circumstances, and so on [1].

The simultaneous increase in electricity demand and reduc-
tion of conventional sources contribution in power generation
create a lot of integration issues. The uncertainty and variability
in net load caused by the increasing penetration of renewable
generation undeniably disturb the overall system stability and
reliability [2]. Hence, adequate operating reserves are required
to cover the uncertainty caused by forecast errors, whereas suf-
ficient ramping capability is necessary to address the variability
issues which often occur at high time resolutions [3]. Since RES
do not inherently contribute to flexibility, increasing their pene-
tration levels leads to even more limited flexibility frameworks.
Despite this irreversible circumstance, energy policies empower
the independent system operators, marketers and regulators to
focus on the minimization of RES curtailment, load shedding
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and spinning reserve deficits, calling for alternative approaches
that increase flexibility.

Electricity storage (ES) is attracting increasing interest as a
potential candidate for power grid applications that facilitate a
shift from the currently passive to an active network via time-
shifting [4]. Optimal planning of ES ensures supply continuity
and reliability and guarantees the energy generation-demand
balance across the power chain [5]. Although extensive research
has been made around the concept of unit commitment (UC),
the term of storage has not been treated properly, since in
some cases it acts as load while in others it functions as a
generator. This way, appropriate decisions relating to the exact
time, the total duration as well as the optimum amount of
energy for the charging, storage and discharging procedures are
of great importance to at least conserve the convexity of the
overall UC optimization process. In such cases, electrochemical
storage becomes advantageous in terms of response time,
autonomy and scalability [6]. Based on realistic models, it is
crucial to examine for solutions that are capable of extracting
more comprehensive outcomes relating to storage. Apart
from the direct fuel-cost savings, further credits including
increased security, reliability and dispatchability can also be
achieved.

The authors in [7], proposed a hybrid algorithm that com-
bines the advantages of a generalized Lagrange relaxation
and advanced priority list methods to solve the large-scale
nonlinear mixed-integer UC problem. They focused on short-
term simulations to address the sharp decreases of renewable
energy output which result in power outages and minimize the
ramp-rate of thermal generating units. An alternative method is
presented in [8], where a UC solution was achieved utilizing a
novel metaheuristic algorithm named binary whale optimization
algorithm. A study found in [9], compared the two-stage and
multi-stage stochastic UC providing a continuous-time formu-
lation in which an underlying load scenario tree is used to define
the baseline day-ahead dispatch, commitment and reserve
capacity.

In [10], a new technique was conducted to strengthen the
performance of particle swarm optimization by making use of
sine/cosine acceleration coefficients, while a different approach
relying on distributionally robust optimization models is given
in [11]. This approach aims at minimizing the worst-case
expected cost of a probability distribution of the uncertain
parameters including renewable generation. The authors in [12]
consider the temporal and spatial correlations of multiple wind
farms, introducing a data-adaptive uncertainty set and extreme
scenarios to reformulate the robust optimization. In contrast
to these approaches which belong to what may be termed as
“supervised learning”, the work in [13] constitutes an approxi-
mate dynamic-based approach wherein no a priori target infor-
mation is available. Instead, it is based on reinforcement learning
that exploits a single-agent technique known as fuzzy Q learn-
ing. However, none of the aforementioned research works have
considered electricity storage to cope with the uncertainty of
RES.

The authors in [14] proposed an optimal scheduling to
retain the frequency dynamic security by considering demand

response programs and fast-acting ES technologies. Although
the system operating cost was reduced, wind curtailment was
prohibited and the frequency security was guaranteed, the for-
mulation was based on only three non-probabilistic scenar-
ios regarding the wind turbine uncertainties. Energy storage
schemes were also considered in [15] showing considerable
market-based improvements when utilized for RES support in
energy and spinning reserve procurement, whereas the impact
of forecast errors on in wind and solar generation outputs was
assessed in [16]. Apart from the largest online unit or percent-
age of the system load, spinning reserve should consider the
stochastic nature of system behaviour and component failures.
As a result, a changing spinning reserve influences the cost and
therefore, its absolute amount should be determined carefully.
The authors in [17] classified the probabilistic approaches into
three classes according to the method by which they optimize
this requirement.

Regarding the co-optimization of RES curtailment, energy
and reserves not served, some representative research works
are distinguished by both the proposed formulation of spinning
reserve requirement and solution method. For instance, [18]
considered N-1 criterion to offer an optimal schedule via mixed
integer linear programming. The variable solar and wind power
outputs were modelled via uncertainty sets and the solution
was given by an adaptive semi-infinite program in [19]. Two
further studies treated RES as negative load utilizing robust
[20] and clustering-based [21] spinning reserves requirement.
The UC task was conducted via binary grey-wolf optimizer
and imperialistic competition algorithm, respectively. Stochastic
programming was combined with both forecast confidence
level and scenario-based formulations [22], while a mixed-
integer cone programming approach was presented in [23]
combined with data-adaptive robust models. In [24], effective
prevention of premature convergence was achieved through
a chaotic differential evolution mechanism over conservative
reserve formulations. The authors in [25] presented quality solu-
tions to robust UC utilizing Gaussian process-based Bayesian
optimization in the presence of increased RES penetrations.
Compared to traditional solutions, higher convergence accuracy
was also reported in [26], relying on hybrid particle swarm
optimization.

To the best of our knowledge and based on the most recent
and relevant literature, there has not yet been a comprehensive
work which dealt with the simultaneous load shedding, RES
curtailment and spinning reserve optimization tasks by making
use of storage. The term of load shedding is proposed to
be conducted either as a coordination of active power loss
reduction and optimal allocation of thyristor-controlled series
capacitor [27] or an optimizable variable to prevent transmis-
sion lines from being overloaded under line contingency [28].
To strengthen the benefit list of ES systems, a few research
works assume their participation in combined stationary and
mobile applications or promote their installation at the same
location where RES is connected to store the excess renewable
generation [15, 29]. Although mathematical methods including
Lagrange relaxation, Benders’ decomposition and branch-
and-bound constitute promising approaches with respect to
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convergence time and constraints treatment, in the presence
of identical units fall into oscillations due to unnecessary
commitments/de-commitments of identical heat-rate gener-
ators [30]. On the other hand, heuristic techniques rely on
rule-based transitions and involve stochastic approach in mov-
ing from one solution to another. Hence, even the magnitude
of their sub-optimality and overall dimensionality are difficult
to be estimated.

To ameliorate the expensive requirement of dimensionality
whilst providing high quality solution with traceable constraints
satisfaction, hybrid methods are proposed. Utilizing the merits
of mathematical and heuristic methods, our proposed solution
aims at finding better trade-offs between exploration and
exploitation. Specifically, to avoid local solutions that lead to
premature convergence and increase the solving accuracy at
reasonable computational efforts, during the searching process
we exploit the stochastic transition of a heuristic approach
to progressively discover optimal generation output based on
improved recommendations. Based on the updated configu-
ration of the constructed priority list, the available generating
units are committed until the system-wide constraints are
satisfied. The pre-process task takes place to provide an initial
solution to the UC problem. The hybrid approach consists in
delivering updated recommendations with respect to net load
demand, by making use of the advances of Genetic algorithm.
Motivated by the previously described concept, in this work
we present a different approach for the co-optimization of
active power curtailment, load shedding and spinning reserve
deficits. Based on a hybrid optimization mechanism, we deter-
mine both the operating strategy and optimal size for realistic
storage implementations. Moreover, we compare different
technologies according to their performance characteristics,
utilizing actual data of generation and demand and relying
on robust unit commitment formulations. Our comparisons
account for: (1) The most recent technological variations in
development status and cost metrics in research and (2) dis-
tinguished metrics for the power-related and energy-related
costs.

The contribution of this work is three-fold: (1) A compre-
hensive formulation of UC including the ES parameters under
volatile net demand is presented, (2) the total production cost
is simultaneously optimized with the spinning reserve deficits
and RES integration conserving the maximum reliability, and
(3) the hybrid solution offers computationally tractable sched-
ules at reasonable execution times distinguishing the power and
energy related components of the considered ES system. The
rest of the paper is organized as follows. In the following Sec-
tion, we define the UC problem along with the most impor-
tant unit-specific and system-wide constraints in the presence
of storage. Also, we introduce the penalty terms of RES curtail-
ment, load shedding and reserve not served. Section 3 provides
the methodology adopted for simulation purposes and the case
study system is demonstrated and explained in detail. In Sec-
tion 4, the numerical results regarding the weekly and annual
simulations are evaluated and discussed, while the conclusions
are drawn in Section 5.

2 UNIT COMMITMENT PROBLEM
FORMULATION

Intelligent scheduling is of utmost importance for the seamless
integration of uncertain and volatile renewable generation.
In order to explore and evaluate the efficacy of ES systems,
we consolidate into the objective function the terms of RES

curtailment (RES-CUT), energy not served (ENS) and reserve
not served (RNS). Also, our methodology takes into account
both the system-wide and unit-specific constraints in the
presence of storage, the formulation of which is provided
below.

The total production cost (TPC) is calculated by means of
fuel cost (CF), start-up cost (CSU), cost for the curtailed RES
(CRES-CUT), cost of energy (CENS) and spinning reserve (CRNS)
not served. For N generating units and total T time intervals, a
formulation for the UC problem is as follows:

min
T∑
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The discrete, binary variable U t
i , represents the status

(on/off) of each generating unit, holding the value “1” or “0” if
the ith unit is on-line or off-line at the particular time t, respec-
tively, according to U t

i ∈ {1, 0}. C t
Fi

depends on the production
level of each generator Pi

t and its cost coefficients ai, bi and
ci measured in €/h, €/MWh and €/MW2h, respectively. It is
determined via the following quadratic function.
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Start-up cost can be treated as warmth-dependent, cor-
responding to a hot, warm or cold condition of each gen-
erating unit, according to the duration that the unit has
been off-loaded. In our formulation, C t

SUi
is considered as

warmth-independent and thus it can be approximated by a
constant value for each unit. Penalizing the three terms of
RES-CUT, ENS and RNS by reasonable costs (e.g. cres, cens

and crns), an opportunity is given to the objective to enlarge
the feasible solution space and consequent convergence
rate. However, this degrades the level of system security
and reliability which is the scope of our proposed solution.
CRES-CUT, CENS and CRNS are estimated based on the following
formulations:

C t
RES−CUT

= Pt
RES−CUT

.cres (10)

0 ≤ Pt
RES−CUT

≤ Pt
RES

(11)

C t
ENS

= cens

{
Pt

netD
−

N∑
i = 1

Pt
i

}
(12)

C t
RNS

= crns

{
SRt −

[
N∑

i = 1

Pt
i,max−cap − Pt

netD

]}
(13)

The comprehensive formulation of the objective (1) can now
be used to account for the total cost in all periods T. The system-
wide constraints of power balance and spinning reserve are
modelled by making use of the decision variables U t

i and Pt
i . In

Equation (2), it is ensured that the sum of the power produced
from all committed units meets the net load demand (Pt

netD
)

at each time-interval, considering the contribution of storage
(
∑

Pt
i − Pt

dis
) and renewable generation ( Pt

netD
= Pt

D
− Pt

RES
).

Constraint (3) is used to guarantee the spinning reserve require-
ments SRt based on the maximum ramping capability of each
unit (Pt

i,max_cap) along with the direct (Pt
s ) and indirect (Pt

ch
) stor-

age participation.
The maximum and minimum rated MW-output, Pt

i,max and
Pt

i,min, that confine the generating units to operate within
their boundaries are represented by constraint (4). Each gen-
erator can change its status from “0” to “1” and vice versa
satisfying the respective constraints (5) and (6). tu and td
express the time a unit has started-up or shut-down, respec-
tively, whereas MUi and MDi define the required minimum
up and down time-intervals that must be elapsed. Two fur-
ther constraints are needed to determine the ramping-up
(RUi) and ramping-down (RDi) capabilities between consec-
utive periods. Consequently, Equations (7) or (8) take place
when the power output of a certain generator increases or
decreases. A further constraint regards the must-run units
which remain on-line during the whole period or certain
time-intervals.

Emphasizing on fixed, expected values of uncertain injec-
tions d, the compact formulation of deterministic UC can be

TABLE 1 Parameters and variables

Parameters Variables

Net demand PnetD MW Unit status U

Start-up cost CSU € Power output P

Curtailment cost cRES € Fuel cost CF

Energy not-served cENS € Spinning reserve SR

Reserve not-served cRNS €
Maximum power Pmax MW Stored power Ps

Minimum power Pmin MW Charge power Pch

Ramp-Up rate
Ramp-Down rate

RU

RD

MW/h
MW/h

Discharge -»-
Stored energy

Pdis

Es

Minimum-Up time MU h Charge energy Ech

Minimum-Down time MD h Discharge –»- Edis

Initial conditions I.C. h RES power PRES

Identical units num. η Uncertainty set D

Charging efficiency nch % Uncertain resource D

Discharging efficiency ndis %

Depth of discharge DoD % Investment cost IC

Rated power Prated MW Profitable return PR

Energy capacity Ecap MW

Balance of plant CBOP €/kW Replacement cost CR

Power conversion CPCS €/kW

Energy storage medium CESM €/kWh Inflation rate iR

Fixed O&M cost Cf €/kW-y Self-discharge SD

Variable O&M cost Cv €/MWh

Useful lifetime L y

expressed as:

min
U ,P

(
C T

SU
U +C T

F

)
(14)

s.t . I .P = d (15)

Therefore, the equivalent robust UC objective is determined
via the following equation:

min
U

{
C T

SU
U + max

d∈D

[
min

P

(
C T

F

)]}
(16)

I represents the selector of uncertainty resources, while D

denotes the uncertainty set [31]. All parameters and variables
used are listed in Table 1.

3 METHODOLOGY AND CASE STUDY
SYSTEM

Robust unit commitment formulations account for the worst-
case scenario and involve different uncertainty factors relating
to load forecasting, renewable power output and unintentional
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generation outages. In this work, we utilize the advances of
priority-list schemes to provide the optimal UC schedule and
genetic algorithm (GA) as a tool to drive the optimization
and optimally define the ES parameters of charging and dis-
charging power output [32]. In contrast to other mathematical
approaches, priority-list method does not suffer from the
identical heat-rate sensitivity. Thus, it offers a great advantage in
systems which consist of several generators possessing identical
heat-rate coefficients and start-up costs. The general concept
around priority list consists in committing conventional gen-
erators until the net load demand is satisfied, based on the
order of increasing production cost [33]. The optimal priority
is given based on the ranking achieved based on the following
function:

Ri =
d
(

f (Pi )
)

d Pi
| ∀i

Pi =
Pi,min+Pi,max

2

(17)

This way, the determined commitment status can be regu-
lated through the employed algorithm constructed to optimize
the ES variables of Pch and Pdis, considering different tech-
nologies. Allowing Pdis to vary between DoD and PRES, the
exact time and duration of charging and storage forms a non-
linear problem which can appropriately conducted via Genetic
algorithm. Compared to mathematical techniques, GA occurs
advantageous in convergence time, whereas in contrast to clas-
sical heuristic algorithms it progressively leads to high-quality
solutions modifying a population of recommendations using
random processes [34]. The main steps comprising the pro-
cess include the initial population generation and its evaluation,
selection of the best candidate, crossover and mutation. The
general criterion for convergence is ‘a no change in the solution
for n generations’ [35].

Based on this motivation, GA decreases the contribution of
variable renewable generation to satisfy the spinning reserve
requirements subject to the ramping capability of the committed
units defined by priority list schemes. In the presence of storage,
GA regulates the charging state such that all constraints are sat-
isfied and decides on how to allocate the discharged energy in
order to minimize the total production cost. The solution con-
sists in finding both the optimal UC schedules and the size of
the intended ES system based on actual annual data.

Inspired from the previously described advancements, in this
study we assess our proposed approach, adopting a benchmark
experimental setup, described in [36]. We consider an isolated
power system with 20 generating units characterized by identical
cost coefficients and start-up costs. Their respective character-
istics are listed in Table 2.

Moreover, we consider the half-hourly load demand regard-
ing the year of 2018 as depicted in Figure 1. Since the demand
profiles vary according to the time and the type of the day (e.g.
weekday or weekend) as well as the season, we provide the
total hourly-summed, weekly profiles for each season in Fig-
ure 2. As can be seen, the peak demand occurs during summer
days, whereas a much more mitigated load profile is observed in
spring.

TABLE 2 Characteristics of thermal generating units

Grp1 Grp2 Grp3 Grp4 Grp5 Grp 6

Pmin (MW) 4 30 8.75 14.5 66 66

Pmax (MW) 37 58 17 17 124 216

a (€/h) 0.107 0.141 0.011 0.219 0.033 0.020

b (€/MWh) 33.92 31.07 31.12 25.83 28.35 21.60

c (€/MW2h) 474.5 501.4 77.4 93.8 618.0 1238.4

SU (€) 104 5786 66 66 9200 208

RU (MW/h) 75 30 15 15 63 180

RD (MW/h) 75 15 15 15 63 180

MU (h) 1 2 1 1 12 8

MD (h) 0.5 8 2 2 8 6

I.C. (h) −1 −8 −2 −2 12 8

η 4 6* 3 3 2* 2

*One unit in the particular group is constantly in must-run mode.

Identifying that the robustness and economic efficiency of a
solution can vary according to the generation and transmission
parameters as well as the overall topology of a power system,
we appropriately model the operating reserve requirements to
form the following dynamical expression.

SRt = max
t

{(
𝜉1.P

t
D
+ 𝜉2.P

t
RES

)
, max

i=1∶N ,i≠ j

{
U t

i .P
t
i

}}
(18)

To take into account the errors due to the deviations between
the actual and forecasted values, the uncertainty in load demand
and renewable energy is modelled with the aid of ξ1 and ξ2. The
non-responsive nature of electricity demand along with the still
limited electrification degrees concerning the heating/cooling
and transportation sectors, require a spinning reserve no greater
than 5% (ξ1 = 5%) of the total electricity demand. On the other
hand, the total amount of the domestic renewable sources (both
wind and PV) utilized for electricity production is taken into
account due to isolation (ξ2 = 100%). The respective RES con-
tribution is illustrated in Figure 3, where the summed overall
energy for each season is provided. To highlight the contrast
between overall, seasonal penetration and variable actual contri-
bution, we include the power output from PV and wind regard-
ing a random day per month in Figure 4.

Finally, N-1 criterion is considered as the most adequate for
islanded power systems and thus, we postulate the worst case of
a failure on the second biggest generator. In (18), j represents
the biggest in terms of Pmax generating unit.

The relationship between the charged, stored and discharged
energy is modelled based on a formulation that takes into
account the dynamic losses due to the energy conversion and
parasitic self-discharge rate (SDR). As a result, the imposed by
GA charging energy, Et

ch
, is reduced due to the charging losses

according to charging efficiency, nch, resulting to:

Et
s = nch Et

ch
(19)
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FIGURE 1 Annual electricity load variation during the entire year of 2018

FIGURE 2 Weekly hourly-summed load demand per season

At the end of the process, the stored energy is degraded
according to SDR and the storage duration ts , to give the final:

E
t+ts
s = Et

s .(1 − SDR)ts (20)

Finally, the discharging energy, E
t+ts
dis

, decrease based on the
discharging efficiency ndis to read as:

E
t+ts
dis

= ndis E
t+ts
s (21)

To comprehensively assess the impact of ES on system oper-
ation, we perform weekly simulations for the year of 2018. The
necessary data, obtained from the Cyprus Energy Regulatory
Authority (CERA), regarding the half-hourly power demand of
the island of Cyprus during the whole year of 2018 along with
the real-time generation from the domestic RES [37].

Analysing the impact of variable energy resources on total
production cost, we examine the economic feasibility of stor-
age technologies with different performance features (includ-
ing efficiency, depth of discharge, self-discharge rate, power and
energy related cost components). For example, to conserve high

reliability level at the same total production cost, the optimal size
of a storage facility with greater efficiency will be sufficiently
less than a system possessing low efficiency and high SDR or
DoD. On the contrary, a storage technology with high perfor-
mance metrics do not necessarily provide less production cost
if its inherent cost components are quite higher than others. As
a result, the various technologies must be assessed in terms of
their profitable return considering different renewable penetra-
tion levels.

Three case studies are carried out to evaluate the profitable
return derived by the application of ES. While the first sce-
nario constitutes the actual, base case, two further scenarios
consider a 250% and 500% increase in PV contribution. Aiming
at minimizing the RES curtailment, load shedding and spinning
reserve deficits, we repeat the simulations varying the parame-
ters of round-trip efficiency and self-discharge rate concerning
each individual ES technology.

Once the optimal storage size, in terms of power (Prated ) and
energy (Ecap), along with the annual profitable return (APR) are
determined, the selected ES facilities are subjected into life-cycle
cost analysis. The life-cycle cost in net present value (NPV) for



98 NIKOLAIDIS AND POULLIKKAS

FIGURE 3 Daily hourly-summed (a) PV and (b) wind penetration per season

FIGURE 4 Daily (a) PV and (b) wind contribution per month
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TABLE 3 Technical characteristics and cost metrics of ES technologies [42, 43]

Pb-acid Zn-air Na-S Li-ion VRB

SDR (%) 0.01–0.02 ∼0 ∼0 0.03 ∼0

Round-trip efficiency (%) 85–90 50 89-92 ∼100 85

DoD (%) 80 100 100 80 100

BOP (€/kW) 110–552 110–552 110–552 110–552 110–552

PCS (€/kW) 53–166 0–110 0–110 0–110 0–110

ESM (€/kWh) 184–460 9–55 276–552 552–2300 138–920

Fixed O&M (€/kW-year) 3.95 – 18.4 2.47 4.2

Variable O&M (€/MWh) 0.18 – 0.37 0.50 0.25

each technology k can be computed as:

NPVk = − IC k (t ) +
L∑

t = 0

APRk (t ) −C k
O&M

(t ) −C k
R

(t )

(1 + iR )t

(22)
IC k is the investment cost composed by the balance of the

plant (CBOP), the power conversion system (CPCS) and energy
storage medium (CESM) as presented in Equation (23).

IC = Ecap .C
∗
ESM

+ Prated .(CPCS +CBOP ) (23)

On the contrary, the replacement cost (CR) concerns only the
energy storage medium for analyses regarding a few years (L <
20) and may occur either due to the end of useful lifetime or the
elapsed efficient cycles. In both cases, C ∗

ESM
takes into account

the depth of discharge (DoD) corresponding to the oversized
CESM∕DoD for each individual technology. C k

O&M
expresses the

operation and maintenance costs based on fixed and variable
components with the help of Equation (24).

CO&M = C f −O&M .Prated + Cv−O&M .Edis (24)

The selected electrochemical storage technologies include
lead-acid (Pb-acid), zinc-air (Zn-air), sodium-sulphur (Na-S)
and lithium-ion (Li-ion) batteries and vanadium-redox (VRB)
flow batteries. The participating systems are tabulated in Table 3
along with their main characteristics.

4 RESULTS AND DISCUSSION

In order to gain a broad overview regarding the impact of RES
in UC scheduling, we first take a look at the results derived
from the priority-list schemes. The curtailed renewable energy
is weighted by a penalty estimated by Equation (25) [38].

cres = max
t=1∶T

{
𝜕Ft

𝜕Pt
netD

}
(25)

TABLE 4 Results concerning the test-case studies without storage

Scenario PV ξ2

TFC

(M€)

RES-CUT

(GWh)

ENS

(GWh)

RNS

(GWh)

Base ×1 1 263.6 0.099 0.018 6.136

2 ×2.5 0.5 249.0 6.849 4.219 6.663

3 ×5 0.2 234.9 180.2 13.15 8.582

This way, RES producers receive the fair payback of the aver-
age hourly summed fuel cost (Ft ) derived from the conventional
generating units. Load shedding and RNS are penalized by 950
and 850 €/MWh, respectively, according to [39, 40]. Increasing
the contribution of PV, the net load decreases limiting the ramp-
ing capability of the system which is strictly proportional to
the spinning reserve provision. Aiming at minimizing the total
production cost, the priority-list method targets on lowering the
spinning reserve requirement. Up to a certain penetration level
this can be achieved with the aid of penalty cost crns and Equa-
tion (13). At higher penetration levels, especially during the 2nd
and 3rd scenarios, optimization results in RES curtailment to
expand both the conventional contribution and flexibility. If the
conventional generation is able to recover the curtailed energy,
no load shedding has to take place, otherwise the penalty
cost due to the energy not served is calculated by Equation
(12). The results derived from the UC solution without the
storage contribution for the assumed scenarios are depicted in
Table 4.

As a common practise, the spinning reserve requirement due
to RES contribution in the second and third case studies was set
at 50% and 20%, respectively, considering the dispersity of PVs
across the island. Although the total fuel cost seems to decrease
with the increasing contribution of renewable generation, one
can be observed is that the curtailed RES as well as the services
not served increase. This leads to a dramatic increase concern-
ing the TPC allowing the storage facilities to benefit from their
participation.

Applying GA as a tool to drive optimization in lower
TPC solutions, we expect that the optimum solution will be
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FIGURE 5 Optimal UC schedule obtained without ES and with ES

TABLE 5 Results concerning the test-case studies in the presence of
storage

Scenario PV ξ2

TFC

(M€)

RES-CUT

(GWh)

ENS

(GWh)

RNS

(GWh)

Base ×1 1 258.3 – – 0.0043

2 ×2.5 0.5 242.9 – – 0.0803

3 ×5 0.2 229.4 – – 0.0952

reached by optimizing both the active power curtailment,
load shedding and spinning reserve deficits. Varying the
parameters of round-trip efficiency and hourly self-discharge
rate for each technology, the derived results are provided in
Table 5.

As we expected, RES curtailment and load shedding are
eliminated by all participating technologies and the reserve not
served is almost zero. GA successfully regulates the charging
power to store the curtailed renewable generation whilst low-
ering the spinning reserve requirements. The stored energy,
after being subjected into self-discharge degradation, can facil-
itate in load shedding while the excess energy can contribute
as a firm input to peak load reduction. Figure 5 illustrates
a representative example of the storage influence on UC
schedule.

Depending on its special technical and economic fea-
tures, each storage technology possesses different TPC. Per-
forming simulations over the 52 short-term horizons of 336
half-hours of the entire year, we obtain the annual prof-
itable return and required system size considering the optimal
scheduling in the presence of storage. Based on these find-
ings (included in Table 6), we assess the impact of differ-
ent electrochemical storage systems assuming a lifespan of 15
years.

With the aid of Table 3 and setting the discount rate at
2.5%, we assess the technologies according to both their min-
imum and maximum performance. The minimum performance
is defined by minimum overall features (e.g. minimum efficiency,

depth of discharge, cycling and calendar life/maximum costs
and self-discharge rate) whereas a maximum performance is
achieved when minimum costs and maximum technical char-
acteristics are taken into consideration.

Figure 6 shows the cumulative cost obtained from the three
test-case studies. As can be seen, all technologies constitute
infeasible solutions mainly due to their increased replacement
costs which bring a negative impact in terms of NPV. In case
of 500% PV contribution, Zn-air batteries provide an initial
positive trend which quickly alternates sign and passes to the
negative semi-plane because of the assumed weak performance
characteristics. The respective outcomes when maximum per-
formance features were considered are demonstrated in Fig-
ure 7. As can be observed, the replacement costs concerning the
technologies were minimized, allowing the ES facilities to reach
positive NPV representation. The outcomes derived from the
experimental evaluation validate the effectiveness of our hybrid
approach. In Figure 8, further comparisons with respect to cap-
ital, replacement, fixed and variable O&M costs are illustrated,
revealing the consistency of our formulation for the optimal size
of ES.

In the base case, despite their low efficiency and high replace-
ment rate, Zn-air batteries provides the maximum potential
mainly due to their reduced investment costs. On the other
hand, possessing highest performance and cost, Li-ion fol-
lows the positive trend achieving a payback period around
twelve years. In the second scenario (PV = 250%), all tech-
nologies offer feasible solutions with Zn-air and Li-ion termi-
nating simultaneously at the 15th year. During the third case
study, the technical performance constitutes the greatest impact
on NPV. The increased penetration of PV systems allows Li-
ion to reach a peak performance, followed by Pb-acid batter-
ies and VRB flow batteries. This is confirmed by Zn-air bat-
teries which, despite their precedence during the initial 4–5
years, they constitute the less suitable choice at the end of the
examined lifespan. The results obtained by applying the pro-
posed Genetic-algorithm driven priority list approach on the
three case studies are depicted in Figure 9 in terms of total
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TABLE 6 Results concerning the test-case studies without storage

Case-study Pb-acid Zn-air Na-S Li-ion VRB

APR (M€) Base 0.107 0.105 0.107 0.109 0.107

2 1.25 1.23 1.24 1.28 1.25

3 2.27 2.26 2.27 2.28 2.27

Prated (MW) Base 87.3 102.7 92.4 51.3 87.3

2 94.1 110.7 99.6 55.3 94.1

3 305.7 359.6 323.7 179.8 305.7

Ecap (MWh) Base 218.1 256.6 231 128.3 218.1

2 470.3 553.3 498 276.6 470.3

3 2445 2877 2589 1438 2445

FIGURE 6 Cumulative cost (M€) obtained from the test-cases of (a)
100%, (b) 250%, and (c) 500% PV penetration and minimum ES performance

FIGURE 7 Cumulative cost (M€) obtained from the test-cases of (a)
100%, (b) 250% and (c) 500% PV penetration and maximum ES performance
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FIGURE 8 Investment and operation cost (M€) of ES technologies for the test cases (a) 100%, (b) 250% and (c) 500% PV penetration levels

FIGURE 9 Cost improvements (M€) in the presence of ES technologies for the test cases (a) 100%, (b) 250% and (c) 500% PV penetration levels

FIGURE 10 Normalized costs obtained from the test-cases of (a) 100%, (b) 250% and (c) 500% PV penetration

production cost improvements and penalty avoidance costs by
technology.

Finally, to get some comparative results, we normalize the
inflated costs based on the following formulation [41].

Rank
(

fi
)
= 10

f ∗ − fi

f ∗
(26)

f ∗ represents the maximum value between all candidates con-
sidered in each case study, whereas fi is the actual value of each
candidate. In this regard, the lowest values for the expenses

including capital, replacement, fixed and variable O&M costs
correspond to higher rankings (e.g. 10). A less beneficial
approach gives lower rank estimates while the worst would
approximate zero. On the contrary, the profitable values of
avoidance credits in terms of RES curtailment, thermal genera-
tion, ENS and RNS avoidance costs are approximated by Equa-
tion (27).

Rank
(

fi
)
= 10 −

fi − f∗

f∗
(27)
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where f∗ represents the minimum value between all candidates
considered. For completeness sake, we present the normalized
values in Figure 10.

5 CONCLUSION

Electricity storage is attracting increasing interest as a potential
candidate for power grid applications that facilitate a shift from
the currently passive to an active network via time-shifting. In
this work we have presented a different approach for the co-
optimization of active power curtailment, load shedding and
spinning reserve deficits. Utilizing the advances of priority-list
schemes and genetic algorithm as a tool to drive the optimiza-
tion, we provided the optimal unit commitment schedules and
we defined the appropriate electricity storage parameters of
charging and discharging power output. Based on actual data,
the thermal generation of the power system of Cyprus was opti-
mally scheduled for the year 2018 in the absence and presence of
storage. Lead-acid, zinc-air, sodium-sulphur, lithium-ion batter-
ies and vanadium-redox flow batteries were selected to minimize
the renewable generation curtailment, energy not served and
spinning reserve not served. Once optimally sized, the partic-
ipating technologies subjected into life-cycle cost analysis con-
sidering both their minimum and maximum performance char-
acteristics.

The derived results showed that the total fuel cost of ther-
mal generating units is strongly affected by the uncertain and
volatile behaviour of renewable sources, while improvements
in terms of profitable return exist when electricity storage
was integrated. The findings of our extensive evaluation are
summarized as follows: (1) All technologies provide infeasible
solutions when their minimum performance has been taken
into account mainly due to increased replacement costs which
deteriorate the net present value; (2) possessing the lowest
investment cost, zinc-air batteries provide the maximum poten-
tial in the base case; (3) Despite their highest capital investment,
at higher PV penetration levels (PV= 250%) lithium-ion termi-
nates with zinc-air when life-cycle costs consider the maximum
performance features; (4) Maximum penetration of PV systems
(PV = 500%) allows Li-ion to reach a peak performance,
followed by Pb-acid batteries and VRB flow batteries. Although
the economic feasibility of the electricity storage components
used has been examined based on the optimal capacity consid-
ering different technologies, their optimal allocation into the
power network has not been considered.

Due to the small-scale and isolated system examined in this
study, a single-bus model was considered neglecting the trans-
mission losses. As for future directions, we indicate the multi-
bus formulations, increased generating units and consolidation
of network losses into the UC objective. We reckon that hybrid
approach would provide great performance by adding complex-
ity to the overall optimization task.
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