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ABSTRACT

Taxation is one of the most important sources of revenue for the European Union

and Value Added Tax (VAT) accounts [1] to EUR 1,2T and as such it is prevalent

target for tax evasion. The European commission has estimated the difference

between the estimated and collected VAT (VAT GAP) to be EUR 147B or 12.3%

of the VAT revenue [2].

It is unfortunate that many EU Tax departments rely on outdated technology

like rules-based systems to target high-yield taxpayers for audit in their effort

to decrease the VAT GAP. In addition, the absence of research in state of the art

technology by the Tax Departments is surprising, meaning that they have not

benefited from advancements in intelligent systems.

This thesis draws inspiration from the most recent machine learning advances

in areas like visual recognition and speech perception. We seek to introduce cut-

ting edge technology in the tax departments arsenal against tax evasion. Specif-

ically, we target the selection of high-yield taxpayers for audit. In our work, we

rely on intelligently processed raw data obtained from available tax returns. The

high-dimensional nature of the available data calls for the development of ma-

chine learning techniques that can learn to extract meaningful lower-dimensional

representations to drive the predictive inference process. We address these needs

in a comprehensive manner, yielding a novel a novel set of supervised and semi-

supervised techniques. In all cases, we take special care mitigating the epistemic
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uncertainty our problem is fraught with, as a result of the limited number of au-

dited (labelled) data.

The success of this thesis would not have been possible without the wholeheart-

edly assistance of the Cyprus Tax Department and the inspired mentoring of the

Taxation Commissioner Mr Yiannis Tsangaris. Specifically, with their approval,

we were given anonymized access to over a million submitted VAT returns and

the tax audit results, pertaining to the period 2013-2019. This availability of a

large corpus of real-world data was a crucial factor that allowed for us to suc-

cessfully pursue our research goals.

Keywords: Value Added Tax, audit selection, representation learning, epis-

temic uncertainty.
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Chapter 1

Introduction

Tax departments have the responsibility of increasing the tax compliance and

maximizing the tax revenue. Since experienced auditors are a scarce resource,

tax audits must be carefully selected so as to maximize the return from each

audit. Therefore, one of the most difficult tasks tax departments face is the iden-

tification of the taxpayers with the highest tax yield for audit with high accuracy

and minimal resources. In the past, tax departments have used many different

labor intensive methods to this end, like one-by-one review of the submitted tax

returns and rule based systems. In both cases, a taxpayer is selected for audit

based on human expert knowledge.

Tax departments have not benefited from recent advancements in artificial intel-

ligence because of the absence of publicly available tax data for research. Only

recently few large tax departments of the European Union have launched an in

house AI application development for audit case selection. Smaller tax depart-

ments with very limited resources cannot perform research, and an alliance with

a university researchers is the only option to obtain such technology.
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Whether a taxpayer will actually yield high tax after a tax audit depends on a

plethora of factors that characterize the taxpayer behavior. Each characteristic

has different weights and complexity, making it almost impossible for tax ex-

perts to find the rules and axioms that analytically predict the taxpayer behavior.

To analyze the submitted VAT return information efficiently and build models

fit for purpose, we pursue strong innovation in machine learning techniques [3,

4, 5].

1.1 Machine learning

Machine learning techniques use probabilities for a) modelling the relation be-

tween the submitted VAT return information (input) and the taxpayers with high

tax yield after audit (output), in a discriminative model or b) find which prob-

ability distribution can best generate the taxpayer behavior, generative model.

The correlation of generative and discriminative machine learning models is an-

alyzed in [6, 7, 8, 9, 10] papers.

Machine learning pursues the probability distribution which represents most ac-

curately the taxpayer information in generative and discriminative models. An

efficient machine learning model trained to detect taxpayers with high tax yield

must rely on the available tax data. To this end the machine learning model must

exploit data by being flexible with adaptive parameters. This flexibility is the

representation of a group of probability distributions.

A parametric machine learning model has a predefined number of adaptive pa-
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rameters which are set heuristically. On the other hand non parametric models

parameters depend on the input data and thus have significantly higher compu-

tational needs. Hereafter we will discuss the use of parametric models, and they

will be referred simply as ’models’.

Maximum Likelihood parameter estimation is one of the simplest ways to train

a machine learning model [11] but it has two major drawbacks. The first is the

failure of the model to predict accurately on previously unseen data (overfitting)

[12, 13]. The use of regularizers can minimize overfitting by optimizing the

size of parameters. Secondly when maximum likelihood is used to train Deep

Neural Networks (DNNs) some parameters are under-trained [14] and therefore

the model capability to identify latent regularities of the data is undermined.

DNNs have the advantage of integrating many neural networks with non linear

dependence, and have been successful in many areas of artificial Intelligence

(AI). The learning capacity of DNNs made possible visual object recognition

[15, 16, 17, 18, 19], speech perception [20, 21, 22, 23], language comprehension

[24, 25] and other [26, 27, 28]. These achievements demonstrate the ability of

the DNNs to exploit multi dimensional data and use these representations to

make accurate predictions on previously unseen data.

The shallow models of neural network were popular before deep neural net-

works with a single latent layer (perceptrons) [29], kernel regression [30], sup-

port vector machines [31, 32, 33] for example and were popular in the machine

learning community because the of the easy training. They were commonly
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used with convex loss functions, reducing the training task to a convex optimiza-

tion one. The learning capacity of these systems was limited to simple structures

since these are not capable of extracting complex structures from rich input [34].

Their need for large amount of labeled data during training, limits their appli-

cation since in the real world labeled data is scarce. The findings on how the

biological visual cortex is performing the object recognition [35, 36, 37], and

the limitations of single layer techniques influenced the building of deep archi-

tectures that consist of several hidden layers of nonlinear processing. These

deep models contain many layers of hidden variables and a plethora of param-

eters which must be learned efficiently. Visual object recognition, information

retrieval, classification, regression are possible because of deep architectures

and GPU processing power [38, 39, 40, 41].

1.2 Contribution

In this thesis, we present two innovative approaches to address the considered

problem. In both cases, our goal is to derive accurate predictions and inferences

about the taxpayers using actual submitted VAT returns. The tax information of

each taxpayer is mapped in a cause and effect fashion, in an attempt to make

accurate predictions on previously unseen VAT return. This can be seen as a

model where the tax return information (input) is represented in a low level

multi dimensional matrix, and taxpayers with high tax yield after audit (output)

is a higher abstract representation.

First, we build upon the large volume of existing works that utilize Random
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Forests (RFs). RFs constitute a standard method in the Value Added Tax (VAT)

audit case selection literature. Despite, though, their success, their predictive

performance is still below the expectations of tax authorities, that need to timely

detect cases of significant audit yield potential. This lackluster performance

is mainly attributed to the fact that RFs cannot deal with data that entail non-

stationary nature, multiple modalities, or discontinuities. These are common

characteristics of real-world datasets; thus, the incapacity to properly address

them is a major suspect for undermining their performance. We address these

issues by considering a generative model with power-law behavior, capable of

generating multiple distinct RFs over the observations space of the modeled

data. This way, our approach enables capturing an indefinite number of dis-

tinct classification patterns, while being able to effectively handle outliers. The

latter advantage is of paramount importance for the effectiveness of the model-

ing procedure in cases where few large parts of the observations space can be

modeled by few RF classifiers, yet there is a large number of small parts of the

observations space that require distinct RFs to be properly modeled (power-law

nature).

Second, we take a bolder step in order to address the shortcomings stemming

from the limited availability of labeled data. This is a challenging problem that

has remained rather elusive for EU-based Tax Departments, due to the inade-

quate quantity of tax audits that can be used for conventional supervised model

training. To this end, we resort to a semi-supervised learning approach. Specif-

ically, we devise a novel Gated Mixture Variational Autoencoder deep network,
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that can be effectively trained with data from a limited number of audited tax-

payers, combined with a large corpus of filed VAT returns.

We developed and evaluated the out-of-sample accuracy of our methods in col-

laboration with the Cyprus Tax Department, and experimentally deployed it

to facilitate its audit selection process. To this end, we used actual VAT data

from Cyprus-based taxpayers. Empirical system performance assessment was

performed in an out-of-sample fashion, in the context of potential yield-based

taxpayer selection. This way, we obtained strong empirical evidence that our

approach can greatly facilitate the VAT audit case selection process.

The remainder of the thesis is organized as follows: In Chapter 2, we provide

more information on the business elements aspects, namely VAT, tax compli-

ance, rules-based systems, data mining systems and our collaboration with the

Cyprus Tax Department.

In Chapter 3, we provide a brief introduction to modern Bayesian inference,

especially in the context of deep architectures.

In Chapter 4, we present the first contribution of this thesis, which builds upon

the currently popular paradigm of Bayesian Forests, while addressing several of

their pressing shortcomings.

In Chapter 5, we elaborate on the second contribution of this work, which con-

stitutes a semi-supervised Deep Generative Model capable of making inference

by using a limited number of audited taxpayers and a large corpus of filed VAT

returns.

6



Finally, Chapter 6 of this thesis provides the conclusions of our work, elabo-

rates the potential of our outcomes, and discusses directives for future research

endeavors on related topics in the taxation area which remain open.
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Chapter 2

Business elements

2.1 Value Added Tax

VAT is a consumption tax charged on the value of almost all the goods and

services sold or consumed within the European Union (EU). It constitutes an

indirect tax collected by enterprises on behalf of the state, and is ultimately paid

by the final consumer. As such, it represents an important source of revenue for

all EU Member States; according to the European Commission Taxation Trends

Report, 2018 edition [1], indirect taxes comprise more than 30% of the total tax

revenue in the EU.

2.2 Tax Compliance

To achieve maximum taxpayer compliance and thus maximize tax revenue with

the limited resources available the tax departments need to be allocated care-

fully in order to achieve the highest possible taxpayer compliance with the tax

laws and the best tax collections. One critical aspect of this issue is the priori-
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tisation of the compliance action to be taken against different taxpayers. The

taxpayer behaviour is very difficult to analyze due to diversity of compliance

behaviour, absence of taxpayer motives for tax legislation compliance and the

tax legislation complexity.

In general taxpayer compliance figure 2.1 can be classified in four categories:

i) Decided not to comply ii) Do not want to comply iii) Try to comply and

iv) willing to comply. Therefore a systematic approach is usually adopted to

identify the major risks in respect not only to the number of taxpayers not being

tax compliant but also to the amount of tax and how it will be addressed.

The Legislation provides the tax departments with a plethora of different mea-

sures that can be employed to minimize non compliance from the taxpayers with

different consumption of resources. Easy to navigate web pages, taxpayer edu-

cation, publications, written communication require negligible resources from

the tax authorities and can address thousands of taxpayers at the same time.

The result is maximum voluntary compliance from taxpayers who are willing

to comply or try to comply with the tax legislation with minimum effort. For

example taxpayers who have not filed the latest tax return one week before the

deadline can be send a reminder letter.

On the other hand in the case of taxpayers who decided not to comply or do not

want to comply the opposite is true. Control audit visits are labor intensive and

require limited and expensive resources. For an audit of a single taxpayer with

a non compliant past a team of expert tax auditors is required.

9



Figure 2.1: Attitude to tax compliance and compliance action

Therefore, it is key that we come up with effective audit case selection processes,

with the aim of selecting the audit cases that are expected to yield significant tax.

This procedure has to be performed by leveraging some sort of automation. To

this end, a variety of automation methods are currently employed. Tradition-

ally, expert auditors resort to rules-based risk modelling systems for selecting

audit cases [42]. However, this method of risk modelling is highly biased as it

reflects the experts’ understanding of taxpayer behavior, which may be partial

and incomplete. In addition, as it is needed to write hundreds of rules, this is

an expensive and time consuming procedure. Finally, it suffers from the limited

capability of human experts to express their acquired experience in the form of

rules. Besides, under this paradigm, selection is performed on the basis of the

number of satisfied rules exceeding some heuristically-set benchmark. Appar-

ently, this threshold value has to change each time we need to accommodate

more or updated rules; this renders system maintenance almost prohibitive.

10



Due to these disadvantages, many EU tax authorities are currently considering

advanced data analytics and machine learning as a promising alternative towards

automated audit case selection [43]. Indeed, tax authorities collect and process

millions of tax returns that contain a plethora of diverse information. Thus, it

is reasonable to assume that tax return corpora naturally lend themselves to the

formation of appropriate training datasets for successful machine learning-based

audit case selection systems. A prevalent characteristic of the existing develop-

ments in the field is the lack of tailor-made machine learning models that can

make the most out of the vastly available tax return data. For instance, Ran-

dom Forests (RFs) constitute one of the most commonly used machine learning

approaches in the context of tax audit case selection [44]. The main reasons be-

hind their prominence can be traced to: (i) their capacity to effectively deal with

high-dimensional data; (ii) their computational efficiency, both when it comes

to training and when it comes to prediction generation; (iii) their notable robust-

ness to outliers and non-linear features in the training data; (iv) their capability

to effectively learn from unbalanced classification data, which are typical in

real-world datasets stemming from tax audits.

2.3 Rules-based and data mining systems

The software SAS Enterprise Miner1 has been used in the past to select audit

cases for VAT purposes. Before use, an extensive feature engineering is a must

to cater for missing data and categorize data in different groups.
1https://www.sas.com/en_us/software/enterprise-miner.html
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The Irish Revenue Office has addressed the issue of selecting high tax yield non

compliant taxpayers with the employment of data mining [45] using the SAS

software (SAS Enterprise Miner and SAS Enterprise Guide). The experience

gained from the banks and insurance companies is utilized against the non com-

pliant taxpayers. According to the IDC [46] SAS and IBM have a 43% (revenue

volume) combined market share of tools for predictive analytics.

The task of selecting few taxpayers with the highest expected audit yield ac-

curately is almost impossible to be performed manually. The allocation of the

experienced tax auditors needs high degree of accuracy to be translated in to

maximum revenue as the number of audits that can be performed is limited.

This cannot be achieved manually consistently.

Since the process of audit case selection cannot be facilitated manually the au-

tomation process of identifying high risk taxpayers and audit case selection was

spearheaded by heuristic rules set by expert auditors [42]. A decision to audit a

taxpayer depends if the number of rules that apply exceed a threshold, for exam-

ple if fifty rules ”fire” an audit is performed. This process is highly subjective

since is based on the opinion of the experts and requires time and effort from a

team of experts who create hundreds of rules for different areas like number of

late returns, sales fluctuations, inconsistencies in the amounts declared etc.

After relying to the rules-based systems for many years the tax departments

moved away from these complicated, subjective rules and thresholds and consid-

ered more reliable automated alternatives like advanced analytics and machine

12



learning models [43]. Tax departments collect vast amounts of data for each and

every taxpayer like filed returns which are not utilized. If exploited successfully

this data can open the road for an automated process for selecting accurately

taxpayers with high audit yields.
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Chapter 3

Bayesian Inference

The popularity of Bayesian Inference and its extensions increased recently in

machine learning against the frequentist approach. The benefits of treating the

unknown set of parameters as random variable instead of fixed values are the

reason. Fixed values are associated with frequentist inference which is sourced

from the classic view of probabilities, the frequency of the events.

The random variables refer to the uncertainty quantification. We associate ran-

domness, by introducing a distribution that encapsulates the uncertainty about

their true values before receiving information (prior distribution). After the in-

formation is received by the model the values are updated to a more relative

belief (posterior distribution). Parameter learning can be seen as an inverse pro-

cedure where we attempt to derive the parameters from data. The Bayesian

inference is also an inversion procedure formulated in a probabilistic context.

Below is the mathematical formulation of Bayes theorem in a statistical infer-

ence context. Given a set of observations y, which are controlled by the un-

known set of parameters θ we can write:
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p(θ |y) = p(y|θ)p(θ)
p(y)

(3.1)

Where p(y|θ) is the likelihood function of the environment. For the inversion

procedure all we need is to guess the prior distribution p(θ).

Most commonly the prior distribution is selected based on our intuition about

the probability of the underlying regularities with a known family of distribu-

tions. After a reasonable choice of the prior is made, the advantages from the

Bayesian approach arise and will be further discussed in the next sections.

Model Selection

The model selection task under the Bayes view uses probabilities to portray

the uncertainty of the optimal model. The task is transformed into posterior

distribution calculation over a set of models given some a priori knowledge and

some information. The a priori knowledge is encapsulated in the form of a prior

distribution for each model p(µi). Applying Bayes rule and the considering the

new information as y, the posterior of the model is given by:

p(mi|y) =
p(y|mi)p(mi)

p(y)
(3.2)

p(y) = ∑ p(y|mi)p(mi) (3.3)

The first term in the numerator in the equation 3.2 is the evidence or marginal

likelihood of a specific model and is significant quantity in Bayesian inference.
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It can be analyzed over the model’s parameters as:

p(y|mi) =
∫

p(y|θ ,mi)p(θ |mi)dθ (3.4)

Where p(θ |mi) a prior distribution of the model’s parameters. Furthermore, we

can compute the posterior distribution of the parameters for each model struc-

ture.

p(θ |y,m) =
p(y|θ ,m)p(θ |m)

p(y|m)
(3.5)

A simple way to calculate the integral is to estimate the value with Maximum

Likelihood or Maximum a Posteriori methods.Maximum likelihood aims to

maximize the first term of the right side of the integral 3.4.

θML = argθ max[p(y|θ ,m)] (3.6)

Maximum a Posteriori aims to maximize both the terms of the right hand side

of the integral 3.4.

θMAP = argθ max[p(y|θ ,m)p(θ |m)] (3.7)

The above models are per datapoint solutions attempting to solve the equation

with fixed parameters. A more universal solution is to solve the evidence equa-

tion by marginalizing out the unknown parameters θ . As this is not always pos-

sible we use deterministic approximation techniques such as variational models
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that try to optimize a tractable lower or upper bound that is close enough to

the true expectation of the random variable. The bound has analytical solutions

which can be performed in a limited time and the problem now changes to bound

optimization; making the bound as tight as possible.

Evidence Function

The model selection task tries to find the probability of the model as a way to

measure the significance of the model.

p(mi|y) =
p(y|mi)p(mi)

p(y)
(3.8)

Where p(mi) is the prior probability of model µi which provides a quantification

of our uncertainty as compared to all alternative models.

It can be seen like our intuition on how possible a model is as compared to the

alternatives, before obtaining information.

Finding the best model can be simplified considering the following: • The de-

nominator p(y) marginalizes out the models dependence

p(y) = ∑ [p(y|mi)p(mi)] (3.9)

Assigning equal probabilities to all possible models. The first observation sim-

plifies the task of finding the most probable model by maximizing only the

numerator and the second maximizing only the evidence/likelihood function

p(y|µi).
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This is the reason why this specific probability density function is known as

the evidence function for the model. Although in practice we are content with

using the most probable model, we should not choose among models. In a more

Bayesian orthodox way inference is performed by summing over all models.

The use of specific model derives from the practical observation that the evi-

dence function of practical problems is more relevant to a specific model, sim-

plifying the task at hand.

Parameter Fitting

Under the parameter selection context the Bayesian approach transforms to:

p(θ |y) = p(y|θ)p(θ)
p(y)

(3.10)

p(y) =
∫

p(y|θ)p(θ)dθ (3.11)

The p(θ |y) is the posterior distribution we intend to maximize, p(y|θ) the like-

lihood function of the parameters, p(θ) our prior intuition about the parameters

and p(y) the marginal likelihood (normalizing constant).

The unknown parameters θ are treated as fixed but unknown (deterministic vari-

ables) and therefore the prior distribution and the normalizing constant can be

omitted. The purpose is to maximize the likelihood function by selecting the

best parameters (Maximum Likelihood).
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θML = argθ max[p(y|θ)] (3.12)

When the unknown parameters θ are treated as random variables and setting the

normalizing constant independent of the parameters we obtain the Maximum

Posteriori. Where considering the best parameters becomes the task of maxi-

mizing the evidence function augmented with the prior distribution.

θMAP = argθ max[p(y|θ)p(θ)] (3.13)

The Bayesian approach makes no simplifying assumptions about the marginal

and needs to be able to calculate the integral. Recall that in order to make a rich

model of the environment we need to use families of distributions, these families

are controlled by a set of parameters. So the unobserved random variables θ can

be changed to latent variables z governed by deterministic parameters θ .

p(z|y) = p(y|z;θ2)p(z;θ1)

p(y)
(3.14)

Since the latent variables are unobserved, finding the optimal parameters can be

performed using an expectation maximization algorithm which iterates between

the optimal parameters and optimal posterior distribution. In the next three sub-

sections we will get a closer view on the three methods, Maximum Likelihood,

Maximum a Posteriori and Expectation Maximization.
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Maximum Likelihood

The maximum likelihood (ML) method is used to estimate the parameters of

the input data. The ML method chooses a set of values for which maximizes

the likelihood function p(y|θ) using the fixed input data and a flexible statistical

model.

The unknown parameter is handled as a deterministic variable, parameterizing

the probability density function describing the output vector of the information.

The value of the parameters is determined only by the information sourced from

the experiments sequence.

The ML model is a fixed problem data modeler because there is no need to

generalize, every input has predefined output like a memory storage. Since the

model is not capable of finding the underlying regularities which exist beneath

the data, the ML models are overfitting the data and fail to generalize on previ-

ously unseen data.

Maximum a Posteriori

A method related to the ML but with more advanced features for estimating the

parameters of the input data is the MAximum Posteriori (MAP). A prior distri-

bution is added over the parameters as a boosted optimization. The fixed input

data are used in a flexible statistical model which selects the set of the values

which maximize the likelihood function p(y|θ) boosted with a prior distribution

p(θ)
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The unknown parameter is considered to be a random vector in MAP, which

is tuning the probability density function describing the output vector if the

information.

The parameters value are now controlled by the obtained information and the

choice of prior. One way of finding the parameters is by assuming conjugate for-

mulation of both prior and conditional probability density functions e.g. Gaus-

sian, which leads to the posterior to be of the same distribution and exploit their

predefined maximum.

θMAP = E [θ |y] (3.15)

The MAP estimate can be considered as a regularized version of the ML with

the use of augmented extra parameters. While these mitigate the problem of

overfitting highlighted above require to be optimized by a different dataset, thus

increasing the size of the input data required to run the model.

Expectation Maximization

An iterative approach towards the ML or MAP estimates of parameters in sta-

tistical models is the expectation-maximization (EM) algorithm, the latent vari-

ables dictate the model.

Given a set of observations x, a set of unobserved latent variables z and their

joint distribution parameterized in terms of a vector of unknown parameters

θ , we can calculate the complete data log-likelihood p(x,z;θ) by an iterative
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method. The EM iteration method alternates between an expectation (E) step

and a maximization (M) step. It begins by initializing randomly the parameters

θ , then calculates the expectation of the complete data log-likelihood given fixed

θ and then calculates the new θ by maximizing the expectation of the previous

step. This is done till a criterion is achieved such as time limit, iteration limit or

the convergence of θ .

We refer to the set x,z as the complete data set and to the set of observations

x as the incomplete one. The EM success lies in the assumption that although

the latent variables are unobserved the posterior distribution p(z|x;θ) is fully

specified, given the values θ and x. In the case where the assumption does not

hold we have to resort to variants of the EM, which will attempt to approximate

it.

In case the complete log-likelihood p(x,z;θ) was made available, ML would

solve the problem.

The EM algorithm can be outlined as: 1. Randomly initialize θ0 2. Expectation

E-step: At the l+1, compute posterior distribution p(z|x;θ l) and then the expec-

tation of the complete data log likelihood p(x,z;θ l). 3. Maximization M-step:

Determine θ l +1 so that maximizes the expectation. 4. Check for convergence

according to a criterion. If it is not satisfied go to 2.

The use of EM algorithm presupposes that working with the joint probability

density function p(x,z;θ) is computationally tractable. This is, for example, the

case when working within the exponential family probability density functions,

22



where the E-step may require only the computation of a few statistics of latent

variables.

The algorithm’s convergence is slower than the quadratic convergence of New-

tontype searching techniques, although near an optimal point a speed up may be

possible. However, the convergence of the algorithm is smooth and its complex-

ity more attractive to Newton-type schemes, with no matrix inversions involved.

The EM algorithm can be expanded to obtain the MAP estimation. To this end,

the M-step is changed to maximize the expectation of the complete data log

likelihood p(x,z;θ l) plus log p(θ) where p(θ) is the prior probability density

function associated with. One disadvantage of using the EM algorithm is that

it is sensitive to the initialization of θ0. In practice, we run the algorithm from

different initial points and keep the best the results. Initialization techniques

have been developed to alleviate this issue.

Lower Bound Maximization

In this section we will derive to the EM algorithm from another perspective. Let

us consider the functional

F(q,θ) =
∫

q(z) log
p(x,z;θ)

q(z)
dz (3.16)

q(z) is any probability density function defined over the latent variables. The

functional

depends on θ and on q(∆). Because p(x;θ) does not depend on q(z) we
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have:

F(q,θ) =
∫

q(z) log
p(z|x;θ)

q(z)
dz+ log p(x;θ) (3.17)

The first term on the right-hand side is the negative of the Kullback-Leibler

divergence between q(z) and p(z|x;θ), which we will denote as KL(q ‖ p). Thus

finally we get:

log p(x;θ) = F(q,θ)+KL(q ‖ p) (3.18)

Because KL divergence is a non-negative quantity we have:

log p(x;θ)> F(q,θ) (3.19)

F(q,θ) is consider a lower bound of the log-likelihood, which is equal if and

only if q(z) = p(z|x;θ). Under the previous formulation we can maximize the

log-likelihood by trying to maximize its lower bound. Keep in mind that the

functional depends on two terms q(·) and θ and they can be optimized with an

iterative procedure under the following steps.

1. Randomly initialize θ0 2. Holding θ fixed, optimize with respect to q(∆).

3. Holding q(∆) fixed, optimize with respect to θ . 4. Check for convergence

according to a criterion. If it is not satisfied go to 2.

Step 2 is achieved if we set q(z) equal to the posterior p(z|x;θ). Comparing it

to the EM algorithm its clear that the log-likelihood p(x;θ) is guaranteed not to
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decrease after each iteration.

Methods that are based on optimizing a lower or upper bound instead of the orig-

inal cost are also known as minorize-maximization or majorize-minimization

methods.

3.1 Approximate Bayesian Inference

To achieve an efficient training of the models utilizing the unobserved latent ran-

dom variables the evaluation of the posterior distribution p(z|x) is required and

the evaluation of expectations w.r.t the distribution. The posterior distribution

must also be complex enough to be able to capture the true distribution.

The unobserved hidden variables can be discrete, continuous or a hybrid of the

two. To train the model we must calculate the integral/sum marginalizing out

the unobserved variable. In the case of continuous variables, the required inte-

grations may not have closed-form analytical solutions. For discrete variables,

the marginalizations involve summing over all possible configurations of the

hidden variables, and although this is always possible in principle, the exponen-

tial number of latent states prohibit the exact calculation. These are considered

intractabilities and are very common and appear even in cases of moderately

complicated models.

To have efficient inference we need to resort to approximation schemes. Stochas-

tic approximation techniques such as Markov chain Monte Carlo have helped

the widespread use of Bayesian methods across many domains. Stochastic tech-
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niques have the property that can generate exact results if given infinite com-

putational time and resource. Their approximation arises from the use of finite

amount of time. However even with this practical limitation sampling methods

are still computationally demanding, limiting their use to small scale problems.

Main reasons that prohibit numerical integration is the dimensionality of the

space and the complexity of the integrand. Furthermore, it is difficult to know

whether a sampling methods generates independent samples from the intractable

distribution.

A viable option is deterministic approximation techniques.

Variational Bayes

One of the most popular deterministic approximate inference techniques is Vari-

ational Bayes. Variational Bayes is the core of variational inference. The idea

is to approximate the intractable posterior with a simpler family of distributions

that are analytically tractable. And then seek the distribution that minimizes a

similarity measure. This consists in constructing a lower (or upper) bound and

maximize it instead of the intractable log marginal likelihood. This simplifies

the posterior estimation task to an optimization problem. Variational methods

are consider approximations by constricting the range of functions over which

the optimization is performed. The aim is to transform the intractable issues

to analytically tractable ones by obtaining a variational approximation of the

intractable model posterior. This can be achieved by exploiting known expecta-

tions of distributions. One way to achieve this is with a conjugate formulation of
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the distributions. This ensures the tractability of the analytical expressions but

severely limits the expressiveness of the model. Before discussing extensions of

Variational Bayes lets observe it under a mathematical point of view. Consider

the marginal likelihood p(X |θ) where X = [x1,x2, ..,xn] are the individual data-

points and θ the model’s parameters (model’s identity). Given independent and

identically distributed (i.i.d.) datapoints it can be rewritten as:

p(X |θ) = p(x1,x2, ..,xn|θ) = ∏ p(xi|θ) (3.20)

For simplicity and without loss of generality we use the natural logarithm. The

natural logarithm is a monotonic transformation i.e the estimated parameters

derived by maximizing the likelihood are identical for both formulations. It’s

also concave function.

log p(X |θ) =
N

∑
i=1

log p(xi|θ) (3.21)

Introducing latent variables into the mix, maximizing the marginal likelihood of

an individual datapoint can be expanded as:

p(x|θ) =
∫

p(x|z,θ)p(z|θ)dz (3.22)

or

p(x|θ) =
M

∑
j=1

p(x|z j,θ)p(z j|θ) (3.23)
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depending on the identity of the variable (discrete and/or continuous). For sim-

plicity from here on we will use the integral. Keep in mind that the summation

and integral at this point are interchangeable.

Under a Bayesian view, x∼ p(x|z,θ)is a random variable described by a proba-

bility distribution parameterized by z and θ , z ∼ p(z|θ) an unobserved random

variable described by a probability distribution parameterized by θ .

To train this model we must calculate the integral marginalizing out the unob-

served variable z but this under the above formulation is intractable. To use

Variational Bayes we introduce a new probability distribution q(z|ϕ) which we

will try to approximate to the true sought posterior p(z|x,θ).

log p(x|θ) = log
∫ q(z|ϕ)

q(z|ϕ)
p(x,z|θ) (3.24)

With the use of Jensen’s inequality, specifically logE[x]> E[logx] we have:

log p(x|θ)>
∫

q(z|ϕ) log
p(x,z|θ)
q(z|ϕ)

dz = L (q) (3.25)

where L(q) the lower bound that we seek to maximize under the Variational

Bayes setup. This bound is often referred to as the free energy of the model.

Then the marginal likelihood can be rewritten as:

log p(x|θ) = L (q)+DKL(q(z|ϕ) ‖ p(z|x,θ)) (3.26)

where DKLthe Kullback-Leibler divergence between the two distributions. The
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divergence is always positive and equals to zero when the two distributions

match. This leads to the conclusion that minimizing the divergence maximizes

the lower bound. The problem is now transformed into finding a tighter bound

to the real distribution that is scalable to larger applications.

Following is the proof that equation 3.26 holds.

logp(x|θ) = L (q)+DKL(q(z|ϕ) ‖ p(z|x,ϕ))

=
∫

q(z|ϕ) log
p(x,z|θ)
q(z|ϕ)

dz+
∫

q(z|ϕ) log
q(z|ϕ)

p(z|x,θ)
dz

=
∫

q(z|ϕ) log
p(z|x,θ)p(x|θ)

q(z|ϕ)
dz+

∫
q(z|ϕ) log

q(z|ϕ)
p(z|x,θ)

dz

When q(z|ϕ) = p(z|x,θ) we have

log p(x|θ) =
∫

q(z|ϕ) log p(x|θ)dz+
∫

q(z|ϕ) log1dz

= log p(x|θ)
∫

q(z|ϕ)dz = log p(x|θ)

Before we continue to more modern techniques of approximate Bayesian infer-

ence we will discuss Mean-Field Variational Inference.
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Mean-Field Variational Inference

In the previous section we discussed Variational Bayes, however for simplicity

we omitted the dimensionality of the latent variables. In this section we will

discuss mean-field Variational Inference which makes the assumption of inde-

pendent latent variables.

A rich predictive model to be expressive enough needs to include more than

one latent variable. So the previous formulation for the parametric form of the

approximate distribution is better written as Z = [z1,z2, ..,zn]. This imposes a

difficulty on the training due to the dependence of the variables.

This can be simplified with the mean-field assumption where the latent variables

are independent.

q(Z|ϕ) =
J

∏
j=1

q(z j|ϕ j) (3.27)

However, introducing independence between the latent variables leads to a fam-

ily of approximate distributions that are less expressive and will not include

the sought posterior. Mean-Field Variational Bayes and the simple Variational

Bayes limit their use to mainly conjugate models.Non-conjugate models can

be trained with ad hoc models of variational inference algorithms such as ap-

proximations [47, 48], alternative bounds [49, 50, 51] and numerical quadrature

[52]. This includes models like Bayesian logistic regression [49], Bayesian

generalized linear models, discrete choice models [47], Bayesian item response

models[53] and non-conjugate topic models [50]. Also Wang and Blei [54]
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developed two extensions to Mean-Filed Variational Inference that can be ap-

plied to wider range of non-conjugate models, Laplace Variational Inference

and Delta method variational inference. The first uses Laplace approximations

and the latter Taylor expansions. Machine Learning scientists work in order

to derive inference procedures where the distributions can be easily changed

without model specific analytics. In the upcoming sections we will discuss tech-

niques that extend the Variational Bayes algorithm to train even more expressive

models.

Normalizing Flows

The core problem of variational inference is the appropriate choice of approxi-

mate posterior distribution. Simple structured approximations have a significant

impact of the inference power of the model. Normalizing flows [55] aims to con-

struct a flexible, arbitrary complex and scalable distributions without loosing

efficiency.

Normalizing flows introduce approximations constructed through a normaliz-

ing flow. A simple distribution is transformed to a complex one with the as-

sistance of invertible transformations. These transformations provide a tighter

variational lower bound with linear time complexity. The first transformation

is called the flow q0(z0) and then next transformations are the normalizing flow

qk(zk) . These invertible flows can be visualized as a sequence of expansions or

contraction of the initial probability. With the help of the law of unconscious

statistician (LOTUS) we can compute the expectations w.r.t the transformed
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probability qK without explicitly knowing qK .

However, inverse transformations for training require the computation of the

Jacobian. The formulation of the model requires only one Jacobian for the se-

quence of transformations at each hidden layer but we still have O(LD3) com-

putational complexity, where D the dimension of the hidden layers and L is the

number of hidden layers used. Also their gradient involves additional operations

with O(LD3) complexity that even may be unstable. A way to limit the compu-

tational complexity is the use of linear time transformations that still derive a

complex enough model [55]. Another option is the use of Volume Preserving

flows that have Jacobian determinant equal to one [56].

Inference Networks

A common practice for Variational Inference is the use of an inference network

a.k.a recognition model. The inference network represents the approximate pos-

terior distribution q(z|ϕ) under an inverse map from observations x to latent vari-

ables z. Formulating the approximate posterior distribution as q(z|x,ϕ) achieves

global variational parameters alleviating the need to compute them per datapoint.

Thus, the cost of inference is amortized by generalizing between the posterior

estimates for all latent variables through the parameters of the inference net-

work, under a simple feed-forward computation scheme with complexity O(N).

One of the simplest recognition model we can use is by assuming the sought

posterior to be of Gaussian form with diagonal covariance and postulate the

approximate posterior as :
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q(z|x,ϕ) = N(z|µϕ(x),σ2
ϕ(x)) (3.28)

Amortized Variational Inference

Combining the above techniques we get closer to a complete framework that is

able to train rich probabilistic models with variational inference. A framework

that will allow us to make changes on the distributions assumptions at ease with-

out the need for add hoc statistics. An example of the progress to that direction is

Amortized Variational Inference (AVI)[55] which combines inference networks

and stochastic back-propagation. However, AVI is limited to continuous latent

variables due to high variance on the discrete case.
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Chapter 4

Power-law Mixtures of Bayesian Forests
for Value Added Tax Audit Case Selection

4.1 Bayesian Forests

RF models constitute one of the most popular methods for both regression and

classification. Their functionality revolves around the concept of decision trees

(DTs) [57]. As DTs are formulated by means of a random partition procedure,

they constitute weak learners the performance of which may become under-

whelming when dealing with difficult classification or regression tasks. To com-

pensate for this weakness, RFs resort to the ensemble learning rationale: They

fit multiple DTs on the same dataset, each performing different hierarchical ran-

dom splits, θ , of the input space. Then, prediction is performed on the basis of

an appropriate voting mechanism.

Recently, [58] introduced an alternative view towards RFs: Their empirical

Bayesian forest (EBF) algorithm replaces the Poisson distribution, from which

the tree parameters θ are drawn, with an Exponential (or Dirichlet, when nor-
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malized) posterior, T (θ). In this context, a suggested sample (random parti-

tion), θ , is retained if it facilitates the minimization of the Gini impurity index

on the training dataset. This inferential treatment has been shown to induce a

reliable performance gain across diverse application areas.

4.2 Bayesian Nonparametrics

Nonparametric Bayesian modeling techniques, especially Dirichlet process mix-

ture (DPM) models, have become very popular for performing nonparametric

density estimation [59, 60, 61]. Briefly, a realization of a DPM can be seen as

an infinite mixture of distributions with given parametric shape (e.g., Gaussian).

This theory is based on the observation that an infinite number of component

distributions in an ordinary finite mixture model tends on the limit to a Dirichlet

process (DP) prior [60, 62]. Eventually, as a part of the model fitting procedure,

the nonparametric Bayesian inference scheme induced by a DPM model yields

a posterior distribution on the proper number of model component densities

(inferred clusters) [63], rather than selecting a fixed number of mixture compo-

nents. Hence, the obtained nonparametric Bayesian formulation eliminates the

need of doing inference (or making arbitrary choices) on the number of mixture

components (clusters) necessary to represent the modeled data.

4.3 The Pitman-Yor (PY) process

DP models were first introduced by Ferguson [64]. A DP is characterized by a

base distribution G0 and a positive scalar α , usually referred to as the innova-
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tion parameter, and is denoted as DP(α,G0). Essentially, a DP is a distribution

placed over a distribution. Let us suppose we randomly draw a sample dis-

tribution G from a DP, and, subsequently, we independently draw M random

variables {Θ∗m}M
m=1 from G:

G|α,G0 ∼ DP(α,G0) (4.1)

Θ
∗
m|G∼ G, m = 1, . . .M (4.2)

Integrating out G, the joint distribution of the variables {Θ∗m}M
m=1 can be shown

to exhibit a clustering effect. Specifically, given the first M− 1 samples of G,

{Θ∗m}M−1
m=1 , it can be shown that a new sample Θ∗M is either (a) drawn from the

base distribution G0 with probability α

α+M−1 , or (b) is selected from the existing

draws, according to a multinomial allocation, with probabilities proportional to

the number of the previous draws with the same allocation [65]. Let {Θc}Cc=1

be the set of distinct values taken by the variables {Θ∗m}M−1
m=1 .

The PY process functions similar to the DP. Let us suppose we randomly draw a

sample distribution G from a PY process, and, subsequently, we independently

draw M random variables {Θ∗m}M
m=1 from G:

G|δ ,α,G0 ∼ PY(δ ,α,G0) (4.3)

with

p(Θ∗M|{Θ∗m}M−1
m=1 ,δ ,α,G0) =

α +δC
α +M−1

G0 +
C

∑
c=1

νM−1
c −δ

α +M−1
δΘc (4.4)

where νM−1
c is the number of values in {Θ∗m}M−1

m=1 that equal to Θc, δ ∈ [0,1)
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is the discount parameter, α >−δ is its innovation parameter, and G0 the base

distribution.

This way, the PY process gives rise to a rich-gets-richer clustering property,

i.e., the more samples have been assigned to a draw from G0, the more likely

subsequent samples will be assigned to the same draw. Further, the more we

draw from G0, the more likely a new sample will again be assigned to a new

draw from G0. These two effects together produce a power-law distribution

where many unique Θ∗m values are observed, most of them rarely [66], thus

allowing for better modeling observations with heavy-tailed distributions. In

particular, for δ > 0, the number of unique values scales as O(αMδ ), where M

is the total number of draws. Note also that, for δ = 0, the PY process reduces

to the DP.

A characterization of the (unconditional) distribution of the random variable G

drawn from a PY process, PY(δ ,α,G0), is provided by the stick-breaking con-

struction of Sethuraman [67]. Consider two infinite collections of independent

random variables v = (vc)
∞

c=1, {Θc}∞
c=1, where the vc are drawn from a Beta

distribution, and the Θc are independently drawn from the base distribution G0.

The stick-breaking representation of G is then given by [68]

G =
∞

∑
c=1

ϖc(v)δΘc (4.5)

where

p(vc) = Beta(1−δ ,α +δc) (4.6)

ϖc(v) = vc

c−1

∏
j=1

(1− v j) ∈ [0,1] (4.7)
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and
∞

∑
c=1

ϖc(v) = 1 (4.8)

The stick-breaking representation of the PY process makes clear that the ran-

dom variable G is discrete. It shows explicitly that the support of G consists of

a countably infinite sum of atoms located at Θc, drawn independently from G0.

Indeed, under the stick-breaking representation of the PY process, the atoms

Θc, drawn independently from the base distribution G0, can be seen as the pa-

rameters of the component distributions of a mixture model comprising an un-

bounded number of component densities, with mixing proportions ϖc(v).

4.4 Proposed Approach

Let us consider a dataset D = {xn,yn}N
n=1, where yn ∈ {0,1} is the result of

the nth audit, with the value of 1 corresponding to an audit yield deemed sat-

isfactory by the tax authority (i.e., exceeding some threshold). The specific

selection of this threshold value used in the development of our model will be

discussed in the experimental section. In our work, the observed data points xn

are obtained from the VAT records of the taxpayers selected for audit. These are

47-dimensional vectors that comprise the following attributes: (i) economic ac-

tivity type, classified according to the Eurostat NACE classification(ii) district

codes; (iii) type of person (physical, legal); (iv) declared amounts, including

VAT due/local sales, VAT due/EU purchases, VAT refundable (purchases), VAT

payable, net value of sales, net value of purchases, value of zero-rated sales,

value of purchases from EU (goods and services), and value of sales to EU

38



(goods and services).

On this basis, the audit case selection task can be framed as a binary classifi-

cation task. Since RFs currently constitute the most popular machine learning

approach used for audit case selection, we initiate the formulation of our model

considering that the random decision variables yn can be expressed via a func-

tion fθ (xn), where the latent variables θ are drawn from an EBF, T (θ). Further,

we postulate that the classification mechanism encoded into the distribution of

the random variables yn cannot be uniquely described by a single latent func-

tion fθ (xn), but fθ (xn) is only an instance of the (possibly infinite) set of pos-

sible latent functions fθ c(xn), c = 1, . . . ,∞, parameterized from different EBFs,

θ c ∼ Tc(θ). Then, to determine the association between observations, xn, and

latent functions, fθ(·), we impose a PY process prior over this set of functions.

The power-law nature of the PY process prior distribution allows for effectively

handling cases of heavy-tailed observable data, which are prevalent in VAT audit

case selection processes, as discussed previously.

Let us introduce the set of variables {znc}N,∞
n,c=1, with znc = 1 if the function

modeling the correlation pattern between the observation xn and the correspond-

ing classification decision yn is captured by the cth inferred (component) EBF,

otherwise znc = 0. Based on this assumption, and the descriptions of the EBF

model as well as the PY process prior, the prior configuration of the proposed

PYP-EBF model is defined as follows:

p
(
yn|xn,znc = 1

)
= Bernoulli(yn| fθ c(xn)) (4.9)
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p(znc = 1|v) = ϖc(v) (4.10)

ϖc(v) = vc

c−1

∏
j=1

(1− v j) ∈ [0,1] (4.11)

with
∞

∑
c=1

ϖc(v) = 1 (4.12)

p(vc) = Beta(1−δ ,α +δc) (4.13)

and the cth inferred EBF is:

p(θ c) = Tc(θ) (4.14)

while the functional form of the decision probability fθ c(xn) is the mean of the

probabilities pertaining to the y = 1 class over the trees consisting the cth EBF

(as encoded into the inferred vector θ c).

4.5 Inference algorithm

Inference for nonparametric models can be conducted under a Bayesian setting,

typically by means of variational Bayes (e.g., [69]), or Monte Carlo techniques

(e.g., [70]). Here, we prefer a variational Bayesian approach, due to its consider-

ably better scalability in terms of computational costs. Our variational Bayesian

inference algorithm for the PYP-EBF model comprises derivation of a family

of variational posterior distributions q(.) which approximate the true posterior

distribution over the infinite sets Z, v = (vc)
∞

c=1 and {θ c}∞
c=1, and the innovation

parameter α . Apparently, Bayesian inference is not tractable under this setting,

since we are dealing with an infinite number of parameters.
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For this reason, we employ a common strategy in the literature of Bayesian

nonparametrics, formulated on the basis of a truncated stick-breaking represen-

tation of the PY process [69]. That is, we fix a value C and we let the variational

posterior over the vi have the property q(vC = 1) = 1. In other words, we set

ϖc(v) equal to zero for c>C. Note that, under this setting, the treated PYP-EBF

model involves a full PY process prior; truncation is not imposed on the model

itself, but only on the variational distribution to allow for tractable inference

procedure. Hence, the truncation level C is a variational parameter which can

be freely set, and not part of the prior model specification.

Let W , {v,α,Z,{θ c}Cc=1} be the set of all the parameters of the PYP-EBF

model the (posterior) distributions of which we need to train w.r.t. the available

dataset D . Variational Bayesian inference introduces an arbitrary distribution

q(W ) to approximate the actual posterior p(W |X ,Y ) which is computationally

intractable [71]. Under this assumption, the log marginal likelihood (log evi-

dence), logp(X ,Y ) becomes [72]

logp(X ,Y ) = L (q)+KL(q||p) (4.15)

where

L (q) =
∫

dWq(W )log
p(X ,Y,W )

q(W )
(4.16)

and KL(q||p) stands for the Kullback-Leibler (KL) divergence between the

(approximate) variational posterior, q(W ), and the actual posterior, p(W |X ,Y ).

Since KL divergence is nonnegative, L (q) forms a strict lower bound of the log

evidence, and would become exact if q(W ) = p(W |X ,Y ). Hence, by maximiz-
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ing this lower bound L (q) (evidence lower bound, ELBO) so that it becomes as

tight as possible, not only do we minimize the KL-divergence between the true

and the variational posterior, but we also implicitly integrate out the unknowns

W . For simplicity, we consider that the posterior q(W ) factorizes over each one

of the parameters, similar to the imposed prior (mean-field assumption [73]).

By construction, this iterative, consecutive updating of the variational posterior

distribution is guaranteed to monotonically and maximally increase the ELBO

L (q) [74].

Let us denote as 〈.〉 the posterior expectation of a quantity. Based on the previ-

ous discussion, ELBO maximization yields

q(vc) = Beta(vc|βc,1,βc,2) (4.17)

where

βc,1 = 1−δ +
N

∑
n=1

q(znc = 1) (4.18)

βc,2 = α + cδ +
C

∑
c′=c+1

N

∑
n=1

q(znc′ = 1) (4.19)

Similarly, regarding the posteriors over the latent variables Z that assign each

data point to the inferred EBFs, we have

q(znc = 1) ∝ exp(〈logϖc(v)〉) fθ c(xn) (4.20)

where

〈logϖc(v)〉=
c−1

∑
c′=1
〈log(1− vc′)〉+ 〈logvc〉 (4.21)
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with

〈logvc〉= ψ(βc,1)−ψ(βc,1 +βc,2) (4.22)

〈log(1− vc)〉= ψ(βc,2)−ψ(βc,1 +βc,2) (4.23)

On the other hand, the sampled EBFs, θ c are inferred by resorting to the stan-

dard CART algorithm, as employed in the case of a single trained EBF [58],

but presented with a subset of the available training dataset, D . This subset is

obtained by sampling from the posterior q(zn) of each training example, and

collecting the set of the data points, xn, with znc = 1.

The estimates of the posteriors prescribed above are updated consecutively and

in an iterative fashion until convergence of the model ELBO. That is, on each

training algorithm iteration, we update the expressions of the variational poste-

riors, resample assignments from the posteriors q(znc = 1), and rerun the CART

algorithm to obtain samples θ c from their corresponding posteriors. This con-

cludes the derivation of the inference algorithm of our PYP-EBF model.

4.6 Prediction Generation

After training the proposed PYP-EBF model on a dataset pertaining to tax audits

and their outcomes, D = {xn,yn}N
n=1, we end up with a set of inferred EBF’s

with trees encoded into the vectors {θ c}Cc=1. These can be used to generate

predictions for unseen data x∗. In the context of our addressed problem of tax

audit case selection, this corresponds to deciding whether a tax payer with VAT

records summarized into the vector x∗ may result in an audit yield exceeding the
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set threshold.

To this end, we employ a maximum a posteriori (MAP) rationale. Specif-

ically, we first compute the posterior probability of the test data point , x∗,

being assigned to the trained component EBF’s. On this basis, we determine

the winner component that maximizes q(z∗c). Then, we perform the classifica-

tion task using the output probabilities of the winner EBF. We emphasize that

this is in contrast to the more typically used mean-field approach, under which

one would compute the average of the probabilities obtained from the inferred

EBF’s, weighted by the corresponding posteriors q(z∗c). However, we adopt

this MAP approach as we have found it to perform consistently better.

4.7 Experimental Evaluation

4.7.1 Dataset Collection

To evaluate our approach, we have managed to get access to an extensive real-

world dataset of a European tax authority. Specifically, we use a dataset com-

prising over 10,000 VAT returns audited in the last six years. The generated

label information is set to 1 if the tax audit generated a yield which exceeded

a set threshold. Following the instructions of the collaborating tax authority,

we consider four alternative thresholds: (i) The yield value that the tax author-

ity currently considers barely worth the required resources for audit (Base sce-

nario); (ii) this amount increased by 16%; (iii) the base amount increased by
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32% and (iv) increased by 48%.1

4.7.2 Experimental Setup

The proposed approach was implemented in Python, using the scikit-learn li-

brary [75]. To allow for some comparative results, apart from our method we

also evaluate the following competitors: (i) a baseline RF model [44]; (ii) the

EBF algorithm that our novel PYP-EBF approach is inspired from [58]; and

(iii) a popular kernel-based approach that relies on similarity criteria selected in

an ad-hoc manner, namely the label propagation (LP) algorithm [76]. All the

evaluated RF-type algorithms, i.e. PYP-EBF, EBF, and RF, comprised 500 sam-

ples (trees). The truncation threshold, C, of our approach is set to C = 10. This

selection is reasonable, since we do not expect more than 10 distinct binary clas-

sification patterns in the limited available dataset. In all cases, the criterion used

for retaining a proposed split in a sampled tree is the Gini impurity index, as sug-

gested in [58]. The LP algorithm is evaluated using the RBF kernel, which is

the default selection in the scikit-learn library. All the developed models are run

on a Desktop PC, and do not require any specialized hardware, e.g. graphical

processing units (GPUs).

4.7.3 Results

Our quantitative evaluation is performed on an out-of-sample basis, that is on

test data different from the training set. To this end, we perform 4-fold stratified
1Note that, since actual VAT returns and VAT audit results are used, we are restricted from disclosure of the actual threshold values, as

they constitute privileged information.

45



cross-validation. In figures 4.1,4.2,4.3,4.4, we concisely illustrate the obtained

performance of the evaluated algorithms. Specifically, we summarize the mis-

classification error, precision score, recall score, and F1 metrics obtained over

the conducted four folds of cross-validation in the form of box-plots. We pro-

vide this illustration across all the four considered experimental scenarios (alter-

native tax yield thresholds). As we observe, our approach yields a significant

performance improvement over the competition, which is consistent across all

the employed evaluation metrics. Even more importantly, the obtained perfor-

mance appears to be robust to an increase in the adopted audit threshold value.

These outcomes provide overwhelming empirical evidence that our method of-

fers a significantly more reliable outcome than the state-of-the-art in the field,

thus better addressing the need of tax authorities to maximize the returns from

the audits they can perform with their limited available resources.

Further, in figure 4.5 we demonstrate the computational times required for model

training and testing, both in the case of our approach and the considered com-

petitors. As we observe, the training time of PYP-EBF is increased over the

alternatives, but only moderately so. This was expected, since our proposed

approach entails fitting more parameters; this normally induces some computa-

tional overhead. On the other hand, the time required for generating predictions

on our test set (which comprised almost 7,500 cases) exhibits only a barely no-

table increase over the competition. This finding vouches for the viability of our

solution, which allows for a significant improvement in the quality of the audit

case selection process, without compromising computational tractability. This
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is important for tax authorities, which need rapid development and response

times, and cannot easily invest in high-performance computing facilities.

4.7.4 An Insight on the Power-Law Behavior

Further, we needed to examine how many mixture components remain effective

after model training, and whether the fitted PYP-EBF model does actually yield

a heavy-tailed distribution over the inferred components. To this end, in 4.6 we

plot the component weight posterior expectations, 〈ϖc(v)〉, of the fitted PYP-

EBF model, where we employed a truncation threshold C = 10. As we observe,

our model yields two dominant components, and another three components with

much lower weights. The remainder half of the initially postulated components

effectively remain empty. This is an important outcome, as it corroborates both

the usefulness of the power-law property of our model, as well as its capacity

to infer how many components it actually needs, irrespectively of how big the

truncation threshold is.
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Figure 4.1: Misclassification Errors: Base Scenario + 48%, 32%, 16%, 0%, respectively.
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Figure 4.2: F1 Scores: Base Scenario + 48%, 32%, 16%, 0%, respectively.
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Figure 4.3: Precision Scores: Base Scenario + 48%, 32%, 16%, 0%, respectively.
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Figure 4.4: Recall Scores: Base Scenario + 48%, 32%, 16%, 0%, respectively.
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Figure 4.5: Evaluated Methods: Wall-Times of Model Training and Prediction Generation

Figure 4.6: Component weight posterior expectations, 〈ϖc(v)〉, of the fitted PYP-EBF model.
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Chapter 5

Gated Mixture Variational Autoencoders
for Value Added Tax Audit Case Selection

5.1 Introduction to Deep Generative Models

Generative models learn the joint probability of data and latent variables pθ (x,z)

and are able to generate new data x . An auto-encoder is an example of gener-

ative model where the data is transformed into an abstract representation and

then transformed back to the initial data. The Variational Auto Encoder (VAE),

described in [77], is an example where approximate Bayesian inference can ef-

ficiently train unsupervised data. This is achieved with the help of inference

networks and stochastic back-propagation. To give a closer look lets observe

the components used. First there is a centered isotropic multivariate Gaussian

prior over the latent variables

pθ (z) = N(z;0, I) (5.1)

and a multivariate Gaussian with diagonal covariance for the variational approx-
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imate posterior

logqϕ(z|x(i)) = logN(z; µ
(i),σ2(i)) (5.2)

where µ(i),σ (i) multilayer perceptrons outputs (inference network) and i a sin-

gle datapoint. In order to achieve stochastic back-propagation they sample from

the variational approximate posterior with z(i,l) ∼ qϕ(z|x(i)) by using the repa-

rameterization trick.

z(i,l) = µ
(i)+σ

(i)
ε
(l) (5.3)

where

ε
(l) ∼ N(0, I).

Due to the specific choice of prior and variational posterior the KL divergence in

the lower bound can be computed and differentiated without the use of sampling.

Achieving the following lower bound

L (θ ,ϕ;x(i))' 1
2

J

∑
i=1

(1+log((σ (i)
j )2)−(µ(i)

j )2−(σ (i)
j )2)+

1
L

L

∑
l=1

log pθ (x(i)|z(i,l))

(5.4)

where pθ (x(i)|z(i,l)) a Gaussian or Bernoulli multi layered perceptron. Bernoulli

for binary and Gaussian for real valued data. VAE training is performed with the

use of one sample. In [78] Importance Variational Auto Encoder was introduced,

an extension to VAE that uses multi samples for training. To efficiently train
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and deal with the high variance arisen from the samples they use important

sampling.

5.1.1 Semi-Supervised Learning

In the real world problem of selecting high yield taxpayers for audit there is an

increasing need for semi-supervised learning. This is a result of the abundance

of tax returns (unlabeled data) and the minimal number of audited tax returns

(labeled information), because of the limited number of tax auditors the number

of tax returns that can be audited annually is finite. Semi-supervised learning

uses labeled and unlabeled data to train the model to identify with high accuracy

taxpayers with high yield in case of a tax audit. Unsupervised learning with

Deep Generative Models (DGM) can be adapted to include labeled data as well,

leading to semi-supervised learning. As was described by [79] with some simple

modifications we can have three variations of the VAE. The first is to use the

unlabeled data to train a similar to VAE approach in order to get a good abstract

latent representation of the data and use it to train a classifier. This was called

a latent-feature discriminative model M1. The second approach is to use the

labels (target y) as an extra latent variable in line with the z latent variables. At

training time the unlabeled data will be consider a latent variable and the labeled

as values. This was called generative semi-supervised model M2. And finally

the last approach is the stacked generative semi supervised model which stacks

the two previous approaches i.e the M2 model is now infused with extra latent

parameters from the M1 model. As was described by [79] the variational lower
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bound for M1 is:

L (x) = Eqϕ(z|x)[log pθ (x|z)+ log pθ (z)− logqϕ(z|x)] (5.5)

For the M2 model the variational lower bound is extended to:

L (x,y) =Eqϕ(z|x,y)[log pθ (x|z,y)+ log pθ (y)+ log pθ (z)− logqϕ(z|x,y)] (5.6)

for the labeled data and

L (x) = Eqϕ(z|x,y)[log pθ (x|z,y)+ log pθ (y)+ log pθ (z)− logqϕ(y,z|x)] (5.7)

for the unlabeled data.

For the unlabeled lower bound it exists a classifier qϕ(y|x) which can be used

to test our model in unseen data. However this term exists only on the unla-

beled data training. In order to alleviate this rable property of having a classifier

trained only on the unseen data [79] introduced a classification loss in the lower

bound for the labeled data.

5.2 Proposed Approach

5.2.1 Motivation

This thesis takes a different route in the effort of addressing the limited labeled

training data availability that plagues the application of supervised machine
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learning models to automated VAT audit selection. Specifically, we pioneer

the utilization of the semi-supervised machine learning paradigm, with strong

inspiration from recent developments in the field of deep learning [80].

Semi-supervised learning in its simplest form assigns predicted labels to the

unlabeled data and incorporates them in the training set [81]. A number of

repetitions is performed until a preset convergence criterion is met. However,

this procedure may result in poor predictions being reinforced. More advanced

procedures that ameliorate this risk employ graph-based methods that create a

graph connecting similar observations; when a minimum energy configuration

is found, the label information is propagated between labelled and unlabeled

nodes [82]. The inherent limitation of this paradigm is limited scalability [80].

Another example is the Transductive Support Vector Machine (TSVM) [83]

semi-supervised classification model; this enhances basic SVM’s so as to use

the minimum number of predicted output labels which are near the margin.

A groundbreaking paradigm that bears great promise towards resolving these is-

sues is deep learning. Specifically, deep networks can be simultaneously trained

under both the supervised and unsupervised learning paradigms. For instance,

autoencoders [77] are deep network configurations that are typically trained in

an unsupervised fashion, on the basis of an observation representation (encod-

ing) and reconstruction error criterion. However, they can also be used as an

intricate part of a supervised deep classifier, so as to facilitate training of the

network intermediate layers by exploiting vast amounts of unlabeled data [84].

57



Semi-supervised learning has already been successfully applied to fraud detec-

tion tasks. For instance, Zhang in [85] proposed a binary classification of tax

declarations (fraudulent/not fraudulent) using unlabeled and expert-marked data

to fine-tune weights of a deep network. On a different vein, two subsets of credit

card transactions were used in [86] to identify suspicious transactions. However,

VAT audit selection has never been addressed before.

These facts constitute a major source of inspiration.

5.2.2 Model Formulation

We attempt to answer the following fundamental question: ”Can tax adminis-

trations leverage non-audited filed VAT returns to accurately predict whether

a prospective audit will achieve high or low yield?” To obtain a convincing

answer, we develop a tailor-made deep learning model, whereby we cast the

problem into classification as cases of high or low potential audit yield. Then,

we address the introduced problem by leveraging the latest advances in the field

of autoencoder deep networks, namely variational autoencoders (VAEs) [87, 77,

88].

Initially, we process the raw data described in Section 4.4 of quarterly VAT re-

turns to obtain the observations presented to the network. Hence, the obtained

measurements comprise: (i) economic activity type, classified according to the

Eurostat NACE classification1; (ii) district codes; (iii) type of taxpayer (phys-

ical, legal); (iv) raw declared amounts, including VAT due/local sales, VAT
1https://ec.europa.eu/eurostat/documents/3859598/5902521/KS-RA-07-015-EN.PDF
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Figure 5.1: Overview of the proposed model
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due/EU purchases, VAT refundable (purchases), VAT payable, net value of sales,

net value of purchases, value of zero-rated sales, value of purchases from EU

(goods and services), and value of sales to EU (goods and services). These raw

measurements used to quantitatively describe our data were selected based on

the advice of experienced field auditors, who have devised the heuristic rules

currently used by the Cyprus Tax Department.

Eventually, we end up with a total of 47 raw measurements that constitute the

observed data fed into the devised model. As labels associated with these ob-

servations, we use the corresponding audit outcomes, if an audit has been per-

formed. Apparently, since only a small fraction of the filed returns are audited,

most of the available data points are unlabeled.

The so-obtained observations are presented to an encoder network; this splits

into two parts, with the first being an intermediate dense layer that comprises

40 ReLU units. Drawing from the recent advances in the field of variational au-

toencoders, e.g. [87], this encoder network facilitates the modeling process by

learning to infer a high-level representation of the observed measurements. This

representation is more useful for the classification process compared to the mea-

surements themselves [87, 88]. As shown in figure 5.1, the intermediate layer

of the encoder network is followed by a second part comprising two distinct

subencoders that work in tandem. This is a radically novel modeling selection

adopted in our work, which differentiates it from the existing literature. Both

these subencoders are presented with the 40-dimensional output of the interme-

diate layer, and generate a final 20-dimensional (latent) vector, again obtained
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from ReLU nonlinearities. These 20-dimensional latent vector representations

(encodings) are propagated to the subsequent parts of the proposed model.

The rationale behind this novel configuration of the encoder of the devised

model is motivated by a key observation; the two modeled classes (high/low

yield) are expected to entail significantly different patterns of latent underlying

dynamics. Hence, it is plausible that each class can be adequately and effec-

tively modeled by means of distinct, and different, encoder distributions. We

posit that learning these two distinct distributions may be best facilitated by us-

ing two subencoders. The distinct subencoder parts allow for differentiation,

while the common anterior encoder part enforces our expectation that the two

learned encoding distributions share some correlation.

At this point, we introduce another key modeling principle of our method. We

consider that the output units of the subencoders are of a stochastic nature;

specifically, we consider stochastic outputs, say z̃ and ẑ, with Gaussian (poste-

rior) densities. This assumption renders our model a variational autoencoder (as

opposed to a conventional autoencoder model). We strategically select to adopt

the variational inference framework in developing our autoencoder model, as

it is well-understood to allow for significantly improved generalization capac-

ity and reduced overfitting tendencies [87]. Hence, what the postulated suben-

coders actually compute are the means, µ̃ and µ̂ , as well as the (diagonal) co-

variance matrices, σ̃
2 and σ̂

2, that parameterize these Gaussian posteriors. On

this basis, the actual subencoder output vectors, z̃ and ẑ, are sampled each time

from the corresponding (inferred) Gaussian posteriors.
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Under this mixture model formulation, we need to establish an effective mech-

anism for inferring which observations (i.e., analyzed VAT returns) are more

likely to match the learned distribution of each component subencoder. In lay-

man terms, this can be considered to be analogous to a (soft) classification mech-

anism differentiating between audit cases of high and low potential yield. This

mechanism can be obtained by computation of the posterior distribution of mix-

ture component membership (also known as ”responsibility” in the literature

of finite mixture models [89]). This is also needed for effectively selecting be-

tween the samples of z̃ or ẑ, at the output of the encoding stage of the devised

model, that will be propagated to the subsequent model components.

To allow for inferring this posterior distribution, in this work we postulate a

gating network. This is a dense-layer network, presented with the same 40-

dimensional intermediate representation, h(), as the two postulated subencoders,

and using a sigmoid activation function. It is trained alongside the rest of the

model, and it is the only part of the model that requires availability of labeled

data for its effective training. Thus, under this model construction, the needs of

our approach in labeled data availability are considerably reduced.

To conclude the formulation of the proposed model, we need to postulate an

appropriate decoder distribution, and a corresponding network that infers it. In

this work, we opt for a simple dense-layer neural network, which is fed with the

(sampled) output of the postulated finite mixture model encoder, and attempts to

reconstruct the original raw measurements. Specifically, we postulate a network

comprising one hidden layer with 40 intermediate ReLU units.
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Let us denote as xn the set of observable measurements pertaining to the nth

available VAT return. Then, based on the above description, the encoder distri-

bution of the postulated model reads

q(zn|xn) =q(z̃n|xn)
q(cn=1|xn)q(ẑn|xn)

q(cn=0|xn) (5.8)

Here, zn is the output of the encoding stage of the proposed model that corre-

sponds to xn, z̃n is the output of the first subencoder, corresponding to the high

yield class, ẑn is the output of the second subencoder, corresponding to the low

yield class, and cn is a latent variable indicator of whether xn belongs to the high

yield class or not. We also postulate

q(z̃n|xn) = N (z̃n|µ̃(xn; θ̃),diag σ̃
2(xn; θ̃)) (5.9)

q(ẑn|xn) = N (ẑn|µ̂(xn; θ̂),diag σ̂
2(xn; θ̂)) (5.10)

Here, the µ̃(xn; θ̃) and σ̃
2(xn; θ̃) are outputs of the deep neural network that

corresponds to the high yield class subencoder, with parameters set θ̃ . Sim-

ilarly, the µ̂(xn; θ̂) and σ̂
2(xn; θ̂) are outputs of the deep neural network that

corresponds to the low yield class subencoder, with parameters set θ̂ .

The posterior distribution of mixture component allocation, q(cn|xn), which is

parameterized by the aforementioned gating network, is a simple Bernoulli dis-

tribution that reads

q(cn|xn) = Bernoulli(ϖ(h(xn);ϕ)) (5.11)

Here, ϖ(h(xn);ϕ) ∈ [0,1] is the output of the gating network, with trainable

parameters set ϕ . This infers the probability of xn belonging to the high yield
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class.

Lastly, the postulated decoder distribution reads

p(xn|zn) = N (xn|µ(zn;φ),diag σ
2(zn;φ)) (5.12)

where the means and diagonal covariances, µ(zn;φ) and σ2(zn;φ), are outputs

of a deep network with trainable parameters set φ , configured as described pre-

viously.

5.2.3 Model Training

Let us consider a training dataset X = {xn}N
n=1 that consists of N filed VAT

returns. A small subset, X l, of size M of these samples is considered to be

labeled, with corresponding labels set Y = {ym}M
m=1. That is, these VAT returns

triggered an audit, which may have generated a high or low audit yield (ym =

1 and ym = 0, respectively). Then, following the VAE literature [77], model

training is performed by maximizing the evidence lower bound (ELBO) of the

model over the parameters set {θ̃ , θ̂ ,ϕ,φ}. The ELBO of our model reads:

log p(X)≥L (θ̃ , θ̂ ,ϕ,φ |X) =−
N

∑
n=1

KL
[
q(zn|xn)||p(zn)

]
+ γ

N

∑
n=1

E[log p(xn|zn)]+ ∑
xm∈X l

logq(cm = ym|xm)

(5.13)

Here, KL
[
q||p

]
is the KL divergence between the distribution q(·) and the dis-

tribution p(·), while E[·] is the (posterior) expectation of a function w.r.t. its

entailed random (latent) variables. Note also that, in the ELBO expression

(5.6), the introduced hyperparameter γ is a simple regularization constant, em-

ployed to ameliorate the overfitting tendency of the postulated decoder networks,
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p(xn|zn). We have noticed that this simple trick yields a significant improvement

in generalization capacity.

In Eq. (5.6), the posterior expectation of the log-likelihood term p(xn|zn) cannot

be computed analytically, due to the nonlinear form of the decoder. Hence, we

must approximate it by drawing Monte-Carlo (MC) samples from the posterior

(encoder) distributions (5.2)-(5.3). However, MC gradients are well-known to

suffer from high variance. To resolve this issue, we utilize a smart re-parameterization

of the drawn MC samples. Specifically, following the related derivations in [77],

we express these samples in the form of a differentiable transformation of an

(auxiliary) random noise variable ε; this random variable is the one we actually

draw MC samples from:

z̃(s)n = µ̃n + σ̃n · ε(s)n , ε
(s)
n ∼N (0, I) (5.14)

ẑ(s)n = µ̂n + σ̂n · ε(s)n (5.15)

Hence, such a re-parameterization reduces the computed expectations into aver-

ages over samples from a random variable with low (unitary) variance, ε . This

way, by maximizing the obtained ELBO expression, we yield low-variance es-

timators of the sought (trainable) parameters, under some mild conditions [77].

We perform the maximization process of L (θ̃ , θ̂ ,ϕ,φ |X) by resorting to Ada-

Grad [90].
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5.2.4 Prediction generation

To predict the class (high/low yield) of a VAT audit case (filed return data),

xn, we compute the mixture assignment posterior distribution q(cn|xn), inferred

via the postulated gating network, ϖ(h(xn);ϕ). On this basis, assignment is

performed to the high-yield class if ϖ(h(xn);ϕ)> 0.5.

5.3 Method Deployment

5.3.1 Development process

The motivating force of this work has been the pressing need to reliably auto-

mate the VAT audit selection process for the Cyprus Tax Department. As such,

development of the devised Gated Mixture Variational Autoencoder was per-

formed with their close collaboration. Specifically, we gathered over 1,000,000

filed VAT returns as unlabeled data and over 10,000 audited VAT returns as la-

beled data2. These constitute nearly all the VAT returns of the last six years.

Following the instructions of the Tax Department, and to best facilitate their

needs, we have considered three alternative model configurations: (i) learning

to detect potential audit yields exceedinge100; (ii) exceedinge75; (iii) exceed-

ing e67; and (iv) exceeding e50.

We used this dataset to both train and evaluate our model and the considered

competitors. Specifically, training was performed using the whole set of un-

labeled data, and a fraction of the labeled ones under a 4-fold stratified cross-
2Note that, since actual VAT returns and VAT audit results from the Cyprus Tax Department are used, we are restricted from disclosure of

the used data and codes, as they constitute privileged information.
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validation rationale; the rest of the available labeled data was used for model

evaluation (in each iteration of the 4-fold cross-validation process).

The proposed approach was implemented in Python, using the TensorFlow li-

brary [91]. The developed models were run on a Desktop PC hosting an off-the-

shelf NVIDIA 10 series Graphic Processing Unit. To perform model training,

we used S = 10 drawn MC samples, ε(s); we found that increasing this value

does not yield any statistically significant accuracy improvement, despite the

associated increase in computational costs.

To enable automatic determination of the optimal selection of model hyperpa-

rameters, which in the case of deep networks includes the number of hidden

layers, the number of units in each layer, the employed nonlinearities, the used

batch-size, and the selection of the Dropout and learning rates, we resorted

to Neural Architecture Search (NAS) [92] which is now the state-of-the-art

paradigm in Machine Learning for hyperparameter selection. Model training

was performed via Adagrad.

5.3.2 The disappointment of a simple Dense Network alternative

Initially, we examined the efficacy of a state-of-the-art alternative to our ap-

proach. Specifically, we considered a conventional deep network which consti-

tutes a supervised learning alternative to our approach. We used the available

labeled data points to train this deep learning alternative, and resorted to NAS to

determine its optimal configuration; this yielded two dense hidden layers with

40 and 20 ReLU units, respectively, regularized via Dropout [93] with rate 0.2.
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Figure 5.2: Supervised Model: Obtained accuracy for the audit yield outcomes most typically

considered by the Cyprus Tax Authority.

As we illustrate below, the obtained results were far from encouraging; specif-

ically, they were close to the random performance model accuracy (5.2) across

all the four tested model configurations (e100, 75, 67 and 50). The confusion

matrices (5.3) across all model configurations were also disappointing, as the

outcomes are clearly imbalanced. This proves that, with this limited availability

of labeled samples, a state-of-the-art supervised model fails to learn any mean-

ingful classification pattern.

5.3.3 The promise of semi-supervised deep learning models

Subsequently, we proceeded to implement and deploy our proposed Gated Mix-

ture Variational Autoencoder, using the full available dataset (both labeled and

unlabeled data points). To obtain a statistically significant evaluation outcome,

we performed 4-fold stratified cross-validation, as previously. In addition, to
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Figure 5.3: Supervised Model: Confusion matrices for the audit yield outcomes most typically

considered by the Cyprus Tax Authority.

Figure 5.4: Proposed System: Obtained accuracy for the audit yield outcomes most typically

considered by the Cyprus Tax Authority.
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Figure 5.5: Proposed System: Confusion matrices for the audit yield outcomes most typically

considered by the Cyprus Tax Authority.

obtain some comparative results, we also developed and deployed an existing

state-of-the-art competitor, namely the M1+M2 semi-supervised deep learning

model introduced in [94]. This model comprises a variational autoencoder with

dense-network encoder and decoder, combined with a softmax classification

layer; it has been shown to greatly and consistently outperform all popular

semi-supervised classification alternatives, including the popular TSVM [83].

NAS yielded a M1+M2 configuration comprising 40 intermediate units and 20-

dimensional latent vectors; exactly the same configuration NAS obtained for our

approach.

Figure 5.4 depicts the detection accuracy obtained by our proposed system for

the audit yield outcomes most typically considered by the Cyprus Tax Authority;

figure 5.5 shows the corresponding confusion matrices. As we observe, despite

the limited availability of labeled samples, our approach yields quite a high ac-
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Figure 5.6: M1+M2 Model: Obtained accuracy for the audit yield outcomes most typically

considered by the Cyprus Tax Authority.

curacy level across all the considered scenarios. This represents a dramatic im-

provement over the supervised learning alternative, providing strong evidence

of the efficacy of our proposed approach and the importance of appropriately

leveraging unlabeled data in the context of our addressed problem.

Further, we provide the corresponding evaluation outcomes pertaining to the

considered M1+M2-based alternative. These are shown in figures 5.6 and 5.7,

respectively. It becomes apparent that the M1+M2 algorithm is incapable of

yielding any meaningful performance outcome, as it has barely managed to ex-

ceed 50% in all scenarios. This provides indisputable evidence of the superiority

of our modeling approach, including both the proposed split of the encoder mod-

ule, as well as the use of the gating network (classifier) as an integral part of the

variational autoencoder. Therefore, we deduce that resorting to a state-of-the-art

semi-supervised learning algorithm does not guarantee effective exploitation of
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Figure 5.7: M1+M2 Model: Confusion matrices for the audit yield outcomes most typically

considered by the Cyprus Tax Authority.

unlabeled data. Addressing the task at hand requires significant expertise and

understanding of the problem, combined with the capacity to build upon and

extend the state-of-the-art in machine learning.

5.3.4 Ablation study

Finally, to obtain a deeper understanding of how unlabeled training data avail-

ability facilitates the modeling performance of the proposed Gated Mixture Vari-

ational Autoencoder model, we performed an extensive ablation study. Focus-

ing on the target audit yield of e100 outcome, we repeated our evaluation by

reducing the number of used unlabeled training data points. Specifically, we

examined three different test cases, where we used a randomly sampled frac-

tion of the unlabeled data points comprising 500K, 250K and 100K samples,

respectively.
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Figure 5.8: Proposed system: Accuracy variation by altering the number of used unlabeled

data points (e 100 audit yield detection).

The obtained results are provided in figure 5.8 (accuracy) and figure 5.9 (con-

fusion matrices). We observe that performance remains robust as we decrease

the number of unlabeled data points by 50% (500K unlabeled data points), but

deteriorates if we reduce these even further. Characteristically, when only a 10%

of the originally available unlabeled data is used, the accuracy drops by 7 per-

centage points. However, it remains profoundly better than the M1+M2 model

and the evaluated supervised alternative. This constitutes conspicuous empirical

evidence of the solid methodological foundation and versatility of the devised

solution to the addressed problem of VAT audit case selection.

5.3.5 System adoption

The previous results strongly support the efficacy of the proposed system. As

thee100 baseline is the targeted audit yield threshold for the rule-based systems
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Figure 5.9: Proposed system: Confusion matrix variation by altering the number of used

unlabeled data points (e 100 audit yield detection).

Figure 5.10: Accuracy: Supervised Vs Semi-supervised Model.
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Figure 5.11: Confusion Matrices: Supervised Vs Semi-supervised Model.

currently used by the Cyprus Tax Department, it is important to stress that the

obtained performance outcome offers an unprecedented level of reliability for

tax auditors. Figures 5.10 and 5.11 summarize how strong the improvement of

our approach is over supervised techniques. In addition, we emphasize that the

currently used rules-based systems developed by the Cyprus Tax Department

for assisting the VAT audit case selection process achieve a success rate that

fluctuates between 60-65% (depending on seasonality effects). Note also that

prediction generation using our model requires only feedforward computation

encompassing the anterior part of the encoder and the gating network; as such,

predictions are obtained momentarily. Hence, our thesis represents a giant leap-

forward towards the goal of more effective and targeted VAT audit selection. Its

full deployment, which remains open to further (longer-term) performance con-

firmation, is expected to eventually catalyze a significant reduction in Cyprus

VAT-gap.
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Chapter 6

Conclusions

6.1 Discussion on the Thesis Outcomes

The mission of the Cyprus Tax Department is the ”consistent application of

the laws, ensuring fair taxation in a way that enhances the confidence of the

taxpayer, the minimization of tax evasion and the effective collection of tax rev-

enues of the state with the least possible cost.” [95]. As VAT is one of the

major sources of tax evasion [2], this thesis has provided an effective automated

solution to the problem of VAT audit case selection. It is expected to greatly

facilitate the Tax Department in its effort to reduce tax evasion, by utilizing its

limited resources (experienced auditors) to target cases with high audit yield.

Our goal was to develop a full methodological pipeline that obviates the need

for tax experts to create hundreds of detailed rules; a procedure extremely time-

consuming, costly, and disturbingly imprecise. At the same time, our approaches

were designed to make the most out of the available audit data, taking under con-

sideration that their availability is too limited for a supervised learning algorithm
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to achieve satisfactory performance.

We developed and deployed experimental prototypes of our systems by making

use of more than one million quarterly VAT returns filed in the last years, as well

as 10,000 associated audit outcomes. Eventually, not only did our approaches

significantly surpass the high-yield audit case selection success rate of the cur-

rently used rules-based systems, which stands at 60-65% of the audited cases.

Even more profoundly, they completely outperformed popular alternative ma-

chine learning algorithms, including state-of-the-art deep networks, RFs, and

Transductive SVM’s.

Finally, it is worth to note that the greatest achievement of this project was

the stimulation of interest within the Cyprus Tax Department for developing in-

house state-of-the-art deep learning tools. Indeed, the success of our project has

fostered a pro-research culture, which is especially favorable to further invest-

ment in machine learning, in close collaboration with the Academia.

6.2 Directives for Future Work

From the preceding discussion, it becomes apparent that the outcomes of our

work bare conspicuous advantages over the existing practice and academic state-

of-the-art. These facts have prodded the Tax Department to perform a set of

follow-up evaluation cycles for performance verification purposes. The ultimate

vision is to fully integrate the system into the Department’s standard VAT audit

selection practices, replacing the rules-based systems currently used.
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On another vein, we also aim to pursue the examination of how our methods

can be leveraged to address other sources of tax evasion. Indeed, it is common

practice for tax administrations to cross-validate and reconcile items declared

in the tax returns of corporation tax and VAT, like revenue; a taxpayer who

filed substantially different revenue amounts should expect an enquiry from the

tax authorities. Therefore, taxpayers who under-declare revenue in their VAT

returns are also expected to under-declare revenue for direct taxation purposes,

and vice versa, so as to avoid attracting the scrutiny of tax authorities. Since

VAT evasion and direct tax evasion are correlated, a model that combines raw

data from both VAT returns and direct tax returns and performs joint audit case

selection for both should yield higher accuracy compared to models addressing

VAT and direct taxes separately. This remains to be confirmed in the context of

our future research endeavors.
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