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ABSTRACT Image transmission over Low-Power Wide Area Networks (LP-WAN) protocols has always
been a difficult task since it necessitates high data rates and high energy consumption. Long Range (LoRa)
is one such protocol, which is excellent for transferring data over long distances but has generated severe
doubts regarding the viability of image transmission due to its low data rate. This paper demonstrates
the application results of an integrated LoRa and Deep Learning-based computer vision system that can
efficiently identify grape leaf diseases using low-resolution images. In particular, the focus in this paper is
to combine the two technologies, LoRa and Deep Learning, to make the transmission of the images and the
identification of the diseases possible. To achieve this objective, the framework utilizes a combination of
on-site and simulation experiments along with different LoRa parameters and Convolutional Neural Model
(CNN) model fine-tuning. Based on the evaluation, the proposed framework proved that the transmission
of images using LoRa is possible within the protocol limitations (such as limited bandwidth and low
duty cycle). Our fine-tuned model can efficiently identify grape leaves diseases. The technique is both
efficient and adaptive to the specifics of each leaf disease, while it does not need any training data to adjust
parameters. It is worth noting that today, end-user trust in Machine and Deep Learning models has increased
significantly because of novel solutions in the field of Explainable Artificial Intelligence (XAI). In this study,
we use the Grad-CAM method to visualize the output layer judgments of the CNN. The disease’s spot region
is highly activated, according to the visualization findings. This is how the network distinguishes between
different grape leaf diseases.

INDEX TERMS CBIR, CNN, Deep Convolutional Features, Deep Learning, Global Features, Image
Retrieval, LoRaWAN, Local Features

I. INTRODUCTION

The Internet of Things (IoT) allows millions of devices
to be connected, measured and monitored simultaneously.
Currently, billions of devices are connected and create a
vast network used in different application domains to sup-
port better decision-making. IoT has been integrated into
most sectors such as transportation, health care, smart cities,
agriculture, manufacturing, and environmental monitoring
systems, allowing advancing the device systems and tech-
nologies behind them.

Nowadays, the rising demand for automation and ad-
vanced agricultural techniques has led to many attempts

to adopt the proper IoT technology on farming [1]. This
technology allows the farmers to monitor their fields (e.g.,
temperature, moisture, crop condition, etc.) via a grid of con-
nected sensors remotely, through the internet, from anywhere
in the world. Deploying a real-time environmental monitor-
ing system to monitor a private farm can help increase pro-
duction and improve the quality of the product. Additionally,
remote monitoring systems allow farmers to monitor the pest
population remotely. Information acquired from the fields
has been proved essential for proper decision making and
pest management against various threats for the plants [2].
An agriculture application that IoT technology could be of
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great value is grape leaf disease identification. This type of
application can be done by sending data from the field using
the IoT infrastructure and processing the data at the back-end
using Deep Learning techniques. Early identification of grape
diseases can theoretically minimize losses, control costs, and
increase goods’ quality.

To ensure the successful operation of such systems, a set of
requirements should be satisfied. Briefly, these requirements
contain conditions related to the distance of the IoT devices
and the devices’ energy consumption to operate for more
extended periods and the low cost of building and operating
such systems. A key component to meet these requirements
is the communication protocol used. Over the years, sev-
eral wireless communication protocols have been adopted
by academia and industry, all having their advantages and
drawbacks. For example, some wireless communication sys-
tems include short-range with high data rate (Wi-Fi), short-
range with low data rate (ZigBee, Bluetooth), and long-range
with high data rate, e.g., cellular networks (2G, 3G, 4G,
5G). For example, ZigBee and Bluetooth are not adapted
for scenarios that require long-range communications. On
the other side, cellular technologies can provide long-range
communications but consume more energy; therefore, they
are not acceptable for such IoT applications.

On the other hand, Low-Power Wide Area Networks (LP-
WAN) are wireless technologies with characteristics such as
large coverage areas, low bandwidth, possibly small packet
and application layer data sizes, and long battery life oper-
ation. LPWAN is the wireless communication technology to
support IoT applications’ requirements, as mentioned above.
The three LPWAN leading technologies that compete for
large-scale IoT deployment are the LoRa/LoRaWAN, Sigfox,
and Narrowband Internet of Things (NB-IoT) [3].

LoRa is a low-power, long-range wireless technology plat-
form that uses an unlicensed radio spectrum for industrial,
scientific, and medical (ISM) purposes. Because of its open
and straightforward protocol stack and its deployment and
management flexibility, LoRa has recently gained much at-
tention in the Internet of Things community. Many appli-
cations use LoRa as the communication protocol to transfer
the sender’s data to the receiver node. The selection of LoRa
protocol by several applications was based on the fact that it
operates on an open license-free spectrum, has high coverage
in open space, and is relatively power consumption efficient
[4]. Although LoRa has many advantages, it also has some
limitations that create many research challenges. One such
limitation is the maximum percentage of time in which the
LoRa device can use a channel, known as duty-cycle. In
European Union, using the frequency of 868MHz, a node’s
maximum duty cycle is 1%, meaning that a node can only be
active for 36sec/hour.

Although LoRa technology has found wide application
mainly in remote monitoring applications where the amount
of data sent is periodic and limited, in this work, our goal is to
study if LoRa technology could be used in applications with
demanding communication requirements such as sending an

image of a grape leaf from a vineyard to identify diseases in
grape leaves. The major challenge of using LoRa is to send
the image from the crops to the back-end efficiently, meaning
to receive the image with an acceptable quality (based on the
packet loss) enough to proceed with the identification of leaf
disease and at the same time to meet the duty cycle limitation
of 1%.

A. MOTIVATION/SUMMARY OF CONTRIBUTION
This paper presents a framework that combines the two dis-
ruptive technologies, LoRa and Deep Learning, on transmit-
ting images depicting grape leaves and identifying possible
diseases.

Several recent studies have raised serious questions about
image transmission over the LoRa network because images
need a large amount of data and consume more energy during
transmission. Considering the last comment, the first goal
of this paper is to evaluate the process of image transition
over the LoRa network. We examine the impact of several
factors throughout our simulations, such as the spreading
factor, distance, and packet losses.

Image transmission over LoRa results in packet losses
and major visual corruption of the images. For this study’s
purpose, a simulation tool has been developed to construct
the received images from the gateway. In addition, a perfor-
mance evaluation of a LoRa-based pilot is conducted. The
pilot was implemented to monitor grape leaf for diseases in a
vineyard. A LoRa pilot was set up in a rural area to evaluate
its performance and extract the best LoRa parameters. The
pilot results were integrated into our simulation tool.

Finally, the paper implements a plug-n-play approach for
automatic grape leaf disease identification on visually cor-
rupted and low-quality images. A Convolutional Neural Net-
work (CNN) model effectively classifies grape leaf images
into one of the four classes (Black rot, Esca, Leaf blight, and
Healthy). The first class corresponds to the healthy leaf, while
the three remaining classes correspond to possible diseases.
The procedure is repeated for two different scenarios. In the
first scenario, we use high-quality images compared to the
second scenario, where we use images with lower quality
and missing values due to packet losses. For this task, we
employed a pre-trained CNN model and fine-tuned the ar-
chitecture in our dataset. The expression plug-n-play applies
to and explains two crucial aspects of the process at the
same time. The first feature is that pre-trained networks can
recognize gape leaf diseases without the need for any setup,
preparation, or fine-tuning. This emphasizes the reusability
of the pre-trained networks and their universality and ability
to generalize to previously unknown data. At the same time,
the word "plug-and-play" describes a critical aspect of imple-
mentation ease.

It is worth mentioning that, to the best of our knowledge,
this is the first research work to demonstrate that transmitting
images to identify grape leaf diseases using LoRa is feasible
within protocol constraints (such as limited data rates and low
duty cycle).
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The paper is organized as follows. Section II presents
the related work directly related to this paper. Section III
analyses the system architecture, pilot used in this work and
highlights the proposed scenario. In Section IV, the authors
evaluate the proposed scenario and present collected results.
Finally, the conclusions of the study are summarized in
Section V.

II. RELATED WORK
A. IOT ENVIRONMENTAL MONITORING
IoT environmental monitoring is a long-studied field with
a significant amount of contributions over the last decade.
LoRaWAN has been used in numerous applications such as
smart cities, smart farming, and environmental monitoring
[5]. One example of environmental monitoring is presented
in [6], where the authors deployed environmental monitoring
sensors on the roof of buildings in an urban setting. In [7]
a group of researchers from Finland experimented with the
node located on both grounds and water in the city of Oulu.
They observed that the maximum communication range on
the ground was 15 km and 30 km on water. Another example
of air pollution and weather monitoring system for urban
areas is presented in [8]. In their study, a Vehicle Monitoring
System (VMS) based on the IoT technique is developed.
Different sensor modules measure the parameters and collect
the measured data (Global Position System (GPS) positions,
weather parameters, vehicle information, and air quality in-
formation). These parameters are then transmitted to a cloud
server through the LoRa protocol. A user interface is used
to show the sensing data that is stored in a cloud server.
Additionally, the collected data were instantly shown on the
user interface. Furthermore, in [9], the authors proposed an
intelligent agricultural service platform that is based on a
wireless sensor network and LoRa communication technol-
ogy. This work uses LoRa as a network transmission interface
to solve the problem of communication failure and save
energy. Thus, an agricultural intelligent agriculture service
platform is developed to support environmental monitoring
and improve agricultural management efficiency.

In [10], the authors provide an analysis of the impact
of variant physical layer parameters on the performance of
LoRa networks in a tree farm. Overall, the LoRa commu-
nication range was smaller than the theoretically expected
range. Some PHY factors, spreading Factor and coding rate,
showed a clear impact on LoRa performance. Actual data
reliability was inconsistent at varying distances and PHY
configurations, unlike the consistency found in the Received
Signal Strength Indicator (RSSI) reported by the radios.

In [11], authors present an approach for a low-cost crop
sensing that is based on temporal variations of the signal
strength of low-power IoT radio communication. Based on
real-world experiments in wheat fields, they have shown that
a significant correlation between Leaf Area Index (LAI) and
RSSI time series.

In [12], authors focused on the transmission performance
of LoRa technology and applied it to Sailing Monitoring Sys-

tem. The measurements were conducted in Brazil Olympics
sailing venue for two cases, and the system’s performance of
coverage and packet loss rate in the sea area were analyzed. It
shows that the system based on LoRa technology can achieve
the intended purpose of system design and meet the essential
requirement of system applications.

In [13], the authors highlight that the temperature can have
a significant impact on LoRa’s communication performance
and demonstrate that an increase in temperature can be suffi-
cient to transform a perfect LoRa link into an almost useless
one.

The authors in [14] conducted a study to analyze the best
Spreading Factor (SF) used in various distances, using the
925 MHz Industrial, Scientific, and Medical (ISM) frequency
band in Indonesia. Their experiments show SF7 is the best
Spreading Factor for maximum throughput, SF8 for a balance
of high throughput and long-range capabilities, and SF11 for
maximum range and optimal range for LoRa application.
Finally, in [15] authors focus on rescue monitoring. Their
goal is to study if LoRa technology can be used for such
kinds of applications. The obtained simulation and real-time
experiments results indicate that LoRa could be an ideal
candidate for rescue monitoring.

In regards to the image transmission using LoRa, little
research has appeared in the literature in the last couple
of years. This topic is relatively new and quite challenging
due to the technology limitations. In [16], authors presented
a low-cost, long-range image surveillance system that was
based on an image compression technique that can run on
limited memory platforms. Based on their evaluation of this
technique, the image can be transmitted up to 940 meters
using LoRa. However, this work lacks a detailed performance
evaluation of LoRa protocol since it is not clear the effects of
different LoRa settings, such as the Spreading Factor, on the
delivery of the image.

The authors in [17] used Joint Photographic Experts Group
(JPEG) and JPEG 2000 methods for image compression to
achieve an acceptable compression and image reconstruction
while transmitting in a low-speed network such as LoRa.
Based on the evaluation, the format of JPEG 2000 compres-
sion is suitable for image compression over LoRa technology.
Although the authors considered the different settings of
the LoRa protocol, they did not consider the duty cycle
limitation, which means that no results on the total time taken
to deliver the image are provided.

In [18], authors proposed a new method for mangrove
forest monitoring in Malaysia, wherein they transfer image
sensor data over LoRa in a node-to-node network model. To
do so, they produced a scheme where the images collected by
the sensor are encrypted as hexadecimal data and then split
into packets for transfer via the LoRa communication link.
To evaluate their solution, they measured the packet loss rate,
the Peak Signal-to-Noise Ratio (PSNR), and the Structural
Similarity (SSIM) index of each image. As a result, they
concluded that LoRa is an ideal technology for implementing
a WSN for monitoring mangrove forests. Despite that, the
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number of images sent and experiments performed are too
small to draw robust conclusions.

In [19], the authors proposed a Carrier Sense Multiple
Access (CSMA) mechanism adapted to LoRa networks for
successful long-range data transmission. The purpose of this
work was to evaluate the new mechanism and prove that it
can eliminate collisions and, therefore, packet losses when
transmitting large volumes of data such as an image.

In [20], the authors introduce a novel system to transmit a
sequence of images captured from a camera on a static envi-
ronment through LoRa. Their key challenge was to reduce the
amount of transmitted data while preserving image quality.
To this end, they developed a technique that splits an image
into grid patches and transmits only the modified area of an
image based on their dissimilarity measure.

B. PLANT DISEASE IDENTIFICATION
Identifying crop diseases opportunely with high precision
plays a vital role in the field of agriculture as it affects
productivity and food security worldwide. Therefore, it is
crucial to detect the disease in time and take precautions to
prevent unnecessary resources.

Various diseases affect plants with severe repercussions in
the economy and agriculture. However, detection is usually
performed manually with visual inspection and lab tests. As
a result, this process is time-consuming and can lead to an
incorrect diagnosis.

To overcome these obstacles, machine-learning methods
have been applied. The first studies of plant disease de-
tection were focused on low-level image features such as
color, shape, texture, and traditional machine learning al-
gorithms such as k-nearest neighbors, Support Vector Ma-
chines (SVM), and decision trees. In [21], plant diseases
classification that requires image segmentation, followed by
feature extraction of color and texture to train the classifier, is
presented. The authors in [22] proposed a digital image-based
algorithm to identify plant diseases that consist of color trans-
formations, histograms, and a pairwise-based classification
system. The methods in [23] and [24] are based on Global
Thresholding algorithms to segment the diseased parts of the
grape leaves and feed them to machine learning classifiers.
These approaches, though, have severe limitations such as:

• Low-level features lack discriminative power and can
only be effective with a fusion of different features

• Traditional machine learning algorithms cannot process
the spatial information of the image effectively

Deep Learning (DL) and specifically CNNs have the
potential to overcome these issues presented above. Deep
Learning-based approaches are increasing with high pace and
have been incorporated in various computer vision applica-
tions successfully. CNNs can learn relevant, class-specific
features at different levels mimicking how the human brain
perceives the images. CNNs topology consists of layers,
maintaining a hierarchy structure starting from the input
layer, followed by the hidden layers, and eventually ending

in the output layer. Each layer can exploit spatial or chan-
nel information using multiple convolutional kernels with
learnable weights. The multilayered, hierarchical structure
of deep CNNs enables them to extract low-level features
such as edges and blobs in the initial layers and, based on
these, to detect higher-level features at subsequent layers
[25]. As we move more in-depth, the feature hierarchies
become increasingly more powerful.

The emergence of another field of machine learning, trans-
fer learning, gave a massive boost in CNNs adoption as it
relaxed the necessity of a large amount of data to train them
effectively. The experimental results of [26] emphasized pre-
trained CNNs capability to form robust baselines. Therefore,
most of the recent studies in leaf disease classification use
DL methods as their primary approach.

The authors in [27] adopted a modified version of the
popular CNN architecture AlexNet to identify cucumber
leaf disease. The proposed method consists of three main
adjustments:

1) The fully connected layers are replaced with a global
pooling layer

2) Dilated convolutional layers are adopted
3) Combination of global pooling and dilated convolution

are used

The S-CNN approach [28] proposed the extraction of random
patches from each image, followed by an augmentation step.
In the last stage, augmented patches feed the CNN. The
model that utilized the segmented images outperformed the
model trained with the full images. In a similar vein, a more
sophisticated approach is presented in [29]. The proposed
approach is a two-step process. The first step includes the
segmentation of leaves from the background using a U-Net
architecture. In the second step, classification is performed,
extracting high-level features from pre-trained CNNs. Af-
terward, popular pre-trained architectures are compared re-
garding their classification performance, emphasizing the
segmentation module’s importance for plant disease recog-
nition. The Plant Disease Diagnosis and Severity Estimation
Network (PD2SE-Net) [30] is another DL approach for plant
disease diagnosis. Residual Network (ResNet) [31] architec-
ture is employed as a backbone incorporating shuffle blocks
to reduce the computational complexity efficiently.

III. THE PROPOSED APPROACH
Our proposed system architecture is shown in Fig. 1. The
system consists of three main components: the LoRa pilot,
the simulator, and the pre-trained CNN network.

A. LORA

LoRa is a wireless modulation for long-range, low-power,
and low-data-rate applications developed by Semtech and
belongs to the LPWAN family. LoRa allows long-range com-
munications at a low bit rate among the connected objects
(things) wirelessly.
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FIGURE 1: System Architecture

LoRa allows the configuration of four critical parameters,
Bandwidth (BW), Spreading Factor, Coding Rate (CR), and
Transmit Power (TXP).

• Bandwidth: it is the width of the transmitted signal. It
can only be chosen among three options: 125 kHz, 250
kHz, or 500 kHz. 125 kHz must be configured for a
long-range transmission, where 500 kHz is used for fast
transmission.

• Spreading Factor: it refers to a value that determines
how to spread the chirp. In LoRaWAN networks, SF7
to SF12 is used in a step of 1. The selection of SF
also defines the data rate. Table 1 presents the chirp
packet length based on the SF parameter. Modifying
this parameter provides a trade-off between increasing
the communication distance and decreasing the data
transfer rate.

• Coding Rate: an error correction code added to a packet
before transmission. To calculate the CR, the following
formula is used:

CR =
4

4 + n
, n = 1, 2, 3, 4 (1)

where n is the number of redundant bits.
• Transmission Power: Transmission Power is the amount

of power used to transmit a chirp. The higher is the
transmission power, the higher the power consumption.
For example, for the transmission power of 20 dBm, the
power consumption is 412.5 mW.

TABLE 1: LoRa Data Rates [32]

Data Spreading Bandwidth (kHz) Max App
Rate (DR) Factor Payload (bytes)

0 12 125 51
1 11 125 51
2 10 125 51
3 9 125 115
4 8 125 222
5 7 125 222

B. LORA PILOT

The pilot’s main purpose is to receive images from a private
farm field from six nodes placed at different distances from
the gateway, scattered to a field of grapes crops.

• Node: in the presented experiments, we use an Arduino
UNO microcontroller which is based on the ATmega328
architecture.

• Transceiver: we use the Dragino LoRa Shield, which
allows the user to send data and reach extremely long
ranges at low data rates. It provides ultra-long range
Spread Spectrum (SS) communication and high interfer-
ence immunity whilst minimizing current consumption.
LoRa shield is based on Semtech SX1276/SX1278 chip.

• Gateway: we use the LG01-N gateway by Dragino.
LG01-N features an open-source, OpenWrt system,
single-channel LoRa gateway. It allows users to send
data at low data rates but reaching extremely long
ranges.

The pilot was set up in a rural area in Rhodes Island and,
more specifically, in the South Aegean region plant nursery
in Greece. We employed the LoRa network composed of
a gateway and six nodes to send the image packets to the
gateway. One of the nodes was placed at the farthest crop area
(600 m) with line-of-sight to the gateway; another node was
located to 200 m (line-of-sight) from the gateway and, finally,
the remaining nodes were employed closer to the gateway but
with natural obstacles between their communication path to
the gateway. Nodes 1 to 4 are located closer to the gateway
but with natural obstacles between their communication path
to the gateway where nodes 5 and 6 were placed in position
with line-of-sight to the gateway. The purpose is to inves-
tigate the performance of the pilot and, more specifically,
how different LoRa settings affect the Packet Reception Rate
(PRR) and, therefore, the reception of the image data. Further
to the PRR, we investigate the behavior of the RSSI, Signal-
Noise Ratio (SNR), and uplink delay of the image data. In
addition, we explore how weather temperature affects the
RSSI.

For each node, 50 images were sent by changing every
time the spreading Factor (from 7 to 12). The bandwidth was
set to 125 kHz, transmission power to 14 dBm, and finally,
the coding rate to 4/5. To reduce the size of the transmitted
data and the LoRa overhead, we transformed the images to
grayscale. By doing this, for an image of 255×255 bytes size,
we reduced the transmitted LoRa data from 195 KB to 65
KB. The different settings used in the presented experiments
are shown in Table 2.

TABLE 2: Scenario parameters

Spreading Factor 7, 8, 9, 10, 11, 12
Terrain Line of Sight (LoS), Non Line of Sight (NLoS)

Distance (m) 15, 30, 60, 100, 200, 600
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C. SIMULATION TOOL
The main scope of the simulation tool is to create a larger
image dataset for the CNN models so that the reliability of the
grape leaf diseases identification process is increased. To do
so, the tool receives input from the pilot evaluation, and more
specifically, the packet loss patterns, as well as an input from
the PlantVillage database [33]. As a result, the simulator’s
output is a dataset of images with a reduced quality due to the
packet loss effect. PlantVillage database contains images that
were taken from experimental research stations associated
with Land Grant Universities in the USA (Penn State, Florida
State, Cornell, and others). The technicians collected the
leaves by removing them from the plant and placing them
over a paper sheet with a black background. As a result, every
leaf in the dataset maintains high resolution, proximity views,
and has the same orientation. The images were captured
outside under full light using a digital camera. The original
dataset contains 54.309 images from 14 crop species. For this
study, we used a subset that consists of grape crops. Thus,
4.089 images are divided into four classes (Black rot, Esca,
Leaf blight, and Healthy), three possible diseases, and a class
representing healthy grape leaves.

D. SELECTED DL PRE-TRAINED MODELS
For the grape leaves disease identification task, CNN ar-
chitectures are employed. To complement the simplicity of
our approach, we adopted two lightweight but efficient state-
of-the-art pre-trained CNN architectures, MobileNetV2 and
ResNet50. The adopted architectures have been trained on
the ILSVRC-2012 ImageNet dataset (1k classes/1.3 million
images) [34]. The transferable parameters of these models
enable them to converge faster and yield better results. Over-
all, we utilized the aforementioned models off-the-self using
their trained weights as the starting point and fine-tuned them
on the PlantVillage dataset.

In [35], the authors proposed a class of efficient mod-
els, MobileNets, for mobile and embedded vision applica-
tions, which achieves state-of-the-art performance on mul-
tiple tasks allowing efficient computing resources usage.
MobileNetV1 introduced depthwise separable convolutions,
which splits a kernel into two separate kernels: depthwise
convolution applies a single convolutional filter for each
input channel followed by a pointwise convolution, a 1×1
convolution to combine the outputs of the depthwise convolu-
tion. This factorization technique is computationally efficient
and is a critical component of MobileNets architecture. The
next generation of MobileNets, MobileNetV2 [36], is based
on MobileNetV1 architecture. It significantly improves the
accuracy of MobileNetV1 on various vision tasks, retaining
the simplicity of its predecessor.

MobileNetV2 introduced the inverted residual block with
the use of depthwise separable convolutions as useful blocks
but with two new features: linear bottlenecks and shortcut
residuals connections between the bottlenecks. This struc-
ture exploits the low-rank nature of the problem, creating
efficient, lightweight layers. The inverted residual expands

a low dimension vector, with the use of pointwise (1×1)
convolutions to a higher-dimensional space followed by the
activation function. In the sequel, a depth-wise convolution
is applied, mapping the spatial correlations. After Rectified
linear unit (Relu) [37], a 1×1 projection layer is adopted. The
last operation is linear so that there is no further reduction in
information. The input and output mappings are connected
with a residual connection if and only if they have the
same number of channels. The structure of this architecture
provides a natural separation between the input/output do-
mains of bottleneck and transformation layers. The network
consists of 54 layers, has an input image size of 224×224
bytes, and has been trained using the ImageNet Dataset.

To tackle the vanishing gradient challenges that arose from
training deep-neural networks, the authors in [31] proposed
the ResNet CNN architecture. ResNet incorporates residual
functions concerning layer inputs. Instead of approximating
the function H(x) that represents an underlying mapping to
be learned, the authors enabled the layers to approximate a
residual function (F (x) := H(x)−x) using a parameter-free
identity shortcut connections. ResNet architecture consists of
two main blocks: the Convolutional and Identity blocks. Both
Convolutional and identity blocks use standard convolution
with 3×3 filters followed by BatchNormalization and ReLu
activation function as their main components. Each block
uses a three-layer stack with 1×1, 3×3 and 1×1 convolu-
tions. The 1×1 convolutions reduce the input dimension, and
the last restore it. The difference between these blocks lies
in implementing the skip connection, as the convolutional
block applies convolution operation on it. Identity blocks are
essential to the network’s efficiency and complexity. ResNets
achieved state-of-the-art results in image recognition and
object detection tasks.

IV. EVALUATION RESULTS
In this section, we performed the evaluation of the proposed
system. Our evaluation consists of two main phases:

• Evaluation of image transmission using LoRa pilot: in
this phase, 50 images were sent using our pilot and
evaluated the performance of the LoRa communication
link. We measured several performance parameters like
the Packet Reception Ratio (PRR) and Over Air delays.

• Grape leaves disease identification: in this phase, we
trained the proposed CNN models to identify disease
patterns in grape leaves. We used our simulator to
increase the number of images used and create im-
ages with similar characteristics as the images received
during pilot evaluation. To do so, we import into the
simulator the packet loss patterns extracted from the
pilot evaluation and a dataset of around 4k images.

A. LORA PILOT EVALUATION
This subsection presents the performance evaluation of the
scenario as described in the previous section. Fig. 2 shows the
PRR obtained for Different Spreading Factors and distances.
As expected, using a higher Spreading Factor, the packet loss
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is decreased.For example, inn all the cases, when using SF =
12, 100% of the packets received. On the other hand, one can
also easily observe that we can receive all the packets in short
distances even with a lower Spreading Factor.
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FIGURE 2: Comparison of PRR with different SF and dis-
tances

Tables 3 and 4 present the measured values of RSSI
and SNR using SF = 7 and SF = 12, respectively. Based
on the results, we observe that the RSSI and SNR depend
on the distance of the nodes. Furthermore, the structure of
the field between the node and gateway affects the results
significantly. For example, node 4 shows a lower RSSI
value compared to node 5, even though its distance from
the gateway is half. This is due to the obstructed path of
node four and the gateway. Furthermore, one observes that
when using SF = 7, a higher RSSI value for the same node
is obtained when compared to SF = 12. Finally, regarding
SNR, it is shown that there is a small increase in SNR
when increasing the spreading Factor. This is in line with
the expected behavior since higher SF increases the SNR,
transmission range, packet airtime and decreases the data
rate.

TABLE 3: RSSI and SNR ranges for nodes using SF = 7
Node ID Distance RSSI Average RSSI Range SNR Average SNR Range

1 15 -81 -79 to -107 9 -11 to 11
2 30 -89 -85 to -92 9 4 to 12
3 60 -90 -87 to -93 9 5 to 11
4 100 -101 -95 to -109 5 -7 to 9
5 200 -95 -92 to -103 8 4 to 11
6 600 -103 -99 to -108 4 -3 to 6

TABLE 4: RSSI and SNR ranges for nodes using SF = 12
Node ID Distance RSSI Average RSSI Range SNR Average SNR Range

1 15 -85 -78 to -100 9 2 to 13
2 30 -90 -88 to -94 9 7 to 11
3 60 -91 -83 to -95 9 6 to 10
4 100 -102 -94 to -105 5 -6 to 9
5 200 -96 -89 to -101 9 5 to 11
6 600 -104 -96 to -108 5 -3 to 8

Figs. 3 and 4 illustrate the relationship between the RSSI,
SNR and PRR. In both cases, the SNR values recorded by

nodes follow the fluctuation trend of corresponding RSSI
values. Also, the behavior of RSSI and SNR affects the PRR,
especially when using SF = 7. In the case of SF = 12, it is
shown that even under RSSI fluctuations, the specific setup
was able to deliver 100% of the messages.

FIGURE 3: RSSI, SNR, and PRR for in NLOS channel
conditions for BW = 125 kHz, SF = 7, and CR = 4/5.

FIGURE 4: RSSI, SNR, and PRR for in NLOS channel
conditions for BW = 125 kHz, SF = 12, and CR = 4/5.

Table 5 depicts Over the Air delays with different Spread-
ing Factors for all nodes. In our scenarios, we use the same
payload size for SF7 - SF9, which is 85 bytes and 51 bytes
for SF10 - SF12. The size of the payload is based on the
maximum image size, which is 255×255 bytes, and the
maximum payload size for each Spreading Factor. Based
on the evaluation results, the air delay depended mostly on
the Spreading Factor and not on the distance or obstacles in
the communication path. It is observed that lower Spreading
Factors lead to less delay, and the delay increases exponen-
tially as the Spreading Factor increases. The most important
conclusion is that a Spreading Factor of 7 reduces the time
elapsed during transfer and is more applicable for scenarios
where we want to transfer data like an image. In general,
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higher transmission speeds will lead to less battery usage and
gateway utilization.

TABLE 5: Measured Over the Air delays with different
Spreading Factor and node distance

Node distance=15 m Node distance=30 m Node distance=60 m
SF Over the Air (ms) SF Over the Air (ms) SF Over the Air (ms)
7 170 7 170 7 171
8 298 8 299 8 299
9 534 9 534 9 535
10 699 10 700 10 700
11 1560 11 1561 11 1563
12 2794 12 2795 12 2795
Node distance=100 m Node distance=200 m Node distance=600 m

SF Over the Air (ms) SF Over the Air (ms) SF Over the Air (ms)
7 170 7 171 7 171
8 298 8 298 8 299
9 535 9 535 9 536
10 700 10 701 10 701
11 1562 11 1563 11 1563
12 2795 12 2795 12 2795

Fig. 5 shows the effect of the external temperature on
RSSI. It is clear that as the temperature increases, the RSSI
decreases. This is in line with [13] which shows that the effect
of temperature on LoRa’s packet delivery can be quite severe.
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FIGURE 5: Temperature effect on RSSI

Finally, Table 6 depicts the number of total packets re-
quired to be sent using different image sizes as well as the
total time required to send an image and the total number of
images that the protocol can send to the gateway. Based on
Table 6, we observed that the maximum number of images
are sent using Spreading Factor 7 since the Over the Air delay
is the minimum compared to the other Spreading Factors. All
these results are based on the limitation of 1% (36sec/hour)
of the duty cycle for the sending node. For example, an image
with size 255×255 is equal to 65025 bytes. In our case, when
using SF = 7, the payload of the packet is equal to 85 bytes,
which means 765 packets are required to be sent.

B. GRAPE LEAVES DISEASE IDENTIFICATION
The following procedure considers the intensity values of
the pixels, which are calculated as the mean Gr[x, y] of
the pixels’ RGB values: Gr[x, y] = (R[x, y] + G[x, y] +
B[x, y])/3. The calculated intensity value replaces all the
pixel [x, y] R, G, and B values. This modification allows
us to adopt the pre-trained off-the-shelf network without

further adjustments. The last layer of the network is replaced
with one corresponding to the number of possible classes
for classification. The networks are trained using Adam
optimizer. We use batch size 32 and EarlyStopping limit
of 10 epochs. The initial learning rate is 1 × 10−4 and is
divided by ten every five epochs if there is no improvement
in the validation set. We experimented with various image
sizes and trained the models for two different setups: 1)
using original images and 2) using random augmentations
on images (rotation, horizontal flip, and vertical flip). In
addition, we adopted different values of PRR for every image
size, resulting in partly corrupted images as they contain
missing values in proportion to PRR value. To reconstruct the
image, the missing values are replaced with 0’s. Fig. 6 depicts
sample images - one from each class, while Fig. 7 depicts the
visual corruption on images under different LoRa’s packet
loss levels.

(a) (b)

(c) (d)

FIGURE 6: Sample images from the employed dataset: (a) Healthy
Leaf, (b) Black rot, (c) Esca, and (d) Leaf blight.

1) Results

Once again, it is critical to emphasize the implementation’s
goal. The studies were carried out to provide us with an
understanding of standard CNN architectures’ robustness to
considerably noisy data due to transmission packet loss and
their suitability for such tasks. We did not utilize rigorous
hyper-parameter tuning or complicated CNN architectures as
we focused on comparing the models’ prediction power when
the quality of images is significantly altered. In this regard,
the performance degradation across the setups is the most
essential factor.
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TABLE 6: LoRa with different image sizes using different Spreading Factors

SF = 7 SF = 8
Image Size Packets Total time (ms) Images/day Packets Total time (ms) Images/day
255x255 765 130050 6 765 227970 3
128x128 256 43520 19 256 76288 11

64x64 64 10880 79 64 19072 45
32x32 16 2720 317 16 4768 181

SF = 9 SF = 10
Image Size Packets Total time (ms) Images/day Packets Total time (ms) Images/day
255x255 765 408510 2 1275 892500 0
128x128 256 136704 6 322 225400 3

64x64 64 34176 25 81 56700 15
32x32 16 8544 101 21 14700 58

SF = 11 SF = 12
Image Size Packets Total time (ms) Images/day Packets Total time (ms) Images/day
255x255 1275 1990275 0 1275 3563625 0
128x128 322 502642 1 322 899990 0

64x64 81 126441 6 81 226395 3
32x32 21 32781 26 21 58695 14

(a) (b)

(c) (d)

FIGURE 7: Image Corruption under different Lora’s packet loss
levels: (a) 0%, (b) 25%, (b) 50% and (d) 75%

Table 8 and 9 present the classification accuracy of
ResNet50, with and without augmentation. It is noticeable
that the application of augmentation provides a subtle im-
provement in all training scenarios. In both setups, the net-
work is robust to packet loss on the condition such that the
original image’s dimensions are preserved. Therefore, CNN
can handle missing pixel values resulting from transmission
errors. While the downscaling process introduces another
noise factor in addition to packet loss, it decreases the re-
quired channel bandwidth, significantly enabling LoRa to
transmit images effectively when the bandwidth is narrow.

It is also worth noting that control experiments have also

been conducted by employing the MobileNetV2 (as these
are illustrated in Table 7). One can easily observe that the
performance of ResNet50 outperforms the one reported by
MobileNetV2 without compromising efficiency. In summary,
CNNs employment is crucial to combat the challenge of
narrow bandwidth due to long-distance transmission.

Overall, we attempt to present some widely used CNN
architectures which, although they have been used in iden-
tifying crops diseases, to the best of our knowledge, have
not been adopted in a similar setting where data quality is
seriously affected by network’s limitations. Furthermore, in
the absence of packet loss and while using the original picture
dimensions, the performance of the used CNNs is consistent
with the literature [38] [39]. Even though the findings are not
directly comparable due to the random test split, they are in
the same ballpark.

TABLE 7: MobileNetV2

Image Size (Bytes) 255×255 128×128 64×64 32×32
PRR 100% 99.54 98.68 94.88 87.63

TABLE 8: Classification accuracy of ResNet50 without aug-
mentation

Image Size (Bytes) 255×255 128×128 64×64 32×32
PRR 100% 99.65 98.86 95.9 88.75
PRR 75% 98.06 97.27 92.15 86.64
PRR 50% 97.15 94.31 90.3 85.0
PRR 25% 94.77 92.95 86.70 74.65
PRR 10% 91.81 87.72 81.68 66.20

2) Visualization
We utilized the Grad-CAM algorithm to visualize the de-
cisions of CNN’s output layer. This allows us to identify
exactly which part of the leaf is associated with a particular
classification. Grad-CAM [40] uses the gradient information
that flows into the last convolutional layer of CNN to assign
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TABLE 9: Classification accuracy of ResNet50 with aug-
mentation

Image Size (Bytes) 255×255 128×128 64×64 32×32
PRR 100% 99.77 99.02 96.31 89.2
PRR 75% 98.33 97.61 92.48 87.2
PRR 50% 97.27 94.53 91.25 85.56
PRR 25% 94.97 93.27 87.86 75.45
PRR 10% 92.2 89.07 82.72 66.8

significance values to each neuron. Fig. 8 presents Grad-
CAM visualizations of leaf images for different PRR values.
Blue regions represent the parts of the image where the
CNN’s attention is focused and influence the final classifi-
cation decision. According to the visualization findings, the
spot region of the disease is highly activated. This is how
the network distinguishes between various diseases of the
grape leaves. It is clear that as the PRR declines, the attention
drifts apart. In particular, when PRR is equal to 10%, the
model focuses more on the shape of the leaf as most of the
diseased spots are missing due to packet loss. Overall, the
findings of this experiment reveal that the model can identify
the characteristics of each disease spot effectively in noisy
scenarios.

(a) (b)

(c) (d)

FIGURE 8: Grad-CAM visualizations of leaf images for different
PRR values. (a) 10%, (b) 50%, (c) 75% and (d) 100%

V. CONCLUSION AND FUTURE WORK
LoRa protocol was meant to be used for applications requir-
ing long-distance, low data rate, and low power consumption.
In addition, limitations like the maximum duty cycle of 1%,
which means that the node can only be active for 36 seconds
per hour, make LoRa unsuitable for image transmission. In

this paper, we demonstrated a grape leaf diseases scenario us-
ing images that were sent with LoRa. To make this possible,
we reduced the size of the transmitted image by transforming
the images to grayscale. Furthermore, we evaluated the CNN
model using images with packet losses so that to test how
reduced quality images affect the identification of the grape
leaf diseases. Thus, we can conclude that image transmission
using LoRa could be possible, especially when the quality of
the received images does not affect the performance of the
application, in our scenario, the grape leaf diseases identifi-
cation. In our case, even when 50% of the image was lost,
we managed to identify the grape leaf diseases efficiently. As
future work, we plan to use more LoRa gateways to operate
in multiple channels such that the number of images sent
by each LoRa node is increased, which in turn improves the
leaves diseases detection process.
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