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Abstract— The paper describes the computation of motion 
trajectories in ultrasound videos of atherosclerotic plaques. 
Preliminary results indicate that motion trajectories follow the 
cardiac cycles, forcing motions from different parts of the 
plaque and arterial walls to appear in phase. Based on the 
periodicity of the motion, we found that a Fourier series, using 
a small number of harmonics, can approximate the periodic 
motion due to the cardiac motion cycle. Furthermore, plaque 
motion exhibited larger deviations and more abrupt changes 
than arterial wall motion. 
 

Index Terms— Atherosclerosis, motion estimation, ultrasound,  
carotid plaque.  
 
 

I. INTRODUCTION 
Carotid atherosclerosis is the primary cause of stroke and 

the third leading cause of death in the United States. Almost 
twice as many people die from cardiovascular diseases than 
from all forms of cancer combined. Atherosclerosis is a 
disease of the large and medium size arteries, and it is 
characterized by plaque formation due to progressive intimal 
accumulation of lipid, protein, and cholesterol esters in the 
blood vessel wall [1], which reduces blood flow significantly. 
Traditionally the degree of artery stenosis, or narrowing, has 
been targeted as the marker for assessment of risk for plaque 
vulnerability depended on the type of plaque, and considered 
to cause either a complete arterial occlusion or ischemic event 
in the brain. The risk of stroke increases with the severity of 
carotid stenosis and is reduced after carotid endarterectomy 
[2]. It is also anticipated that plaque and wall motion may 
provide additional and important information about normal or 
abnormal motion, measuring the plaque instability, and the 
degree of stenosis, thus giving indication of an individual to 
develop a stroke. 
 

 
 

 
To the best of our knowledge there are no other studies 
reported in the literature, where the carotid plaque motion 
trajectories from ultrasound videos were investigated. In 
recent studies, we have shown that the quality of ultrasound 
carotid artery images can be improved after despeckle filtering 
and normalization [3], [4]. These findings may also be used 
for increasing the accuracy of the motion estimation 
algorithm. Furthermore, the accurate segmentation of the 
carotid plague [5] may help in reducing the size of the area of 
interest and thus improve the final motion estimation results.   
In [6], the authors measured 3D plaque motion velocity over 
the plaque surface, and concluded that symptomatic plaques 
exhibited motion that was significantly different from motion 
of the internal carotid artery. Furthermore, they claimed the 
measured Maximal discrepant surface velocity (MDSV) for 
symptomatic plaques was significantly higher than the 
corresponding velocities for asymptomatic plaques, and also 
suggested that further studies were needed. 
 
The purpose of this research is to develop verifiable methods 
for estimating motion trajectories in ultrasound videos of the 
carotid plaque. Motion trajectories are computed throughout 
the plaque, the plaque-arterial boundary, and the carotid 
artery. We examine the maximum displacements of the 
computed trajectories and compare motion trajectories among 
the different regions.  
 
Preliminary results indicate that motion trajectories follow the 
cardiac cycles, forcing motions from different parts of the 
plaque and arterial walls to appear in phase. Furthermore, 
from the periodicity of the motion, a Fourier series, using a 
small number of harmonics, can approximate the periodic 
motion due to the cardiac motion cycle. It was also found that 
plaque motion exhibited larger deviations and more abrupt 
changes than arterial wall motion. 
 
The rest of the paper is broken into three sections. In section 
II, we provide a summary of the proposed method. In section 
III, we present motion trajectory results on both synthetic are 
real videos. We give concluding remarks in section IV. 
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II. METHODS 
Motion estimation relies on the use of the Horn and Schunk 
algorithm [7]. The basic assumption is that image intensity 
remains constant throughout the video. Thus, when a pixel 
( ),x y  in frame indexed at time t  moves to 

( ),x x y yδ δ+ +  at time t tδ+ , we assume that: 

 ( ) ( ), , , ,I x y t I x x y y t tδ δ δ= + + + . (1) 
Following a Taylor series expansion, assuming continuity in 
image intensity, we obtain the ill-posed, optical flow equation 
 0x y tI u I v I+ + = , (2) 

where ( ) ( ), , ,u x y v x y  denote velocity estimates at pixel 

( ),x y . To solve (2), we rely minimize the functional 

 ( )2 2 2
c bE E dx dyα +∫∫  (3) 

where: 
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The motion estimates are then used to compute pixel motion 
throughout the video using an ODE solver applied to the 
velocity estimates. 

A. Motion Trajectory Estimation Implementation 
The optical-flow method for motion estimation was 
implemented on the Los Lobos cluster (512 Pentium III 
processors) of the Albuquerque High Performance Computing 
Center, using an MPI extension of available code. Estimates 
for each video frame (total=179) were computed for many 
different values of the parameters, and the estimates that 
exhibited the largest density were used. For an ODE solver, 
we use the explicit Runge-Kutta (4,5) formula [8] provided by 
Mathworks [9]. 

III. RESULTS 

A. Results on Synthetic Data 
In Fig. 1, we present results from vertical motion estimation. 
For the simulated motion video, we generated a synthetic 
motion that is in agreement with both our experience and our 
measurements (presented in the following sections). We 
assumed periodic motion at 7 cycles per total video-length 
(video length = 179 frames). Both motion components are set 
to be equal. We used three harmonics: at 7, 14, and 21 cycles 
per video-length to represent the motion, where each 
amplitude decayed at a rate that is one over the frequency. 
From Fourier analysis, the motion simulation represents 
periodicity in the time-domain, where the period is one-
seventh of the video-length, while the harmonic decay 
assumes that the motion itself allows for discontinuities over a 
finite number of points. This model is in agreement with our 
observations of visible motion discontinuities due to sudden 
motion (also see results on real-video examples).  
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Fig. 1. Periodic plaque motion simulation: (a) original video frame used to 
simulate the motion, (b) vertical pixel motion at plaque-wall boundary point 
(row=95, column=45 ) with ground truth (solid line) and estimated (dotted 
line), (c) horizontal motion at plaque-blood boundary point (row=15, 
column=85 ), ground truth (solid line) and estimated (dotted line), and (d) 
motion estimates on the seventh frame of the simulated video. 

In any case, clearly, if the sampling frame-rate had been 
dramatically improved, this motion may appear smoother. In 
Fig. 1(a), we show the first video frame, from which the rest 
of the video was generated. The rest of the video is generated 
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using cubic-spline interpolation from the first frame. The 
simulated video includes a plaque (top-portion) and the 
arterial wall (bottom of the video). We show results from 
vertical motion trajectory estimation near the plaque-wall 
boundary (Fig. 1(b)), at the bottom-left plaque region, 
horizontal motion trajectory estimation at the plaque-blood 
boundary (Fig. 1(c)),at the upper-left plaque region, and full 
motion estimation vectors over the entire video frame (Fig. 
1(d)). From the results, it is clear that relatively-accurate 
motion estimation is possible at the plaque-wall boundary 
(Fig. 1(b)), but not at the plaque-blood boundary  (Fig. 1(c)) 
where the tracking line, dashed line, presents more error 
following the ground truth, solid line. The estimation problem 
with motion-estimation over the plaque-blood boundary can 
be attributed to motion estimation issues over this 
discontinuous-boundary. As it is clear from Fig. 1(d), we can 
also see that we have edge artifacts and speckle noise, forcing 
unreliable estimates over the edge boundaries. 
 

B. Results on videos of the Carotid Plaque 
We present motion trajectory results from two real-video 
examples. The results are summarized in Figs 2-5. 
In Fig. 2(a), we show the first frame of the motion video, 
while the estimated, corresponding trajectories are shown in 
Fig. 2(b). In Fig. 2(b), reliable motion trajectories that span 
the entire video are shown. There is significant variation in the 
motion trajectories, as a function of the location of the initial 
point on the plaque or the arterial walls. 
For three different points, we present vertical motion 
trajectories in Fig. 3. From the results, it is clear that the 
trajectory-estimates follow the cardiac motion cycle. This is 
also reinforced by the fact that all three points appear to be –
approximately- in-phase. It is also shown in Fig. 3, that the 
variation for the first point, is higher indicating that points 
lying in the top region of the plaque exhibit larger movements. 
In Fig. 2(a), we see that vertical plaque motion appears to be 
decreasing in amplitude, over time. For the beginning frames, 
it is clear that the plaque motion exhibits the largest motion 
deviation. On the other hand, arterial motion appears to be 
less, reflecting the more stable nature of the arteries. It is also 
interesting to note that the DFT spectra of the motion show 
that the plaque motion trajectory contains stronger, high-
frequency components. This observation appears to hold for 
our second video example shown in Figs. 4 and 5. In the 
second real-video example, it is also clear that plaque motion 
is of significantly larger amplitude than arterial motion (see 
Fig. 5(a)). It is also clear in Fig. 5(a) that plaque point motion 
is characterized by sharp changes. 
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Fig. 2. First video motion estimation example: (a) first video frame shown. 
with plaque on the far wall of the carotid artery, and (b) 3D motion trajectory 
plots for different points on the right side of the plaque and arterial wall. 

IV. CONCLUSION AND FUTURE WORK 
Our preliminary findings suggest that we maybe able to 
measure plaque instability in terms of the motion trajectories 
of points on the plaque.  
 
Our research is now focused on several extensions of the 
reported research. First, we are interested in understanding the 
performance of the motion estimation algorithms in the 
presence of speckle noise. We will then employ de-speckle 
filtering [4] to reduce the speckle noise and edge artifacts and 
hopefully improve motion trajectory estimation. Secondly, we 
are looking at the use of the divergence of the velocity 
estimates as a measure of local deformation of plaque 
morphology. Thirdly, we want to investigate the use of other 
motion estimation methods for improving trajectory 
estimation. Finally, we will apply an accurate automated 
segmentation method [5], for exactly estimating the plaque 
borders, which will significantly reduce the computational 
time and improve the final motion estimation outcome.  
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Fig. 3. Vertical motion trajectory plots for first plaque-video example: (a) 
vertical displacement plots for points: top-plaque point (row=255, 
column=305 ,plaque-wall boundary point (row=305, column=300) and wall-
point (row=320, column=295) respectively, (b) Windowed-DFT plot for 
(row=255, column=305), (c) Windowed-DFT plot for (row=320, 
column=295). 
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(b)    
 
Fig. 4. Second video motion estimation example: (a) first video frame shown, 
with plaque (again) on the far wall of the carotid artery, and (b) 3D motion 
trajectory plots for different points on the left side of the plaque and arterial 
wall. 
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Fig. 5. Vertical motion trajectory plots for second plaque-video example: (a) 
vertical displacement plots for two points: bottom-mid-plaque point 
(row=290, column=116), plaque-wall boundary point (row=320, column=116) 
respectively, (b) Windowed-DFT plot for (row=290, column=116), (c) 
Windowed-DFT plot for (row=320, column=116). Note the DFT amplitude 
peaks at 7 and 14 cycles/video-length. 
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