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ABSTRACT 

In the academic literature, financial data have been proved to violate the assumption of 

Normality. For this reason, skewness, and/or kurtosis distributional characteristics are 

presented in financial series. At the same time, this highlights the importance of using 

higher moment distributions that take into account these characteristics. Using 

mathematical and advanced statistical probability theory, this dissertation contributes to 

the literature by conducting three chapters in which the purpose is to explain and develop 

models to explore the following financial topics: 1. behavioural finance and more 

specifically the probabilistic behaviour of psychological biases, 2. the stochastic 

behaviour of Bitcoin using an asymmetric framework, and 3. the measurement of stock 

price crash risk using an outlier resistant technique.  

The first chapter presents a probabilistic framework to define and analyse the 

well-known psychological biases of overconfidence, optimism, underconfidence, and 

pessimism on the perceptions of managers about the mean and risk (overall risk, downside 

risk, value-at-risk, and expected shortfall) of the economic variables under consideration. 

Furthermore, the anchoring and adjustment heuristic has been found in the literature to 

be one of the reasons that overconfidence bias exhibits. This first chapter further 

investigates the interrelationship between anchoring and overconfidence bias using an 

adaptation process. Using an analytical generalized two-piece framework showed that 

anchoring and adjustment and overconfidence bias share an interconnection. The results 

reveal that overconfident and optimistic managers overestimate their expected value and 

underestimate their downside risk, value-at-risk and expected shortfall (positively skewed 

distribution). Overconfident managers also underestimate their overall risk. 

Underconfident and pessimistic managers underestimate their expected value and 

overestimate their risk (negatively skewed distribution). The overestimation or 

underestimation differs depending on the psychological bias. The empirical findings 

depict that the distribution of professional forecasters is negatively skewed and 

consequently they are underconfident. Accordingly, they underestimate the nominal and 

real GDP.   

The second chapter analyses the stochastic behaviour of Bitcoin using an 

asymmetric framework. The extraordinary behaviour of Bitcoin is what makes it unique 
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and different. This chapter examines the stochastic behaviour of Bitcoin and exchange 

rates, the mean and volatility spillovers in the presence of asymmetry under a flexible 

general framework that accounts for skewness/kurtosis price of risk (ST-GJR-GARCH-

SGED model), and the forecasting ability of the asymmetric model compared to already 

existing GARCH models under different probability distributions. The main empirical 

findings show that the skewness/kurtosis price of risk has an important role in the model. 

The empirical distribution of Bitcoin’s returns exhibits skewness and extreme 

leptokurtosis. The latter result explains the extraordinary volatility of Bitcoin that leads 

to a higher peaked probability distribution compared to the rest of the assets. The findings 

also point out that there is a weak inter-relationship between Bitcoin and exchange rates 

and that the ST-GJR-GARCH-SGED model outperforms other GARCH specifications.  

The third chapter focuses on the investigation of the stock price crashes using an 

outlier resistant method. Stock price crash risk referred to as the conditional skewness of 

the distribution of returns. When a negative firm-specific shock becomes public, there is 

a negative outlier in the return distribution leading to a crash. The residual returns have 

been taken by regressed the expanded market model since this model screens out the 

market crashes and only firm-specific events are considered. A binary crash risk measure 

is used to define crashes. Using the logarithmic transformation of the residual returns, a 

firm is considered to crash under the binary measure if at least one firm-specific weekly 

return is falling a threshold point of standard deviation below the mean firm-specific 

weekly returns. The presence of influential observations in the series may lead to a 

misestimation of the percentage of crashes due to the standard deviation that is inflated. 

This chapter develops a crash risk framework based on an outlier resistant method. Also, 

it proposes that a robust measure without the logarithmic transformation of the residual 

returns detects accurately the stock price crashes. Monte – Carlo simulations and 

empirical findings suggest that the robust method detects a higher percentage of crashes 

compared to the standard OLS methodology. Also, the detection based on the residual 

un-transform OLS returns leads to a lower percentage of crashes.   

 

Keywords: Behavioural Finance, Psychological Biases, SGED, Conditional Asymmetry, 

Conditional Kurtosis, Crash Risk, Outliers, Outlier-resistant method.  
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INTRODUCTION 

Theoretical and empirical research in Finance and Economics has shown that financial 

and economic data do not follow a Gaussian (Normal) distribution, e.g. McDonald and 

Newey (1988), McDonald et al. (1995), Hansen et al. (2010), and others. The 

distributional characteristics of skewness and/or kurtosis are presented in financial series. 

Up to this time, there has been extensive literature that investigates the skewed behaviour 

of data using asymmetric models. Therefore, the need to explain financial data using 

models that account for more than two moments of a probability distribution drives 

researchers to use asymmetric probability distributions. Furthermore, the presence of 

outliers in the data drives researchers to use outlier-resistant methods. 

The family of SGT distribution developed by Theodossiou (1998) nested by 

several well-known distributions, such as Skewed T (ST), Skewed Generalized Error 

Distribution (SGED), Skewed Normal (SN), Cauchy (C), Laplace (LP), Uniform and 

Normal (N). Each distribution has different moment functions, moment generating 

function, cumulative distribution, and moments. The SGT is a fifth parameter 

distribution, where, using the log-likelihood maximum likelihood technique gives the 

estimated parameters. These parameters are k, n, λ, μ, σ. The parameters k and n are the 

two parameters that control the tails and the peakedness of the distribution. The 

asymmetry parameter, λ, controls the shape of the probability distribution. If the 

asymmetry parameter is positive, it generates a positively skewed distribution and if it is 

negative, it generates a negatively skewed distribution. The expected value and standard 

deviation are the well-known measures used in finance in many cases, e.g. portfolio 

analysis, etc. Setting k = 2, n = ∞, and λ = 0 gives the Normal distribution, k = 1 and n = 

∞ and λ = 0, the Laplace, and so on. Figure 0.1 presents the SGT family of distributions.  
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Figure 0.1. The SGT Family.1 

Evidently, outliers are presented in financial data and in many cases, they include 

important information. For example, a negative outlier return of a firm may be the 

announcement of the CEO regarding an important decision of the firm. The standard 

ordinary least square technique (OLS) underperforms in the presence of outliers. This is 

the reason that there is a large body of literature about outlier-resistant methods. However, 

when there are no outliers in the return series, the outlier resistant method performs as 

well as the ordinary least square (OLS).  

 

1 This figure was taken from Theodossiou (2021). 
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In this dissertation, some of the skewed distributions and a robust resistant method 

are used to investigate three different financial issues: to explain the psychological biases 

using a probabilistic approach under the Skewed Normal (SN) and the Skewed 

Generalized Error (SGED) distributions, to explore the time-varying behaviour of Bitcoin 

and exchange rates using an asymmetric model under the SGED, and to identify the stock 

price crashes using a robust outlier technique.   

 The first chapter focuses on the development of a probabilistic framework to 

define and analyse the impact of the well-known psychological biases of overconfidence, 

optimism, underconfidence, and pessimism on the perceptions of managers about the 

expected value, overall risk, and the tail risks (downside risk, value-at-risk and expected 

shortfall) of economic variables. This framework has used the Skewed Normal 

distribution, which is an easily acceptable distribution in the literature, to explain the 

characteristics of each manager that suffer from psychological distortions. The rational 

view is assumed as followed by a Normal distribution. This framework further 

incorporates the anchoring and adjustment heuristic to explain the overconfidence bias. 

In other words, this study investigates the interrelationship between anchoring and 

overconfidence bias using an adaptation process. In this case, the framework relaxes the 

assumption of Normality and assumes the forecaster’s errors followed by the Skewed 

Generalized Error Distribution (SGED).   

The results reveal that overconfident (underconfident) managers overestimate 

(underestimate) their expected value and underestimate (overestimate) their risks. In this 

case, the probability distribution is positively (negatively) skewed. Similarly, optimistic 

(pessimistic) managers overestimate (underestimate) the performance of an economic 

variable, therefore, their probability distribution is positively (negatively) skewed. The 

overestimation of optimistic managers is larger compared to overconfident managers. The 

tail risk measures (downside risk, value-at-risk and expected shortfall) are underestimated 

by overconfident and optimistic managers and overestimated by their counterparts. It has 

also been proven that the subjective forecasting beliefs under a speed of adjustment 

parameter can explain an over/under confident behaviour. The forecasting errors yield to 

a tight (heavy) and skewed distribution for the overconfident (underconfident) experts. 

Empirically, the results show that professional forecasters underestimate the economic 

variable. In this case, the distribution of professional forecasters is negatively skewed.  
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The second chapter focuses on the investigation of the stochastic properties of 

Bitcoin and compares it with major exchange rates: Euro, Japanese Yen, Canadian Dollar, 

and British Pound. This investigation has been conducted using a flexible framework that 

accounts for the skewness and kurtosis price of risk. Using the ST-GJR-GARCH-M 

model under the SGED distribution, the risk-return relationship is investigated. The 

examination of this relationship comes since Bitcoin behaves uniquely and 

extraordinarily. Also, this chapter examines the presence of conditional 

heteroscedasticity, asymmetric volatility, and other dependencies in the return series. The 

link of the time-varying skewness and kurtosis price of risk to downside and upside 

volatility under ST-GJR-GARCH-SGED framework (Savva and Theodossiou, 2018) 

helps to investigate the mean and risk effects of Bitcoin and other exchange rates and 

accounts for the impact of the downside and upside risk effects, along with distributional 

effects due to the heavy tails’ characteristics of such series. At the same time, an 

investigation regarding the shocks’ correlation of Bitcoin and exchange rates showed the 

issue of the low correlation. Furthermore, by examining the behaviour of Bitcoin, this 

study sheds light on the trading and hedging capabilities helping investors to decide 

whether to incorporate it or not in their portfolios. Additionally, the model is extended to 

examine the bivariate behaviour of Bitcoin and exchange rates (spillover effects). Lastly, 

the forecasting ability of this model is compared to other existing GARCH specification 

models under different probability distributions.  

The main findings illustrate that the empirical distribution of Bitcoin’s returns 

exhibits skewness and extreme leptokurtosis. Skewness and kurtosis have also been found 

in all the series; however, the kurtosis of Bitcoin is about 2.5 times higher than the other 

assets. This result explains the extraordinary volatility of Bitcoin that leads to a higher 

peaked probability distribution compared to the rest of the assets. These findings suggest 

that skewness and kurtosis characteristics play an important role in the model. The 

implications are important for those who use Bitcoin as a financial asset.  

Regarding the mean and volatility spillover effects, there is a negligible 

relationship between Bitcoin and exchange rates, and it is a useful asset to diversify the 

portfolio’s risk since it behaves in a very different way relative to the other assets. 

Additionally, Bitcoin’s behaviour is extremely leptokurtic when compared to other assets. 

The shape distributional characteristic of Bitcoin is not affected when spillover effects 

are presented. Interestingly, the findings show that the model ST-GJR-GARCH under the 
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Skewed Generalized Error Distribution (SGED) performs better than the rest models 

highlighting the importance of the Skewed Generalized Error distribution to forecast 

Bitcoin prices as this distribution captures data with leptokurtic characteristics well.  

The third chapter focuses on the investigation of the measurement of crash risk as 

a negative outlier event using a robust-outlier technique. Crash risk is a new area in 

finance that academic literature has yet to investigate fully. Evidently, it captures 

asymmetry and it is the conditional skewness of the distribution of returns. When a 

negative firm-specific shock becomes public, there is a negative outlier in the return 

distribution leading to a crash. The presence of outliers in the series leads to a 

misestimation of the standard deviation that was used to construct the binary crash risk 

measure. This chapter develops a crash risk framework using a model developed by 

Theodossiou and Theodossiou (2019). The model presents the analytical equations of the 

mean, variance, and residual returns, shows the impact of outliers to identify a crash event 

and proposes a robust measure to estimate crashes. 

The binary crash risk measure is constructed by taking the logarithmic 

transformation plus one of the residual returns from the expanded market index model 

(Dimson, 1979). The reason why the literature has used this model was to screen out the 

market shocks and consider only firm-specific events. By using the logarithmic 

transformation of the residual returns, a firm was found to crash under the binary measure 

if at least one firm-specific weekly return fell a threshold point of standard deviation 

below the mean firm-specific weekly returns.  

Monte – Carlo simulations and empirical findings show that the standard 

methodology (OLS) detects a lower percentage of crashes in relation to the robust 

methodology. This is due to the outliers that affect the variance equation. Moreover, the 

un-transformed OLS measure detects a lower percentage of crashes compared to the log 

transformed measure. Importantly, 6,145 firm-year observations are detected in the robust 

measure and not in the standard logarithmic OLS method. Also, 10,934 firm-year 

observations are detected using the robust un-transform residual returns and not in the un-

transform residual return. A case study of firms in different industries has shown the 

beneficial use of the robust method in comparison to the OLS. 

The findings suggest that to avoid the misspecification of crashes it is better to use 

a robust technique that corrects the inflation of standard deviation driven by outliers. The 
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pricing and forecasting of stock price crash risk are important for decision-makers and 

risk management. 

To sum up, this dissertation develops three different mathematical and 

probabilistic frameworks to explore three financial puzzles related to behavioural finance 

and financial econometrics. Specifically, three frameworks are developed using skewed 

probability distributions, GARCH models, and robust statistics. All the models are also 

tested using Monte-Carlo simulations and empirical analysis. The conclusions provide 

insightful findings on the importance of asymmetric models to investigate different issues 

in the financial literature. 
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1 Psychological Biases and Skewness  

 Introduction  

In the last years, there has been a growing interest in a subfield of finance, behavioural 

finance. Using psychological theories, many researchers try to understand stock market 

anomalies, the decisions of managers, and so on. The rejection of the rational expectation 

hypothesis claims that the decisions of people are based on psychological biases. Some 

well-known psychological biases are overconfidence and optimism while one of the three 

heuristics is anchoring and adjustment. These psychological distortions are under 

investigation in the academic literature since managers, investors, and others are not fully 

rational in their behaviour.  

 Statman (2017) in his book ‘Finance for Normal People: How Investors and 

Markets Behave’ describes extensively the behaviour of people using emotions. He 

suggests that many people do not react in a rational manner and he describes their 

behaviour using cognitive and emotional errors.  

 Moreover, the best seller book by Kahneman (2011) titled ‘Thinking, Fast and 

Slow’ describes in detail the reactions of people based on various distortions such as 

representativeness, overconfidence, etc. Interestingly, this book develops and explains 

theories in a simple way that researchers used to clarify several financial phenomena in 

their empirical studies. In part II, it analyses in an extensive way the heuristics and biases 

using psychological literature, while, in part III Kahneman explains the overconfidence 

and optimism biases and the consequences of having these characteristics in one’s 

behaviour.    

 Hubris and miscalibration theories are commonly used to explain the 

overconfidence bias. Hubris occurs when people overestimate the probability of desirable 

outcomes, e.g., Roll (1986). On the other hand, calibration measures the accuracy of 

predicted probabilities. Literature concluded that the perceived probability distribution of 

overconfident people has been characterized as too tight, e.g. Alpert and Raiffa (1982) 

and Kyle and Wang (1997). This means that overconfident managers tend to overestimate 

the probabilities of favourable events and underestimate their range while underconfident 

managers tend to overestimate the probability of unfavourable events and overestimate 

their range. 
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 Gibran’s (1951) analogy highlights that optimists see the rose and pessimists see 

the thorns of the rose. A second analogy often used is that of a half-full glass representing 

optimism or a half-empty glass which stands for pessimism. Furthermore, Taylor and 

Brown (1988) mention that optimists believe that the future will be great for them. They 

also feel more capable, skilled, knowledgeable than their peers and they underestimate a 

negative event to happen to them.  

As mentioned above, one of the three heuristics that Tversky and Kahneman 

(1974) presented in their paper was anchoring and adjustment. This heuristic concerns the 

way how people estimate their choices based on their beliefs and make decisions that 

deviate from the rational choice theory. It is a cognitive bias that distorts people’s 

decisions in a lot of ways. The literature has found that anchoring may reinforce other 

biases such as overconfidence (Russo and Schoemaker, 1992; Kahneman and Tversky, 

1979). 

Despite the existing theoretical and empirical literature on psychological biases 

and heuristics, this first chapter focuses on an alternative investigation of these 

psychological distortions. An advanced statistical and probabilistic framework that 

accounts for skewness as an important parameter explains the over/under confident and 

optimism/pessimism behaviours. The findings depict that overconfident managers 

overestimate the probability of desirable events, overestimate their expected values and 

underestimate their risk. Furthermore, optimistic managers overestimate to a greater 

extent the mean of an economic variable. Monte-Carlo simulations confirmed the 

conclusions, while an empirical application showed that professional forecasters 

underestimate the true value of an economic variable.  

 Accordingly, the next section presents the literature review regarding these biases. 

Section 1.3 presents the probabilistic framework including the skewed normal and the 

skewed generalized error distributions. Section 1.4 expresses the probability distributions 

of the psychological biases. Furthermore, it analyses the perceptions of managers about 

mean and various risks of a random economic variable. Also, it shows the inter-

relationship between anchoring and overconfidence bias. Section 1.5 presents Monte 

Carlo simulations to represent the psychological biases (overconfidence, optimism, 

underconfidence, pessimism) while section 1.6 presents the empirical findings supporting 

the statistical framework. Summary and conclusions are presented in section 1.7.  
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 Literature Review 

Overconfidence and Optimism Biases  

Moore and Healy (2008) describe the three characteristics of overconfident people. These 

are: 1. overestimation of the performance, 2. over-placement of performance compared 

to others, and 3. excessive precision. 

 The first characteristic relates to the overestimation of one’s actual performance. 

This characteristic occurs due to the planning fallacy and illusion of control.  Planning 

fallacy was proposed by Kahneman and Tversky (1979) and it describes the 

underestimation of the time needed to complete a task. Therefore, individuals that suffer 

from this phenomenon tend to overestimate their ability to control and underestimate the 

time needed to complete a task, e.g., Langer (1975). The second characteristic, over-

placement, is the belief of overconfident people that they are better than others. Svenson 

(1981) concluded that 93% of US drivers believe that they drive better than others. These 

drivers believe that they are more skilful, and they are at a lesser risk compared to the 

others.  The third characteristic is over-precision. According to Moore and Healy (2008, 

p.4), this characteristic was empirically investigated using questionnaires. Participants 

were asked to estimate the 90% confidence intervals of their answers. They found that 

the estimated intervals are too narrow. This means that people believe that they answer 

correctly and consequently, they are too sure about themselves. Kyle and Wang (1997) 

explained the overconfidence bias using conceptual probabilistic statements. They stated 

that “a trader is overconfident if his distribution is too tight and underconfident if his 

distribution is too loose”. This chapter contributes to the literature in the sense that it 

explains the psychological biases using an analytical statistical and probabilistic theory. 

What is more, Moore and Healy (2008) summarize the characteristics of overconfidence 

bias which makes up the basis to build a model and explain the biases using probability 

and statistical theory.  

 Overconfidence bias has also been explained using the theories of hubris and 

miscalibration, e.g., Oberlechner and Osler (2012) and Ben-David et al. (2013). Hubris 

occurs when people overestimate the probability of desirable outcomes, e.g., Roll (1986). 

For example, Camerer and Lovallo (1999) investigated the optimistic behaviour of 

managers regarding business failure. Calibration measures the accuracy of predicted 

probabilities. It is a probabilistic tool in decision making, e.g., Lichtenstein et al. (1982). 
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In the literature, the probability distribution of overconfident people has been 

characterized as too tight, e.g., Alpert and Raiffa (1982) and Lichtenstein et al. (1982) 

and that of underconfident people as too loose, e.g., Kyle and Wang (1997). In other 

words, overconfident agents tend to overestimate the probabilities of desirable events, 

underestimate the probabilities of undesirable events as well as underestimate their range. 

Underconfident agents tend to overestimate the probability of undesirable events, 

underestimate the probabilities of desirable events, and overestimate their range.  

 The behavioural corporate finance literature regarding managers is exhausting. 

There is a growing body of research suggesting that managers are often irrational, e.g., 

Baker et al. (2007) and Shefrin (2001, 2005). Baker et al. (2007) divide the literature into 

two sides, investors, and managers. In this chapter, the focus is on the second group that 

is, managers. Thusly, a framework is developed to explain the beliefs of overconfidence, 

optimism, and the well-known heuristic from Kahneman and Tversky (1979) which is 

anchoring and adjustment.  

 Kahneman, 2011 (chapter III, p. 248) stated that “Optimism is normal, but some 

fortunate people are more optimistic than the rest of us. If you are generally endowed 

with an optimistic bias, you hardly need to be told that you are a lucky person-you already 

feel fortunate”. Empirical evidence supports that optimism bias plays a dominant role in 

decision-making under the conditions of expected value and risk.  

 The unrealistic optimism bias characterizes people who believe that negative 

(unfavourable) events are less likely to happen to them than to others, e.g., Weinstein 

(1980), Weinstein and Lachendro (1982), and Weinstein and Klein (1996). More 

specifically, Weinstein (1980, p. 806) stated that “according to popular belief, people tend 

to think they are invulnerable. They expect others to be victims of misfortune, not 

themselves. Such ideas imply not merely a hopeful outlook on life, but an error in 

judgment that can be labelled unrealistic optimism”. Consequently, these individuals tend 

to underestimate the probability of undesirable events and overestimate that of desirable 

events.  

 Optimistic managers expect good rather than bad things to occur in their life, e.g., 

Kunda (1987). This way of thinking leads managers to believe that they are invulnerable 

and have unrealistically positive expectations. They generate a theory that follows their 

predictions of favourable outcomes, and they do not accept any other unfavourable 

outcome. They, therefore, underestimate the probability of failure, e.g., March and 
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Shapira (1987). Pessimistic managers have the opposite expectations and beliefs, e.g., 

Scheier and Carver (1985). 

 Several empirical papers in finance investigated overconfidence and optimism 

biases. For instance, Malmendier et al. (2011) and Malmendier and Tate (2015) 

investigated the explanatory ability of the overconfidence bias to firm finance decisions. 

Galasso and Simcoe (2011) showed that overconfidence bias is closely related to 

innovating decisions. They concluded that overconfident CEOs are more likely to make 

decisions about a new technologically innovative plan. Heaton (2002) focused his 

investigation on the implications of optimism bias on corporate finance decisions.  

 In summary, the literature alludes to two psychological biases: the overconfident 

and the optimistic and their counterparts – underconfident and pessimistic. However, 

more evidence is needed to distinguish them. To understand and compare the different 

psychological biases, it is essential to use a rational view that serves as a baseline. 

Rational individuals are assumed to have an unbiased view of the true distribution of 

economic variables under consideration. 

Anchoring and Adjustment Heuristic 

One of the three heuristics that Tversky and Kahneman (1974) presented in their paper 

was anchoring and adjustment. Anchoring and adjustment is a cognitive bias that affects 

people’s beliefs, e.g. Davis et al. (1986). It occurs when people start their valuations using 

a starting point (e.g., median, mode) and then adjust their next valuation based on the 

previous value. By using an experiment, Tversky and Kahneman (1974), showed that 

future expectations are influenced by point estimates. Using an initial point (anchor), 

there are more possibilities for the next valuation to be closer to this anchor. Tversky and 

Kahneman (1974, p. 1129) stated that “subjects state overly narrow confidence intervals 

which reflect more certainty than is justified by their knowledge. This effect is 

attributable, in part at least, to anchoring”. This anchor may also be the information that 

one has as memory/immediately available (see e.g., Tversky and Kahneman, 1973). 

A lot of studies investigate whether anchoring and adjustment can explain the 

overconfidence bias (see e.g., Block and Harper, 1991). The overconfidence bias is the 

result of the unrealistic estimation of their actual ability. Over the years, the anchoring 

and adjustment heuristic and the overconfidence bias were examined statistically. For 

example, Lovie (1985) proved that the bias judgment on the first two moments of a 
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probability distribution, that is, expected value and variance, was caused by anchoring 

and adjustment. Lichtenstein et al. (1982) noted that “When asked about an uncertain 

quantity, one naturally thinks first of a point estimate such as the median. This value then 

serves as an anchor. To give the 25th or 75th percentile, one adjusts downward or upward 

from the anchor. But the anchor has such a dominating influence that the adjustment is 

insufficient; hence the fractiles are too close together, yielding overconfidence.” The 

examination of these two cognitive biases (overconfidence and anchoring and 

adjustment) in terms of statistical analysis (e.g., confidence intervals, expected value, risk, 

etc) lead to further investigation of the interrelationship between them using advanced 

probability theory and statistics.  

As aforementioned in the previous section, an overconfident agent overestimates 

the performance of the economic variable under consideration, see for example Svenson 

(1981), Roll (1986), and Moore and Healy (2008). Furthermore, their probability 

distribution can be characterized with tighter tails, e.g. Kyle and Wang (1997).   

Anchoring and Adjustment, Overconfidence, and Professional Forecasters 

The rational expectation hypothesis is tested in the case of forecasters, e.g. Holden and 

Peel (1990), Ehrbeck and Waldman (1996), Lovell (1986). The statistical properties of 

unbiasedness and efficiency are associated with rationality, e.g. Holden and Peel (1990), 

Muth (1961), and Neftci and Theodossiou (1991). When the predictions of professionals 

are far away from the true value, they make predictable errors, e.g. Baghestani and 

Kianian (1993). This is attributed, in many cases, due to overconfidence bias (Arkes, 

2001). Deaves et al. (2010) found that forecasters are overconfident, and the correct 

prediction of the value lead them to increase their confidence. Overconfident forecasters 

overestimate the forecast value of the economic variable relative to the actual (positive 

forecast error) while underconfident forecasters underestimate the forecast value of the 

economic variable (negative forecast error). Forecasts are important to investors, policy 

makers, businesses, and others. For example, businesses are reluctant to make decisions 

when they believe that the economy will change, e.g. hire employees. This chapter will 

also focus on the investigation of the anchoring and adjustment heuristic in the case that 

agents are professional forecasters. 

Bayesian forecasts are updated using subjective beliefs and the economic variable 

under consideration is, in many cases, far away from the actual value. This behaviour is 
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closely related to psychological biases such as overconfidence. A ‘correct’ estimation of 

the economic variable is expected to yield forecasts close to the actual value. In other 

words, the forecasting errors should have zero mean.  

Conservatism bias is a fallacy which claims that professional forecasters may be 

too conservative to adapt their beliefs as new information is available, e.g. Batchelor and 

Dua (1992). This means that professional forecasters narrow the confidence intervals 

around their forecasts leading to a psychological bias.  

Moving on, various papers examined whether anchoring and adjustment can be 

explained by the overconfidence bias, e.g., Block and Harper (1991), Kahneman and 

Tversky (1979), Lichtenstein et al. (1982). Russo and Schoemaker (1992) have also 

pointed out that the existence of overconfidence bias is due to anchoring and adjustment. 

An overconfident forecaster has the illusion of control of everything (Langer, 1975).  

People learn using their abilities and achievements. For example, most people 

tend to overestimate the probability of success because they have experienced previous 

success (Miller and Ross, 1975; Langer and Roth, 1975). Even if they fail, they attribute 

their failure to external factors and not to their inability (self – serving attribution bias). 

Heidhues et al. (2018) examined overconfidence bias using a learning process. By using 

a model, Gervais and Odean (2001) showed that traders tend to be overconfident since 

they learn using their abilities. Their abilities are based on their experience of success or 

failure (Chiang et al., 2011). If they have successful experiences, they become 

overconfident, while, if they have experiences of failure, they become underconfident.  

The motivation behind this chapter is multi-fold. Firstly, it defines overconfidence 

and optimism biases using a skewed probabilistic framework and explains the differences 

between one another.  What is more, this kind of analysis explains their counterparts – 

underconfidence and pessimism. Secondly, it examines these biases and the interaction 

between them. More specifically, the psychological biases are expressed graphically to 

enhance understanding through visualization. Thirdly, it explores the mean and risk 

(overall risk, downside risk, value-at-risk and expected shortfall) on the perception of 

managers of an economic variable under consideration. Lastly, it examines the impact of 

over/under confidence as well as anchoring and adjustment biases on professional 

forecasters valuations. 
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 Probabilistic Framework 

This section develops a two-piece probabilistic framework based on the skewed normal 

distribution (SN) and the skewed generalized error distribution (SGED) to model and 

explores the impact of behavioural biases, such as overconfidence, unrealistic optimism 

and anchoring and adjustment, on professional agents’ perceptions about the mean, the 

variance and other risk measures of important economic variables. Such variables may be 

the return of an investment, the future cash flows, and the nominal and real gross domestic 

product (GDP). This section presents a two-piece generalized distribution of the agent’s 

expectations about a random variable accounting for downside and upside uncertainty 

and derives the first two moments to investigate the probabilistic beliefs about their mean 

and risk perceptions. The Skewed Normal (SN) distribution will use to model the 

managers’ perceptions about the mean and risk measures while the Skewed Generalized 

Error Distribution (SGED) will apply in the empirical application on the case that the 

agents that predict the economic variable under consideration are professional forecasters.  

 The use of the Skewed Normal distribution (SN) is due to its simplicity since it’s a 

continuous three-parameter probability distribution. Furthermore, the distributional 

parameters of the Skewed Normal distribution (SN) can be used to capture psychological 

biases with regards to future outcomes of economic variables. Therefore, these 

distributional parameters can help to understand various psychological biases: 1. 

Overconfident and Optimistic, 2. Underconfident and Pessimistic, 3. and Anchoring and 

over/under confident. 

Two – Tail Generalized Distribution 

A two-tail generalized distribution (unimodal) is used to model an agent’s expected 

outcome (Savva and Theodossiou, 2018). That is, 

                           ( ) ( )
1 2

x

x m x m
dF c f dx I x m f dx I x m

 

    − −
=  +     

    
 ,                     (1.1) 

where m is the mode of x, φ1 and φ2 are the two tail parameters that control the left and 

right tails of the distribution of the mode, φ = (φ1+ φ2)/2 is the mean value of the two tail 

parameters2, f is a symmetric probability density function (unimodal), and I(.) is an 

 

2 where c = 1/φ, therefore, c = 2 / (φ1 + φ2). 
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indicator function and takes the value of one when the condition of the function is met 

and zero otherwise.  

These two-tail parameters can explain the shape of the distribution. When φ1 > φ2, 

the distribution is negatively skewed. This means that the probability mass below the 

mode is higher compared to the probability mass above the mode. When φ2 > φ1, the 

distribution is positively skewed. When φ1 = φ2 = φ the distribution is zero skewness, 

therefore, symmetric. The two distinguish tail parameters can capture the downside and 

upside adjustments about uncertainty of agents’ valuations. 

 When φ1 = φ2 = φ,  

                                                  1
x

x m
dF f dx

 

 −
=  

 

                                                   (1.2) 

In this case, the probability distribution is symmetric (skewness = 0), and unimodal.  

Assume the transformation z = (x – m)/φp for p = 1 and 2. The distribution of the 

random variable x can be represented in terms of that of z in the following way  

                            ( ) ( )1 20 0 ,x zdF c I z I z dF =   +                                      (1.3) 

where ( ( ))zdF f x z dz=  is unimodal and symmetric. This is due to the substitution of x = m 

+ φpz and dx = φpdz into equation (1.1). In the case of zdF  can be used any symmetric 

distribution.3 

The above equation can be rewritten as  

                                       ( ) ( )( )1x zdF x sgn z dF= +   (1.4) 

using the transformation x(z) = m + (1 + sgn(x – m)λ)φz where dFz can be any distribution 

and sgn(x – m) = sgn(z).4 This decomposition plays an important role in the derivation of 

the results of this study. 

 Using equation (1.4) the probability below the mode (x < m) is  

 ( ) ( )
0

1   
1

2
x

m

zp P x m dF dF



− −

−
=  = = − =  , (1.5) 

 

3 ( ) ( )
( )

0

1 1 2 2 1 2

1 20

1 1 2 1
1 1 1

2 2
dF c f z dz c f z dz c c c   

  

 

− −

=  + =  + =  = =
+    

4 For example, ( ) ( ) ( )21 2 exp 2z zdF z f dz z dz= = − is the standard normal distribution. 
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because 

0
1

.
2

zdF
−

=  The probability above the mode (x > m) is 

 ( ) ( )
0

1   
1 1 .

2
z

m

xq P x m dF dF p





+
=  = = + = = −   (1.6) 

Equations (1.5) and (1.6) are important in explaining the psychological biases and the 

perceptions of managers about the expected value and various risks (variance, value-at-

risk and expected shortfall) of economic variables. It follows from the above equations 

that the asymmetry parameter can be re-written as  

   λ = q – p (1.7) 

Using equations (1.5) and (1.6) the probabilities below and above the mode can 

be re-written as (see also Theodossiou and Savva, 2016) 

                                            ( ) 1 1
( ) .

2 2

m

xp P x m dF x
 


−

−
=  = = =                         (1.8) 

and  

                                                ( ) 2 1
1 .

2 2
q P x m p

 



+
=  = − = =                             (1.9) 

Therefore,  

  
2 1

1 2

1 2 .p q p
 


 

−
= − = − =

+
                                    (1.10) 

The asymmetry parameter, λ, takes negative values when φ1 > φ2 (negatively skewed 

distribution) and positive values when φ1 < φ2 (positively skewed distribution). Also, 

1 (1 )  = −  and 
2 (1 )  = + . 

A Skewed General Probability Distribution 

The values of a decision-making economic variable, denoted by x, is assumed to follow 

a skewed distribution, defined by 

                                ( )x xdF x f dx=   (1.11)  

Moments 

The mean and variance of x derived in Appendix I are 

                                ( ) 1 12E x m M m G  = = + = +                                 (1.12) 

and  
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                                                 ( )2 var x =  
2

2 1M M= − .  (1.13) 

where Ms for s = 1, 2 is the moment function derived based on the specific probability 

distribution. 

 Equations (1.12) and (1.13) are the general mean and variance equations using 

different distributions of the SGT family (such as Skewed Generalized Error Distribution, 

Skewed Laplace, Skewed Normal, etc.). These equations are capable to characterize the 

perceptions of managers on the first two moments of a probability distribution, mean and 

variance.  The moments of the Skewed Normal distribution (expected mean and variance) 

are derived in Appendix Ι.  

Downside Risk and Upside Uncertainty 

The standard deviation of unfavourable and favourable outcomes, or downside and upside 

values of x, are respectively    

                                 ( ) ( )
2

2

2 1var
x x m

x x m M M − −


  = −                                    (1.14) 

                                          ( ) ( )
2

2

2 1var
x x m

x x m M M + +


  = −                                (1.15) 

; see Appendix I for the derivation of these equations.  

 These are the general equations that using different distribution specifications will 

explain the view of managers including forecasters on the mean and risk measures. The 

specific equations for the Skewed Normal (SN) distribution are presented in Appendix I.  

Value-at-Risk 

Value-at-risk (VaR) is a statistical risk measure commonly used in finance. It measures 

the maximum amount that is expected to be lost, for a given period, using a pre-defined 

small probability q. The value of q is usually set to 1%. Furthermore, the value-at-risk is 

equal to negative of the q-quantile value of x (VaRq = –xq).
5 The quantile value of x is 

obtained from the solution of the following equation (Ellina et al., 2020) 

( ) ( ) ( )
, ,

1

q qx z

x zdF x dF z q

 


− −

= − =  or ( )
,

1

qz

z

q
dF z




−

=
− .  

Thus 

( )1

, 1q zz F q −= −  

 

5 The inverse of the cumulative density function (cdf) provides the quantile.  
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where ( ), ,1 .q qx m z  = + −  Because q < p = (1 – λ) / 2, xq,λ < m and zq,λ < 0. Let zq = zq,λ=0 

be the quantile value that satisfies the equation ( )
qz

zdF z q
−

= . 

 It can be easily confirmed from the above equations that for 

                            ( ) ( )
,

, ,0, and 0 or 0

q qz z

z z q q q qdF z dF z z z z z



 
− −

    −  −              (1.16) 

and for  

  ( ) ( )
,

, ,0, and 0 or 0

q qz z

z z q q q qdF z dF z z z z z



 
− −

    −  −   . (1.17) 

The value-at-risk is  

  ( ), ,1q q qVaR x m z  = − = − − − . (1.18) 

Equations (1.16) and (1.17) are important in explaining the impact of behavioural biases 

on the perceptions of managers regarding the value-at-risk measure. 

Expected Shortfall 

The expected shortfall (ES) is a risk measure; it is also used in the field of finance to 

measure the risk exposure. Expected shortfall (at a small probability q) is the expected 

value in the worst scenario. In other words, expected shortfall is the average of losses that 

exceeding the value-at-risk, 

  ( ) ( ) ( ), , ,1 .q q qES E x x VaR m E z z z   = − −  = − − − −  −  (1.19) 

If follows easily from equations (1.16) and (1.17) that for 

                                    ,0, q qx x  −  −  and ,q qES ES                                     (1.20) 

and  

                                    ,0, q qx x  −  − and ,q qES ES                                      (1.21) 

Equations (1.20) and (1.21) are important in explaining the impact of behavioural biases 

on the perceptions of managers regarding the expected shortfall measure. 

SGED Distribution  

The values of a decision-making economic variable, denoted by x, are modelled as a non-

centered SGED distribution (Theodossiou, 2015),  

                    ( )
( )

( )

11
11 1 1

exp
2 (1 ( )

k

k
x k k

x m
dF x k dx

k k sgn x - m  

−
−  − 

=  −      + 

       (1.22) 
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where k and n are kurtosis parameters and Γ(⸱) is the gamma function.  

 The substitution of z = (x – m)/ (1 + sgn(x – m)λ)φ 6 and sgn(z) = sgn(x - m) in 

equation (1.22) gives the pdf of z 

( )
11

11 1 1
exp

2

k
k

z

i

dF z k z dz
k k

−
−    

=  −   
  

 

SGED Moments 

Under the GED, the moment function of z (absolute) is  

11
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0 0

1 1
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s s s kk
s zG E z z dF k z z dz

k k

− 
−    

 = =  −   
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 
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k
k k

−
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    
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                   (1.23) 

For s = 1, 2,… and s < n.  

The excess of the mode moments of the probability distribution can be computed 

by 

( ) ( )
s s

s xM E x m x m dF



−

= − = −  

( ) ( )
0

1 1

0

1 1
s ss s s s

z zz dF z dF   


+ +

−

= − + +   

where ( )
0

0

1
s s s

z zz dF z dF



−

− =   and dFz is symmetric. 

Thus,  

( ) ( ) ( )
1 1
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1 1 1
s s s s s

s zM z dF  


+ + = − − + +
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                        ( ) ( ) ( )
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s s s s s
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6 x(z) = m + (1 + sgn(x – m)λ)φz. 

7 Let ( )1
k

t k z= . Therefore, 
1/ 1/k kz k t= and 
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where ( ) ( ) ( )
1 11

1 1 1
2

s s s

s sA G 
+ + = − − + +

 
8 

The first two moments are, 

 ( ) 1 12E x m M m G m    = + = + = +                             (1.25) 

and  

   ( ) ( )( )2 2 2 2 2 2

2 1 2 1var 3 1 4x M M G G    = − = + −                      (1.26) 

where for s = 1, M1= 2λG1φ and for s = 2, M2= ( )2 2

23 1 G + ,9 

        ( )2 2 2

2 11 3 1 4G G   + −                                            (1.27) 

 

                 

11

1

2 1
kG k

k k

−
   

=     
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                                                   (1.28) 

and 
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The Pearson’s mode of skewness is 

 
12 .

m
G


  


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SN Distribution 

The non-centered Skewed Normal distribution (SN) is also used to model the values of a 

decision-making economic variable, denoted by x. That is, 

                 ( )
( )

( )( )

2

2 2

1 1
exp

22 1
x x

x m
dF x f dx dx

sgn x m   

 −
 = = −
 + − 

 , (1.31) 

 
8 The standardized skewness and standardized kurtosis are respectively 

( ) ( )
3

3 2 2
3 2 1 1 2 13 2SK A A A A A A= − + − and ( ) ( )

2
2 4 2

4 3 1 2 1 1 2 14 6 3KU A A A A A A A A= − + − − where 

( ) ( ) ( )
1 1

0.5 1 1 1
s s s

s sA G 
+ + = − − + +

 
 

9 Note that ( ) ( )
2 2

1 1 4  − − + + = and ( ) ( ) ( )
3 3 21 1 2 3 1 .  − + + = +  
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where m, φ and λ defined previously, sgn is the sign function taking the value of –1 for x 

< m and the 1, for x > m. A positive value of λ yields a positively skewed distribution and 

a negative value of λ a negatively skewed distribution. Otherwise, the distribution is 

symmetric, λ = 0. 

SN Moments 

The mean and variance of x, derived in Appendix I, are respectively 

  ( ) 8 1.5958E x m m  = = + = +   (1.32) 

and 

  ( ) ( )( ) ( )2 2 2 2 2var 1 3 8 1 0.4535x     = = + − = +  (1.33)  

Equations (1.32) and (1.33) are functions of the asymmetry (λ) and tail parameters (φ) 

Furthermore, the expected value depends on the mode of distribution.  

Downside Risk 

The equation for the downside (standard deviation) of x is (see Appendix I for the 

derivations): 

   ( )1 2 1D   = − −  (1.34) 

Downside risk depends on the asymmetry parameter λ as well as on the tail scaling 

parameter φ.  

 Probability Distribution of Psychological Biases 

To contrast the differences between the different types of managerial biases, the case of 

a manager with unbiased beliefs of the true distribution of x is used as benchmark. This 

type of manager will be referred to as the rational expectation manager. The below 

analysis presents the perceptions of managers separately under the Skewed Normal (SN) 

distribution. Table 1.1 shows the notations of each psychological bias.  
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Table 1.1. Notation of Psychological Biases  

Psychological Bias Notation 

Overconfidence o 

Underconfidence u 

Optimism op 

Pessimism pe 

Notes. This table presents the notation of each psychological bias; overconfidence, 

underconfidence, optimism, and pessimism.  

Assumption of Equal Distribution Modes 

Overconfident, underconfident, optimistic, pessimistic, and rational managers are 

assumed to have the same perception of the mode. Such an assumption is not 

unreasonable since the mode coincides with the maximum likelihood point. More 

specifically, the probability mass around the mode reaches its maximum value at x = m. 

Mathematically, 

( )   max

x m dF f x m dx= = =  

 This assumption means that the different types of managers have a similar located 

view of the distribution of the economic variable. Rational managers perceive the 

distribution of the economic variable as symmetric while overconfident (underconfident) 

managers perceive the distribution of the economic variable under consideration to be 

thinner (fatter) and skewed to the right (left).  

1.4.1 Rational  Expectations Manager 

Rational managers are assumed to have an unbiased view of the true distribution of 

economic variables under consideration. In this case, the true distribution of the economic 

variable x is assumed to be symmetric (zero skewness) and normal. The distributional 

parameters for the rational manager are set to λ = 0, φ = 1, thus dFx = dFz and z = (x – m) 

/ φ. It follows easily from equations (1.32) and (1.33) that the expected value and standard 

deviation of x associated with the rational manager are 

μ = m and σ = φ 

The probabilistic analysis and proofs of the various managerial psychological biases is 

presented below.  
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1.4.2 Overconfidence and Underconfidence  

Overconfidence is a bias where an individual’s judgement of a favourable (positive) event 

is greater. Furthermore, the distribution of overconfident agents has been characterized 

as too tight. Overconfident managers tend to overestimate the probability of favourable 

events and underestimate the probability of unfavourable events. Moreover, in the 

literature, overconfidence bias has been associated with the overestimation of the value, 

as well as with the underestimation of the risk.10 

 Underconfident managers, on the other hand, have the opposite behaviour since 

they underestimate the value of a variable. Moreover, they tend to underestimate the 

probability of favourable events. The distribution of underconfident agents has been 

characterized as too loose.  

 The perceptions of overconfident and underconfident managers can be explained 

using the tail and asymmetric parameters φ and λ of the Skewed Normal (SN) distribution. 

The distributional parameters for the overconfident manager are denoted by φο and λο and 

the underconfident by φu and λu.  

Proposition 1 An overconfident manager overestimates the probability of 

favourable outcomes, underestimates the probability of unfavourable outcomes, and 

imposes tighter tails on the probability distributions of the economic variables. This 

miscalibration leads to (a) positively skewed subjective probability distributions for 

the variables under consideration, (b) overestimation of their expected values, (c) 

underestimation of their overall risk and downside risk and (d) underestimation of 

value-at-risk and expected shortfall.  

Proof 

Assume that the values of x larger than the mode m are favourable outcomes (smaller 

values are unfavourable outcomes). The assignment of larger probabilities on favourable 

events implies that the probability mass above the mode is higher relative to the 

probability mass below the mode (q > p, see equations 1.5 and 1.6). This means that 

overconfident managers assign smaller probabilities for unfavourable events. This 

miscalibration implies that, for c > 0, 

 

10 They also have a tendency to overvalue the stock of their companies’ and consequently incentive options 

provided to them, e.g., Palmon et al. (2008), and Palmon and Venezia (2013, 2015). 
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( ) ( ), , ; , ,x o o x o odF m c m dF m c m   −  + , 

where dFx is the probability mass function for x and φο and λο are respectively the values 

of the tail and asymmetry parameters perceived by an overconfident manager. The above 

inequality implies that for any symmetric pair of values around the mode m, the 

probability of occurrence of the value x = m + c perceived by the overconfident manager 

will be larger than that of x = m – c.  

 The above inequality can be re-written as 

( ) ( ) ( ) ( )1 1 , for 0o z o zdF z dF z z − −  +  , 

where z = (x – m) / φο is a standardized random variable and dFz is the standard normal 

distribution.  

 Because dFz(–z) = dFz(z), the above inequality implies that the asymmetry 

parameter for the overconfident manager is positive (λο > 0). Therefore, dFx is positively 

skewed. The miscalibration of subjective probabilities of overconfident managers leads 

to a positively skewed probability distribution for x; proof, part (a). 

The expected value of x implied by the overconfident manager’s probability 

distribution is 

1.5958o o om m   = +  = ; 

see equation (1.32). The asymmetry parameter is positive (λο > 0), therefore, the 

overconfident manager will overestimate the expected value of x (μο > μ); proof, part (b).  

 The standard deviation of x associated with the overconfident manager, see equation 

(1.33), is  

21 0.4535o o o  = + . 

Psychological theory claims that the distribution of an overconfident manager has been 

characterized as too tight. That is, φο < φ = σ. Therefore, this implies that an overconfident 

manager will underestimate risk (σο < σ). That is, σο will be smaller than the true value of 

σ, provided that 

21 0.4535o o o    = +  =  

 or  

21 0.4535 .o o   +  
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 The downside risk perceived by an overconfident manager, given by equation 

(1.34), is 

( ), 1 2 1o D o o   = − − . 

Because φο < φ and λο > 0, 

( ) ( ), 0 01 2 1 1 2 1 1 2o D o D        = − −  − −  − = , 

where σD = 1 2 −  measures downside risk for the rational agent; proof, part (c). 

 Because λο > 0, it follows from equations (1.17) and (1.18) that–zq > –zq,o > 0, where 

zq,o and zq are respectively the quantile values for the overconfident and rational managers.  

 Because φο < φ and λο > 0, the overconfidence manager’s VaR is  

( ) ( ), , ,1 1q o q o o o q o o o q q q qVaR x m z m z m z x VaR    = − = − − −  − − −  − − = − = , 

where VaRq is the objective VaR measure. Also, it follows from (1.21) that for  

,0, .
oo q qES ES    

where ESq is the expected shortfall for rational managers; proof, part (d). 

 

Figure 1.1. Overconfident and rational distributions 
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Proposition 2 An underconfident manager underestimates the probability of 

favourable outcomes, overestimates the probability of unfavourable outcomes, and 

imposes wider tails on the probability distributions of the economic variables. This 

miscalibration leads to (a) negatively skewed subjective probability distributions for 

the variables, (b) underestimation of their expected values, (c) overestimation of 

their overall risk, downside risk, value-at-risk, and expected shortfall. 

Proof 

The assignment of larger probabilities on unfavourable outcomes implies smaller 

probabilities for favourable outcomes. This miscalibration implies that, for c > 0, 

( ) ( ), , ; , ,x u u x u udF m c m dF m c m   −  + , 

where dFx is the probability mass function for x and φu and λu are respectively the values 

of the tail and asymmetry parameters perceived by an underconfident manager. The above 

inequality implies that the probability of occurrence of the value x = m + c perceived by 

the underconfident manager will be smaller than that of x = m – c.  

 The above inequality can be re-written as 

( ) ( ) ( ) ( )1 1 ,for 0u z u zdF z dF z z − −  +  , 

where z = (x – m) / φu is a standardized random variable and dFz is the standard normal 

distribution.  

 Because dFz(–z) = dFz(z), the above inequality implies that the asymmetry 

parameter for the underconfident manager is negative (λu < 0). Therefore, dFx is 

negatively skewed. This leads to a negatively skewed subjective probability distribution 

for x; proof, part (a). 

The expected value of x implied by the underconfident manager’s subjective 

probability distribution is 

1.5958u u um m   = +  = ; 

see equation (1.32). Because λu < 0, the underconfident manager will underestimate the 

expected value of x (μu < μ); proof, part (b). 

 The overall risk of x for the underconfident manager is  

21 0.4535u u u    = +  = , 

because φu > φ = σ (theory claims that the distribution for underconfident managers has 

been characterized as too loose). 
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 Also, because λu < 0 and φu > φ, the downside risk for the underconfident manager 

is  

( ), 1 2 1 1 2 1 2u D u u u D       = − −  −  − = , 

where σD = 1 2 − is the downside risk for the rational agent. 

 Because λu < 0, it follows from equations (1.16) and (1.18) that–zq,u > –zq > 0, where 

zq,u and zq are respectively the quantile values for the underconfident and rational 

managers.  

 Because φu > φ and λu < 0, the underconfident manager’s VaR is  

( ) ( ), , ,1 1q u q u u u q u u u q q q qVaR x m z m z m z x VaR    = − = − − −  − − −  − − = − = , 

It follows from equation (1.20) that for λu < 0,  

, .
uq qES ES  ; proof, part (c). 

 Figure 1.1 presents the probability distributions of a rational and an overconfident 

manager. The three parameters of the skewed normal distribution for the rational manager 

are set to m = 0, φ = 1 and λ = 0. On the other hand, for the overconfident manager, the 

distributional parameters are set to m = 0, φo = 0.8 and λo = 0.4. The symmetric distribution 

for the rational manager is represented by the dotted curve. The distribution for the 

overconfident manager is skewed to the right. Therefore, the probability distribution is 

positively skewed. For these distributional parameters, the overconfident manager 

attaches a 0.7 (0.3) probability for the values on the right (left) of the mode. The expected 

value of the random variable x is μo = 0.51 and the standard deviation is σo = 0.83. 

Therefore, the overconfident manager overestimates the expected value and 

underestimates the overall risk of the economic variable x. 

 Figure 1.2 shows the probability distributions of a rational and an underconfident 

manager. The range of values around the mode compared to reality tends to be larger for 

underconfident managers and smaller for overconfident managers. This implies that φo < 

φ < φu. The tail parameter φ controls the tails of a distribution around its mode. A value 

closer to zero means that the tails are more concentrated towards the mode. This means 

that for overconfident φο becomes smaller and λo larger and φu becomes larger and λu 

smaller for underconfident (φο < φu and λo > λu).  
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Figure 1.2. Underconfident and rational distributions 

1.4.3  Optimism and Pessimism 

Weinstein (1980) referred to the tendency of people to be optimistic about future events. 

He mentions that thoughts affect the amount of optimistic bias of various events. This 

means that optimistic people believe that unfavourable (favourable) events are less (more) 

likely to happen to them than to others. Therefore, optimistic individuals tend to 

overestimate the probability of favourable events and underestimate the probability of 

unfavourable events. 

Proposition 3 Unrealistic optimistic managers underestimate the probability of 

unfavourable events and overestimate the probability of favourable events. This 

miscalibration leads to (a) positively skewed subjective probability distributions for 

the economic variables under consideration, (b) overestimation of their expected 

values, (c) overestimation of overall risk, (d) underestimation of their downside risk, 

value at risk and expected shortfall.  

Proof 

The proof for parts (a) and (b) of proposition 3 is similar to that of Proposition 1, therefore, 

it is omitted. From the parts (a) and (b) of proposition 1, the asymmetry parameter is 

positive (λop > 0).  
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 Because λop > 0 and φop = φ, the overall risk of x associated with the optimistic 

manager (psychological theory does not say anything about the tails) is  

21 0.4535op op    = +  = , 

because 21 0.4535 1.op+  ; proof, part (c). 

 Also, because λop > 0 and φop = φ, the downside risk for the optimistic manager is  

( ), 1 2 1 1 2op D op D      = − −  − = , 

where σD = 1 2 − is the downside risk for the rational agent.  

 Because λοp > 0, it follows from equations (1.17) and (1.18) that –zq > –zq,op > 0, 

where zq,op and zq are respectively the quantile values for the optimistic and rational 

managers. Because λοp > 0, the optimistic manager’s VaR is  

( ), , ,1q op q op op q op q q qVaR x m z m z x VaR  = − = − − −  − − = − = , 

Furthermore, it follows from equation (1.21) that for λop > 0,  

ESq,λ < ESq. ; proof, part (d). 

 Unrealistically pessimistic managers will concentrate on the negative outcomes and 

therefore they will put a larger probability mass left to the mode than right. Their 

subjective probability distribution will be negatively skewed. In other words, pessimistic 

people tend to overestimate the probability of unfavourable events and underestimate the 

probability of favourable events. 

Proposition 4 Unrealistic pessimistic managers overestimate the probability of 

unfavourable events and underestimate the probability of favourable events. This 

miscalibration leads to (a) negatively skewed subjective probability distributions for 

the variables under consideration, (b) underestimation of their expected values and 

(c) overestimation of their overall risk, downside risk, and expected shortfall.  

Proof 

The proof for parts (a) and (b) of proposition 4 is similar to that of proposition 2; therefore, 

it is omitted. Parts (a) and (b) of proposition 2 implies that the asymmetry parameter is 

negative (λpe < 0).  

 In this case, the overall risk of x associated with the pessimistic manager is  

21 0.4535pe pe    = +  = , 
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because 21 0.4535 1.pe+   

 Also, because λpe < 0 and φpe = φ, the downside risk for the pessimistic manager is  

( ), 1 2 1 1 2pe D pe D      = − −  − = , 

where σD = 1 2 − φ is the downside risk for the rational agent.  

 Because λpe < 0, it follows from equations (1.16) and (1.18) that–zq,pe > –zq > 0, 

where zq,pe and zq are respectively the quantile values for the pessimistic and rational 

managers. Because λpe < 0, the pessimist’s VaR is  

( ) ( ), , ,1 1q pe q pe pe q pe pe q q q qVaR x m z m z m z x VaR    = − = − − −  − − −  − − = − = . 

and  

ESq,λ > ESq .; proof, part (c).  

Overconfidence and Optimism 

Figure 1.3 shows the psychological biases and the differences between the overconfident, 

the optimistic and the rational view manager. The overconfident manager involves 

overconfident managers who simplistically consider fewer options and have an optimistic 

view of the world. These managers underestimate negative outcomes and focusing on 

positive outcomes. This is obvious in figure 1.3 since a manager with overconfident 

model behaviour narrows the tails  φο = 0.8 < φ = 1 and therefore, underestimates the 

uncertainty (σο = 0.83 < σ = 1), gives a larger discrete probability mass function and has 

an optimistic view of the expected mean (μο= 0.51> μ = 0).11 

Unrealistic optimistic managers underestimate the occurrence of unfavourable 

events and overestimate the occurrence of favourable events. At this point, remember the 

definition of an unrealistic optimistic manager; he/she believes that positive (desirable) 

events are more likely to happen than negative (undesirable). Specifically, in figure 1.3, 

a manager that exhibits these biases has an optimistic view of the expected value (μοp = 

0.64 > μ = 0) and overestimates the uncertainty (σοp = 1.04 > σ = 1).12  Therefore, the 

 
11 For the overconfident manager, the three Skewed Normal (SN) parameters are set to m = 0, φo 

= 0.8 and λo = 0.4.  

12 For the unrealistic optimistic manager, the three Skewed Normal (SN) parameters are set to m 

= 0, φop = 1 and λop = 0.4. 
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expected value for an unrealistic optimistic manager is higher than that of an 

overconfident manager (μοp = 0.64 > μο = 0.51).  

Proposition 5 Optimistic and overconfident managers overestimate the probability 

of favourable events; therefore, they face the same asymmetry parameter. At the 

same time, overconfident managers impose tighter tails on the distribution of the 

economic variable. This miscalibration leads optimistic managers to (a) 

overestimate to a greater extent the mean and overall risk and (b) underestimate to 

a lesser extent downside risk, value-at-risk and expected shortfall of economic 

variables under consideration.  

Proof 

Optimistic and overconfident managers overestimate the probability of favourable events 

(higher probability mass function right the mode). This implies that they face the same 

asymmetry parameter (λop = λο). However, the tail parameter for overconfident managers 

is smaller than that of optimistic and rational managers (φο < φ = φop). Therefore, the 

following results for the mean and risk measures can be easily obtained.   

 Specifically, the mean and overall risk of x by the optimistic manager is higher 

compared to that of an overconfident manager. That is,  

1.5958 1.5958op op o o om m    = +  = + , 

2 21 0.4535 1 0.4535op op o o o     = +  = + ; proof, part (a) 

 Because λop = λο and φο < φ = φop, the downside risk, value-at-risk and expected 

shortfall of x by optimistic compared to that of an overconfident manager’s distribution 

are 

( ) ( ), ,1 2 1 1 2 1op D op o D o o       = − −  = − −  

and 

( ) ( ), , , ,1 1q o o o q o q op op q o q qVaR m z VaR m z VaR m z    = − − −  = − − −  = − − . 

ESq,o < ESq,op . ; proof, part (b) 

Note that because λop = λο, zq,o = zq,op.  

The visualization of biases which was made possible through the representation of 

statistical distributions helps to understand the individual biases and their interplay.  
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Figure 1.3. Overconfidence, Rational and Unrealistic Optimism biases  

1.4.4 Anchoring and Adjustment: A Statistical Adaptation Model  

This sub-section further develops the mathematical model to explain the probabilistic 

update of forecaster’s beliefs using an adaptation process. This framework follows the 

above analysis to investigates the interrelationship between anchoring heuristic and 

over/under confidence bias. The following analysis will primarily focus on professional 

forecasters that predict the economic variable under consideration. The difference 

between the forecast value and the actual value of an economic variable it will be referred 

as the forecast error. A positive (negative) forecast error means that the forecast value is 

higher (lower) relative to the actual value. Therefore, forecasters overestimate 

(underestimate) the value of the economic variable. However, when the forecast error 

equals zero, forecasters estimate the correct value of the economic variable x. 

This sub-section presents the agent’s expectations of a random variable (e.g., 

forecast values) accounting for downside and upside uncertainty under the Skewed 

Generalized Error Distribution (SGED). In this case, the random variable x may represent 

any economic variable under consideration by the forecasters, such as the gross domestic 

product (GDP).  
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The two-piece probability distribution and the moments presented in section 1.3 

(equations 1.1 and 1.22-1.30) are used to investigate the over/under confidence 

forecasting bias and the anchoring and adjustment heuristic.  

Forecasts, due to the central limit theorem, must generally be asymptotically 

Normal (Gaussian). This implies a zero-asymmetry parameter (λ = 0) for forecasting 

errors. In this case, the forecast errors are expected to follow a Normal distribution. 

Namely, the two-piece distribution collapses to a zero mean (μ = m = 0) Normal 

distribution with standard deviation σ = ϕ1 = ϕ2 and λ = 0. Therefore, the distribution of 

rational forecasters is Normal.  

 However, forecasts are updated using subjective beliefs and the economic variable 

under consideration is, in many cases, far away from the actual value. Because of 

psychological biases, the incorporation of prior beliefs (subjective probability beliefs) 

violates the normality assumption.13 A ‘correct’ estimation of the economic variable is 

expected to yield forecasts close to the actual value. In other words, the forecasting errors 

should have zero mean. 

The distribution of forecasting errors can be captured by a flexible probability 

density function that accounts for skewness and kurtosis characteristics. For this analysis, 

the SGED distribution will be used. 

Note that, in the previous analysis, proposition 1 proved that overconfident agents 

overestimate the expected value of a random variable compared to a rational agent, μο > 

μ = 0 and λο > 0. In this case, φo,1 < φo,2 and (φo,1 + φo,2 ) /2 = φo < φ. On the other hand, 

underconfident agents underestimate the expected value of an economic variable, μu < μ 

= 0 and λu < 0 (see equation 1.25, expected value of the SGED distribution). Therefore, 

φu,1 > φu,2 and (φu,1 + φu,2 ) /2 = φu > φ. Consistent with the above analysis, positive forecast 

errors followed by overconfident forecasters, therefore, a positively skewed distribution. 

On the other hand, negative forecast errors are followed by underconfident forecasters, 

therefore, a negatively skewed distribution.  

 
13 Literature used Bayesian statistics to explain the beliefs of experts, e.g. Morris (1974, 1977) and Van den 

Steen (2001, 2004, 2011). 
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The summary propositions that are needed for the analysis of over and under 

confident professional forecasters are restated in propositions 6 and 7, respectively. The 

below propositions are directly derived from section 1.4. 

Proposition 6 (Overconfident Forecaster). An overconfident forecaster  

(i) assigns higher probability of favourable than unfavourable events,  

(ii) the forecasting error distribution (forecast value minus actual value) for 

overconfident forecasters is positively skewed,   

(iii) narrows the tails resulting a smaller tail parameter for the perceived 

forecasting error distribution,  

(iv) overestimates the forecast economic variables relative to a rational forecaster. 

Proposition 7 (Underconfident Forecaster). An underconfident forecaster  

(i) assigns a lower probability of favourable than unfavourable events,  

(ii) the forecasting error distribution (forecast value minus actual value) for 

underconfident forecasters is negatively skewed,   

(iii) wider the tails resulting a larger tail parameter for the perceived forecasting 

error distribution relative to a rational forecaster,  

(iv) underestimates the forecast economic variables relative to a rational 

forecaster. 

The proofs for the above propositions are similar as in sub-section 1.4.2 

(propositions 1 and 2); therefore, it is omitted.  

Anchoring Using an Adaptation Expectation Process 

Anchoring and adjustment is a heuristic where forecasters focus on their initial valuations 

(or the information provided to them) in calibrating predicted probabilities of economic 

variables. The anchors are reflected in the prior distributions and can be adjusted as new 

information arrives.  

 Anchoring affects the behaviour of overconfident and underconfident forecasters. 

As shown in the previous analysis, overconfidence and underconfidence biases can be 

represented using the two different tail parameters: the left and right tail parameters ϕ1 

and ϕ2 of the distribution of forecasting errors. For overconfident forecasters, the 

asymmetry parameter is positive, λo > 0. Therefore, 

( ) ( ),1 ,21 1o o o o o o     = −  = +  

 The analysis of overconfidence bias in section 1.4 implies that  
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( ),1 ,2 2o o o c   = +   

where φc is the correct value of the tail parameter (see equation 1.8). For underconfident 

forecasters, the asymmetry parameter is negative, λu < 0. In this case,  

( ) ( ),1 ,21 1u u u u u u     = −  = +  

and 

( ),1 ,2 2u u u c   = +  . 

Given an information set  
1

s

tI , the overconfident forecaster’s view is updated 

using the following adaptive expectation process that adjusts the left and right tail 

parameters of the forecasters 

         ( ), , , , 11o i s c o i sa a   −= + − , for s = 1, 2, …,                          (1.34) 

where a is an adjustment coefficient measuring the speed of adjustment of the left and 

right tail parameters to the new information (i = 1 and 2) and φ = φc. The parameter a 

measures the persistence of the anchors. The speed of adaptation towards the true 

parameters depends on the parameter a. The lower the value of a the longer it takes for 

perceived values of the parameters to be closer to their true values. In cases of extreme 

overconfidence behaviour, the value of a = 0. In the setting of this chapter, rational 

individuals possess values of a = 1. However, when beliefs range on the interval [0, 1], it 

means that they adjust the values using real values and their valuations. Graphically, the 

subjective beliefs one year later are represented in figure 1.4. 

  

 

 Left Tail:       ,1,0o                                 ( ),1,1 ,1,01o c oa   = + −                                       

Right Tail:      ,2,0o                                     ( ),2,1 ,2,01o c oa   = + −            

Figure 1.4. Graphical Illustration of Subjective Adjustment Beliefs Regarding Uncertainty one year later 

The above equations demonstrate that the perceived values of the left and right tail 

parameters are weighted averages of past perceived and actual values. Using recursive 

substitutions 

              ( ) ( )
1

, , , ,0

1

1 1
s

j s

o i s c o i

j

a a a  
−

=

= − + −  ,                         (1.35) 

for i = 1 and 2. The limit of the above equation is 

0 1 
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( ) ( ), , , ,0lim 1 1
ss

o i s c o i c
s

a a   
→ 

= − + − =  

The limit of the asymmetry parameter is 

 

2, 1,

,
, 0

1, 2,

lim 0
s s

o s
s a

s s

 


 →  

−
= =

+
. 

The subjective beliefs s years later represented in figure 1.5.  

       

 

             , ,0o i         , ,1o i               , ,2o i         ( ) ( )
1

, ,s , ,0

1

1 1
s

j s

o i c o i

j

a a a  
−

=

= − + −  

Figure 1.5. Graphical Illustration of Subjective Adjustment Beliefs Regarding Uncertainty 

The above analysis is illustrated via the following illustration. 

Theoretical Illustration  

Assume that the initial left and right tail parameters for an overconfident forecaster are 

φo,1,0 = 1, φo,2,0 = 2, respectively. The adjustment coefficient is α = 0.30 and the actual 

value is φc= 4.  

The first, second and final left adjustments in the next periods are 

( ) ( ),1,1 ,1,01 4* 1* 1 1.9o c oa a    = + − = + − =  

( ) ( ),1,2 ,1,11 4* 1.9* 1 2.53o c oa a    = + − = + − =  

( ) ( ),2,3 ,1,21 4* 2.53* 1 2.971.o c oa a    = + − = + − =  

The first, second and final right adjustments in the next periods are 

( ) ( ),2,1 ,2,01 4* 2* 1 2.6o c oa a    = + − = + − =  

( ) ( ),2,2 ,2,11 4* 2.6* 1 3.020o c oa a    = + − = + − =  

( ) ( ),2,3 ,2,21 4* 3.020* 1 4o c oa a    = + − = + −   

Both tail parameters converge towards their true value of φc = 4.  

0 t+1 t+2 … t+s 
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Figure 1.6. Overconfident Expectations 

 

Notes. The left and right tail parameters for an overconfident forecaster are set to φo,1,0 = 

1 and φo,2,0 = 2, respectively and the actual value of the tail parameter is φc = 4. Lines 1, 

2, and 3 represent overconfident downside and upside forecaster valuations with the speed 

of adjustment parameter a = .15, .30 and .60, respectively. 

 

For an underconfident forecaster, the left and right tail parameters set to φu,1,1 = 4, φu,2,1 = 

3 and the actual value is φc = 2.  

The first, second and final left adjustments in the next three periods 

( ) ( ),1,1 ,1,01 2* 4* 1 3.4u c ua a    = + − = + − =  

( ) ( ),1,2 ,1,11 2* 3.4* 1 2.980u c ua a    = + − = + − =  

( ) ( ),1,3 ,1,21 2* 2.980* 1 2u c ua a    = + − = + −  . 

The first, second and final right adjustments in the next three periods 

( ) ( ),2,1 ,2,01 2* 3* 1 2.7u c ua a    = + − = + − =  

( ) ( ),2,2 ,2,11 2* 2.7* 1 2.49u c ua a    = + − = + − =  

( ) ( ),2,3 ,2,21 2* 2.49* 1 2.343.u c ua a    = + − = + −   

Both tail parameters converge towards their true value of φc = 2.  
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Figure 1.7. Underconfident Expectations 

 

Notes. The left and right tail parameters for an underconfident forecaster are set to φu,1,1 

= 4, and φu,2,1 = 3, respectively and the actual value of the tail parameter is φc = 2.  Lines 

1, 2, and 3 represent underconfident downside and upside forecaster valuations with the 

speed of adjustment parameter a = .15, .30 and .60, respectively. 

Figures 1.6 and 1.7 show the subjective beliefs of overconfident and 

underconfident forecasters, respectively. Both graphs showed that as the speed of 

adjustment parameter increases, the forecast valuations are faster close to the actual value. 

The speed of adjustment showed the behaviour of the forecasters for the economic 

variable x. For example, if there are two overconfident forecasters with speed of 

adjustment parameters 0.30 and 0.6, (α = 0.3 and 0.6) this means that the first forecaster 

evaluates 0.70 based on his valuations and .30 on the actual values. On the other hand, 

the second forecaster evaluates 0.4 on his expectations and 0.6 on the actual values. The 

second forecaster’s valuation will yield faster to the true value of the economic variable. 

 Monte Carlo Simulations  

Two Monte-Carlo simulations are conducted to investigate the mean and risk perceptions 

of overconfident, underconfident, optimistic and pessimistic managers. The irrational 

managerial mean and risk perceptions are compared to those of a rational manager. A 

rational manager is characterized as having the true perception of the economic variable 

under consideration. The first simulation is illustrated by the means of a portfolio while 
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the second simulation by the means of a capital budgeting example. The simulations are 

replicated as in the paper of Ellina et al. (2020). 

 The mode of the distribution of portfolio returns and cash flows is set to zero (m = 

0). This assumption makes the comparison easier and does not distort the results. The 

distributional parameters for an overconfident manager are set to  λ = 0.3 and φ = 0.08 

and for an optimist manager to λ = 0.3 and φ = 0.10. For the underconfident manager, the 

distributional parameters are set to λ = –0.3 and φ = 0.12 and for the pessimistic manager 

to λ = -0.3 and φ = 0.10. The distributional parameters for the rational manager are set to 

λ = 0 and φ = 0.10. 

1.5.1 Managerial Perceptions of a Portfolio Value Example 

The value of the portfolio for the next year computed by Value1 = Value0 (1 + x) = 10(1 

+ x) where x is a normally generated return with zero-mode (m = 0), standard deviation 

0.1 and Value0 is the previous (initial) portfolio value. A Monte-Carlo simulation of a T 

= 100,000 portfolio returns is generated to estimate the mean and risk measures of each 

psychological bias: overconfident, optimism, underconfident and pessimism. Table 1.2 

presents the mean and risk perceptions of each psychological bias.  

 The results reveal that overconfident and optimistic managers overestimate the 

next period expected value of their portfolios. The overestimation is larger in the case of 

optimistic (10.48) managers compared to the overconfident managers (10.38). On the 

other hand, underconfident managers underestimate the mean portfolio value of the next 

period. The underestimation is larger in the case of the underconfident manager (9.43) 

compared to the pessimist manager (9.52).  

 The findings also portray that overconfident managers underestimate the overall 

risk (0.82 < 1), downside risk (0.34 < 0.60) as well as the value-at-risk (1.23 < 2.32) and 

the expected shortfall (1.43 < 2.67) measures. Notably, optimistic managers also 

underestimate the tail risk measures (downside risk, value-at-risk and expected shortfall). 

On the other hand, underconfident and pessimistic managers overestimate the risk 

measures. The overestimation is more evident in the case of an underconfident manager.  
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Table 1.2. Managerial Perceptions of Portfolio Mean and Risk Measures 

Bias φ λ ( )1E V C  ( )1V C  ( )1D V C  
1%VaR  1%ES  

Rational 0.1 0.0 10 1 0.60 2.32 2.67 

Overconfident 0.08 0.3 10.38 0.82 0.34 1.23 1.43 

Underconfident 0.12 –0.3 9.43 1.23 0.94 3.78 4.31 

Optimist  0.1 0.3 10.48 1.02 0.42 1.53 1.79 

Pessimist 0.1 –0.3 9.52 1.02 0.79 3.15 3.59 

Notes. 100,000 skewed normal returns are generated using the distributional parameters 

of φ and λ as presented in the second and third columns. The next year investment values 

are computed by V1 = 10 (1 + x) where x is a generated randomly return. The third and 

fourth columns are the mean and standard deviation of the portfolio values of each bias. 

The next column presents the downside risk computed as the standard deviation of the 

next year portfolio values that are below 10. The last two columns present the tail risk 

measures: value-at-risk (1%) and the expected shortfall (ES).  

1.5.2 Managerial Perceptions of a Capital Budgeting Example 

A second simulation is conducted using a capital budgeting example to investigate the 

managerial perceptions about the mean and risk of the future cash flows. The cash-flows 

of the project are CF0 = -178.0777 and CFt = 40 (1 + x), for t = 1, 2, …,5, where x is a 

generated randomly return using the distributional parameters of each bias and k = 0.04. 

The net present value of the project computed by  

( ) ( )( )
5

0 1 1
1 178.0777 40 1 1 0.04

N t t

tt t
NPV CF CF k x

− −

= =
= − + + = − + + +  , 

is driven by the growth rate x of the cash flows. Table 1.3 presents the mean and risk 

measures of the project’s net present value for each psychological bias using T = 100,000 

generated values.   

The results reveal that overconfident and optimistic managers overestimate the 

project’s net present value compared to a rational manager. However, the overestimation 

is larger in the case of optimistic managers (8.53) compared to the overconfident manager 

(6.82). On the other hand, underconfident managers underestimate the project’s net 

present value (-10.23). The findings also show that overconfident managers 
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underestimate the overall risk (6.49 < 7.96), downside risk (2.48 < 4.81) as well as the 

value-at-risk (7.30 < 18.51) and the expected shortfall (9.08 < 21.25) measures. 

Optimistic managers also underestimate the tail risk measures (downside risk, value-at-

risk and expected shortfall). On the other hand, underconfident and pessimistic managers 

overestimate the risk measures. The overestimation is more pronounced in the case of an 

underconfident manager.  

Table 1.3. Managerial Perceptions of NPV Mean and Risk Measures 

Bias φ λ ( )1E V C  ( )1V C  ( )1D V C  
1%VaR  1%ES  

Rational 0.10   0.0    0.00  7.96  4.81  18.51  21.25 

Overconfident 0.08   0.3    6.82  6.49  2.48   7.30   9.08 

Underconfident 0.12  -0.3  -10.23  9.75  8.10  34.27  38.11 

Optimist  0.10   0.3    8.53  8.12  3.10   9.13  11.35 

Pessimist 0.10  -0.3   -8.53  8.12  6.75  28.56  31.76  

Notes. 100,000 skewed normal returns are generated using the distributional parameters 

of φ and λ as presented in the second and third columns, respectively. The project’s net 

present values are computed using the following net present value equation:

( )( )
5

1
178.0777 40 1 1.04

t

t
NPV x

−

=
= − + + where x is a generated randomly cash flow growth 

rate. The third and fourth columns are the mean and standard deviation of the NPV values 

of each bias. The next column presents the downside risk computed as the standard 

deviation of the negative net present values of each bias. The last two columns present 

the tail risk measures: value-at-risk (1%) and the expected shortfall (ES). 

 Empirical Findings 

1.6.1 Data Description and Summary Statistics 

Data is collected by the Federal Reserve Bank of Philadelphia in its Bureau of Economic 

Analysis (BEA) which provides the estimates of macroeconomic indicators for the U.S. 

economy of nominal and real gross domestic product (GDP).14 GDP data covers the 

period from 1965:Q3 to 2019:Q4. BEA publish three quarterly vintages estimations of 

 

14 https://www.philadelphiafed.org/surveys-and-data (accessed: April 2021). 

https://www.philadelphiafed.org/surveys-and-data
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GDP: First, second and third estimations; the preliminary estimates of each quarter of the 

final GDP growth rates are published every few days. In addition, annual updates are 

released in the late of July. The three first releases and the most recent are used as 

provided by Philadelphia FED on its website. 

 The difference between the forecast value and the actual value of an economic 

variable it will be referred as the forecast error (fe). Mathematically,  

, ,i t i t tfe f a= −  

where i = 1,2, 3, fi,t is the first, second and third estimate (respectively) and at is the final 

(actual) estimate.  

Panel A Table 1.4 shows that the means are negative for all the forecast errors and 

increase across time. This means that all the preliminary estimates underestimate the final 

GDP growth rates. The standard deviations are close to two in all cases. Negative 

skewness and excess kurtosis are also presented in all cases. Also, the Bera–Jarque test 

of normality is rejected. In conclusion, there are skewness and kurtosis characteristics in 

the forecast errors. Panel B of Table 1.4 presents further statistics of the forecast errors 

including minimum, quantiles and maximum. The minimum distance between forecasts 

and actual price is approximately -8.00 while the maximum is almost 5 in the case of 

nominal GDP and 6 in real GDP (see also figures 1.8 and 1.9). Quantiles show that the 

deviations vary and therefore, the examination of the deviation between forecast and 

actual estimations needs consideration. 

 Overall, the statistics show that the forecast errors of the nominal and real GDP 

violate the assumption of Normality and present skewness and kurtosis characteristics. 

The findings show that the probabilistic characteristics of forecasters are not rational and 

may suffer from psychological biases. These findings are in line with the characteristics 

of an underconfident forecaster; see proposition 7.  

1.6.2 Model Estimation 

Maximum likelihood estimates (MLE) for the parameters of the mean, variance (standard 

deviation), and the two distributional parameters (k and λ) are obtained using the Berndt 

et al. (1974) procedure. The estimated parameters of the SGED distribution are obtained 

from the maximization of the log-likelihood specification of forecasting errors under the 

SGED distribution. That is, 
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( ) ( ) ( )
1 1

log
T T

i i i t i

t t

L b f b fe L b
= =

= =   for i = 1,2, and 3. 

where ( )i if b fe is the likelihood function of SGED, b is a column of the four estimated 

distributional parameters (expected value μ, standard deviation σ, skewness λ and kurtosis 

k). The distribution of each forecast error under SGED is 

( )
( )

( )

11
11 1 1

exp
2 (1 ( )

k

k
k k

fe m
f fe k

k k sgn fe m



   

−
−  − + 

=  −      + − + 

 

where all parameters are explained previously.  
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Table 1.4. Preliminary Statistics of the Nominal and Real GDP Forecast Error 

 Nominal GDP Real GDP 

 fe1,t fe2,t fe3,t fe1,t fe2,t fe3,t 

Part A. Preliminary Statistics 

Mean -0.5534 -0.3804 -0.2983 -0.3998 -0.2977 -0.2419 

St. Dev. 1.9433 1.8381 1.8579 2.0204 1.9939 2.0058 

Skewness -0.5022 -0.3914 -0.3336 -0.4101 -0.3855 -0.3150 

Exc.Kurtosis 1.4359 1.5896 1.4882 1.8359 1.8716 1.4879 

BJ 27.7641* 28.2540* 24.1612* 36.5591* 36.8768* 23.7150* 

Part B. Quantiles 

Min -7.3951 -7.9666 -8.1023 -8.9720 -8.3786 -7.7200 

1% -7.2291 -5.9112 -5.2154 -5.5906 -6.5491 -6.6400 

5% -4.0398 -3.2315 -3.2785 -3.6866 -3.5628 -3.5628 

10% -2.7911 -2.4729 -2.4643 -2.7345 -2.7031 -2.5827 

25% -1.5173 -1.4843 -1.4219 -1.5633 -1.6072 -1.5124 

50% -0.4278 -0.2818 -0.2963 -0.2918 -0.2178 -0.0408 

75% 0.5538 0.6888 0.8720 0.9620 0.8818 1.0931 

90% 1.7423 1.6906 1.6775 1.8874 1.9523 2.0228 

95% 2.4875 2.6024 2.8183 2.5749 2.4534 2.6676 

99% 3.9568 3.9747 4.3949 4.5745 4.9033 4.9033 

Max 4.6992 4.8687 4.8687 5.6333 6.1962 6.3643 

OBS 217 216 218 217 216 218 

Notes. Nominal and real GDP forecast data is collected from Federal Reserve Bank of 

Philadelphia in its Bureau of Economic Analysis (BEA) and covers the period 1965:Q3 

to 2019:Q4. The forecast errors are computed by , ,i t i t tfe f a= − where i = 1,2, 3, fi,t are the 

first, second and third estimates and at is the final (actual) estimate. The first two rows 

present the first two moments, expected value and risk. The skewness and kurtosis are 

calculated by 
3/2

3 2/SK m m=  and
2

4 2/KU m m= , where mj is the jth moment around the 

mean. The Normality test Bera–Jarque is computed using the equation

( )( )2 2
424BJ SK KUT= + . * denotes statistical significance at 1%.  
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Figure 1.8. Nominal GDP Forecast Errors 
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Figure 1.9. Real GDP Forecast Errors 
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1.6.3 Probability Distribution of Professional Forecasters  

Table 1.5 presents the estimated distributional parameters of each forecast error for the 

nominal and real GDP respectively, under the SGED distribution.  

 The results based on the SGED distribution show that in both cases (nominal and 

real), the expected value is negative and statistically significant and increase across time. 

For example, the expected value of the first, second and third forecast errors of nominal 

GDP are -0.5541, -0.3793, and -0.3017, respectively. Professional forecasters are not 

rational since a rational forecaster would ideally have mean equals to zero. Any deviation 

from zero means that, on average, they are far away from the actual values. In this case, 

this is an underconfident behaviour of the forecasters (proposition 7). The negative sign 

of all the forecast errors and the fact that all the coefficients are close to each other show 

that professional forecasters are also conservative to the adaptation of a new information. 

This also confirms the previous findings of underestimation of the final GDP growth 

rates. The standard deviation, in all cases, is approximately two (and statistically 

significant). Specifically, the standard deviation of each forecast error for the Nominal 

GDP is 1.9306, 1.8269 and 1.8467, respectively.  

 The estimated parameter that controls the tails of the distribution, k, is in all cases, 

statistically significant. The parameter k is below two in all cases, indicating that the 

distribution is leptokurtic. The asymmetry parameter, which controls the shape of the 

distribution is negative in all cases. This means that the distribution of the forecasting 

errors is negatively skewed and has a higher peak relative to the normal distribution 

(tighter tails). This is an indicator of an underconfident behaviour (proposition 7).   

 Table 1.5 also shows that the left tail scaling parameter (φ1) is larger than the right 

tail scaling parameter (φ2) indicating that the predictions below the mode are higher 

compared to the predictions above the mode. If these parameters are equal, this indicates 

a rational behaviour. Since they are different, the Normality is violated and therefore, 

psychological distortions are capable to explain this behaviour. In this case, the 

distribution is negatively skewed. This means that professional forecasters are 

underconfident (proposition 7). Furthermore, the two different tail parameters are close 

to each forecast. In all cases, standardized skewness is negative while standardized 

kurtosis is around 4. Also, the log-likelihood ratio test for the SGED against the Normal 
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distribution shows that Normality is rejected, therefore, SGED explains the behaviour of 

forecasting errors betters.   

 To sum up, the forecasting errors are not behaving rationally and therefore, they 

exhibit psychological distortions. This means that higher moment distributions (such as 

SGED) are capable to capture this behaviour. The conclusion is that forecasters are 

underconfident. Interestingly, they remain conservative across their forecasts.  

Table 1.5. SGED Distributional Estimators 

 Nominal GDP Real GDP 

Parameter fe1,t fe2,t fe3,t fe1,t fe2,t fe3,t 

Part A. Distributional Parameters 

μ -0.5541 -0.3793 -0.3017 -0.4061 -0.3025 -0.2430 

 (0.1826)* (0.1667)* (0.1634)* (0.13824)* (0.1846)* (-0.188) 

σ 1.9306 1.8269 1.8467 2.0055 1.9789 1.9971 

 (0.1124)* (0.0999)* (0.1007)* (0.1143)* (0.1104)* (0.1114)* 

k 1.3814 1.4457 1.4547 1.3543 1.3788 1.4156 

 (0.2388)* (0.2323)* (0.2299)* (0.2017)* (0.1879)* (0.1922)* 

λ -0.1299 -0.095 -0.0634 -0.0783 -0.1039 -0.1129 

 (0.1255) (0.1242) (0.1251) (0.1273) (0.1275) (0.1306) 

Part B. Additional Parameters 

φ 1.5700 1.5527 1.5972 1.6641 1.635 1.6627 

φ1 1.7740 1.7003 1.6986 1.7944 1.8050 1.8505 

φ2 1.3661 1.4052 1.4959 1.5338 1.4651 1.4749 

mode -0.1924 -0.1213 -0.1249 -0.1735 -0.0009 0.0875 

LogL -445.651 -433.227 -440.075 -454.26 -449.35 -455.95 

LR-Normal 11.8557* 8.4867* 7.5733* 11.5316* 11.406* 9.2367* 

SK -0.3449 -0.2384 -0.1584 -0.2156 -0.2781 -0.2908 

KU 4.1526 3.933 3.8882 4.1859 4.1318 4.0316 

Obs. 217 216 218 217 216 218 

Notes.  The table presents the estimated parameters along with their standard errors of the first 

three forecasts (first, second, third) and the last revision used as the actual value obtained from 
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the maximization of the SGED log-likelihood specification. The parameters μ, σ, λ and k represent 

the mean, standard deviation, the asymmetry and the shape parameters of the SGED distribution. 

Mode is computed by equation (1.25). Log-Likelihood is the maximum likelihood value and LR-

Normal tests the null hypothesis of Normality against the SGED (alternative hypothesis). * 

indicates statistically significant at 10%. Nothing stated means that it is statistically insignificant.  

 Summary and Conclusions 

This chapter focuses on the development of a probabilistic framework based on the 

skewed normal (SN) and the skewed generalized error (SGED) distributions to model the 

managerial biases of overconfidence and unrealistic optimism, their counterparts of 

underconfidence and pessimism, as well as the interrelationship between overconfidence 

and anchoring and adjustment heuristic.  

 The probabilistic framework is used to analyse each psychological bias: 

overconfidence, underconfidence, optimism and pessimism. The probabilistic framework 

also compares the differences and similarities of these biases and examine their impact 

on the expected value and risks (overall risk, downside risk, value–at–risk and expected 

shortfall) of economic variables, e.g., the investment’s return, the future cash-flows, and 

others. 

 Psychological theory claims that an overconfident manager overestimates the 

probability of favourable events. At the same time, he/she narrow the tails of the 

probability distribution of an economic variable under consideration. This miscalibration 

leads to (a) positively skewed probability distributions for the economic variables under 

consideration, (b) overestimation of their expected values and (c) underestimation of their 

overall risk, downside risk, value-at-risk and expected shortfall.  

 An underconfident manager underestimates the probability of favourable events 

and imposes wider tails of the probability distribution of an economic variable (negatively 

skewed distribution).  

 Optimistic managers underestimate the probability of undesirable events and 

overestimate the probability of desirable events. Nothing is stated with regards to how 

optimists view the tails of the probability distribution. This miscalibration will lead to (a) 

a positively skewed subjective probability distribution for the variables under 

consideration, (b) an overestimation of their expected values and (c) an underestimation 
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of the downside risk, value-at-risk and expected shortfall. An optimistic manager will 

overestimate the overall risk of the economic variable under consideration.  

 On the other hand, a pessimistic manager underestimates the probability of 

desirable events, overestimates the probability of undesirable events, underestimates their 

expected value, and overestimates the downside risk, value-at-risk and expected shortfall. 

In this case, this miscalibration leads to a negatively skewed distribution.  

Analytical formulas presented in this chapter showed that anchoring and 

adjustment and overconfidence bias share an interconnection. In this chapter, a 

mathematical framework that explains the professional forecaster’s behaviour under an 

adaptation process has also been developed. The empirical application based on the 

SGED (Skewed Generalized Error Distribution) distribution. However, any other 

distributions, such as Skewed Generalized T, Skewed Laplace, etc., can also fit well.  

Using Monte Carlo simulations, this chapter showed and proved the above 

conclusions for the perceptions of the overconfident, underconfident, optimistic, 

pessimistic, and rational managers on expected mean and the risk measures: overall risk, 

downside risk, value-at-risk, and the expected shortfall (ES). 

 Empirically, the three vintages data of BEA (first, second, and third) and the most 

recent revision are used, and they have shown that forecasting from the actual exhibit 

skewness and kurtosis characteristics. This result leads to the conclusion that the 

probability distribution of the underlying variable (e.g. GDP) distorts from the forecasting 

across time. Therefore, the finding that the vintage data has more than two moments 

characteristics (skewness and kurtosis) indicate an overconfident/underconfident 

behaviour.  

This chapter has explained the behaviour of forecasters based on the sign of the 

estimated asymmetry parameter of the skewed distribution. When the asymmetry 

parameter is positive, it generates a positively skewed distribution and therefore an 

overconfident behaviour. A key probabilistic characteristic of a positive skewness 

distribution is that there are more probabilities for an event to occur right of the mode 

rather than left (more probability mass for good events than bad). The opposite is true 

when the asymmetry parameter is negative. A negative sign of the asymmetry parameter 

indicates an underconfident behaviour and more probabilities occur left the mode rather 

than right (more probability mass left the mode than right). In the empirical application 

on the professional forecasters, the results show that a forecaster’s probability distribution 
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is negatively skewed (consequently underconfident); therefore, they underestimate the 

nominal and real GDP. Noteworthy is also the fact that the understanding of this 

interrelationship is important for all participants because forecasting in GDP affects a lot 

of people in their decisions such as bankers, investors, consumers, businesses, etc.  

Nevertheless, this chapter is subjected to some limitations that can be addressed 

for future research. For instance, there are many other psychological biases that 

behavioural finance literature uses to explore various topics in the empirical studies. 

Currently, the first chapter of this dissertation explains the most common psychological 

biases of overconfidence and optimism (and their counterparts) to clarify these biases and 

the differences between them. However, this study provides the foundation for further 

investigation of the behaviour of agents using alternative biases.  

Furthermore, the empirical application provides important implications for those 

who take into account these estimates (e.g., people, policymakers, investors, bankers, and 

others) in their decisions. For example, in a potential recession, businesses and consumers 

will be conservative in their decisions (e.g., hiring employees, getting mortgage loans, 

and others). In addition, other distributions such as the skewed Laplace can be used in a 

probabilistic framework to explore the perceptions of agents on mean and risk about a 

decision-making variable. Specifically, other distributions of the SGT family can 

accommodate more characteristics, therefore, can be used in a similar framework.  
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2 Exploring the Stochastic Behaviour of Bitcoin under an 

Asymmetric Framework 

 Introduction  

Through the years, the development of digital currencies has been rapid and 

extraordinary. Bitcoin is a virtual currency introduced by Nakamoto (2008) as a peer-to-

peer cash system. Up to today, there are more than 2,000 cryptocurrencies with Bitcoin 

being the most popular followed by Ethereum, Ripple, Tether, Bitcoin Cash, Litecoin, 

etc. 

The popularity of Bitcoin is emphatic in figures 2.1 and 2.2. Figure 2.1 showing 

that the current number of Bitcoin’s daily transactions is extremely high compared to 

eight years before. In 2018, the daily bitcoin transactions have peaked at approximately 

400,000 (see figure 2.1).15 Also, the multi-billion-dollar market capitalization of Bitcoin 

is what makes it the most popular cryptocurrency. The market capitalization of Bitcoin is 

on the top spot of the cryptocurrencies’ total. 16  

 

Figure 2.1. The number of daily confirmed Bitcoin transactions.17 

A characteristic of Bitcoin is that allows online payments from one party to the other 

without an intermediary, e.g. financial institution. Therefore, there is no government or 

monetary policy. Figure 2.2 presents daily bitcoin prices and trading volume. Prices and 

trading volume follow the same pattern. Bitcoin prices in 2011 started at the price of 0.06 

cents and reached 8,000 dollars in 2019. 

 
15 Cited in https://blockchain.info/charts/n-transactions (accessed: April 2021). 
16 See https://data.bitcoinity.org (accessed: April 2021). 

17 Source: https://blockchain.info/charts/n-transactions (accessed: April 2021). 

https://blockchain.info/charts/n-transactions
https://data.bitcoinity.org/
https://blockchain.info/charts/n-transactions
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Figure 2.2. Bitcoin Prices and Trading Volume.18 

Empirical evidence suggests that Bitcoin behaves in a very different way compared 

to the rest of the assets (e.g., exchange rates, bonds, equities, etc.). Hence, investors opt 

to use Bitcoin in their portfolios to reduce their risk. The investigation of the relation 

between such currencies (henceforth Bitcoin) and exchange rates is important for 

investments, trading, and hedging strategies. More specifically, the understanding of the 

co-movement between Bitcoin and exchange rates is useful for investors since it will give 

them a hint on how to diversify their portfolios. It is also of interest to the traders of forex 

markets since they investigate the behaviour of various currencies. Finally, it is of interest 

to the general audience since Bitcoin can be used as a money substitute. 

This chapter investigates the stochastic behaviour of Bitcoin and exchange rates 

under a flexible framework that accounts for a time-varying skewness and kurtosis price 

of risk. This is the first time the literature will examine the dynamic behaviour of Bitcoin 

using a skewness-kurtosis price model. More specifically, the contributions of this 

chapter are the following: Firstly, it investigates the stochastic properties of bitcoin and 

exchange rates (such as first and second-moment dependencies and non-linearities). 

Secondly, it links the time-varying skewness-kurtosis price of risk to downside and upside 

volatility using the ST-GJR–GARCH model (Savva and Theodossiou, 2018) under the 

SGED distribution. Thirdly, it examines the spillover effects of Bitcoin and exchange 

rates. Fourthly, the forecasting accuracy of Bitcoin’s prices is computed using the ST-

GJR-GARCH-SGED model and is compared to the rest assets. Finally, by examining the 

 
18 Source: https://data.bitcoinity.org/ (accessed: April 2021). 

https://data.bitcoinity.org/
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behaviour of Bitcoin, this study sheds light on the trading and hedging capabilities helping 

investors to decide whether to incorporate it in their portfolios or not.  

Empirically, skewness and kurtosis characteristics leading to the rejection of the 

Gaussian distribution can be found in all return series. This prevents the necessity for 

higher-moment probability distributions. The asymmetric and kurtosis characteristics are 

more profound in the case of Bitcoin. Also, higher-order dependencies are presented in 

the series. Empirical findings in the univariate and bivariate analysis suggest that the 

skewness\kurtosis price of risk has an important role in the model (especially in the case 

of Bitcoin). The findings suggest that there are implications for those who use Bitcoin as 

a financial asset. The importance of the time-varying skewness and shape parameters 

proved the presence of asymmetric behaviour. In the bivariate analysis (spillover effects), 

the common exchange rates affect the conditional mean and volatility of Bitcoin more 

than the reverse, Bitcoin has no effect on the conditional mean and volatility of the other 

exchange rates, and the shape of the Bitcoin’s probability distribution is not affected when 

spillover effects are presented. Overall, the findings reveal a negligible relationship 

between Bitcoin and exchange rates. 

Accordingly, section 2.2 presents a literature review about Bitcoin and its statistical 

behaviour compared to other assets. Section 2.3 presents the time-varying ST-GARCH-

GJR-SGED model and explains in detail the conditional mean and variance equations. In 

addition, there is a presentation of the conditional asymmetry and shape parameters as 

time-varying parameters to investigate if the distribution change over time. The 

distribution used is the skewed generalized error distribution (SGED). Section 2.4 

analyses the model estimation technique while section 2.5 analyses data using preliminary 

statistics and tests for non-linearities (higher-moment dependencies). Moreover, there is 

a presentation of the unconditional results of the return series of this distribution. Section 

2.5 also presents the results of the risk and return relationship and shows the impact that 

the time-varying skewness and kurtosis parameters have on the returns (for a univariate 

case as well as on a bivariate case to examine the spillover effects from Bitcoin to 

exchange rates and vice versa). Summary and conclusions are presented in section 2.6. 
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 Literature Review 

The History of Bitcoin  

Decentralized cryptocurrencies and specifically Bitcoin is the most popular digital 

currency over the more than 2,000 altcoins that exist.19 Nakamoto (2008), introduced 

Bitcoin and the blockchain as a peer–to–peer cash system. If computer users can solve 

pre-specified mathematical problems, new bitcoins are created, and this process is called 

‘mining’. The technology behind Bitcoin, blockchain, public accounting ledger, and 

others was explained by Yermack (2015). An anonymous address is created and transfers 

bitcoins through a network.  

In short, Bitcoin has the following particularities: 

• There is no central authority for Bitcoin.  

• Bitcoin’s network is peer-to-peer consequently there is no central server.  

• There is no central storage; the bitcoin ledger is distributed. 

• Anybody can use ledger as a public store.  

• Anybody can be a ‘miner’.  

• Creating a bitcoin address is an easy procedure. There is no need for any 

approval from a bank or any other financial institution.   

• The transaction can be sent without any approval.   

The above characteristics drive a lot of investors to increase their interest in the 

cryptocurrency market. 

Bitcoin as a Financial Asset 

As for the economic and financial effects of Bitcoin, several scholars have investigated 

them in various ways. Authors have pointed out that Bitcoin apart from an online payment 

method, it is also a financial and speculative asset (e.g., Yermack, 2015; Baur et al., 2016; 

Kristoufek, 2015). Dyhrberg (2016a) showed that Bitcoin is somewhere between a 

currency and a commodity, but it will never behave exactly as a currency.  

The high returns and volatility of Bitcoin lead Briere et al. (2015) to incorporate 

Bitcoin into a portfolio with other financial assets. They found that the correlations 

between Bitcoin and the other assets are significantly low and the benefits of including 

Bitcoin in portfolio improve its risk-return characteristics. Therefore, the portfolios’ 

 
19 See http://coinmarketcap.com/ (accessed: April 2021). 

http://coinmarketcap.com/
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diversification can be achieved using Bitcoin as a suitable asset to reduce the potential 

risk (Bouri et al., 2017b). Dyhrberg (2016a, 2016b) using GARCH models investigated 

the hedging and asset capabilities of Bitcoin. The hedging capabilities of Bitcoin against 

stocks have been found to be important. 

The increasing interest of people in cryptocurrencies drives researchers to 

investigate their statistical behaviour in comparison to traditional assets. Statistically, 

researchers showed that Bitcoin doesn’t follow the normal distribution. Osterrieder and 

Lorenz (2017) investigated the tail risk characteristics (value–at–risk and expected 

shortfall) of Bitcoin and compared it to the G10 currencies. They concluded that Bitcoin’s 

probability distribution is not normal, and it exhibits characteristics such as six to seven 

higher standard deviations than the other currencies and heavier tails. Osterrieder (2016), 

Chu et al. (2017), and Phillip et al. (2018) proved that cryptocurrencies, among others, 

follow a heavy-tailed distribution (such as Student t distribution, generalized hyperbolic 

distribution). Takaishi (2018) finds that the distribution of Bitcoin’s return distribution is 

leptokurtic. A statistical view about cryptocurrencies was investigated by Osterrieder et 

al. (2017). They found that Bitcoin is the least risky cryptocurrency of the others.  

 Bitcoin has gained the attention of many people, leading the cryptocurrencies’ 

values, in many cases, to reach extreme levels. This behaviour needs a probability 

distribution triggered by skewness and kurtosis characteristics. The family of skewed 

generalized t distribution (SGT) includes the skewed generalized error distribution 

(SGED), the Skewed t (ST), the Skewed Normal (SN), the Skewed Cauchy (SC), the 

Skewed Laplace (SL), etc as special cases. In this chapter of the dissertation, the focus is 

on the SGED; the distribution proven to fit well in financial data (Theodossiou, 2015).  

Mean and Volatility Spillovers 

The asymmetry in volatility and volatility spillovers is another aspect that has been 

examined extensively in financial markets literature (e.g. Theodossiou and Lee, 1993; 

Theodossiou, 1994; Yang and Doong, 2004; Savva et al., 2009; Savva and Aslanidis, 

2010;  among others). Nevertheless, this kind of analysis is very limited in the case of 

cryptocurrencies. 

Barndorff–Nielsen et al. (2010) proposed an alternative measure of risk to 

investigate volatility. They introduced the downside risk measure which is based on the 

semivariance (negative variance). Baruník et al. (2015, 2016, and 2017), in order to 
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quantify asymmetries in spillovers, they used the semi-variances to estimate the volatility 

spillovers due to bad and good volatility. They found, through the use of a spillover 

asymmetry measure, that the asymmetry in spillover is more due to bad volatility. 

Reboredo et al. (2016) investigated the risk spillovers in downside and upside terms using 

exchange rates and stock price data. They found an asymmetric risk spillover effect from 

exchange rates to stock prices and vice versa. The asymmetric risk spillover effect is 

found to be greater in the downside risk than in the upside.  

However, the investigation of the asymmetry volatility spillover in Bitcoin is 

restricted. The role of volatility spillover on cryptocurrencies was closely investigated by 

Corbet et al. (2018). Corbet et al. (2018) used three cryptocurrencies as well as gold, 

bond, equities, and VIX and found that there is an interconnection between the 

cryptocurrencies; however, this is not true for the other assets. They found that the 

cryptocurrency market is isolated from the financial markets.  

Bouri et al. (2018) also examined the asymmetry return and volatility spillover 

effect between Bitcoin and other assets using the VAR-GARCH–in–mean model. They 

found that there are spillover effects between Bitcoin and the other assets under different 

market conditions (bear and bull markets), Bitcoin and other assets are more closely 

linked to return versus volatility, and Bitcoin imparts little variability as opposed to what 

it receives. Kurka (2019) also examined the asymmetric transmissions between Bitcoin 

and traditional assets and found a negligible connectedness between them confirming the 

diversifier and hedge properties of Bitcoin. Symitsi and Chalvatzis (2018) found 

significant return spillovers from technology and energy stocks to Bitcoin, and Koutmos 

(2018) concluded that among 18 cryptocurrencies, Bitcoin is the key transmission 

contributor of return and volatility spillovers. The chapter of this dissertation attempts to 

investigate the behaviour of Bitcoin using a flexible time-varying skewness and kurtosis 

price of risk model. This model allows examining the stochastic behaviour of Bitcoin and 

understanding in more detail the inter-relationship between Bitcoin and other financial 

traditional assets.  

 Asymmetric Framework 

GARCH-M with Dynamic Skewness and Kurtosis Parameters 

A common modelling method that investigates the variation of an asset can be done based 

on the Autoregressive Conditional Heteroscedasticity (GARCH) models. A lot of papers 
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examined Bitcoin using GARCH models.20,21 This is the first time Bitcoin and the 

relationship between Bitcoin and other assets is examined using the ST-GJR–GARCH 

framework (Savva and Theodossiou, 2018) that follows the SGED distribution. This is a 

reasonable development since literature proved that Bitcoin does not follow the normal 

distribution but a heavy-tailed distribution.  

  In this section, there will be a presentation of the parameters of the conditional 

variance and conditional mean, the conditional asymmetry and shape equations of 

Bitcoin’s returns (BTC) and exchange rates (Euro, Japanese Yen, Canadian Dollar, 

British Pound). All rates are expressed in US dollar log-price changes. The log-price 

changes have been computed using the equation 

( ), , , 1100 ln lni t i t i tr X X −=  − , 

where Xi,t is the US dollar price of currency i at time t and i = BTC, EUR, JPY, CAN, and 

GBP. 

 Volatility clustering and asymmetric volatility characteristics have been showed to 

exist in financial and currency markets including bitcoin prices, e.g., Corbet et al. (2018). 

Volatility clustering refers to the fact that large price shocks tend to be followed by large 

price shocks but of either sign. Respectively, (negative) asymmetric volatility 

phenomenon is the tendency of the volatility to be higher when the market downs than 

when the market is rising. These characteristics are triggered by skewness and excess 

kurtosis in the distribution of return series, e.g., Theodossiou (2015).  

 These phenomena can be modelled using asymmetric GARCH specifications. The 

conditional variance equation is a function of past squared errors and past conditional 

variances. Furthermore, the conditional mean of an asset’s returns is a function of the 

conditional standard deviation (GARCH-M models). The GJR-GARCH-M model with 

time-varying conditional asymmetry and shape parameters is employed in this chapter to 

investigate the stochastic properties of the Bitcoin in relation to those of the exchange 

rates: Euro, Japanese yen, Canadian dollar, and British pound.  

 
20 See for example Katsiampa, (2017), Cermak, (2017), Bouri et al. (2017a), and Guesmi et al. (2019). 

21 The examination of volatility spillovers has been also done using GARCH models. e.g., Theodossiou and 

Lee (1993) and Yang and Doong (2004). 
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2.3.1 Distribution of Returns and Moments (Mean and Variance) - SGED 

The pdf of BTC and exchange rates is modelled using the Generalized Error Distribution 

(GED – non centered) computed by 
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where λi,t,, ki,t and mi,t are respectively time-varying asymmetry, shape and the mode 

parameters of the distribution of ri,t and Γ(∙) is the gamma function. The computations of 

the moments (mean and variance) and further statistics are shown in chapter 1, therefore, 

in this chapter, the equations for the SGED are shown directly. 

 The mean and variance of Bitcoin and exchange rates using the SGED are 

respectively 
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The skewness price of risk is computed by 
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where all notations are explained above.   

 
22 Note that ( ) ( )

2 2
1 1 4  − − + + = and ( ) ( ) ( )

3 3 21 1 2 3 1 .  − + + = +  



74 

 

 The returns for Bitcoin and exchange rates are modelled using the centered 

SGED (Skewed Generalized Error Distribution). That is, 
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where μi,t, σi,t, δi,t, θi,t, λi,t, ki,t and μi,t are as defined previously. The SGED has been used 

in the literature to model the time-series behaviour of returns of currencies, stock indices, 

freight rates, and others. The Skewed Generalized Error Distribution of Theodossiou 

(2015) yields to the skewed Laplace for ki,t = 1, to the Laplace for ki,t = 1 and λi,t = 0, to 

the well-known Skewed Normal distribution commonly used in many articles (e.g., 

Feunou et al., 2012) for ki,t = 2, to the Normal distribution for ki,t = 2 and λi,t = 0, to the 

uniform distribution for ki,t = ∞ and others.  

2.3.2 Conditional Variance, Mode, and Mean in GJR-GARCH-M 

The conditional variance and conditional mean of the returns of BTC, EUR, JPY, CAN 

and GBP are modelled using the Glosten et al. (1993) GARCH-M model. Using the GJR 

GARCH-M, a conditional time-series asymmetry and conditional shape parameters are 

also included in the model. This framework follows that of Savva and Theodossiou 

(2018). For the rest of this chapter, this model will be mentioned to as the ST-GJR 

GARCH-M model. 

 Using the GJR GARCH-M model, the two volatility phenomena (volatility 

clustering and asymmetric volatility) for each of the five currencies of returns are 

modelled through the following conditional variance equation  

  ( ) ( )2 2 2

, , 1 , , 1 , 1 , 1vari t i t t i N i i t i i t i i tr I v a N a   − − − −= = + + + , (2.9) 

where 

  , , ,i t i t i tr = −   

is the error term excess from its conditional mean and i = BTC, EUR, JPY, CAN, and 

GBP. The indicator variable Ni,t takes the value of one for negative error values of εi,t, and 

zero otherwise. That is, 

 Ni,t = 1 for εi,t < 0 and Ni,t = 0 for εi,t > 0 
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Note that the conditional variance of returns at time t is based on the information set at 

time t – 1 (It–1.). The coefficients aN,i, ai and βi are indicative of asymmetric volatility, 

volatility clustering and persistence. The coefficient aN,i measures the impact of past 

shocks (negative) on volatility at time t (current). The coefficient βi measures the 

persistence of volatility in the market i. 

 The conditional mode and mean of returns for each currency are linear functions of 

past returns as well as their conditional standard deviations. That is, 

  ( ), , 1 0, , 1 ,i t i t t i i i t i i tm mode r I m b r c− −= = + +     (2.10) 

and 

  ( ), , 1 , , ,i t i t t i t i t i tE r I m  −= = +  

 

   ( )0, , 1 , ,i i i t i i t i tm b r c  −= + + + , (2.11) 

 

where m0,i is a regression intercept and bi is an autoregressive coefficient. As will be 

discussed in the next equations, the conditional mode plays a key role in the definition of 

upside and downside markets for currencies. For each currency, the time-varying sum ξi,t 

= ci + δi,t, is the total price of risk and measures the impact of risk on mean returns. The 

coefficients ci and δi,t are the pure and the skewness price of risk (equation 2.7), 

respectively. This decomposition introduced on the paper of Theodossiou and Savva 

(2016).  

2.3.3 Conditional Asymmetry Parameter 

The conditional asymmetry parameter of the distribution of ri,t is computed as  
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where ut-1 are the standardized returns excess the conditional mode and 

, 1 , 1 , 1.i t i t i tu u u− +

− − −= − +  

 The absolute values of the negative shocks ui,t’s (downside shocks) are used to 

investigate the downside markets. The positive values (upside shocks) are used to 

investigate the upside markets. A negative intercept γ0,i leads to a negative impact on the 

asymmetry parameter λi,t. This also leads to a negative impact on the conditional price of 

risk δi,t. The downside coefficient γN,i measures the impact of negative shocks on the 

asymmetry index hi,t. The asymmetry parameter λi,t is a function of the asymmetry index, 

therefore, the downside coefficient also measures the impact of negative shocks on this 

parameter. A positive downside coefficient means that past downside shocks will have a 

positive impact on these two parameters (asymmetry index and asymmetry parameter). 

The opposite occurs in the case of a negative downside coefficient. On the other hand, 

the upside coefficient γP,i measures the impact of past positive shocks on the asymmetry 

index and consequently on the asymmetry parameter. A positive upside coefficient shows 

that past upside shocks have a positive impact on these parameters (asymmetry index and 

asymmetry parameter). The opposite also occurs in the case of a negative upside 

coefficient. At the same time, the coefficient γh,i measures the persistence of past shocks 

(downside and upside) on the asymmetry parameters. 

2.3.4 Conditional Shape Parameter 

The dynamic behaviour of the shape parameter of the distribution of returns is examined 

using an equation that allows for a time-varying tail parameter.23 That is,  

   
( )

,
,

1 i t

U L

i t U g

k k
k k

e

−
= −

+
, (2.15) 

where  

   , 0, , 1 , 1 , , 1i t i N i t P i t h i i tg d d u d u d g− +

− − −= + + +   

tu −
and tu+

are as defined in sub-section 2.3.3. Equation (2.15) depends on the kL and kU 

parameters. These parameters are the minimum and maximum bounds of the time varying 

shape parameter ki,t. In the cases of the Laplace and the Normal distributions, these 

parameters are set to kL = 1 and kU = 2, respectively. In special cases, kL can be lower than 

 

23 See also Mazur and Pipien (2018). 
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one, e.g. the distribution of Bitcoin returns. Importantly, zero values for dN,i and dP,i 

indicate that the shape parameter ki,t is not time-varying. The downside (dN,i) and upside 

(dP,i) parameters control the shape of the distribution left and right the mode mi,t.  

2.3.5 Downside and Upside Probabilities  

The probabilities for downside and upside markets can be computed using respectively 

the following equations  

 ( ) ( )
,

, , , ,

i tm

i t i t r i t i tP r m f r dr
−

 =  ( )
,

,

1
1 2

1 i t
i t h

e
= − =

+
 (2.16) 

and  

( ) ( )
,

, , ,

1
1 2

1 i t
i t i t i t h

P r m
e


−

 = + =
+

 (2.17) 

; see also Savva and Theodossiou, (2018). Equations (2.16) and (2.17) are functions of 

the asymmetry parameter λi,t, and the asymmetry index hi,t. These equations can be used 

to calculate the probabilities of downside and upside markets (excess the mode). For 

instance, equation (2.16) computes the probability of the returns to be below the mode. 

Respectively, equation (2.17) computes the probability of the returns to be above the 

mode. The difference between upside and downside probability gives the asymmetry 

parameter. To avoid repeating further computations, see chapter 1 equations (1.1) – 

(1.10). Also, for the computation of the conditional mean, variance, Pearson skewness 

see equations (1.23)-(1.30) (chapter 1). 

 The previous analysis is extended on a bivariate context to investigate the mean 

and volatility spillovers from Bitcoin to exchange rates and vice versa. 

2.3.6 Conditional Mean and Variance – Spillover Effects 

The conditional mean and conditional variance of bitcoin rates and exchange rates (log-

bitcoin and exchange rates changes) are modelled using the following bivariate GJR 

specification (Glosten et al., 1993): 

                    ( ) ( ), , 1 0 , 1 , , , , 1 , ,

1 1

M M

i t i t t i i t i i t i t i j j t i j j t

j i j i

E r I m b r c b r    − − −

 =  =

= = + + + + +     (2.18) 

and 

          ( ) ( ) ( )2 2 2 2

, , 1 , , 1 , 1 , 1 , , 1 , , 1

1

var
M

i t i t t i N i i t i i t i i t i j j t i j j t

j i

r I v a N a a N    − − − − − −
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= = + + + + +    (2.19) 
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where i, j = BTC, EUR, JPY, CAN, and GBP and Ni,t = 0 for εi,t > 0 and Ni,t = 1 for εi,t < 

0 and ri,t = μi,t + εi,t and i = 1, 2,…, M. The time varying skewness price of risk δi,t is given 

by equation (2.7). 

 All coefficients are explained above with the exception of the additional parameters 

that investigate the spillover effects. The coefficient ξi,j measures the impact of risk 

(standard deviation) in market j on the mean of rates in the market i.  The coefficients ai,j 

and βi,j (for i ≠ j) measure asymmetric volatility and volatility spillovers from j market 

into the i market. 

2.3.7 Forecasting Bitcoin Prices 

The expected price of currency i (time t) is 24 
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


−

   (2.20) 

and zi,t is a standardized return for currency i. The probability density function for zi,t is 

computed from equation (2.8) by substituting μi,t = 0 and σi,t = 1. 

 Prices will be martingale processes in the absence of arbitrage opportunities. The 

rate of return of the period is 

, , , ,î t f i t i tr k = + , 

where kf,i,t is the risk-free rate (conditional) in country i and ρi,t a risk premium 

(conditional) for currency i. In this case, the expected value discounted by this rate of 

return (time t) gives 

   ( ) ,ˆ

,
i tr

i tE X e
−

 , , , , ,ln

, 1 , 1

z
i t i t f i t i tE k

i t i tX e X
 + − −

− −=  = .  

This equality leads to the conclusion that  

   , , , , , ,
ˆ ln z

i t f i t i t i t i tr k E = + = +   (2.21) 

and 

   
,ˆ

, , 1
ˆ i tr

i t i tX X e−=  , (2.22) 

 

24 See also Theodossiou et al. (2020).  
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where ,

z

i tE is given by equation (2.20). 

 Model Estimation  

The parameters of the conditional mean and conditional variance equations as well as the 

parameters of the asymmetry and shape equations are obtained using an optimization 

procedure (Berndt et al., 1974) to a conditional log-likelihood function. That is,  

  ( ) ( ) ( ), 1

1 1

log ,
T T

i r i i t t t i

t t

L f r I L−

= =

= = θ θ θ ,  (2.23) 

where fy (θi | ri,t It –1) is the conditional likelihood function for currency i returns (equation 

2.8) and θi is a column that includes the maximum likelihood estimated parameters. The 

dynamic skewness price of risk δi,t is computed using the substitution of the maximum 

likelihood estimates for ki,t and λi,t into equation (2.7). Robust standard errors for the 

maximum likelihood estimates denoted by iθ  are computed by the following equation 
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θ
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.  (2.24) 

The parameters of the conditional variance and mean, the conditional asymmetry, 

and the conditional kurtosis equations are estimated (equations 2.9-2.15) by maximizing 

the skewed generalized error log-likelihood of the return series in each exchange rate 

(Euro, Japanese Yen, Canadian Dollar and British pound) and Bitcoin. 

 To further investigate the spillover effects, the parameters of equations (2.18) and 

(2.19) of bitcoin rates and exchange rates are computed using a two-stage maximum 

likelihood estimation technique. Firstly, the maximum likelihood method is used to 

compute the conditional mean and conditional variance equations of each currency 

without accounting for the spillover effects from other currencies (univariate analysis). 

Furthermore, the estimated volatility shocks (
2

,j t ) and the estimated conditional risk 

(standard deviations) of returns (σj,t) are used in the mean and variance multivariate 

analysis. More specifically, in stage two, the estimated parameters in each currency are 

computed by using the estimated shocks and the estimated conditional risk in stage one 

from the other currencies in equations (2.18) and (2.19). The skewness price of risk i  

(average) is calculated using the equation (2.7) and the dynamic conditional asymmetry 

(λi,t) and shape (ki,t) equations. The results are reliable after a few iterations.   
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 Empirical Findings 

This section presents the preliminary statistics of data, the estimated distributional and 

GJR-GARCH parameters under the SGED discussed in section 2.3, as well as the 

forecasting performance of Bitcoin’s prices using the ST-GJR-GARCH-SGED model 

and compares it to other models’ specifications.   

2.5.1 Summary Statistics  

Data is collected from DATASTREAM for the period July 18, 2011 to June 1, 2020 and 

include daily US dollar prices of Bitcoin (BTC), Euro (EUR), Japanese yen (JPY), 

Canadian dollar (CAN) and British pound (GBP). Figure 2.3 presents the plots of the 

prices of Bitcoin and the four currencies over the data period. The time-series plot shows 

a sharp upward price trend for the BTC. The return series of the five currencies (figure 

2.4) are characterized by extreme spikes. Furthermore, the range of Bitcoin’s returns 

compared to those of the other series is about 10 times larger, depicting the high volatility 

of Bitcoin. 

 Table 2.1 presents the summary statistics (expected value, standard deviation, 

skewness, kurtosis) and the Normality Bera-Jarque test for the daily returns.25 Consistent 

with its steep upward trend, Bitcoin’s expected value of returns is 0.345. Furthermore, 

the expected values of the other four currencies are negative (and lower compared to 

BTC). The standard deviation for Bitcoin returns is 5.473 (10 times larger than the 

standard deviations of returns of the other series, e.g. 0.513 in the case of EURO). The 

Pearson’s skewness and kurtosis statistics are estimated using the equations sk= m3 / m2
3/2 

and ku= m4 / m2
2, where mj is the jth moment around the mean. Negative skewness is found 

to be in BTC, and CAN return series and positive for the rest assets. Leptokurtosis is 

present in the return series of all five currencies. However, the kurtosis parameter for BTC 

is about three to four times larger than that of the normal distribution, which is three. 

Also, the kurtosis parameter is about two times larger than those of the other currencies. 

The Bera-Jarque test rejects the null hypothesis of normality (Gaussian). This indicates 

the presence of skewness and/or kurtosis in the data.  

Therefore, the use of a higher moment distribution that accounts for skewness and 

kurtosis characteristics is dictated by the data. Table 2.2 presents the correlation matrix 

 
25 Daily log-returns are winsorized to ±5 standard deviations from the means.  
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for Bitcoin and exchange rates returns. The correlation between Bitcoin and the other 

exchange rates is extremely low. In all cases, the correlation between Bitcoin and 

exchange rates is positive except in the case between Bitcoin (BTC) and Japanese Yen 

(JPY) which is extremely negative.  

Table 2.1. Summary Statistics for Bitcoin and Currency Log-Price Changes 

(Returns) 

Statistics BTC EUR JPY CAN GBP 

Descriptive Statistics: 

Mean 0.345 -0.010 -0.014 -0.013 -0.009 

Std 5.473 0.513 0.561 0.481 0.5520 

SK–Skewness -0.292 0.033 0.070 -0.022 0.040 

KU–Kurtosis 9.852 5.010 6.612 5.230 5.830 

Normality Test: 

Bera–Jarque 8,957* 2,309* 4,022*  2,515* 3,126* 

 
Notes. All prices rates are expressed in USD. Daily returns are continuously compounded. The 

data covers the period from July 18, 2011 to June 1, 2020 (2,207 observations). Returns are 

winsorized to ±5 standard deviations from their means. The skewness and kurtosis statistics are 

computed by 
3/2

3 2/SK m m=  and
2

4 2/KU m m= , where mj is the jth moment around the mean. The 

Bera–Jarque test statistics for normality are calculated using the equation

( )( )2 2
424BJ SK KUT= + . * denotes statistical significance at 1%.  

Table 2.2. Correlation Matrix for Bitcoin and Exchange Rates Log-Price Changes 

(Returns) 

 BTC EUR JPY CAN GBP 

BTC 1.0000     

EUR 0.0180 1.0000    

JPY -0.0007 0.3477 1.0000   

CAN 0.0371 0.4380 0.1230 1.0000  

GBP 0.0278 0.5416 0.1654 0.4511 1.0000 

Notes. The table presents the correlation between Bitcoin (BTC) and the four exchange 

rates log returns: Euro (EUR), Japanese Yen (JPY), Canadian Dollar (CAN) and British 

Pound (GBP). 
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Figure 2.3. US Dollar Currency Prices – Daily Frequency 
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Figure 2.4. Daily Returns (Log-Price Changes)  
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2.5.2 Unconditional Distribution of Returns  

Table 2.3 presents the estimated parameters of the unconditional Skewed Generalized 

Error Distribution (SGED). The resulting SGED distributions of each series and the 

normal distribution (dotted curve) are presented in figure 2.5.  

 The estimated parameters for the first two moments (expected values and standard 

deviations) of all the series are very similar to those of Table 2.1. The asymmetry 

parameter is positive for BTC, EURO, JPY and negative for CAN and GBP. The 

estimated shape parameter of the Bitcoin is lower than one (excess kurtosis). This is not 

true for the other assets. All the rest assets present kurtosis larger than one. This is a key 

characteristic of Bitcoin’s returns, a highly peaked probability distribution. That is, 

Pearson’s kurtosis for the BTC is 12.38. This means that the kurtosis of Bitcoin is about 

2.5 to 3 times larger than that of the other currencies and four times larger than the kurtosis 

of the normal distribution (KU = 3). For example, the EURO’s kurtosis is 4.81 which is 

three times lower compared to that of BTC.  

 These findings lead to the following conclusions. Firstly, Bitcoin’s mean and 

volatility is quite larger in relation to the other assets. Secondly, it exhibits a completely 

different probabilistic behaviour due to the high uncertainty presented in the data. This is 

a contradictory finding compared to the other assets. Therefore, these findings lead to a 

further investigation of the properties of Bitcoin’s series in relation to the other assets 

using a model that accounts for skewness and kurtosis characteristics.  
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Table 2.3. Estimated Parameters of the Unconditional SGED Distribution of 

Returns 

Parameters BTC EUR JPY CAN GBP 

μ 0.3789 -0.0101 -0.0143 -0.0132 -0.0117 

 (0.1727)** (0.0145) (0.0157) (0.0137) (0.016) 

σ 5.5572 0.5109 0.5575 0.4807 0.5611 

 (0.1586)** (0.0102)** (0.0113)** (0.0091)** (0.0104)** 

k 0.664 1.1863 1.05 1.2063 1.1613 

 (0.028)** (0.0533)** (0.0427)** (0.0498)** (0.0379)** 

λ 0.0211 0.0173 0.0225 -0.0068 -0.0366 

 (0.0875) (0.0193) (0.016)* (0.0193) (0.0178)** 

SK 0.1626 0.0577 0.0889 -0.0222 –0.1255 

KU 12.3817 4.8101 5.6143 4.7149 4.9428 

Log–L -6,407.50 -1,566.80 -1,707.20 -1,438.80 -1,764.60 

LR 1,290.20** 180.80** 342.251** 183.638** 322.617** 

Notes. The table presents the estimated distributional parameters of the unconditional 

distribution of Bitcoin and exchange rate returns obtained from the maximization of an 

unconditional log-likelihood function based on the unconditional SGED distribution (all 

skewed generalized error distribution parameters are modelled as fixed). The parameters 

μ, σ, λ and k represent the mean, standard deviation, the asymmetry, and the shape 

parameters of the SGED distribution. Standard errors are included in the parentheses. The 

SK and KU are the Pearson’s skewness and the kurtosis parameters, respectively. Log-L 

is the maximum likelihood value and LR is the log-likelihood ratio test statistic for 

normality. *, and ** indicate statistically significant at 10%, and 5%.  
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Figure 2.5. Unconditional Distributions of Daily Returns Based on the SGED 
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2.5.3 Higher-Order – Dependencies  

This sub-section presents further statistics to investigate whether daily log–returns exhibit 

higher-order moment dependencies such as, conditional heteroscedasticity, asymmetric 

volatility, and other dependencies; see Theodossiou (2015).26 

Table 2.4 reports the statistics given by equations (B7) to (B12) in Appendix II 

and their standard errors for the returns. The findings reveal the statistical behaviour of 

the daily log–returns indicating the consistency of the earlier results with regards to the 

stochastic nature of all the series. Statistics based on equations (B13) and (B14) show 

volatility clustering and asymmetric volatility, respectively. These statistics are reported 

in Table 2.4 and the results reveal the presence of both. Asymmetric volatility is presented 

in the cases of BTC, JPY, CAN, and GBP. The volatility is higher in the bear than in the 

bull market when the statistics are negative. Conditional heteroscedasticity is presented 

in all series. Table 2.4 also presents more complex higher-order dependencies (non–

linearities). The findings show that higher-order dependencies are presented in the case 

of BTC followed by JPY and GBP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26 See also mathematical proofs and test statistics in Appendix II. 
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Table 2.4.  Higher-Order Moment Dependencies  

Estimates BTC EUR JPY CAN GBP 
2

1t tz z −  -0.331 0.032 0.057     -0.055 -0.185 

 (0.103)*** (0.048) (0.059) (0.051) (0.105)* 
2

2t tz z −  -0.25 0.043 -0.003 -0.029 0.007 

 (0.103)** (0.048) (0.059) (0.051) (0.105) 
2

3t tz z −  0.17 0.066 0.099 -0.093 -0.182 

 (0.103)* (0.048) (0.059)* (0.051)* (0.105)* 

1 2t t tz z z− −  0.504 -0.013 0.000 0.005 0.079 

 (46.979) (46.979) (46.979) (46.979) (46.979) 
3

1t tz z −  2.283 -0.078 -0.028 0.286 -0.271 

 (0.897)** (0.153) (0.261) (0.206) (1.348) 
3

2t tz z −  -1.445 0.182 0.354 -0.289 -0.203 

 (0.897) (0.153) (0.261) (0.206) (1.348) 
3

3t tz z −  0.122 -0.072 0.100 0.034 0.209 

 (0.897) (0.153) (0.261) (0.206) (1.348) 
2 2

1 1t tz z − −  5.265 0.444 0.671 0.418 4.055 

 (0.5)*** (0.107)*** (0.161)*** (0.124)*** (0.516)*** 
2 2

2 1t tz z − −  5.919 0.273 0.585 0.454 0.987 

 (0.5)*** (0.107)** (0.161)*** (0.124)*** (0.516)* 
2 2

3 1t tz z − −  3.719 0.484 0.459 0.310 1.213 

 (0.5)*** (0.107)***(0.161)*** (0.124)** (0.516)** 
2

1 2t t tz z z− −  -1.249 -0.024 -0.017 0.037 -0.204 

 (0.103)*** (0.048) (0.059) (0.051) (0.105)* 

 0.036 -0.030 -0.159 -0.017 0.48 

 (0.021)* (0.021) (0.059)*** (0.021) (0.021)*** 

 

Notes. All daily prices are expressed in USD. Returns are continuously compounded and 

standardized using the equation ( ), ,i t i t i iz r r = − where ir  is the sample mean and i  the 

standard deviation of each currency’s returns. This table presents the test statistics such 

as asymmetric volatility, heteroscedasticity, and higher order linearities. The standard 

errors are included in the parentheses. *,**, and *** indicates statistical significance at 

the 10%, 5%, and 1%. 

 

 

 

 

 

 

 

1 2 3t t t tz z z z− − −
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2.5.4 Estimation of the Relationship: Risk and Return - Univariate Estimation 

The parameters of the conditional variance, conditional mean, conditional asymmetry, 

and conditional shape equations (equations 2.9-2.15) are estimated through the 

maximization of the SGED log-likelihood of the return series in each Bitcoin and 

exchange rate. 

Conditional Variance and Mean 

Table 2.5 presents the results of the estimated parameters, vi, αN,i, ai, and βi for the 

conditional variance computed by equation (2.9) and m0,i, bi,, ,i t , ci, and ,i t for the 

conditional mean computed by equation (2.11).  

Table 2.5 Panel A presents the estimated parameters of the conditional variance 

equation. The parameter αN,i is positive and significant for the cases of CAN and GBP, 

positive and insignificant for the case of EUR, and negative and insignificant for the case 

of BTC and JPY. Also, the negative asymmetric volatility is in line with the literature. 

For example, Baur and Dimpfl (2018) found that most cryptocurrencies present a negative 

asymmetric volatility parameter. The asymmetric volatility of EUR and JPY is found to 

be insignificant; this is due to the two-sided effect of the exchange rates (Theodossiou, 

1994). The coefficient ai is positive and significant for all series. The parameter βi is 

positive and significant for all cases indicating that volatility is persistent over time. 

Figure 2.6 presents the conditional time-varying volatility of the returns. The 

horizontal line represents the unconditional standard deviation given in Table 2.3. For the 

case of BTC, it ranges from 0 to 25, much higher compared to the currencies, due to the 

great volatility observed in the prices of Bitcoin. 

Table 2.5 Panel B reports the estimated parameters of the conditional mean 

equation. The estimated parameters of the coefficients that measure the total price of risk 

(the pure price plus the skewness price of risk) given as the mean value of , ,i t i i tc = +

( ,i t ), are insignificant for all cases except BTC (positive and significant). This suggests 

that there is a significant relationship between the volatility and the conditional mean 

returns. This is also the case for the pure price of risk ci (positive and significant only for 

the case of BTC). The average estimated coefficients of the skewness price of risk, ,i t , 

are negative and significant for all cases except the case of EURO and JPY (positive and 

significant). Overall, the above findings highlight the importance of the skewness on the 
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model to investigate the risk and return relationship, e.g., León et al. (2005), Theodossiou 

and Savva (2016), and Savva and Theodossiou (2018). 

The estimated parameter bi is negative and significant in all cases apart from EUR 

(positive and significant) suggesting that these currencies are predicted by their own lag 

values. Figure 2.7 illustrates the behaviour of the conditional time-varying expected value 

with the horizontal line denoting the unconditional mean (as estimated in Table 2.3). From 

the plots, it is inferred that BTC ranges between -2 to 5 which is higher compared to the 

rest of the assets. 

Table 2.5. Estimation of the Conditional Variance and Mean 

 BTC EUR JPY CAN GBP 

Panel A.  

Conditional variance: ( )2 2 2

, , , 1 , 1 , 1i t i N i i t i i t i i tv a N a   − − −= + + +  

vi 1.072 0.001 0.003 0.001 0.002 

 (0.214)** (0.000)** (0.001)** (0.001)* (0.001)** 

αi 0.190 0.030 0.064 0.025 0.026 

 (0.034)** (0.007)** (0.013)** (0.009)** (0.011)** 

αN,i -0.026 0.009 -0.008 0.036 0.040 

 (0.036) (0.010) (0.016) (0.012)** (0.014)** 

βi 0.799 0.963 0.930 0.953 0.947 

 (0.022)** (0.007)** (0.012)** (0.010)** (0.010)** 

Panel B. 

Conditional mean: ( ), 0, , 1 , ,i t i i i t i i t i tm b r c  −= + + +  

m0,i -0.035 -0.053 0.009 -0.024 -0.033 

 (0.084) (0.029)* (0.035) (0.036) (0.034) 

bi -0.097 0.024 -0.081 -0.088 -0.074 

 (0.019)** (0.012)** (0.020)** (0.024)** (0.023)** 

,i t  0.080 0.093 -0.054 0.020 0.046 

 (0.030)** (0.066) (0.076) (0.112) (0.066) 

ci 0.095 0.064 -0.073 0.066 0.095 

 (0.030)** (0.066) (0.076) (0.112) (0.066) 

,i t  -0.015 0.029 0.019 -0.046 -0.049 

 (0.002)** (0.001)** (0.002)** (0.002)** (0.002)** 

Notes. The sum of the pure price of risk (ci) and the skewness price of risk (δi,t) denoted 

by ξi,t = ci + δi,t, measures the impact of conditional risk on mean returns. The coefficients 

aN,i, ai and βi are indicative of asymmetric volatility, volatility clustering and persistence. 

*, and ** indicate significant higher-order moment dependencies at 10%, and 5%, 

respectively. 
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Conditional Asymmetry and Shape Indexes 

Table 2.6 presents the results of the estimated parameters γ0,i, γΝ,i, γP,i, and γh,i for the 

asymmetry index and conditional asymmetry parameter calculated by equations (2.12-

2.14), d0,i, dN,i, dP,i , and dh,i for the shape index and conditional shape parameter calculated 

by equation (2.11) and  and k  (sample averages) with their standard errors of all 

financial assets. Panel A of Table 2.6 reports the maximum likelihood estimated 

parameters of the conditional asymmetry index. The results show that the downside 

asymmetry coefficient, γΝ,i, is negative in all cases (but statistically significant in the cases 

of JPY, CAN, and GBP).  The upside asymmetry coefficient, γP,i, is significant only for 

BTC and JPY, suggesting that the past upside shocks have a positive impact on the 

asymmetry index. Furthermore, this coefficient is greater for all cases compared to the 

downside asymmetry coefficient apart from the case of EUR. The estimated parameter 

γ0,i is insignificant for all cases except BTC (negative and significant) while the 

persistence of past price shocks, γh,i, (downside and upside) is significant only for the 

cases of BTC, and EUR. 

Panel B of Table 2.6 presents the estimated values of d0,i, dN,i, dP,i , and dh,i of the 

conditional shape index gi,t given by equation (2.15) and their standard errors. The 

constant shape parameter (d0,i) is negative and significant for BTC, positive and 

significant for CAN and GBP, and positive but insignificant for EURO and JPY. The 

parameter dN,i is positive and significant only for BTC and negative and significant for 

EURO while dP,i  is positive and significant only for BTC indicating the importance of 

the downside and upside shocks decomposition in the conditional time-varying shape 

specification for these currencies. The parameter dh,i is statistically significant at 5% level 

for all cases except EURO and JPY. 

Panel C of Table 2.6 reports the average values of the conditional asymmetry and 

shape parameters and their standard errors.27 The conditional asymmetry parameter,  , 

is negative and significant for all cases apart from EURO and JPY (positive and 

significant) indicating a negatively (positively) skewed distribution. The conditional 

shape parameter, k , is highly significant for all cases suggesting a leptokurtic empirical 

distribution (lower than one for the case of BTC). Focusing on the BTC, the shape 

 
27 λi,t (asymmetry) and ki,t (shape) are time – varying parameters, therefore, the average 

values of  and k  are presented. 
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parameter suggests a highly peaked distribution in relation to the other currencies. Figures 

2.8 and 2.9 present the time-varying conditional asymmetry and shape parameters, λi,t  and 

ki,t (respectively), estimated by ST-GJR-GARCH model under the SGED distribution. 

The horizontal line represents the unconditional distributional estimated parameters 

(asymmetry and shape parameters) given in Table 2.3.  

Panel D of Table 2.6 presents the standardized skewness and standardized 

kurtosis. Standardized skewness is negative for BTC, CAN, and GBP, and positive for 

the rest assets. The standardized kurtosis of BTC is almost two times higher (8.344) 

compare to the rest of the exchange rates. In this case, the volatility shocks of the BTC 

have wider spread than the rest assets (figure 2.10).  

Table 2.7 presents the percentiles for the conditional time-varying estimated 

parameters (conditional variance, conditional mean, conditional asymmetry, and shape 

parameters) for each return series. The conditional variance of Bitcoin ranges from 5.56 

to 549.22, indicating the persistence of high volatility across time which is quite larger 

compared to the rest assets. This is also happening in the case of the conditional mean. 

The conditional means take lower values compared to that of BTC (-1.57 to 5.06 in the 

case of BTC). Furthermore, the conditional asymmetry parameter is ranging from -0.24 

to 0.52 for BTC; -0.11 to 0.06 for EUR; -0.41 to 0.36 for JPY; -0.48 to 0.21 for CAN and 

-0.27 to 0.20 to GBP. The conditional shape parameter of all series varied between 0.4 

(kL) and 1.6 (kU). These are the pre-defined minimum and maximum bounds of the 

conditional shape parameter. The above findings reveal the importance of the use of a 

time-varying asymmetric model to investigate the stochastic properties of BTC compared 

to the rest assets.  
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Table 2.6. Estimation of the Asymmetry and Shape Indexes 

 BTC EUR JPY CAN GBP 

Panel A.  

Asymmetry parameter: , 0, , , 1 , , 1 , , 1i t i N i i t P i i t h i i th u u h   − +

− − −= + + + , ( )( ), ,1 2 1 expi t i th = − +   

γ0,i -0.059 0.018 0.037 -0.028 -0.069 

 (0.035)* (0.018) (0.054) (0.102) (0.069) 

γN,i -0.054 -0.005 -0.157 -0.194 -0.112 

 (0.046) (0.022) (0.062)** (0.062)** (0.055)** 

γP,i 0.189 -0.033 0.117 0.088 0.091 

   (0.063)** (0.026) (0.051)** (0.060) (0.060) 

γh,i 0.360 0.907 0.004 -0.208 -0.288 

                        (0.208)*              (0.108)**            (0.226)           (0.246)        (0.220) 

Panel B.  

Shape parameter: , 0, , 1 , 1 , , 1i t i N i t P i t h i i tg d d u d u d g− +

− − −= + + +  , ( ) ( )( ), ,1 expi t U L U i tk k k k g= + − +  

d0,i -0.105 0.969 1.436 4.677 1.992 

 (0.036)** (0.621) (0.880) (2.349)** (0.842)** 

dN,i 0.084 -0.623 -0.352 -0.460 -0.496 

 (0.045)* (0.306)** (0.255) (0.511) (0.626) 

dP,i 0.188 0.350 -0.259 -0.315 -1.494 

 (0.058)** (0.779) (0.270) (0.460) (0.525)** 

dh,i 0.971 0.419 -0.330 -0.994 0.477 

 (0.011)** (0.411) (0.858) (0.048)** (0.227)** 

Panel C. Sample averages 

,i t  -0.012 0.019 0.013 -0.031 -0.032 

 (0.002)** (0.001)** (0.002)** (0.002)** (0.001)** 

,i tk  0.876 1.368 1.253 1.454 1.470 

 (0.002)** (0.001)** (0.002)** (0.002)** (0.001)** 

Panel D. Other 

L(θ) -6,162.554 -1,454.166 -1,594.068 -1,319.456 -1,643.271 

SK -0.090 0.054 0.036 -0.082 -0.065 

KU 8.344 4.172 4.574 3.952 4.023 

Notes. This table presents the estimated asymmetry and shape parameters. The 

parameters γ0,i, γN,i, γP,i, and γh,i measure the impact of past negative and positive shocks 

on the asymmetry parameter. The minimum and maximum bounds for ki,t set to kL = 0.4 

and kU = 1.6, respectively. The coefficients d0,i, dN,i, dP,i, and dh,i measure the impact of 

past negative and positive shocks on the shape parameter and control the shape of the 

distribution. ( ), 1 , 1 , 1 , 1i t i t i t i tu r m − − − − − is the standardized excess to mode return. L(θ) is 

the sample log-likelihood values. SK and KU are Pearson’s skewness and kurtosis, 

respectively. The estimated parameters are statistically insignificant unless otherwise 

noted. *, and ** indicate significance at 10%, and 5%, respectively. 
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Table 2.7. Percentiles of Conditional Estimated Parameters 

 Min 0.05 0.1 0.25 0.5 0.75 0.9 0.95 Max 

BTC 
2

,i t  5.56 -0.26 7.60 6.28 17.58 32.85 67.33 497.49 549.22 

μi,t -1.57 -0.26 -0.10 0.12 0.30 0.56 1.03 1.40 5.06 

λi,t -0.24 -0.09 -0.07 -0.05 -0.03 0.01 0.08 0.13 0.52 

ki,t 0.54 0.62 0.66 0.76 0.86 0.97 1.11 1.21 1.47 

EURO          
2

,i t  0.07 0.08 0.10 0.16 0.22 0.36 0.50 0.57 0.78 

μi,t -0.06 -0.04 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.06 

λi,t -0.11 -0.02 -0.01 0.01 0.02 0.03 0.05 0.05 0.06 

ki,t 0.65 1.17 1.23 1.32 1.39 1.44 1.47 1.49 1.56 

JPY          
2

,i t  0.08 0.11 0.13 0.17 0.24 0.39 0.63 0.78 1.43 

μi,t -0.29 -0.11 -0.08 -0.05 -0.03 0.00 0.02 0.04 0.18 

λi,t -0.41 -0.10 -0.07 -0.02 0.02 0.05 0.09 0.11 0.36 

ki,t 0.75 1.14 1.18 1.23 1.27 1.29 1.31 1.32 1.40 

CAN          
2

,i t  0.05 0.08 0.09 0.14 0.19 0.30 0.43 0.51 0.97 

μi,t -0.18 -0.04 -0.03 -0.01 0.01 0.04 0.07 0.09 0.30 

λi,t -0.48 -0.17 -0.13 -0.07 -0.01 0.02 0.04 0.07 0.21 

ki,t 0.83 1.22 1.30 1.41 1.48 1.53 1.56 1.57 1.59 

GBP          
2

,i t  0.08 0.12 0.15 0.20 0.26 0.35 0.49 0.63 1.71 

μi,t -0.18 -0.04 -0.03 -0.01 0.01 0.04 0.07 0.09 0.30 

λi,t -0.27 -0.12 -0.10 -0.06 -0.03 0.00 0.03 0.05 0.20 

ki,t 0.41 1.21 1.33 1.46 1.52 1.54 1.56 1.56 1.57 

Notes. This table presents the time-varying behaviour of each estimated parameter. The 

percentiles of the conditional estimated parameters of all return series are computed using 

the equation (2.9) for the conditional variance ( 2

,i t ), equation (2.11) for the conditional 

mean (μi,t), equation (2.12) for the conditional asymmetry parameter (λi,t) and equation 

(2.15) for the conditional shape parameter (ki,t).  
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Figure 2.6. Conditional Standard Deviation – Daily Frequency 

 

 

 

 

 

 

 

 

 

 

  

 



96 

 

Figure 2.7. Conditional Mean – Daily Frequency 
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Figure 2.8. Conditional Asymmetry Parameter – Daily Frequency 
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Figure 2.9. Conditional Shape Parameter – Daily Frequency 
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Table 2.8 presents the correlation of standardized residuals between BTC and the 

exchange rates. The results show that the correlation is extremely low, supporting the 

existing evidence (Briere et al., 2015). This also proves that the ST-GJR-GARCH-SGED 

model gives accurate results.  

Table 2.8. Correlation Matrix of Standardized Residuals 

  BTC EUR JPY CAN GBP 

BTC 1     

EUR 0.0105 1    

JPY 0.0027 0.3231   1   

CAN     0.0313 0.3999   0.1080 1  

GBP 0.0081 0.5481   0.1903    0.4121    1 

Notes. This table presents the correlation matrix of the standardized residuals. The 

standardized residuals are computed by ( ), , , , , ,i t i t i t i t i t i tz r    = − = , where μi,t and σi,t 

are the expected value and standard deviation, respectively. 

 

 Table 2.9 reports the downside and upside mean probabilities using the equations 

(2.13) and (2.14). In the case of BTC, CAN, and GBP the upside probability is lower than 

the downside indicating that there is a higher probability of a negative shock to occur than 

a positive (negatively probability distribution). The difference between the upside and 

downside probability is the conditional asymmetry parameter. In the cases of EURO and 

JPY, the upside probabilities are higher than the downside probabilities, therefore, 

exhibiting positively probability distribution.  

Table 2.9. Mean Downside and Upside Probabilities 

         BTC EUR                JPY              CAN     GBP 

Downside Prob.            0.506 0.496           0.494            0.508     0.516 

Upside Prob.                 0.494                 0.510 0.506            0.492     0.484 

Diff. Prob.                    -0.012                0.019 0.013           -0.016        -0.032 

Notes. This table presents the downside and upside mean probabilities that are computed 

using the equations (2.16) and (2.17). The difference between upside and downside 

probability gives the asymmetry parameter (also reported in Table 2.6, Part C). 
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Figure 2.10. Standardized Residuals  
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The finding that the estimated shape parameter, k, is lower than one in the case of 

Bitcoin indicates more leptokurtic in Bitcoin’s returns compared to the other assets (see 

also Takaishi, 2018). Furthermore, the results suggest that ignoring skewness and kurtosis 

in the estimation of the risk and return relationship, may lead to misleading findings, e.g., 

Savva and Theodossiou (2018).  

2.5.5 Mean and Volatility Spillover – Bivariate Estimation  

To investigate the mean and volatility spillovers from Bitcoin to exchange rates and vice 

versa the analysis was extended on a bivariate context. 

Conditional Variance 

Table 2.10 Panel A presents the results of the estimated parameters, vi , αi , aN,i ,βi, ai,j , and 

βi,j for the conditional variance calculated by equation (2.19) of BTC as the endogenous 

variable and other asset as exogenous. Table 2.11 reports the estimates with BTC as the 

exogenous variable.  

As for the estimated parameters of the conditional variance presented in Panel A 

of Table 2.5, the estimated parameters vi and ai are positive and significant in all cases 

while the parameter aN,i is negative and insignificant in all cases. The parameter βi is 

positive and significant for all cases indicating that volatility is persistent over time. The 

volatility and asymmetric volatility spillovers from exchange rate to BTC are captured by 

the coefficients ai,j ,and bi,j. The estimated parameters do not reveal a statistical effect 

(positive or negative) indicating that BTC’s volatility is not affected by the rest assets.  

The reverse relationship is also investigated to show whether Bitcoin affects the 

behaviour of the four exchange rates (Table 2.11). The estimated parameter vi and ai are 

positive and significant in all cases. The parameter aN,i is negative and insignificant for 

EURO-BTC and JPY-BTC and positive and significant for CAN-BTC and GBP-BTC. 

The parameter βi is positive and significant for all cases. The estimated parameter ai,j  is 

insignificant in all cases (apart from EURO-BTC where it is positive and significant) 

while the parameter βi,j is negative and significant for EURO-BTC and GBP-BTC. The 

last two parameters are very close to zero indicating that BTC has no effect on the 

exchange rate’s risk. 

Figure 2.11 depicts the pattern of the conditional volatility (which is perceived as 

a proxy for risk). For the case that examined the effect of exchange rates on BTC, it ranges 
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from 0 to 25 (blue figure). Interestingly, the conditional volatility for the case that 

examined the effect of BTC on exchange rates shows that conditional volatilities are quite 

lower indicating the weak volatility spillover effects from Bitcoin to exchange rates and 

vice versa (red figure).  

Conditional Mean 

Table 2.10 Panel B presents the results of the estimated parameters, mo,i , bi , bi,j , ξ i,j , ,i t  

, ci, and ,i t  for the conditional mean calculated by equation (2.18) of BTC as the 

endogenous variable and other asset as exogenous. Table 2.11 Panel B reports the 

estimates with BTC as the exogenous variable.  

Table 2.10 (Panel B) reports the estimated parameters of the conditional mean 

equation. The estimated parameters of the total price of risk ( ,i t ) computed as the 

average of the pure price plus skewness price of risk ( , ,i t i i tc = + ) are positive and 

significant for all cases. Positive and significant is also for the case of BTC in the 

univariate analysis. The pure price of risk ci is positive and significant while the average 

estimated coefficients of the skewness price of risk, ,i t , is negative and significant in all 

cases.  

The estimated parameter mo,i is negative and significant for EURO-BTC and 

positive and insignificant for the rest assets. The parameter bi is negative and significant 

in all cases suggesting that BTC is predicted by its own lag values. The estimated 

parameter bi,j is negative and significant for BTC-JPY, negative and insignificant for 

BTC-GBP and positive and insignificant for the rest assets. In other words, past returns 

of the Japanese yen negatively affect the current returns. The estimated parameter ξi,j is 

positive and significant for BTC-EURO. 

Table 2.11 (Panel B) shows the estimated parameters of the conditional mean 

equation when Bitcoin is the exogenous variable. The estimated parameters of the total 

price of risk (pure price plus skewness price of risk) computed as the mean value of 

, ,i t i i tc = +  ( ,i t ), are positive and insignificant for JPY-BTC and CAN-BTC, and 

negative and insignificant for EURO-BTC and negative and significant for GBP-BTC. 

The pure price of risk ci is negative and insignificant in the case of EURO-BTC, positive 

and insignificant in CAN-BTC and JPY-BTC, and negative and significant in GBP-BTC. 
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The average estimated coefficient of the skewness price of risk, ,i t , is positive and 

significant for EURO-BTC, and negative and significant for the rest assets.  

The estimated parameter mo,i is positive and insignificant in JPY-BTC and GBP-

BTC (negative and insignificant for EURO-BTC and CAN-BTC). The parameter bi is 

negative and significant for JPY-BTC, negative and insignificant for CAN-BTC and 

GBP-BTC and positive and insignificant for EURO-BTC. The estimated parameter bi,j is 

negative and insignificant in all cases except EURO-BTC (positive and insignificant). 

The estimated parameter ξi,j is statistically insignificant in all cases suggesting that 

Bitcoin’s volatility is not affecting the behaviour of the rest assets. 

Finally, figure 2.12 illustrates the behaviour of the conditional mean computed by 

equation (2.18). From the plots, it can be inferred that when the spillover effects are 

investigated from exchange rates to BTC, conditional means range between -3 to 6 (blue 

figure). However, this is not happening when the investigation of the spillover effects are 

from BTC to exchange rates. In this case, the values are much smaller compared to the 

inverse relationship (red figure).  
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Table 2.10. Bitcoin-Exchange Rates, Conditional Variance and Mean 

                        BTC-EURO                  BTC-JPY             BTC-CAN BTC-GBP  

Panel A.  

Conditional variance: ( ) ( ) ( )2 2 2 2

, , 1 , , 1 , 1 , 1 , , 1 , , 1

1

var
M

i t i t t i N i i t i i t i i t i j j t i j j t

j i

r I v a N a a N    − − − − − −

 =

= = + + + + +  

vi 0.6723 0.4101 0.2634 0.3822 

 (0.2986)** (0.1523)** (0.1201)** (0.1618)** 

αi 0.1852 0.1824 0.1639 0.1814 

 (0.037)** (0.0366)** (0.023)** (0.0385)** 

αN,i -0.0301 -0.0423 -0.0381 -0.0425 

 (0.0347) (0.037) (0.0256) (0.0372) 

βi 0.8288 0.8377 0.8542 0.8389 

 (0.0359)** (0.0328)** (0.0222)** (0.0387)** 

αi,j -0.1523 0.0408 0.0093 0.0466 

 (1.3567) (0.6837) (0.1658) (2.0397) 

βi,j -0.2273 0.0891 -0.0175 0.0997 

 (0.8795) (0.5189) (0.5471) (0.9758) 

Panel B. 

Conditional mean: ( ) ( ), , 1 0 , 1 , , , , 1 , ,

1 1

M M

i t i t t i i t i i t i t i j j t i j j t

j i j i

E r I m b r c b r    − − −

 =  =

= = + + + + +   

m0,i -0.3061 0.0535 0.1283 0.0527 

 (0.0814)** (0.0596) (0.2405) (0.1167) 

bi -0.1195 -0.0872 -0.0641 -0.0871 

 (0.0100)** (0.0186)** (0.0174)** (0.0446)* 

bi,j 0.0027 -0.0713 0.0166 -0.0159 

 (0.0282) (0.0387)* (0.0361) (0.0657) 

,i j  0.6203 0.078 0.0185 0.0473 

 (0.1171)** (0.1026) (0.3652) (0.1586) 

,i t  0.079 0.053 0.044 0.0577 

 (0.0085)** (0.0063)** (0.0243)* (0.0315)* 

ci 0.0857 0.081 0.0535 0.0776 

 (0.0081)** (0.006)** (0.0243)** (0.0315)** 

,i t  -0.0067 -0.028 -0.0095 -0.0199 

 (0.0027)** (0.0019)** (0.0013)** (0.0019)** 

Notes. The sum of the pure price of risk (ci) and the skewness price of risk (δi,t) denoted 

by ξi,t = ci + δi,t measures the impact of conditional risk on mean returns. The coefficients 

aN,i, ai and βi are indicative of asymmetric volatility, volatility clustering and persistence. 

The coefficient ξi,j measures the impact of risk in market j (exchange rates) on the mean 

of rates in market i (Bitcoin). The coefficients ai,j and βi,j (for i ≠ j) measure asymmetric 

volatility and volatility spillovers from j market into the i market. * and ** statistically 

significant at 10%, and 5%. The standard errors are presented in parentheses. 
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Table 2.11. Exchange Rates-Bitcoin, Conditional Variance and Mean  

 EURO-BTC JPY-BTC CAN-BTC GBP-BTC  

Panel A.  

Conditional variance: ( ) ( ) ( )2 2 2 2

, , 1 , , 1 , 1 , 1 , , 1 , , 1

1

var
M

i t i t t i N i i t i i t i i t i j j t i j j t

j i

r I v a N a a N    − − − − − −

 =

= = + + + + +  

vi 0.0033 0.0069 0.0025 0.0165 

 (0.0011)** (0.0021)** (0.001)** (0.0045)** 

αi 0.06 0.0978 0.0362 0.0524 

 (0.0127)** (0.0167)** (0.0118)** (0.0159)** 

αN,i -0.0049 -0.0186 0.0363 0.0543 

 (0.0147) (0.0204) (0.0153)** (0.0252)** 

βi 0.9306 0.8893 0.9324 0.8663 

 (0.0109)** (0.0142)** (0.0115)** (0.0219)** 

αi,j 0.0001 -0.0001 0.0001 0.0001 

 (0.0001)* (0.0001) (0.0001) (0.0001) 

βi,j -0.0001 0.0000 0.0000 -0.0001 

 (0.0001)* (0.0001) (0.0000) (0.0001)* 

Panel B. 

Conditional mean: ( ) ( ), , 1 0 , 1 , , , , 1 , ,

1 1

M M

i t i t t i i t i i t i t i j j t i j j t

j i j i

E r I m b r c b r    − − −

 =  =

= = + + + + +   

m0,i -0.0052 0.0077 -0.0077 0.0533 

 (0.0259) (0.0255) (0.0233) (0.0418) 

bi 0.0182 -0.1179 -0.0089 -0.0155 

 (0.0328) (0.0329)** (0.024) (0.0324) 

bi,j 0.0007 -0.0025 -0.0007 -0.0007 

 (0.0016) (0.0016) (0.0014) (0.0017) 

,i j  0.0003 -0.0061 -0.004 0.0019 

 (0.0035) (0.0041) (0.0032) (0.0035) 

,i t  -0.0109 0.006 0.0214 -0.1384 

 (0.0468) (0.0279) (0.0335) (0.0725)* 

ci -0.0573 0.0379 0.0337 -0.1318 

 (0.0468) (0.0278) (0.0335) (0.0725)* 

,i t  0.0464 -0.0319 -0.0123 -0.0067 

 (0.0003)** (0.0028)** (0.001)** (0.0003)** 

Notes. The sum of the pure price of risk (ci) and the skewness price of risk (δi,t) denoted 

by ξi,t = ci + δi,t measures the impact of conditional risk on mean returns. The coefficients 

aN,i, ai and βi are indicative of asymmetric volatility, volatility clustering and persistence. 

The coefficient ξi,j measures the impact of risk in market j (Bitcoin) on the mean of rates 

in market i (exchange rates). The coefficients ai,j and βi,j (for i ≠ j) measure asymmetric 

volatility and volatility spillovers from j market into the i market. * and ** statistically 

significant at 10%, and 5%. The standard errors are presented in parentheses. 
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Conditional Asymmetry and Shape Indexes 

Panel A of Table 2.12 reports the estimated parameters of the conditional asymmetry 

index when the examination of the spillover effects are from exchange rates to Bitcoin. 

The downside asymmetry coefficient, γΝ,i is negative and significant for BTC-EURO and 

negative and insignificant for the rest assets. The upside asymmetry coefficient, γP,i, is 

positive and significant for BTC-EURO and BTC-JPY suggesting that the past upside 

shocks have a positive impact on the asymmetry index. The persistence of past upside 

and downside price shocks, γh,i, is positive and insignificant in all cases except BTC-CAN 

(positive and significant) while the estimated parameter γ0,i is negative and insignificant 

in all cases. 

Panel B of Table 2.12 reports the estimated values of d0,i, dN,i, dP,i , and dh,i of the 

shape index gi,t given by equation (2.15) with their standard errors. The constant 

parameter, d0,i is negative and significant in all cases except BTC-CAN (negative and 

insignificant). The parameters dN,i and dP,i  are positive in all cases. The parameter dh,i is 

statistically insignificant in all cases.  

Panel C of Table 2.12 presents the sample averages of the conditional asymmetry 

and shape parameters with their standard errors.28 The conditional sample asymmetry 

parameter, ,i t , is negative and significant in all cases indicating a negatively skewed 

distribution. The conditional sample shape parameter, ,i tk , is smaller than one in all cases 

and highly significant suggesting a leptokurtic empirical distribution. In the univariate 

analysis, this parameter is smaller than one only in the case of BTC.  

Panel A of Table 2.13 reports the estimated parameters of the conditional 

asymmetry index when the examination of the spillover effects are from BTC to exchange 

rates. The downside asymmetry coefficient, γΝ,i is negative and insignificant in EURO-

BTC, negative and significant for JPY-BTC and CAN-BTC and positive and insignificant 

for GBP-BTC. The upside asymmetry coefficient, γP,i, is positive and significant for JPY-

BTC (positive and insignificant for GBP-BTC) and negative and insignificant for the rest 

assets. The persistence of past upside and downside price shocks, γh,i and the estimated 

parameter γ0,i are insignificant in all cases.  

 
28 Asymmetry and shape parameters are time – varying, therefore, the average values of 

 and k  are presented. 
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Panel B of Table 2.13 reports the estimated values of d0,i, dN,i, dP,i , and dh,i of the 

shape index gt given by equation (2.15) with their standard errors. The constant parameter, 

d0,i is significant in all cases except in the case of EURO-BTC which is negative and 

insignificant. The parameters dN,i and dP,i are positive and insignificant in all cases except 

in the case of JPY-BTC (positive and statistically significant). The parameter dh,i is 

statistically significant at 5% level in all cases. 

Panel C of Table 2.13 presents the sample averages of the conditional asymmetry 

and shape parameters with their standard errors. The conditional sample asymmetry 

parameter, ,i t , is positive and significant for EURO-BTC and negative and significant 

in all other cases. The conditional sample shape parameter, ,i tk , is highly significant and 

slightly higher than one for all cases suggesting a leptokurtic empirical distribution.  

Finally, Panel D of Tables 2.12 and 2.13 report the standardized skewness and 

kurtosis. Standardized skewness is negative in all the cases (Table 2.12). Standardized 

kurtosis is higher than three in all cases having almost the same standardized kurtosis as 

in the case of the univariate analysis indicating that the behaviour of BTC follows the 

same pattern. Standardized skewness (Table 2.13 Panel D) is negative in all cases except 

EURO-BTC (positive) and standardized kurtosis ranges from 4.0311 to 4.7465.  
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Table 2.12. Bitcoin-Exchange Rates, Conditional Asymmetry and Shape Indexes 

                        BTC-EURO                  BTC-JPY             BTC-CAN BTC-GBP  

Panel A.  

Asymmetry parameter: , 0, , , 1 , , 1 , , 1i t i N i i t P i i t h i i th u u h   − +

− − −= + + + , ( )( ), ,1 2 1 expi t i th = − +  

γ0,i -0.062 -0.0648 -0.0113 -0.0557 

 (0.0391) (0.0475) (0.0204) (0.0627) 

γN,i -0.0899 -0.0362 -0.0334 -0.0352 

 (0.0478)* (0.038) (0.0272) (0.0395) 

γP,i 0.2386 0.1525 0.0547 0.1444 

 (0.0513)** (0.077)** (0.0367) (0.1007) 

γh,i 0.0828 0.4146 0.7364 0.4308 

 (0.2112) (0.3664)  (0.2264)** (0.5188) 

Panel B.  

Shape parameter: , 0, , 1 , 1 , , 1i t i N i t P i t h i i tg d d u d u d g− +

− − −= + + +  , ( ) ( )( ), ,1 expi t U L U i tk k k k g= + − +  

d0,i -0.9787 -0.7918 -0.1841 -0.7307 

 (0.2039)** (0.2169)** (0.206) (0.3599)** 

dN,i 0.4768 0.2295 0.0054 0.2177 

 (0.2092)** (0.1732) (0.0757) (0.1947) 

dP,i 0.9766 1.8513 0.0284 1.4838 

 (0.3317)** (2.1698) (0.1242) (3.0457) 

dh,i 0.0465 -0.0393 0.5421 0.0052 

 (0.1981) (0.0613) (0.556) (0.3255) 

Panel C. Sample averages 

,i t  -0.0067 -0.0224 -0.007 -0.0163 

 (0.0019)** (0.0013)** (0.0009)** (0.0013)** 

,i tk  0.8533 0.9478 0.889 0.9407 

 (0.0019)** (0.0013)** (0.0009)** (0.0013)** 

Panel D. Other 

L(θ) -6,180.24 -6,191.09 -6,203.75 -6,19183 

SK -0.0896 -0.1604 -0.0372 -0.1261 

KU 8.2914 7.2359 7.199 7.1549 

    

Notes. The parameters γ0,i, γN,i, γP,i, and γh,i measure the impact of past negative and 

positive shocks on the asymmetry parameter. The minimum and maximum bounds for ki,t 

set to kL = 0.4 and kU = 1.6, respectively. The coefficients d0,i, dN,i, dP,i, and dh,i measure 

the impact of past negative and positive shocks on the shape parameter and control the 

shape of the distribution. ( ), 1 , 1 , 1 , 1i t i t i t i tu r m − − − − − is the standardized excess to mode return. 

L(θ) is the sample log-likelihood values. SK and KU are the Pearson’s skewness and the 

kurtosis, respectively. The estimated parameters are statistically insignificant unless 

otherwise noted. * and ** statistically significant at 10%, and 5%. The standard errors are 

presented in parentheses.  
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Table 2.13. Exchange Rates-Bitcoin, Conditional Asymmetry and Shape Indexes 

 EURO-BTC JPY-BTC CAN-BTC GBP-BTC  

Panel A.  

Asymmetry parameter: , 0, , , 1 , , 1 , , 1i t i N i i t P i i t h i i th u u h   − +

− − −= + + + , ( )( ), ,1 2 1 expi t i th = − +  

γ0,i 0.0484 -0.0239  0.0431 -0.0184 

 (0.0922) (0.0532) (0.039) (0.0452) 

γN,i -0.0137 -0.1987 -0.0993 0.0115 

 (0.0600) (0.0672)** (0.054)* (0.0509) 

γP,i -0.0299 0.1549 -0.0395 0.0258 

 (0.0607) (0.056)** (0.0546) (0.0605) 

γh,i 0.4876 0.0203 0.4087 0.5124 

 (1.1904) (0.1859) (0.4126) (1.4082) 

Panel B.  

Shape parameter: , 0, , 1 , 1 , , 1i t i N i t P i t h i i tg d d u d u d g− +

− − −= + + +  , ( ) ( )( ), ,1 expi t U L U i tk k k k g= + − +  

d0,i -0.1127 -0.1896 -0.1682 -0.1602 

 (0.0763) (0.088)** (0.0867)* (0.0943)* 

dN,i 0.1647 0.2216 0.3096 0.2674 

 (0.161) (0.1502) (0.2136) (0.1812) 

dP,i 0.3018 0.5389 0.3138 0.3706 

 (0.2113) (0.2361)** (0.2168) (0.2784) 

dh,i 0.9618 0.9176 0.9718 0.9682 

 (0.0275)** (0.0404)** (0.0148)** (0.0212)** 

Panel C. Sample averages 

,i t  0.0308 -0.0221 -0.0078 -0.0044 

 (0.0002)** (0.0019)** (0.0006)** (0.0002)** 

,i tk  1.3868 1.2631 1.4395 1.458 

 (0.0002)** (0.0019)** (0.0006)** (0.0002)** 

Panel D. Other 

L(θ) -1,478.51 -1,619.13 -1,338.3 -1,666.58 

SK 0.0871 -0.0747 -0.0132 -0.0132 

KU 4.2071 4.7465 4.3579 4.0311  

Notes. The parameters γ0,i, γN,i, γP,i, and γh,i measure the impact of past negative and 

positive shocks on the asymmetry parameter. The minimum and maximum bounds for ki,t 

are set to kL = 0.4 and kU = 1.6, respectively. The coefficients d0,i, dN,i, dP,i, and dh,i measure 

the impact of past negative and positive shocks on the shape parameter and control the 

shape of the distribution. ( ), 1 , 1 , 1 , 1i t i t i t i tu r m − − − − − is the standardized excess to mode return. 

L(θ) is the sample log-likelihood values. SK and KU are Pearson’s skewness and kurtosis. 

The estimated parameters are statistically insignificant unless otherwise noted. *, and ** 

statistically significant at 10%% and 5%, respectively. The standard errors are presented 

in parentheses.  
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Figure 2.11. Conditional Standard Deviation of Daily Returns Over Time (Bivariate 

Analysis) 
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Figure 2.12. Conditional Mean of Daily Returns Over Time (Bivariate Analysis) 
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2.5.6 Forecasting Bitcoin’s Prices 

To further explore the forecasting ability of the model and compare it with other existing 

GARCH models, the forecasting prices of BTC are computed using the Skewed Normal, 

Skewed Laplace, Laplace, and the Normal probability distributions in the GARCH and 

GJR GARCH specifications. Table 2.14 presents the setting parameters for each GARCH 

specification under these different probability distributions. For example, in the case of 

the GARCH Normal model aN,i = 0 in the conditional variance equation, δi,t = 0 in the 

conditional mean equation, λi,t = 0 in the conditional asymmetry parameter, and ki,t = 2 in 

the conditional shape parameter. For the rest of the GARCH specifications see Table 2.14. 

Table 2.14. GARCH specifications under Different Probability Distributions. 

GARCH  

Models 

Conditional  

Variance 

Conditional 

Asymmetry 

Parameter 

Conditional 

Shape Parameter 

GARCH Normal aN,i = 0 λi,t =0 k i,t = 2 

GARCH Skewed Normal aN,i = 0  k i,t = 2 

GARCH Laplace aN,i = 0 λi,t =0 k i,t = 1 

GARCH Skewed Laplace aN,i = 0  k i,t = 1 

GJR Normal  λi,t =0 k i,t = 2 

GJR Skewed Normal   k i,t = 2 

GJR Laplace  λi,t =0 k i,t = 1 

GJR Skewed Laplace   k i,t = 1 

Notes. Each GARCH specification under different probability distribution is computed 

using the set parameters in the conditional variance, conditional mean, conditional 

asymmetry, and shape parameters (distributional parameters) equations, (2.9) – (2.15). In 

the case of  the GARCH Normal model aN,i = 0 in the conditional variance equation, λi,t = 

0 in the conditional asymmetry parameter, and ki,t = 2 in the conditional shape parameter. 

 Table 2.15 presents the forecasting accuracy criteria of Bitcoin forecast prices 

using different GARCH specifications. The forecasting performance is performed using 

the root mean square error (RMSE), and the mean absolute error (MAE) measures. The 

findings suggest several conclusions. At the first sight, the GARCH Skewed Normal and 

GARCH Skewed Laplace are better models compared to the GARCH Normal and 

GARCH Laplace. This is also happening in the case of GJR-GARCH models (GJR 

Skewed Normal and GJR Skewed Laplace perform better compared to GJR Normal and 

GJR Laplace). Adding to this, the findings show that ST-GJR-GARCH under the Skewed 
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Generalized Error Distribution (SGED) performs better than the rest models highlighting 

the importance of the Skewed Generalized Error distribution to model Bitcoin returns as 

this distribution captures well data with leptokurtic characteristics. The reason that ST-

GJR-GARCH-SGED model performs better than the other models is that it captures the 

shape and the tails of Bitcoin’s price probability distribution at the same time. 

Table 2.15. Out-of-Sample Forecasting Prices of Bitcoin under Different Model 

Specifications 

Model     RMSE         MAE     

GARCH Normal     570.1347            342.6791

  

GARCH Skewed Normal     387.2290            327.8108

  

GARCH Laplace     622.6610            344.9637

  

GARCH Skewed Laplace     374.8543            304.0254

  

GJR Normal     570.1826            342.6687

  

GJR Skewed Normal     387.3371            329.0468

  

GJR Laplace     622.7194            344.9788

  

GJR Skewed Laplace     376.4510       304.6615

    

ST-GARCH-M-GJR     373.1703            237.6083 

Notes. The forecasting ability of the ST-GARCH-M-GJR is compared to other GARCH 

models under the Normal, Skewed Normal, Laplace, and Skewed Laplace probability 

distributions. The performance accuracy of each model is computed using the RMSE 

(root mean square error), and the MAE (mean absolute error). The RMSE is computed 

using the equation 

( )
2

1

ˆ
T

t t

t

x x

RMSE
T

=

−

=


 where xt is the price of Bitcoin and ˆ
tx is the 

predicted value of Bitcoin at t = 1,2,.. The MAE is computed using the equation 

1

ˆ
T

t t

t

x x

MAE
T

=

−

=


. The data for the out-of-sample forecasting period are from June 2, 2020 

to June 29, 2020. 
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 Summary and Conclusions 

Bitcoin is the most popular cryptocurrency over the all-digital currencies that exist. 

Furthermore, Bitcoin, in many cases, reaches extreme values. For this reason, it exhibits 

a relatively higher return and risk than the other currencies. The high returns and volatility 

lead authors to investigate Bitcoin in different ways, e.g. portfolio analysis. The interest 

to examine the stochastic behaviour of Bitcoin and exchange rates derives from the 

extraordinary behaviour of Bitcoin. Many scholars conclude that the behaviour of Bitcoin 

is unique and different.  

This second chapter expands on the academic literature regarding the examination 

and comparison of the stochastic properties of returns of Bitcoin and four major 

currencies (Euro, Japanese Yen, Canadian dollar, and British pound). More specifically, 

it investigates the presence of higher-order moment dependencies such as conditional 

heteroscedasticity, asymmetric volatility and non-linearities on these currencies. 

Furthermore, the examination extends beyond the first two moments of a probability 

distribution (conditional mean and variance). To fulfil these tasks, the chapter of this 

dissertation used the conditional mean and conditional variance equations of the GJR-

GARCH-M model to the conditional skewness and conditional kurtosis equations of 

Savva and Theodossiou (2018) into a dynamic framework named ST-GJR-GARCH-M. 

The Skewed Generalized Error Distribution (SGED) is used to incorporate the time-

varying skewness and kurtosis equations in the model. This distribution proven to fit well 

in financial data (Theodossiou, 2015). The parameters of this framework are obtained 

using a maximum likelihood technique under the SGED (skewed generalized error 

distribution).  

The framework of Savva and Theodossiou (2018) is further extended to 

investigate the spillover effects with the presence of time-varying asymmetry and shape 

parameters. Using the ST-GJR–GARCH–SGED model in a bivariate context the mean 

and volatility spillovers in downside and upside terms are investigated.  

Analytic mathematical formulas have been tested showing the presence of higher-

order dependencies including volatility clustering, asymmetric volatility, and non–linear 

dependencies. This result arises from the presence of an asymmetry parameter and 

kurtosis in all log-returns indicating the necessity of using distributions triggered by 

higher-order moments. Because of these dependencies, the empirical distributions of 
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Bitcoin’s returns exhibit skewness and extreme leptokurtosis. The shape parameter 

associated with leptokurtosis is found significant in all return series. Their mean values 

deviate between 0.876 (Bitcoin) and 1.470 (British pound). These estimates depict 

extreme leptokurtosis, especially in the case of Bitcoin. The latter result partially explains 

the extraordinary volatility of Bitcoin that leads to a higher peaked probability distribution 

in relation to the rest assets. Skewness is found to have a negative impact on Bitcoin, 

Canadian dollar and British pound and a positive impact on the two currencies examined.  

The findings shed light on the risk and return relationship of Bitcoin and currencies. 

There is no doubt that the mean and volatility spillovers between bitcoin and 

exchange rates and vice versa are important. The understanding of this relationship is 

important for all participants. The empirical findings highlight that the exchange rates 

affect Bitcoin’s conditional mean and volatility more than the reverse, Bitcoin does not 

affect the conditional mean and volatility of the other exchange rates, Bitcoin’s behaviour 

is extremely leptokurtic when compared to the other assets even if spillover effects are 

presented, and it is a useful asset to diversify portfolio’s risk since it behaves in a very 

different way compared to the other assets. Overall, the findings reveal a weak inter-

relationship between Bitcoin and exchange rates confirming the extremely different 

behaviour of Bitcoin.  

The forecasting ability of the ST-GJR-GARCH-SGED model is compared to 

other existing GARCH models. The forecasting prices of BTC are computed using the 

Skewed Normal, Skewed Laplace, Laplace, and the Normal probability distributions in 

the GARCH and GJR GARCH specifications. The findings show that the ST-GJR-

GARCH-SGED model outperforms the GARCH and GJR models indicating the 

importance of the model to capture the asymmetry and shape characteristics (skewness 

and kurtosis) of Bitcoin’s future prices.  

The extremely different time-series behaviour of Bitcoin can be used in hedging 

and risk management by speculators and portfolio managers. Furthermore, the estimated 

equations for computing the conditional mean, variance, asymmetry, and kurtosis 

parameters provide a way to forecast future Bitcoin prices. 

Bitcoin is a recent topic in the academic literature, therefore, there are several 

issues for future research. For instance, the empirical findings are based on the historical 

data of Bitcoin. Bitcoin is a new area of interest and the availability of data is limited. 

Therefore, in the future, the behaviour of Bitcoin may be revisited using a longer data 
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period. A longer sampling period would help to have a clearer view of the behaviour of 

Bitcoin as well as the interconnection between Bitcoin and other financial traditional 

assets. It will be interesting to further understand the persistence of Bitcoin’s returns; if 

the behaviour of Bitcoin is still extremely different compared to the other assets.  

In addition, this chapter focuses to investigate the behaviour of Bitcoin using daily 

data. A possible expansion of this work will be to examine the behaviour of Bitcoin and 

compare it to other common assets using other frequency data (e.g., weekly, monthly). 

This may enhance our knowledge and understand better the diversification capabilities of 

Bitcoin as investors use Bitcoin in their investment strategies. Furthermore, this chapter 

used the GJR-GARCH-M model using time-varying skewness and kurtosis parameters 

under the Skewed Generalized Error Distribution (SGED). From the methodological side 

of view, another possible future research would be to investigate Bitcoin and other assets 

using alternative models that take into account time-varying skewness and kurtosis 

characteristics. Bitcoin exhibits extreme leptokurtosis and these models are appropriate 

to investigate the behaviour of such assets. 
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3 The Measurement of Stock Price Crashes Using a Robust Resistant 

Outlier Technique 

 Introduction 

A crash can be defined as an unusually sharp drop in the firm’s stock price caused by 

unexpected bad news. Stock price crash risk can also fall under the definition of a negative 

skewness of the return’s distribution (Chen et al., 2001; Kim et al., 2014). This negative 

firm-specific shock is an extreme outlier in the distribution of returns. Jin and Myers 

(2006) stated that “A crash is defined as a remote outlier in a firm’s residual return”. 

Several researchers examined the firm’s stock price crash risk exposure in various 

financial issues such as the behavioural characteristics of CEOs/CFOs (e.g., age, 

overconfident), corporate tax avoidance, and others (see for example Kim and Zhang, 

2014, 2016; An et al., 2015; Andreou et al., 2016; Kim et al. 2016; Kim et al. 2014; Chang 

et al., 2017; and Andreou et al., 2021, etc).  

The intuition behind the crash risk theory is that managers have incentives to 

withhold bad news or delay the announcement of good news. These incentives may be, 

among others, about compensation contracts, career prospects, improving the value of 

stocks, hiding fraud, maintaining their reputation, etc (see for more details Kothari, 2009). 

What is more, stock price crashes are more profound when agency risk among firms is 

high (Callen and Fang, 2015b). Therefore, the tendency of managers to conceal bad news 

and boost good news reinforces future crash’ risk. When managers stop hiding bad news 

(perhaps due to limited incentives), a huge amount of negative information will be made 

public to the market leading to a stock price crash.   

Researchers used the expanded market model for each firm and year to estimate 

the return’s residuals (Dimson, 1979). The idea behind this model is to screen out the 

market crashes and only firm-specific events are considered. In this chapter, the attention 

is set on the binary crash risk measure that literature used to define a stock price crash. 

The binary measure is an indicator that takes the value of one when at least one firm-

specific weekly return falls 3.09/3.20 standard deviation below the mean firm-specific 

weekly returns, and zero otherwise. 



118 

 

The literature on outliers is enormous and concerns a lot of statisticians and data 

analysts. A lot of authors stated definitions about outliers (e.g., Barnett, 1978; Hawkins, 

1980; Barnett and Lewis, 1994). From the perspective of statisticians/econometricians, 

noted that a single observation is enough to dramatically change the estimated 

coefficients. Outliers drive OLS estimators to be biased and inconsistent, see for example 

Martin and Simin (2003) and Genton and Ronchetti (2008).  A large body of literature 

used robust statistics to avoid the disadvantages of the least square estimator (OLS) 

technique (Huber, 1964; Huber, 1981; Hampel et al., 1986, Butler et al., 1990; McDonald 

et al., 2009). A wrong (biased) estimation will lead to erroneous results (Genton and 

Ronchetti, 2008; Martin and Simin, 2003). 

 The estimation of coefficients on event studies was investigated by Sorokina et 

al. (2013). They used OLS and robust methods to investigate the effects of coefficients. 

The finding was that robust methods give more accurate results when there are outliers 

and leverage effects on the datasets. Theodossiou and Theodossiou (2014, 2019) 

distinguish OLS and Huber’s estimators using a model that consists of regular and outlier 

components. Using analytical equations, they showed that the presence of outliers in the 

series, drive the estimated parameters as well as the standard deviation to be contaminated 

and propose an outlier resistant method that corrects these issues. The chapter of this 

dissertation focuses on the contamination issue of uncertainty which is a statistical 

measure used to construct the binary crash risk measure.   

The motivation behind this chapter is multi-fold. Firstly, using an analytical 

statistical crash risk framework, the contaminate issue on uncertainty due to outliers that 

presented in the return series will be shown. Notably, this contamination issue causes the 

binary crash risk measure to be mis-specified. Secondly, following Theodossiou and 

Theodossiou (2019), a robust framework is further developed to measure the percentage 

of crashes using a robust outlier resistant method. This is feasible due to the 

decomposition of returns on regular and outlier components. This methodology corrects 

the contamination issue and leads to more accurate findings. Furthermore, the findings 

are compared using the standard literature that used the logarithmic transformation of the 

residual returns (henceforth logarithmic transformed measure), as well as the residual 

returns as derived from the Dimson (1979) model (henceforth un-transformed measure). 

The robust methodology will illustrate that the construction of the binary measure using 
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the untransformed robust residual returns and the corrected standard deviation, provide 

accurate findings. Finally, this methodology contributes in the existing literature by 

developing a statistical crash risk framework since a statistical theory in the crash risk 

literature does not exist.  

Monte – Carlo simulations show that the ordinary least square methodology 

(OLS) detects a lower percentage of crashes relative to the robust methodology. Also, the 

OLS un-transformed measure detects a lower percentage of crashes relative to the OLS 

log transformed measure.  

The empirical findings share the same conclusions as in the simulation findings. 

The percentage of crashes (log transformed measure) using the standard methodology 

(OLS) is lower in comparison to the robust methodology. More specifically, the 

percentage of crashes using the standard methodology is 18.21% or 30,226 firm-year 

observations (log-transformed measure) and 13.61% or 22,596 firm-year observations 

(un-transformed measure). On the other hand, the percentage of crashes using the robust 

methodology is 20.04% or 33,266 firm-year observations.   

This chapter also presents an analysis of the commonality and differences on the 

percentage of crashes between the robust and ordinary least square measures. The 

comparison is between the robust measure and the un-transformed OLS residual returns 

as well as the robust measure and the log-transformed measure. The findings using the 

robust measure and the un-transformed measure show that 22,332 firm-year observations 

are common in both methodologies, 264 firm-year observations are classified as crashes 

in OLS and not in the robust methodology while 10,934 firm-year observations are 

categorized as crashes in the robust methodology and not in the OLS measure. 

Nevertheless, the common firm-year observations between the robust measure and the 

log-transformed measure are 27,121 firm-year observations while 6,145 firm-year 

observations are classified as crashes in the robust measure and non-crash in the 

logarithmic OLS measure.  

The common firm-year observations between the un-transformed OLS residual 

returns and the logarithmic OLS residual returns are 22,596 firm-year observations. This 

means that all the crashes that are included using the logarithmic transformation of returns 

are also included in the un-transformed while 0% of crashes is detected using the un-

transformed residual returns and not the logarithmic transformation of them. The number 
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of firm-year observations that are classified as crashes using the logarithmic 

transformation of the residual returns and not on the un-transformed  measure are 7,630.  

The above findings suggest that in order to avoid the misspecification of crashes, 

it is better to use a robust technique that corrects the inflation on the variance driven by 

outliers. Further analysis of the percentage of crashes by industry using the Fama and 

French industry classifications is presented below as well as an analysis of the weekly 

specific return of firms that detected to crash under the robust technique and non-crash in 

ordinary least square method verifying the concerns of this chapter. 

The chapter of this dissertation will be following this structure. Section 3.2 presents 

the literature review and section 3.3 presents the outlier crash risk framework. A robust 

technique is developed to define crashes showing the effect of outliers on variance as well 

as the estimation method. In section 3.4 there follows a presentation of the Monte-Carlo 

simulations showing the effects of outliers in the 52-weekly returns on the binary crash 

risk measures, and section 3.5 presents the empirical findings explaining the differences 

between standard (OLS) and robust methodologies. Summary and conclusions are 

presented in section 3.6. 

 Literature Review 

Stock Price Crash Risk 

The bad news hoarding stock price crash risk theory have been investigated by several 

empirical researchers. They examined the firm-specific stock price crashes in terms of 

accrual manipulation, corporate tax avoidance, religious beliefs, and the behavioural 

characteristics of CEOs/CFOs (e.g., age, overconfident). Chen et al. (2001) is the first 

study that investigated the forecasting of crashes and other determinants such as trading 

volume, conditional skewness, and past returns.  

Jin and Myers (2006) analysed the theoretical perspective of stock price crash risk 

and hoarding bad news. They found that managers distort the company’s image and when 

they do not have any more incentives to withhold the bad news allow the information to 

become available to the market. This behaviour leads to a stock price crash. Hutton et al. 

(2009) examined the inter-relationship between stock price crash risk and accrual 

manipulation. Using the opacity measure as an earnings management variable, they found 

that opaque firms are more likely to suffer a stock price crash.   
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Kim et al. (2011a) and Kim et al. (2011b) examined the relationship between stock 

price incentives and tax avoidance and a firm’s crash risk, respectively. Kim et al. (2011a) 

showed that the different incentives of CEOs/CFOs and firm-specific stock price crashes 

are correlated. Using a large dataset of U.S. companies, they found that the options 

portfolio value of CFOs is significantly positive with the stock price crashes. Kim et al. 

(2011b) exposed that corporate tax avoidance and firm-specific stock price crashes are 

strongly related. The explanation is that specific tools and justifications are used to 

accumulate bad news and mask the company’s reputation for a longer period. When the 

firm has no other reason to withhold the bad news, the information becomes available to 

the market leading to a sharp fall in the firm’s stock price.  

What is more, the behaviour of investors has been investigated by An and Zhang 

(2013) and Callen and Fang (2013). An and Zhang (2013) revealed that stock price 

synchronicity and crashes are negatively correlated with the institutional investors 

(perhaps due to long-term investments that they are trying to monitor). The relationship 

is also negative in the case of transient investors. Callen and Fang (2013) further 

investigated institutional investors and stock price crashes supporting the negative 

relationship between the monitoring theory of institutional investors and stock price crash 

risk.  

Kim et al. (2016) found that overconfident CEOs and stock price crashes are 

positively correlated. This relationship is stronger when the opinions between CEOs and 

investors differ more. Andreou et al. (2017) concluded that stock price crashes are more 

profound when CEOs are younger while Andreou et al. (2016) investigated the stock price 

crashes in the spirit of corporate governance (accounting opacity, managerial incentives, 

and others). Other papers investigated crash risk in corporate social responsibility (Kim 

et al., 2014), political directors (Lee and Wang, 2017), religious beliefs (Callen and Fang, 

2015a), short interest (Callen and Fang, 2015b), and so on.  

The empirical investigation of crash risk is based on various measures (see Habib 

et al.,2018 for the details). Some of these measures are the binary crash risk measures 

(Hutton et al., 2009), negative skewness (Chen et al., 2001), down-to-up volatility 

(Andreou et al. 2016), and other. The empirical analysis is a two-stage procedure. In the 

first stage, they used the expanded market model for each firm and year to estimate the 

return’s residuals (Dimson, 1979). In the second stage, regression models were run using 
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standard control variables (such as past returns, stock volatility, negative skewness, 

kurtosis, logarithmic of market value, detrended share turnover) and their explanatory 

variable to identify the determinants of stock crashes. In this chapter, the attention is set 

on the binary crash risk measure. The binary measure is an indicator that takes the value 

of one when at least one firm-specific weekly return falls 3.09/3.20 standard deviation 

below the mean firm-specific weekly returns, and zero otherwise.  

Outliers and Robust Regression 

Outlier return is an unexpected sharp decrease/increase in the series caused by a firm-

specific event, such as a merger or an acquisition. These occur randomly on different 

magnitudes through the companies’ fiscal year. In many cases, managers are masking 

events to satisfy their own interests (Hutton et al., 2009). When such events are no longer 

hidden, the information is then available in the market, leading to a stock price crash. In 

statistical terms, this leads to an outlier return in the 52-weekly return series.  

Outliers is a widespread issue in the academic literature, especially, in statisticians 

and data analysts. This issue concerns a lot of researchers from a theoretical and empirical 

perspective. Several definitions of outliers have been noted across the years. For example, 

Hawkins (1980) states that an outlier is “as an observation that deviates so much from 

other observations as to arouse suspicion that it was generated by a different mechanism.” 

Barnett and Lewis (1994) defines that is “an outlying observation, or outlier, is one that 

appears to deviate markedly from other members of the sample in which it occurs”.  

In real accounting and financial datasets, there are a lot of outliers. The standard 

ordinary least square technique (OLS) underperforms in the presence of outliers. Outliers 

drive OLS estimators to be biased and inconsistent. This is the reason there is a large body 

of literature about robust statistics (Huber, 1964; Huber, 1981; Huber, 1973; Hampel et 

al., 1986, Butler et al.,1990). Most papers apply robust estimation techniques to avoid the 

disadvantages of OLS when outliers are presented in the series.  

Martin and Simin (2003) and Genton and Ronchetti (2008) illustrated that the 

estimated beta using an outlier-resistant technique is a better predictor of the risk-return 

than the ordinary least square (OLS) beta estimator. Martin and Simin (2003) explained 

this finding using two statistical properties. Firstly, when there are no outliers in the 

return-series, the outlier resistant method performs as well as the ordinary least square 
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(OLS). Secondly, when there are outliers in the series, the outlier resistant method 

minimizes the outlier beta while the OLS technique causes a large beta bias. 

Sorokina et al. (2013) highlighted the importance of handling outliers 

appropriately since they found that a robust outlier methodology in event studies provides 

different results from the OLS methodology. They found that most of the outliers are 

within the event windows leading to the inaccurate fitting of regression. Therefore, the 

treatment of these outlies is important. For example, these outliers provide valuable 

information and their exclusion will yield to different estimators and findings. Thusly, 

they concluded that robust estimation techniques provide more accurate findings in the 

case of event studies.   

Theodossiou and Theodossiou (2014) examined the presence of return outliers 

using the Huber’s Robust M (HRM) estimation technique. They tested the impact of 

outliers on the OLS beta estimates compared to a robust technique. They concluded that 

the estimators using the OLS and HRM are similar when there are no outliers, therefore, 

the returns follow a normal distribution. However, when there are outliers in the return 

series, the estimated parameters change dramatically.  

Theodossiou and Theodossiou (2019) further investigated the impact of outliers 

on event studies using a framework that decomposes the stock returns in regular and 

outlier components. Analytical equations showed the impact of outliers on the standard 

deviation, as well as the on the CAR statistics. Using Monte-Carlo simulations they 

indicated that the outlier resistant method outperforms the OLS. In this chapter, the  

Theodossiou and Theodossiou’s (2019) model is used to investigate the measurement of 

stock price crash risk due to the standard deviation that is used to construct the binary 

crash risk measure. A robust crash risk measure will be developed based on the robust 

residual returns as well as on the corrected standard deviation.  

 Outlier Crash Risk Framework 

The below framework is based on Theodossiou and Theodossiou's (2019) model to 

construct a measure that defines the stock price crashes using an outlier-resistant method. 

Following their model, the decomposition of returns in regular and outliers’ components 

is also useful to show the effects on the residual returns, therefore, to define crashes.  
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3.3.1 Firm-Specific Crash Events and Outliers 

A stock price crash is an unusual sharp decrease of the stock’s price caused by unexpected 

bad news. Let assume that there is a firm-specific outlier event within a year that cause 

an important crash in the return series. Based on this behaviour, the company’s return can 

be represented using a mixed return process that decomposes returns on a regular and an 

outlier component (Roll, 1988). The return of stock i in period t represented by  

                                                  , , , ,i t i t i t i tr k d h= +                                                   (3.1) 

for i = 1,2, …, N and t = 1,2, …, T. 

where ki,t and hi,t are the regular and outlier components of returns, respectively, di,t is a 

Bernoulli and takes the value of one when outlier returns are presented and the value of 

zero, otherwise. Also, N represents the number of stocks and T is the sample size.  

       Equation (3.1) can be rewritten as 

                                            ( ), , , , , , , ,i t k i t i t i t h i t i tr e d v = + + +                                     (3.2) 

where μk,i,t and μh,i,t are the conditional means of ki,t and hi,t and ei,t and vi,t are white noise 

errors with standard deviations σe,i and σv,i, respectively.   

Therefore, the conditional distribution of the return’s, ri,t , is 

                             ( ) ( ) ( ), , , , , , , ,i t i t t i t i t i t k,i t i h i tE r I E k E d h q  = = + = +                  (3.3) 

where qi = prob(di,t = 1).  

Equation (3.3) can be rewritten as 

                               , , , , , , , ,i t i t i t k i t i h i t i tr q    = + = + +                                          (3.4) 

where the error term is 

                                    ( ), , , , , , ,i t i t i t i h i t i t i te d q d v = + − +  29                                          (3.5) 

The conditional mean can be decomposed in the regular conditional mean (μi,k)  and 

the outlier conditional mean (μi,h). Equation (3.5) shows that the error term is a function 

 
29 ( ) ( ), , , , , , , , , , , , , , , , , , , ,i t i t i t k i t i t i t h i t i t k i t i h i t i t i t i h i t i t i tr e d v q e d q d v      = − = + + + − − = + − +  
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of the conditional mean of the outlier component returns μh,i,t, and the regular and outlier 

errors ei,t, and vi,t.  

The variance of εi,t  is 

                                      ( ) ( )2 2 2

, ,var 1
i ii t e i v i i h iq q q   = + + −  30                  (3.6) 

Equation (3.6) shows that the variance of the error term is a function of the mean of the 

outlier component returns μh,i,t, and the variances of the regular and outlier errors ei,t, and 

vi,t. 

The mean of the regular and outlier returns at time t are specified respectively as 

                                     ( ), , , ,k i t i t t t k iE k I x = =                                                    (3.7) 

                                    ( ), , , ,h i t i t t t h iE h I x = =                                                     (3.8) 

where xt is a vector of the independent variables of the model, and βk,i and βh,i are the 

estimated coefficients of the regular and outlier components. The fact that there are 

outliers in event studies (e.g. a crash event) is captured by these equations.  

The substitution of equations (3.7) and (3.8) into (3.4) yield  

          ( ) ( ), , , , , , , , , ,i t t k i i h i i t i t i t h i i t i t t L i i tr x q e d q x d v x    = + + + − + = +                        (3.9) 

where βL,i = βk,i + qi βh,i it was estimated using OLS and it includes the impact of outliers, 

therefore, it is contaminated. To avoid this issue, a robust technique will be used.  

Therefore, the OLS residual is  

, , ,i t i t t L ir x = − . 

This residual return is used in the crash risk literature to compute the binary crash risk 

measure. The estimated parameters as well as the standard deviation computed by 

equation (3.6) are inflated by the mean and variance of the outlier return component. 

 
30 ( ) ( ) ( ) ( ) ( )

2 22 2 2 2

, , , , , , , , ,var
i ii t i t i t i t i t e i t v i t i t h iE d E d E d E d q     = − = + + −  

( )( ) ( ) ( )
2 22 2 2 2 2 2

, ,1 1 1
i i i ie i v i i i i h i e i v i i h iq q q q q q q q      = + + − − + − = + + −

 
 



126 

 

3.3.2 Outlier Resistant Model Estimation  

The following robust estimation method was introduced by Huber (1981) and extended 

by Theodossiou and Theodossiou (2019). Huber (1964, 1973, and 1981) proposed the 

minimization of the maximum likelihood given by  

( ), ,

1

min
k,i

T

i i t t k i t

t

Q p r x I



=

= −     (3.10) 

where  

( )
( )

2

, , , , ,

, ,
2 2

, , , , , , ,

0.5 for
,

0.5 for

i t t k i i t t k i e i

i t t k i t

i t t k i e i e i i t t k i e i

r x r x c
p r x I

r x c c r x c

  


    

 − − 
− = 

− − − 

 (3.11) 

c is a positive constant31 and T is the size of the sample. All the other coefficients are 

defined above. The likelihood is a mixed process of probability distribution (Normal and 

Laplace). The first derivative of Qi with respect to βk,i is 

( ), ,

~
1, ,

ˆ

0.
T i t t k i t

i

tk i k i

p r x IQ 

 =

 −
= =

 
                 (3.12) 

where 

( )

( )

, , , , ,

,

, , , , , ,

ˆ ˆ ˆfor
ˆ ,

ˆ ˆˆ ˆfor

i t t k i i t t k i e i

i t

i t t k i e i i t t k i e i

r x r x c
e

sgn r x c r x c

  

   

 − − 


= 
− − 



   (3.13) 

,î te are winsorized residual returns estimators of the regular errors ,i te , sgn(.) is a sign 

function and 
~
0  is a zero column vector. Equation (3.13) ‘corrects’ the contaminate issue 

of the standard methodology.  

 Using the following recursive equation, the estimated coefficients of βk,i  are 

computed by 

1 ' '

, , ,

1 1

ˆ ˆ ˆ ,
T T

s s

k i k i t i t t t

t t

x e x x +

= =

 
= +  

 
            (3.14) 

 

31 For the purposes of the analysis c = 1.72. 
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where s is the number of iterations. Note that the OLS estimates are used as starting 

values. 

 The estimated variance used in each next iteration to recompute the new values of 

βk,i . That is, 

  

2
2 2

, ,

1

ˆ
ˆ ˆ ,

1

T
i

e i i t

t

g
e

T p


=

=
− −

                                      (3.15) 

where 
( )

( ) ( )

ˆ1 1
ˆ 1

ˆ ˆ1 1

i

i

i i

p q
g

T q q

 +
= + 

− − 
, ˆ

iq  is the winsorized returns (proportion) and p the 

number of betas that are estimated in the return models. 32  

Regular and Outlier Components 

Returns for regular periods can be computed by 

                                                      , , ,
ˆˆ

k i t t k ix =                                                         (3.16) 

where ,k i  are the alpha and beta outlier resistant estimators. The difference between 

returns and the expected returns is 

                                                       , , . .
ˆ ˆ

i t i t k i tu r = −                                                     (3.17) 

From equation (3.13) follows that  

                                                       
, ,, ,

ˆˆ ˆ
i t i ti t i tu e d h= +                                       (3.18) 

where 
,

ˆ
t i

e  represents the winsorized return residuals that belongs in the interval 

, ,,e i e ic c  −   and di,thi,t is the outlier residual return estimator. Note that di,t =1 if the 

residuals are trimmed, and zero, otherwise.33 The substitution of equation (3.18)  into 

equation (3.17) gives 

,, , , , , , , ,
ˆˆ ˆ ˆ ˆ

i ti t k i t i t k i t i t i tr u e d h = + = + +   (3.19) 

 
32 The recursive estimation ends when 1

, ,
ˆ ˆmax z z

k i k i h + −   where h = 0.0001.  

33 The outlier’s probability computed by , ,

1

1 ˆˆ
T

i t i t

t

q d
T =

=  . 
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where , , ,
ˆˆ

k i t t k ix = . The above equation provides the decomposition of returns on two 

components: the regular returns and the outlier returns. Therefore, the robust residual is  

, , , ,
ˆ ˆ

i t t i k i tu r = − . 

OLS Estimators and Variance 

The OLS estimated parameters are computed using the following equation 

' '

,

1 1

ˆ
T T

i t i t t t

t t

x r x x
= =

 
=  

 
  .               (3.20) 

Substituting the OLS equation (3.20) into (3.19) yield 

               
' ' ' '

, , , , , ,

1 1 1 1

ˆ ˆˆ ˆ ˆ ˆˆ
T T T T

i k i t i t t t t i t i t t t k i i h i

t t t t

x e x x x d h x x q   
= = = =

   
= + + = +   

   
    34 .     (3.21) 

The OLS variance is 

                                                  
2 2

,

1

1
ˆˆ

1i

T

i t

tT p
 

=

=
− −

                                                (3.22) 

where , , , , , , , , , , ,
ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ

i t i t t i i t t k i i t h i i t i t i t i t h i tr x r x q x e d h q    = − = − − = + −  

( ) ( ), , , , , , , , ,
ˆ ˆ ˆˆ ˆ ˆ ˆ

i t i t i t h i t i t i t h i te d h d q = + − + − and ( ), , , ,
ˆˆ ˆ

i t i t h i tv h = − ; see also Theodossiou and 

Theodossiou (2019). 

The substitution of ,î t into (3.22) yield  

( ) ( )( )
2

2 2

, , , , , , , , , ,

1

1 1 ˆ ˆ ˆˆˆ ˆ ˆ ˆ ˆ
1 1i

T
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t

e d h d q
T p T p
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=

= = + − + −
− − − −
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                               ( )2 2 2 2

,2

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ1

ˆ 1i i ie i v i i h i

i

T
q q q

g T p
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 
= + + − 

− − 

35                        (3.23) 

 

34 '

,
~

1

ˆ 0.
T

t i t

t

x e
=

=  

35 ( ) ( ) ( )
2

2 2 2 2

, , , , , , , , , , , , , ,

1 1 1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2 2
i

T T T T T T

i t i t i t i t i h i t i t i t i t i t i t i h,i,t i t i t i t i h,i,t

t t t t t i

a e d v d q e d v e d q d v d q   
= = = = = =

 
= + + − + + − + − 

 
       

where ( )
1

1a T p
−

= − − . Therefore, ( )
2

2 2 2 2

, , , ,

1 1 1

ˆ 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ1

1 1 1i

T T T
i

i t i i t i i h i t

t t t

g
e q v q q

T p T p T p
 

= = =

 
= + + − 

− − − − − − 
   . 



129 

 

where all the parameters are explained previously. Equation (3.23) showed that the 

regression variance of the ordinary least square technique (OLS) is contaminated by the 

variance of the regular and outlier components and the mean of outlier returns.  

3.3.3 The Estimation of the Residual Returns in the Literature 

Following Hutton et al. (2009) and Kim et al. (2011a), the market index model for each 

firm and year was used to estimate the residuals (Dimson, 1979). The idea behind this 

model is to screen out the market crashes and only firm-specific events are considered. 

The market models computed by using the robust and OLS methods, respectively  

            , ,1, , 2 ,2 , 1 ,3, , ,4, , 1 ,5, , 2 , ,k i,t i k i m t k ,i m t k i m t k i m t k i m t i,t k i,t i ta b r b r b r b r b r r u − − + += + + + + +  = +  (3.24) 

           , ,1, , 2 ,2 , 1 ,3, , ,4, , 1 ,5, , 2 , ,L i,t i L i m t L ,i m t L i m t L i m t L i m t i,t L i,t i ta b r b r b r b r b r r  − − + += + + + + +  = +  (3.25) 

where ri,t is the return of stock i (week t), rm,t is the return on the CRSP value-weighted 

market index (week t), ui,t and εi,t are the error terms derived from the robust and ordinary 

least squares estimates. Academic literature used a logarithmic transformation of the 

residual returns to define crashes. The transformation of the residual returns generates the 

question of whether this is the proper way to define crashes.  

Binary Measures of Crashes 

The residuals are found to be highly skewed due to crashes that are included in the series. 

The error term, as derived from equations (3.24) and (3.25) can be used to define crashes 

(ui,t,and εi,t , respectively).  

Researchers transformed the residual returns derived from equation (3.25) to the 

logarithmic of one plus the residual return. Mathematically,  

                                                   wi,t = log(1 + εi,t)                                            (3.26) 

where εi,t is explained above.  

Below the different measures of crashes are presented, using the residual returns 

and the logarithmic transformation of the residual returns as derived from the expanded 

return model (under the OLS and the outlier robust regressions). 

The general definition of the binary measure is the following: crash is an indicator 

that takes the value of one when at least one firm-specific weekly return falls 3.09/3.20 
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standard deviation below the mean firm-specific weekly returns and the value of zero, 

otherwise. A crash event under robust and OLS measures takes the value of one (

,
1

i tycrash = ) when the following condition is met 

, *i t y yy k  −  for  t = 1,2,…n  

yi,t is defined in three different ways, u (the robust residual returns), ε (the OLS residual 

returns), and w (the logarithmic OLS residual returns). Furthermore, k = 3.09/3.20. When 

the inequality is not satisfied, the above condition takes the value of zero, 
,

0
i tycrash = . 

More specifically, these measures are the following. 

1st Measure: Robust Residual Returns – ROB 

The first measure to define crashes is using the robust residual returns and the corrected 

standard deviation. Mathematically, 

                                                 , 1i tROB =  for  , *i t u eu k  −                                 (3.27) 

, 0i tROB = , otherwise 

where k = 3.09/3.20, u is the robust residual returns, μu and σe are the mean and standard 

deviation computed by equation (3.15). 

2nd Measure: OLS Residual Returns – OLS 

The second measure to define crashes is using the OLS residual returns. Mathematically, 

                                                  , 1i tOLS =    for , *i t k    −                               (3.28) 

, 0i tOLS = , otherwise 

where k = 3.09/3.20, ε is the OLS residual returns, με and σε, are the mean and standard 

deviation of the residual returns (εi,t).  

3rd Measure: The Logarithmic Transform of the OLS Residual Returns – WOLS 

The third measure to define crashes is using the logarithmic transformation of the OLS 

residual returns. Mathematically, 

                                                , 1i tWOLS =      for    , *i t w ww k  −                      (3.29) 
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, 0i tWOLS = , otherwise 

where k = 3.09/3.20, wi,t is the logarithmic transformation of the OLS residual returns, μw  

and σw are the mean and standard deviation of wi,t. 

 Monte - Carlo Simulations 

This section investigates the percentage of crashes in the standard and robust approaches 

using Monte Carlo simulations of the log-transformation of the residual return and the 

un-transform residual returns under the robust and OLS measures.  

 Monte – Carlo simulations are derived using a single-factor model with crashes  

       ( ), , , , , ,i t k k m t i t i t h h m t i tr a r e d a r v = + + + + +  for t = 1, 2,… and i = 1,2,…,T.        (3.30) 

where ak and βk are the estimated parameters of the regular component (alpha and betas, 

respectively), ah and βh are the parameters for the outlier component, ei,t and vi,t are the 

errors, di,t is an indicator which takes the value of one in the case of crash event (outlier) 

and zero otherwise, and rm,t is the excess market return.  

 The percentage of crashes is computed using the standard and robust 

methodologies. Monte–Carlo simulations of T = 100,000 samples of 52 weekly randomly 

excess market returns investigate the three different binary crash risk measures. Data is 

downloaded from French’s website.36 The sample period is from 10/01/1992 to 

26/06/2020. The errors of the regular and outlier components are computed using the 

standard deviation of each random sample of 52 excess market returns multiplied by 

random normal numbers, ei,t = σe,i ze,i,t and vi,t = σv,i zv,i,t where ze,i,t and zv,i,t are random 

normal numbers, σe,i = 0.8x σm,i and σv,i = 1.6x σm,i are the standard deviations of the regular 

and outlier errors, respectively. The returns, ri,t , are generated using the equation (3.30). 

 To generate the samples, the parameter alpha of the regular component is set to ak 

= 0 and the betas of the regular and outlier component returns are set to βk = 1 and βh = 0, 

respectively. The outlier intercept is set in the following way. The intercept, ah, is set to 

take values in the interval (-0.20,-0.06). This means that ah = -20% is an extreme negative 

outlier return in the 52-weekly return series.  

 

36 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html (accessed: April 2021). 

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html
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 The robust residuals and ordinary least square (OLS) are drawn from each 

simulation to compute the binary crash risk measures, ROBi for the robust technique, and 

OLSi for the ordinary least square technique where i = 1, 2. The transformation of the 

ordinary least square residual returns is also examined, namely, WOLSi. These measures 

take the value of one when at least one firm-specific weekly returns falling 3.09 (i = 1) 

or 3.20 (i = 2) standard deviation below the mean firm-specific weekly returns. 

Percentage of Crashes  

Table 3.1 presents the percentage of crashes of the robust technique (ROB1 and ROB2), 

and ordinary least square technique. For the OLS technique, the measures are derived 

using the un-transform residual returns (OLS1 and OLS2), and the transformation of the 

residual returns (WOLS1 and WOLS2).  

 All results are similar in the aspect that OLS and WOLS measures detect lower 

percentages of crashes than the ROB methodology. This is attributed to the fact that the 

presence of outliers in the 52-weekly return series miscomputed the standard deviation of 

the series. Table 3.1 shows that when a negative outlier equals -10% is presented in the 

series, the percentage of crashes using 3.09 (3.20) in the OLS is 77.71% (OLS1) and 

75.85% (OLS2), respectively. In this case, the ROB findings are 81.92% (ROB1) and 

80.82% (ROB2). Robust methodology detects 81.92% – 77.71% = 4.20% and 80.82% – 

75.85%= 4.97% higher percentage of crashes. 

 Table 3.1 also shows the percentage of crashes using the WOLS measure. The 

WOLS methodology detects a lower percentage of crashes than the robust methodology. 

Interestingly, this methodology detects a higher percentage of crashes than OLS. For 

example, in the case that a -10% negative outlier exists in the 52-weekly return series, 

WOLS1 = 79.18% and WOLS2 = 77.35%. This means that 79.18% - 77.71% = 1.47% 

and 77.35% - 75.77% = 1.50% higher percentage of crashes is detected using the log-

transformation measure (WOLS) in comparison to the un-transform (OLS). 

 Comparing the ROB findings with the WOLS approach, this means that 81.92% – 

79.18% = 2.74% (ROB1-WOLS1) and 80.82%-77.35% = 3.47% (ROB2-WOLS2) higher 

crashes are detected using the outlier resistant method (ROB) compared to the OLS 

logarithmic transformation technique (WOLS). 
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 The findings using Monte-Carlo simulations lead to two main conclusions. The first 

one is that the OLS technique detects a lower percentage of crashes compared to the 

outlier robust technique. The second conclusion is related to the un-transform measure. 

Using the residual returns as derived from the market model, the percentage of crashes 

are lower when compared to the log transformation of them.  

Table 3.1. A Negative Outlier Return – ROB1,2 , OLS1,2 and WOLS1,2 

αh ROB1 ROB2 OLS1 OLS2 WOLS1 WOLS2 

-0.2 97.78 97.58 96.56 96.12 97.05 96.64 

-0.19 97.29 97.05 95.91 95.38 96.47 96.02 

-0.18 96.67 96.40 95.13 94.53 95.72 95.20 

-0.17 95.89 95.59 94.18 93.48 94.83 94.24 

-0.16 94.98 94.57 92.94 92.07 93.72 92.99 

-0.15 93.71 93.23 91.40 90.48 92.28 91.41 

-0.14 92.43 91.86 89.79 88.71 90.76 89.79 

-0.13 90.44 89.83 87.59 86.37 88.70 87.55 

-0.12 88.10 87.28 84.78 83.33 85.95 84.62 

-0.11 85.51 84.57 81.68 80.06 83.09 81.45 

-0.10 81.92 80.82 77.71 75.85 79.18 77.35 

-0.09 77.44 76.11 72.77 70.55 74.36 72.26 

-0.08 72.19 70.61 66.90 64.50 68.61 66.26 

-0.07 65.55 63.75 59.81 57.04 61.59 58.92 

-0.06 57.23 55.22 51.06 48.14 52.97 49.97 

Notes. Monte–Carlo simulations of T = 100,000 samples of 52 weekly randomly excess 

market returns investigate the three different binary crash risk measures. The data period 

is from 10/01/1992 to 26/06/2020. The parameter ah is setting to take values in the interval 

(-0.20,-0.06). This means that ah = -20% is a large negative outlier return in the return 

series. The robust residuals and ordinary least square (OLS) are drawn from each 

simulation to compute the binary crash risk measures, namely, ROB1, ROB2, OLS1, 

OLS2, WOLS1, and WOLS2.  The binary measure is an indicator that takes the value of 

one when at least one firm-specific weekly returns falling 3.09/3.20 standard deviation 

below the mean firm-specific weekly returns and the value of zero, otherwise. ROB1 (3.09 

standard deviation from the mean), ROB2 (3.20 standard deviation from the mean), OLS1 

(un-transform residual returns, 3.09 standard deviation from the mean), OLS2  (un-

transform residual returns, 3.20 standard deviation from the mean), WOLS1 

(transformation of residual OLS returns, 3.09 standard deviation from the mean), and 

WOLS2 (transformation of residual OLS returns, 3.20 standard deviation from the mean). 
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For the case of ROB measures, the standard deviation of equation (3.15) is taken to avoid 

the inflation of the outlier returns.  

 Empirical Findings 

3.5.1 Data and Sample 

The sample is constructed in the following way. The crash risk measures are computed 

using firms in the Center for Research in Security Prices (CRSP) for the period 1992-

2018. Following the existing literature (e.g., Kim et al., 2011a) from the sample are 

excluded those firms with a share price lower than $2.5 and those with less than twenty-

six weeks of return data (Hutton et al, 2009). After the data filtering, the final sample 

includes 165,985 firm-year observations. This corresponds to 20,390 firms from different 

industries.  

Empirical Findings 

3.5.2 Sample’s Distribution and Statistics of Crashes 

Tables 3.2 and 3.4 show the sample’s distribution and statistics of the ROB1, OLS1 and 

ROB2, OLS2 measures using 3.09 and 3.20-times standard deviation from the mean. 

Tables 3.3 and 3.5 show the sample’s distribution and statistics of the ROB1, WOLS1 and 

ROB2, WOLS2 measures using 3.09 and 3.20-times standard deviation from the mean. 

Table 3.2 shows that in ROB1, 33,266 firm-year observations, or 20.04% are 

categorized as crashes. The OLS1 concludes that 22,596 firm-year observations or 

13.61% are classified as crashes while WOLS1  finds that 30,226 firm-year observations 

or 18.21% are categorized as crashes (Table 3.3). Figures 3.1 and 3.3 show the percentage 

of crashes under the ROB1 and OLS1, and ROB1 and WOLS1 (respectively) by year while 

figures 3.2 and 3.4 present the number of firms with stock price crashes. The figures show 

that robust methodology follows the same pattern as OLS and WOLS but with a higher 

percentage of crashes and number of firms with stock price crashes.  

Table 3.4 shows that in ROB2, 29,595 firm-year observations, or 17.83% are 

categorized as crashes. The OLS2 concludes that 18,903 firm-year observations or 

11.39% are classified as crashes while WOLS2  finds that 25,544 firm-year observations 

or 15.39% are categorized as crashes (Table 3.5). Figures 3.5 and 3.7 show the percentage 

of crashes under the ROB2 and OLS2, and ROB2 and WOLS2 (respectively) by year while 



135 

 

figures 3.6 and 3.8 present the number of firms with stock price crashes. The findings 

show that the robust methodology detects higher percentage of crashes compared to the 

OLS technique.  

Table 3.6 shows the differences between ROB1 and OLS1, and ROB2 and OLS2 in 

more detail. The findings show that 10,670 firm-year observations or 6.43% higher 

percentage of crashes are observed under the ROB1 in comparison to the OLS1. The 

highest difference between the percentage of crashes is observed in 2008 (12.63%). On 

the other hand, the lowest difference between the percentage of crashes is observed in the 

years 1993 and 1996 (4.21%). 

The above findings show that the percentage of crashes using the robust measure 

(ROB1 and ROB2) is higher in relation to the OLS1, OLS2, WOLS1, and WOLS2.  
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Table 3.2. Sample’s Distribution and Statistics of Crashes (ROB1 and OLS1) 

ROB1 OLS1 

Year 
Number of 

Observations 

Number of 

Robust 

Crashes 

 

Percentage of 

Robust 

Crashes  

Number of 

Crashes  

Percentage 

of Crashes  

1992 5,336 843 15.8 569 10.66 

1993 6,083 859 14.12 603 9.91 

1994 6,575 991 15.07 685 10.42 

1995 6,801 932 13.7 637 9.37 

1996 7,283 966 13.26 659 9.05 

1997 7,342 1,072 14.6 716 9.75 

1998 7,006 1,261 18.00 783 11.18 

1999 6,914 1046 15.13 662 9.57 

2000 6,182 982 15.88 648 10.48 

2001 5,909 1,229 20.80 722 12.22 

2002 5,438 1,307 24.03 837 15.39 

2003 5,908 1,183 20.02 806 13.64 

2004 5,920 1,431 24.17 999 16.88 

2005 5,873 1,303 22.19 928 15.8 

2006 5,978 1,298 21.71 958 16.03 

2007 5,985 1,384 23.12 888 14.84 

2008 5,320 1,455 27.35 783 14.72 

2009 5,526 1,112 20.12 621 11.24 

2010 5,738 1,070 18.65 749 13.05 

2011 5,738 1,272 22.17 888 15.48 

2012 5,794 1,413 24.39 1,085 18.73 

2013 5,986 1,280 21.38 932 15.57 

2014 6,153 1,469 23.87 1,055 17.15 

2015 6,223 1,363 21.90 939 15.09 

2016 6,286 1,754 27.90 1,244 19.79 

2017 6,342 1,582 24.94 1,191 18.78 

2018 6,346 1,409 22.20 1,009 15.9 

Total 165,985 33,266 20.04 22,596 13.61 

Notes. This table presents the number of stock price crashes, the percentage of crashes 

(yearly) and the final sample statistics of the stock price crashes of the measures ROB1 

and OLS1. The sample covers the period from 1992 to 2018. A stock price crash is an 

indicator that takes the value of one when at least one firm-specific weekly returns falls 

3.09 standard deviation below the mean firm-specific weekly returns, and zero otherwise. 
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Table 3.3. Sample’s Distribution and Statistics of Crashes (ROB1 and WOLS1) 

ROB1 WOLS1 

Year 
Number of 

Observations 

Number of 

Robust 

Crashes 

 

Percentage of 

Robust 

Crashes  

Number of 

Crashes  

Percentage 

of Crashes  

1992 5,336 843 15.80 801 15.01 

1993 6,083 859 14.12 846 13.91 

1994 6,575 991 15.07 971 14.77 

1995 6,801 932 13.70 884 13.00 

1996 7,283 966 13.26 976 13.40 

1997 7,342 1,072 14.60 1,039 14.15 

1998 7,006 1,261 18.00 1,177 16.80 

1999 6,914 1046 15.13 999 14.45 

2000 6,182 982 15.88 1,046 16.92 

2001 5,909 1,229 20.80 1,108 18.75 

2002 5,438 1,307 24.03 1,165 21.42 

2003 5,908 1,183 20.02 1,077 18.23 

2004 5,920 1,431 24.17 1,273 21.50 

2005 5,873 1,303 22.19 1,187 20.21 

2006 5,978 1,298 21.71 1,207 20.19 

2007 5,985 1,384 23.12 1,160 19.38 

2008 5,320 1,455 27.35 1,168 21.95 

2009 5,526 1,112 20.12 987 17.86 

2010 5,738 1,070 18.65 966 16.84 

2011 5,738 1,272 22.17 1,119 19.50 

2012 5,794 1,413 24.39 1,281 22.11 

2013 5,986 1,280 21.38 1,138 19.01 

2014 6,153 1,469 23.87 1,291 20.98 

2015 6,223 1,363 21.90 1,195 19.20 

2016 6,286 1,754 27.90 1,517 24.13 

2017 6,342 1,582 24.94 1,418 22.36 

2018 6,346 1,409 22.20 1,230 19.38 

Total 165,985 33,266 20.04 30,226 18.21 

Notes. This table presents the number of stock price crashes, the percentage of crashes 

(yearly) and the final sample statistics of the stock price crashes of the measures ROB1 

and WOLS1. The sample covers the period from 1992 to 2018. A stock price crash is an 

indicator that takes the value of one when at least one firm-specific weekly returns falls 

3.09 standard deviation below the mean firm-specific weekly returns, and zero otherwise. 
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Table 3.4. Sample’s Distribution and Statistics of Crashes (ROB2 and OLS2) 

ROB2 OLS2 

Year 
Number of 

Observations 

Number of 

Robust 

Crashes 

 

Percentage of 

Robust 

Crashes  

Number of 

Crashes  

Percentage 

of Crashes  

1992 5,336 735 13.77 463 8.68 

1993 6,083 767 12.61 485 7.97 

1994 6,575 857 13.03 573 8.71 

1995 6,801 822 12.09 552 8.12 

1996 7,283 857 11.77 539 7.40 

1997 7,342 933 12.71 585 7.97 

1998 7,006 1,123 16.03 650 9.28 

1999 6,914 917 13.26 554 8.01 

2000 6,182 872 14.11 531 8.59 

2001 5,909 1,076 18.21 583 9.87 

2002 5,438 1,188 21.85 697 12.82 

2003 5,908 1,042 17.64 656 11.10 

2004 5,920 1,273 21.50 861 14.54 

2005 5,873 1,164 19.82 794 13.52 

2006 5,978 1,173 19.62 825 13.8 

2007 5,985 1,224 20.45 738 12.33 

2008 5,320 1,310 24.62 642 12.07 

2009 5,526 984 17.81 514 9.30 

2010 5,738 940 16.38 634 11.05 

2011 5,738 1,121 19.54 733 12.77 

2012 5,794 1,265 21.83 935 16.14 

2013 5,986 1,143 19.09 768 12.83 

2014 6,153 1,313 21.34 876 14.24 

2015 6,223 1,220 19.60 795 12.78 

2016 6,286 1,579 25.12 1,044 16.61 

2017 6,342 1,419 22.37 1,013 15.97 

2018 6,346 1,278 20.14 863 13.60 

Total 165,985 29,595 17.83 18,903 11.39 

Notes. This table presents the number of stock price crashes, the percentage of crashes 

(yearly) and the final sample statistics of the stock price crashes of the measures ROB2 

and OLS2. The sample covers the period from 1992 to 2018. A stock price crash is an 

indicator that takes the value of one when at least one firm-specific weekly returns falls 

3.20 standard deviation below the mean firm-specific weekly returns and the value of 

zero, otherwise. 
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Table 3.5. Sample’s Distribution and Statistics of Crashes (ROB2 and WOLS2) 

ROB2 WOLS2 

Year 
Number of 

Observations 

Number of 

Robust 

Crashes 

 

Percentage of 

Robust 

Crashes  

Number of 

Crashes  

Percentage 

of Crashes  

1992 5,336 735 13.77 672 12.59 

1993 6,083 767 12.61 707 11.62 

1994 6,575 857 13.03 788 11.98 

1995 6,801 822 12.09 750 11.03 

1996 7,283 857 11.77 801 11.00 

1997 7,342 933 12.71 851 11.59 

1998 7,006 1,123 16.03 1,005 14.34 

1999 6,914 917 13.26 847 12.25 

2000 6,182 872 14.11 893 14.45 

2001 5,909 1,076 18.21 927 15.69 

2002 5,438 1,188 21.85 1,009 18.55 

2003 5,908 1,042 17.64 907 15.35 

2004 5,920 1,273 21.50 1,080 18.24 

2005 5,873 1,164 19.82 1,020 17.37 

2006 5,978 1,173 19.62 1,038 17.36 

2007 5,985 1,224 20.45 961 16.06 

2008 5,320 1,310 24.62 999 18.78 

2009 5,526 984 17.81 807 14.60 

2010 5,738 940 16.38 819 14.27 

2011 5,738 1,121 19.54 922 16.07 

2012 5,794 1,265 21.83 1,127 19.45 

2013 5,986 1,143 19.09 960 16.04 

2014 6,153 1,313 21.34 1,088 17.68 

2015 6,223 1,220 19.60 1,013 16.28 

2016 6,286 1,579 25.12 1,293 20.57 

2017 6,342 1,419 22.37 1,213 19.13 

2018 6,346 1,278 20.14 1,047 16.50 

Total 165,985 29,595 17.83 25,544 15.39 

Notes. This table presents the number of stock price crashes, the percentage of crashes 

(yearly) and the final sample statistics of the stock price crashes of the measures ROB2 

and WOLS2. The sample covers the period from 1992 to 2018. A stock price crash is an 

indicator that takes the value of one when at least one firm-specific weekly returns falls 

3.20 standard deviation below the mean firm-specific weekly returns and the value of 

zero, otherwise. 
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Figure 3.1. Percentage of Crashes under ROB1 and OLS1 

 
Figure 3.2. Number of Firms with Stock Price Crash under ROB1 and OLS1 
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Figure 3.3. Percentage of Crashes under ROB1 and WOLS1 

 
Figure 3.4. Number of firms with Stock Price Crash under ROB1 and WOLS1 
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Figure 3.5. Percentage of Crashes under ROB2 and OLS2 

 

Figure 3.6. Number of Firms with Stock Price Crash under ROB2 and OLS2 
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Figure 3.7. Percentage of Crashes under ROB2 and WOLS2 

 

Figure 3.8. Number of Firms with Stock Price Crash under ROB2 and WOLS2 
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Table 3.6. Differences between ROB1,2 and OLS1,2  

Year 
ROB1-OLS1  

 

ROB1-OLS1 

(%) 

ROB2-OLS2  

 

ROB2-OLS2 

(%) 

1992 274 5.14 272 5.09 

1993 256 4.21 282 4.64 

1994 306 4.65 284 4.32 

1995 295 4.33 270 3.97 

1996 307 4.21 318 4.37 

1997 356 4.85 348 4.74 

1998 478 6.82 473 6.75 

1999 384 5.56 363 5.25 

2000 334 5.4 341 5.52 

2001 507 8.58 493 8.34 

2002 470 8.64 491 9.03 

2003 377 6.38 386 6.54 

2004 432 7.29 412 6.96 

2005 375 6.39 370 6.30 

2006 340 5.68 348 5.82 

2007 496 8.28 486 8.12 

2008 672 12.63 668 12.55 

2009 491 8.88 470 8.51 

2010 321 5.60 306 5.33 

2011 384 6.69 388 6.77 

2012 328 5.66 330 5.69 

2013 348 5.81 375 6.26 

2014 414 6.72 437 7.10 

2015 424 6.81 425 6.82 

2016 510 8.11 535 8.51 

2017 391 6.16 406 6.40 

2018 400 6.30 415 6.54 

Total 10,670 6.43 10,692 6.44 

Notes. This table presents the differences between the ROB1,2-OLS1,2 measures. More 

specifically, the table presents the differences regarding the number of crashes and the 

percentage of crashes under the robust technique compared to the standard OLS method. 

The table shows the number of stock price crashes, the percentage of crashes (yearly) and 

final sample statistics of the stock price crashes of the un-transform residual returns as 

derived from the Dimson (1979) model using the OLS and the outlier-resistant 

methodologies. The sample covers the period from 1992 to 2018. A stock price crash is 

an indicator that takes the value of one when at least one firm-specific weekly returns 

falls 3.09/3.20 standard deviation below the mean firm-specific weekly returns and the 

value of zero, otherwise. 
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3.5.3 Commonalities and Differences Between Crashes under the Measures 

Table 3.7 summarizes the percentages of crashes and the number of observations of the 

three measures ROB1,2, OLS1,2, and WOLS1,2 for 3.09- and 3.20-times standard deviation 

from the mean. These findings lead to a further investigation of the commonalities and 

differences between the measures.  

Table 3.7. Percentage of Crashes  

Panel A. 3.09 std from the mean 

Measures  ROB1 OLS1 WOLS1 

% of Crashes 20.04% 13.61% 18.21% 

Observations 33,266 22,596 30,226 

Panel B. 3.20 std from the mean 

Measures ROB2 OLS2 WOLS2 

% of Crashes 17.83% 11.39% 15.39% 

Observations 29,595 18,903 25,544 

Notes. This table presents the percentage of crashes using the measures namely ROB1,2, 

OLS1,2, and WOLS1,2. Part A (Part B) presents the percentage of crashes and number of 

observations using 3.09 (3.20) times standard deviation from the mean. 

 

 A further investigation of the commonalities and differences between the ROB1,2 

and, OLS1,2 is presented in Table 3.8 Panel A. Panel A of Table 3.8 (column two) presents 

the analysis of the percentage of crashes between ROB1 and OLS1 while column three the 

analysis between ROB2 and OLS2. The common percentage of crashes between the two 

measures (ROB1,2∩OLS1,2)  is 13.45% (11.32%) or 22,332 (18,784) firm-year 

observations. The percentage of crashes that belongs on OLS1,2 and not on ROB1,2 

(OLS1,2∉ROB1,2) is 0.16% (0.07%) or 264 (119) firm-year observations while 6.59% 

(6.51%) or 10,934 (10,811) firm-year observations are classified as crashes in ROB1,2 and 

not in OLS1,2 (ROB1,2 ∉OLS1,2). These findings lead to the conclusion that OLS1,2 

measure is almost a subset of the ROB1,2 measure.   
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Table 3.8. Percentage of Common Crashes between ROB and OLS 

Panel A. ROB and OLS 

% of Crashes and Firm-

year observations 

 

3.09 std from the mean 3.20 std from the mean 

ROB∩OLS 
13.45% 11.32% 

Observations 
22,332 18,784 

OLS∉ROB 

 
0.16% 0.07% 

Observations 264 119 

ROB ∉OLS 6.59% 6.51% 

Observations 10,934 10,811 

Panel B. ROB and WOLS 

% of Crashes and Firm-

year observations 

 

3.09 std from the mean 3.20 std from the mean 

ROB∩WOLS 
16.34% 14.04% 

Observations 
27,121 23,302 

WOLS∉ROB 

 
1.87% 1.35% 

Observations 3,105 2,242 

ROB ∉WOLS 3.70% 3.79% 

Observations 6,145 6,293 

Notes. This table presents the commonality or difference between the ROB1,2 and OLS1,2 

and ROB1,2 and WOLS1,2. OLS represents the binary measure using the un-transform 

OLS residual returns while ROB using the un-transform robust residual returns under the 

corrected standard deviation derived from equation (3.15). WOLS1,2 is the binary measure 

using the logarithmic transformation of the OLS residual returns. 

 

 Panel B of Table 3.8 (column two) presents the analysis of the percentage of 

crashes between ROB1 and WOLS1  while column three the analysis between ROB2 and 

WOLS2. The common percentage of crashes between the two measures 

(ROB1,2∩WOLS1,2)  is 16.34% (14.04%) or 27,121 (23,302) firm-year observations. The 
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percentage of crashes that belongs to WOLS1,2 and not to ROB1,2 (WOLS1,2∉ROB1,2) is 

1.87% (1.35%) or 3,105 (2,242) firm-year observations while 3.70% (3.79%) or 6,145 

(6,293) firm-year observations are classified as crashes in ROB1,2 and not in WOLS1,2 

(ROB1,2 ∉WOLS1,2). 

3.5.4 Preliminary Statistics of the Measures  

Table 3.9 presents the expected value, standard deviation, and the quantiles (minimum, 

25%, median, 75%, and a maximum) of the binary crash measures. Panel A of Table 3.9 

shows the descriptive statistics of the measures using 3.09 standard deviation from the 

mean, namely, ROB1 , OLS1 ,and WOLS1. Panel B of Table 3.9 presents the preliminary 

statistics of the measures using 3.20 standard deviation from the mean. 

The expected value and standard deviation of crashes in ROB1 (ROB2) are 0.20 

(0.178) and 0.40 (0.383), respectively. Conversely, the expected value and standard 

deviation of crashes in OLS1 (OLS2) are 0.136 (0.114) and 0.343 (0.318), respectively. 

Finally, the expected value and standard deviation in WOLS1 (WOLS2) are 0.182 (0.154) 

and 0.386 (0.361), respectively. 

The higher expected value and uncertainty of ROB1,2 compared to the OLS1,2 and 

WOLS1,2 is due to the higher percentage of crashes that detected in ROB1,2 compared to 

the other two measures.  
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Table 3.9. Descriptive Statistics 

Variable N Mean Std Min Q1 

(25%) 

Median 

(50%) 

Q3 

(75%) 

Max 

Panel A. 3.09 std from the mean   

ROB1 165,985 0.200 0.400 0 0 0 0     1 

OLS1 165,985 0.136 0.343 0 0 0 0     1 

WOLS1 165,985 0.182 0.386 0 0 0 0 1 

Panel B. 3.20 std from the mean  

ROB2 165,985 0.178 0.383 0 0 0 0 1 

OLS2 165,985 0.114 0.318 0 0 0 0 1 

WOLS2 165,985 0.154 0.361 0 0 0 0 1 

Notes. This table presents the preliminary statistics for the stock price crash risk measures 

ROB1,2, OLS1,2 and WOLS1,2 from 1992 to 2018.  

3.5.5 Sample’s Distribution and Statistics of Crashes by Industry 

Tables 3.10 - 3.13 present the sample’s distribution and statistics of crashes for each one 

of the Fama and French 49 industry classifications. The findings reveal that the 

percentage of crashes differs across industries. Figures 3.9 and 3.10 show the percentage 

of crashes between ROB1 and OLS1 and WOLS1. Overall, Tables 3.10 and 3.11 show that 

20.12% (or 24,718 firm-year observations) are classified as crashes using ROB1, 13.80% 

(or 16,952 firm-year observations) using OLS1, and 19.14% or 23,505 firm-year 

observations using WOLS1. Tables 3.12 and 3.13 present the sample’s distribution and 

statistics of crashes by industry of the measures ROB2 and OLS2 and WOLS2. The 

analysis of the findings is similar; therefore, it is omitted.   

The industry that exhibits the lowest percentage of crashes in comparison to the 

other industries is 27 (Gold, Precious Metals). On the other hand, industries that present 

high percentage of crashes are 33 (Personal Services), and 36 (Computer Software). 

Industries with more than 1,000 firm-year observations are Pharmaceutical (classification 

number 13), Business services (classification number 34), Computer software 

(classification number 36), Electronic equipment (classification number 37), Retail 
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(classification number 43), Banking (classification number 45), Insurance (classification 

number 46), and Trading (classification number 48).  

Overall, the findings show that  7,766 (=24,718-16,952) firm-year observations 

or 8.32% (=20,12% - 13.80%) higher percentage of crashes is detected as crashes in ROB1 

compared to OLS1 while 1,213 firm-year observations (=24,718-23,505) or 0.98% 

(=20.12%-19.14%) higher percentage of crashes is classified as crashes in ROB1 and not 

in WOLS1.  

 To have a clearer view, a further investigation of the commonalities and 

differences between the ROB1,2 and, OLS1,2 by industry is presented in Table 3.14 Panel 

A. Panel A of Table 3.14 (column two) presents the analysis of the number of 

observations with stock price crashes between ROB1 and OLS1 by industry while column 

three the analysis between ROB2 and OLS2. The common number of firm-year crash 

observations (ROB1,2∩OLS1,2)  is 16,765 (14,233) firm-year observations. The number 

of crash observations that belongs to OLS1,2 and not to ROB1,2 (OLS1,2∉ROB1,2) is 187 

(91) firm-year observations while 7,953 (7,834) firm-year observations are classified as 

crashes in ROB1,2 and not in OLS1,2 (ROB1,2 ∉OLS1,2).  

 Panel B of Table 3.14 (column two) presents the analysis of the number of 

common firm-year observations between ROB1 and WOLS1 while column three the 

analysis between ROB2 and WOLS2. The common number of firm-year observations 

between the two measures (ROB1,2∩WOLS1,2) is 20,775 (18,040) firm-year observations. 

The number of firm-year observations that belongs to WOLS1,2 and not to ROB1,2 

(WOLS1,2∉ROB1,2) is 2,730 (2,010) firm-year observations while 3,943 (4,027) firm-year 

observations are classified as crashes in ROB1,2 and not in WOLS1,2 (ROB1,2 ∉WOLS1,2).  
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Table 3.10. Sample’s Distribution by Industry, ROB1, OLS1 and WOLS1 (%) 

Industry Number of 

Firms by 

Industry 

ROB1  

(%) 

OLS1  

(%) 

WOLS1 

 (%) 

1 372 19.35 10.75 15.86 

2 1,899 21.43 14.85 19.69 

3 298 18.79 13.42 17.79 

4 449 19.15 12.92 17.82 

5 184 19.02 14.67 19.02 

6 802 22.57 15.09 21.32 

7 1,611 16.76 11.42 16.95 

8 986 20.79 14.50 18.66 

9 1,702 22.86 16.27 21.62 

10 1,513 23.79 16.13 22.74 

11 1,978 22.19 15.42 21.74 

12 3,512 22.35 16.00 21.87 

13 7,042 21.00 14.73 21.26 

14 2,178 20.57 14.51 19.10 

15 876 24.89 15.87 20.78 

16 515 20.97 13.79 19.03 

17 2,087 20.41 13.85 18.69 

18 1,431 18.8 13.42 18.59 

19 1,663 16.78 10.64 16.54 

20 366 19.4 11.20 18.03 

21 3,805 16.85 10.78 15.82 

22 1,617 21.4 13.85 19.11 

23 1,705 18.89 12.96 18.59 

24 570 18.77 14.21 18.07 

25 251 21.12 14.34 19.52 

26 222 16.22 9.91 13.06 

27 307 9.12 7.17 11.07 

28 432 15.28 10.19 13.89 

29 237 13.08 7.59 15.61 

30 4,243 13.03 9.00 13.46 

31 3,743 18.27 12.61 15.66 

32 4,201 15.90 10.78 15.62 

33 1,297 24.83 17.58 23.75 

34 5,757 23.22 17.11 22.48 

35 2,805 22.17 16.58 23.85 

36 8,597 21.94 15.49 22.57 

37 6,802 20.71 13.92 21.07 

38 2385 19.75 13.71 18.36 

39 1,407 20.68 14.36 18.41 

40 379 20.32 11.87 16.62 

41 3562 19.09 12.91 18.36 

42 4120 22.06 15.29 20.51 

43 5909 23.08 16.36 22.56 

44 2137 18.62 12.77 17.17 

45 10,269 18.13 11.33 15.6 

46 4,787 21.50 15.02 19.3 

47 1,022 20.25 11.74 16.54 

48 8,075 19.79 13.16 17.29 

49 717 19.25 13.39 17.99 

Total 122,824 20.12 13.80 19.14 

Notes. This table presents the percentage of crashes of the measures: ROB1, OLS1, and WOLS1 for each of 

the Fama and French 49 industry classifications. The number of observations is 122,824 and 43,161 missing 

observations (overall 165,985). 
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Table 3.11. Number of Firms with Crashes by Industry, ROB1, OLS1 and WOLS1  

Industry Number of 

Firms by 

Industry 

ROB1 OLS1 WOLS1 

1 372 72 40 59 

2 1,899 407 282 374 

3 298 56 40 53 

4 449 86 58 80 

5 184 35 27 35 

6 802 181 121 171 

7 1,611 270 184 273 

8 986 205 143 184 

9 1,702 389 277 368 

10 1,513 360 244 344 

11 1,978 439 305 430 

12 3,512 785 562 768 

13 7,042 1,479 1,037 1,497 

14 2,178 448 316 416 

15 876 218 139 182 

16 515 108 71 98 

17 2,087 426 289 390 

18 1,431 269 192 266 

19 1,663 279 177 275 

20 366 71 41 66 

21 3,805 641 410 602 

22 1,617 346 224 309 

23 1,705 322 221 317 

24 570 107 81 103 

25 251 53 36 49 

26 222 36 22 29 

27 307 28 22 34 

28 432 66 44 60 

29 237 31 18 37 

30 4,243 553 382 571 

31 3,743 684 472 586 

32 4,201 668 453 656 

33 1,297 322 228 308 

34 5,757 1,337 985 1,294 

35 2,805 622 465 669 

36 8,597 1,886 1,332 1,940 

37 6,802 1,409 947 1,433 

38 2,385 471 327 438 

39 1,407 291 202 259 

40 379 77 45 63 

41 3,562 680 460 654 

42 4,120 909 630 845 

43 5,909 1,364 967 1333 

44 2,137 398 273 367 

45 10,269 1,862 1,163 1,602 

46 4,787 1,029 719 924 

47 1,022 207 120 169 

48 8,075 1,598 1,063 1,396 

49 717 138 96 129 

Total 122,824 24,718 16,952 23,505 

Notes. This table presents the number of stock price crashes of the measures: ROB1, OLS1, and WOLS1 for 

each of the Fama and French 49 industry classifications (see appendix III). The number of observations is 

122,824 and 43,161 missing observations (overall 165,985). 
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Table 3.12. Sample’s Distribution by Industry, ROB2, OLS2 and WOLS2 (%) 

Industry Number of 

Firms by 

Industry 

 

ROB2 (%) 

 

OLS2 (%) 

 

WOLS2 (%) 

1 372 17.47 9.14 14.25 

2 1,899 19.22 12.48 16.96 

3 298 17.45 11.41 14.77 

4 449 17.37 9.13 14.70 

5 184 16.30 10.87 14.13 

6 802 19.08 12.84 18.83 

7 1,611 15.15 9.68 14.4 

8 986 18.86 12.17 16.23 

9 1,702 20.98 13.87 18.57 

10 1,513 21.48 13.75 18.97 

11 1,978 19.97 13.4 19.01 

12 3,512 20.39 13.78 19.36 

13 7,042 19.14 13.19 18.47 

14 2,178 18.37 11.66 15.98 

15 876 22.60 14.04 18.04 

16 515 18.83 12.04 16.12 

17 2,087 17.92 11.40 15.91 

18 1,431 16.84 11.53 16.28 

19 1,663 14.43 9.08 13.65 

20 366 17.21 8.47 14.48 

21 3,805 14.32 9.07 13.01 

22 1,617 19.29 12.06 16.57 

23 1,705 16.30 10.73 15.01 

24 570 16.67 11.05 15.09 

25 251 18.73 12.35 17.13 

26 222 15.32 8.56 10.81 

27 307 8.14 5.86 9.12 

28 432 12.96 7.87 10.42 

29 237 10.13 6.33 10.97 

30 4,243 11.38 7.09 11.08 

31 3,743 15.98 10.26 12.69 

32 4,201 13.83 9.00 12.90 

33 1,297 22.36 15.42 21.13 

34 5,757 21.43 14.99 19.91 

35 2,805 19.75 14.4 20.86 

36 8,597 19.76 13.21 19.65 

37 6,802 18.26 11.73 18.04 

38 2385 17.9 11.66 16.31 

39 1,407 17.98 11.87 16.06 

40 379 19.00 9.50 13.46 

41 3562 17.10 10.61 15.41 

42 4120 20.07 13.35 17.84 

43 5909 20.78 13.49 19.60 

44 2137 16.75 10.81 14.32 

45 10,269 15.91 9.40 12.77 

46 4,787 19.55 13.08 16.69 

47 1,022 18.10 8.90 13.99 

48 8,075 17.19 10.70 14.18 

49 717 17.57 11.58 15.48 

Total 122,824 17.97 11.66 16.32 

Notes. This table presents the percentage of crashes of the measures ROB2 , OLS2 , and WOLS2 using the 

robust outlier-resistant and ordinary least square methods for each of the Fama and French 49 industry 

classifications. The number of observations is 122,824 and 43,161 missing observations (overall 165,985). 
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Table 3.13. Number of Firms with Crashes by Industry, ROB2, OLS2 and WOLS2  

Industry Number of 

Firms by 

Industry 

 

ROB2 

 

OLS2 

 

WOLS2 

1 372 65 34 53 

2 1,899 365 237 322 

3 298 52 34 44 

4 449 78 41 66 

5 184 30 20 26 

6 802 153 103 151 

7 1,611 244 156 232 

8 986 186 120 160 

9 1,702 357 236 316 

10 1,513 325 208 287 

11 1,978 395 265 376 

12 3,512 716 484 680 

13 7,042 1,348 929 1,301 

14 2,178 400 254 348 

15 876 198 123 158 

16 515 97 62 83 

17 2,087 374 238 332 

18 1,431 241 165 233 

19 1,663 240 151 227 

20 366 63 31 53 

21 3,805 545 345 495 

22 1,617 312 195 268 

23 1,705 278 183 256 

24 570 95 63 86 

25 251 47 31 43 

26 222 34 19 24 

27 307 25 18 28 

28 432 56 34 45 

29 237 24 15 26 

30 4,243 483 301 470 

31 3,743 598 384 475 

32 4,201 581 378 542 

33 1,297 290 200 274 

34 5,757 1,234 863 1,146 

35 2,805 554 404 585 

36 8,597 1,699 1,136 1,689 

37 6,802 1,242 798 1,227 

38 2,385 427 278 389 

39 1,407 253 167 226 

40 379 72 36 51 

41 3,562 609 378 549 

42 4,120 827 550 735 

43 5,909 1,228 797 1,158 

44 2,137 358 231 306 

45 10,269 1,634 965 1311 

46 4,787 936 626 799 

47 1,022 185 91 143 

48 8,075 1,388 864 1,145 

49 717 126 83 111 

Total 122,824 22,067 14,324 20,050 

Notes. This table presents the number of firms with stock price crashes of the measures ROB2 , OLS2 , and 

WOLS2 using the robust outlier resistant and OLS methods for each of the Fama and French 49 industry 

classifications. The number of observations is 122,824 and 43,161 missing observations (overall 165,985). 
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Figure 3.9. Percentage of Crashes by Industry under the ROB1 and OLS1 

 

Figure 3.10. Percentage of Crashes by Industry under the ROB1, and WOLS1. 
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Table 3.14. Number of Common Crashes between ROB and OLS by Industry 

Panel A. ROB and OLS  

Firm-year observations 
 

3.09 std from the mean 3.20 std from the mean 

ROB∩OLS 
16,765 14,233 

OLS∉ROB 

 
187 91 

ROB ∉OLS 7,953 7,834 

Panel B. ROB and WOLS 

Firm-year observations 
 

3.09 std from the mean 3.20 std from the mean 

ROB∩WOLS 
20,775 18,040 

WOLS∉ROB 
2,730 2,010 

ROB ∉WOLS 3,943 4,027 

Notes. This table presents the commonality or difference between the ROB1,2 and OLS1,2 

and ROB1,2 and WOLS1,2. OLS1,2 represents the binary measure using the un-transform 

OLS residual returns while ROB1 using the un-transform residual returns under the 

corrected standard deviation derived from equation (3.15). WOLS1,2 represents the binary 

measure using the logarithmic transformation of the OLS residual returns 

3.5.6 Analysis of the OLS Percentage of Crashes  

This sub-section analyses the percentage of crashes between the OLS1,2 and WOLS1,2 

measures. Literature used the transformation of the residual returns to detect the 

percentage of crashes (WOLS1,2). Table 3.15 presents the common percentage of crashes 

between the two measures as well as the differences between them. Table 3.15 column 

two presents the analysis of the percentage of crashes between OLS1 and WOLS1 while 

column three the analysis between OLS2 and WOLS2.  

The common percentage of crashes between the two measures (OLS1,2∩WOLS1,2)  

is 13.61% (11.39%) or 22,596 (18,903) firm-year observations.  The percentage of crashes 

that belongs on OLS1,2 and not on WOLS1,2 (OLS1,2∉WOLS1,2) is 0% (0%) or zero firm-

year observations while 4.60% (4%) or 7,630 (6,641) firm-year observations are 

classified as crashes in WOLS1,2 and not in OLS1,2 (WOLS1,2 ∉OLS1,2). These findings 

lead to the conclusion that OLS1,2 measure is a subset of the WOLS1,2 measure.   
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Table 3.15. Percentage of Crashes and Commonality between OLS and WOLS 

% of Crashes and firm-

year observations 

 

3.09 std from the mean 3.20 std from the mean 

OLS∩WOLS 
13.61% 11.39% 

Observations 
22,596 18,903 

OLS∉WOLS 

 
0% 0% 

Observations 0 0 

WOLS ∉OLS 4.60% 4% 

Observations 7,630 6,641 

Notes. This table presents the common percentage of crashes between OLS1,2 and 

WOLS1,2 as well as the differences between the two ordinary least square measures.  

3.5.7 Event Study 

Forty crash firms under the ROB1 and not in ordinary crash risk measures are presented 

in Table 3.16. More specifically, Table 3.16 offers the name of the company, the TIC 

name, the weekly return for the specific week that the ROB1 detects the crash event as 

well as the exact crash date. The findings show that all firms present a negative weekly 

log-return. Some of these firms exhibit higher return (in absolute values) when compared 

to others.  

To further analyse these firms, Table 3.17 presents the standard deviation of OLS 

and the corrected robust standard deviation computed by equation (3.15) for each year of 

these firms. In all cases the standard deviation of the robust measure is lower compared 

to the standard deviation of the OLS measure. This finding verifies the importance to use 

a technique that corrects the inflated issue on the standard deviation. The biggest 

difference between the standard deviations is in firm Wins Finance Holdings Inc. This 

firm crashed in 2017 with a -29.58% weekly return. The OLS standard deviation is σε = 

0.98 (un-transform OLS standard deviation) and σw = 0.48 (log-transform standard 

deviation) while in the case of the robust technique the standard deviation is σe = 0.22.  
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Furthermore, Spirit Airlines Inc (TIC: SAVE) was detected to crash in 2015 with 

a negative return equal -7.87%. An article mentioned that this firm was a nightmare for 

the investors during the year 2015. Correspondingly, shares dropped further after the 

announcement of an investor that the weak performance of this firm will remain in the 

future.37 The robust measure detects a crash event after this announcement. Figure 3.11 

shows the weekly returns for the company before and after the crash event. The figure 

shows the sharply dropped of the firm’s returns indicating a crash event. Flexion 

Therapeutics Inc (TIC: FLXN) crashed in 2017 after the announcement of a $125M 

convertible debt offering. This led the firm’s stock to drop sharply.38 Figure 3.12 shows 

the weekly returns of the firm, before and after the crash event. In figure 3.12, there is a 

negative -11.13% return at the date that the robust measure detected the crash event. In 

addition, Auxilum Pharmaceuticals Inc. (TIC: AUXL) crashed on 05/08/2011 using the 

robust technique after the announcement of the CEO and President of the company to sell 

more than 10,000 shares on 03/08/11.39 Figure 3.13 shows the returns of Auxilum firm 

for the period 2010-2014 showing that on 05/08/2011 Auxilum firm’s return is -10.49% 

and the robust technique detects that at this date this firm crashed. Also, Microsoft 

(MSFT) crashed after the announcement of the analysts to downgrade the stock. 40 

 

 

 

 

 

 

 

 

 

 
37 https://www.fool.com/investing/general/2015/10/19/spirit-airlines-plunges-another-15-falls-into-deep.aspx (accessed: April 2021). 
38 https://seekingalpha.com/news/3259667-flexion-readies-125m-convertible-debt-offering-shares-down-13-after-hours (accessed: 

April 2021). 
39 https://www.gurufocus.com/news/128067/auxilium-pharmaceuticals-inc-auxl-ceo--president-armando-anido-sells-10555-

shares?fbclid=IwAR0-1SJs1BMkL-uks46yognTopgNRU_l98paDoA2qaxRWTDf3YknQS_26eU (accessed: April 2021). 
40 https://www.businessinsider.com/microsoft-is-crashing-after-analysts-downgrade-the-stock-thanks-to-rough-earnings-2015-1 
(accessed: April 2021). 

https://www.fool.com/investing/general/2015/10/19/spirit-airlines-plunges-another-15-falls-into-deep.aspx
https://seekingalpha.com/news/3259667-flexion-readies-125m-convertible-debt-offering-shares-down-13-after-hours
https://www.gurufocus.com/news/128067/auxilium-pharmaceuticals-inc-auxl-ceo--president-armando-anido-sells-10555-shares?fbclid=IwAR0-1SJs1BMkL-uks46yognTopgNRU_l98paDoA2qaxRWTDf3YknQS_26eU
https://www.gurufocus.com/news/128067/auxilium-pharmaceuticals-inc-auxl-ceo--president-armando-anido-sells-10555-shares?fbclid=IwAR0-1SJs1BMkL-uks46yognTopgNRU_l98paDoA2qaxRWTDf3YknQS_26eU
https://www.businessinsider.com/microsoft-is-crashing-after-analysts-downgrade-the-stock-thanks-to-rough-earnings-2015-1
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Table 3.16. Date of the Firm-Specific-Event and Return. 

 

No. 

 

Company Name 

 

TIC 

Weekly 

Return 

(%) 

 

Date 

1 ENERGY RECOVERY INC ERII -14.89 03/05/2010 

2 SPDR BLMBRG BRCLYS HI YLD BD JNK -11.64 06/10/2008 

3 MERIT MEDICAL SYSTEMS INC MMSI -29.57 10/04/2000 

4 BOSTON SCIENTIFIC CORP BSX -12.05 07/04/1997 

5 AVID TECHNOLOGY INC AVID -23.14 05/10/1998 

6 GLAUKOS CORP GKOS -11.54 11/01/2016 

7 FRP HOLDINGS INC FRPH -12.47 22/07/2002 

8 CONSTELLIUM SE CSTM -12.49 06/03/2017 

9 APPLIED OPTOELECTRONICS INC AAOI -12.28 24/09/2018 

10 WINS FINANCE HOLDINGS INC WINSF -29.58 27/03/2017 

11 COLLEGIUM PHARMACEUTICAL INC COLL -13.35 20/03/2017 

12 TRADE DESK INC TTD -10.28 06/11/2017 

13 LOEWS CORP L -6.180 29/03/1993 

14 DMC GLOBAL INC BOOM -9.320 23/07/2018 

15 TRANS-LUX CORP TNLX -11.54 08/10/1998 

16 INSIGHT SELECT INCOME FD INSI -15.17 06/10/2008 

17 FLEXION THERAPEUTICS INC FLXN -11.13 24/04/2017 

18 AUXILIUM PHARMA INC AUXL -10.49 05/08/2011 

19 HARMONIC INC HLIT -11.95 29/09/1997 

20 BANNER CORP BANR -17.08 17/09/2001 

21 CENTURY ALUMINUM CO CENX -12.23 22/07/2002 

22 DATATRAK INTERNATIONAL INC DTRK -14.29 08/08/2005 

23 TRUEBLUE INC TBI -17.29 30/08/1999 

24 TRANSACT TECHNOLOGIES INC TACT -24.10 05/10/1998 

25 RYMAN HOSPITALITY PPTYS INC RHP -11.49 17/09/2001 

26 PERDOCEO EDUCATION CORP PRDO -13.76 05/10/1998 

27 ENGLOBAL CORP ENG -17.22 29/09/2008 

28 CREDIT SUISSE HI YIELD BD FD DHY -13.52 17/09/2001 

29 MOBILE TELESYSTEMS PJSC MBT -28.55 20/10/2008 

30 UNITEDHEALTH GROUP INC UNH -16.56 08/07/1996 
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Table 3.16. (Contin.) 

 

No. 

 

Company Name 

 

TIC 

Weekly 

Return 

(%) 

 

Date 

31 PLEXUS CORP PLXS -7.80 03/01/2005 

32 MICROSOFT CORP MSFT -6.74 26/01/2015 

33 PSYCHEMEDICS CORP PMD -15.75 17/09/2001 

34 ALABAMA AIRCRAFT INDUSTRIES AAIIQ -28.00 10/09/2007 

35 GREEN DOT CORP GDOT -11.71 26/01/2015 

36 REPUBLIC FIRST BANCORP INC FRBK -11.83 21/09/2009 

37 CORNERSTONE ONDEMAND INC CSOD -6.19 31/07/2017 

38 SPIRIT AIRLINES INC SAVE -7.87 12/10/2015 

39 APOGEE ENTERPRISES INC APOG -6.24 14/09/2015 

40 CYBERARK SOFTWARE LTD CYBR -9.55 08/02/2016 

Notes. This table presents the information of each crash firm under the robust measure: 

company name, TIC, weekly return, and the date of the weekly return. 
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Table 3.17. OLS Standard Deviation and Corrected Standard Deviation 

No. TIC σε σw σe 

1 ERII 0.05838 0.05832 0.05494 

2 JNK 0.03099 0.03045 0.01964 

3 MMSI 0.08570 0.08564 0.07835 

4 BSX 0.06626 0.06707 0.06078 

5 AVID 0.10293 0.10198 0.08315 

6 GKOS 0.06385 0.06257 0.05265 

7 FRPH 0.06406 0.06458 0.06263 

8 CSTM 0.07001 0.06993 0.06048 

9 AAOI 0.08177 0.08156 0.06692 

10 WINSF 0.98034 0.48353 0.22526 

11 COLL 0.10204 0.09895 0.08873 

12 TTD 0.07597 0.07513 0.06286 

13 L 0.02515 0.02524 0.02495 

14 BOOM 0.07044 0.06859 0.05553 

15 TNLX 0.06290 0.06134 0.04576 

16 INSI 0.06289 0.05878 0.02846 

17 FLXN 0.08820 0.08630 0.07245 

18 AUXL 0.05453 0.05400 0.05041 

19 HLIT 0.09350 0.09098 0.07648 

20 BANR 0.05893 0.05874 0.04569 

21 CENX 0.07262 0.07320 0.06604 

22 DTRK 0.09431 0.09204 0.07923 

23 TBI 0.12327 0.12244 0.10477 

24 TACT 0.10982 0.10786 0.09422 

25 RHP 0.05280 0.05249 0.04909 

26 PRDO 0.07591 0.07521 0.06379 

27 ENG 0.08289 0.08495 0.08181 

28 DHY 0.05632 0.05564 0.04807 

29 MBT 0.10663 0.10300 0.08336 

30 UNH 0.05002 0.05047 0.04972 
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Table 3.17. (Cont.) 

No. TIC σε σw σe 
31 PLXS 0.04181 0.04181 0.03706 

32 MSFT 0.02789 0.02751 0.01989 

33 PMD 0.05222 0.05088 0.03199 

34 AAIIQ 0.18737 0.16131 0.11348 

35 GDOT 0.05814 0.05621 0.03846 

36 FRBK 0.05999 0.06065 0.05589 

37 CSOD 0.03793 0.03761 0.03379 

38 SAVE 0.05142 0.05111 0.04533 

39 APOG 0.04361 0.0437 0.03932 

40 CYBR 0.05406 0.05351 0.04515 

Notes. This table presents the OLS and robust standard deviations for the specific year of 

each crash company under the robust measure (ROB1) and the OLS measures. The 

standard deviations of OLS1 and WOLS1 are represented by σε and σw, respectively while 

σe is the standard deviation of the ROB1 measure derived from equation (3.15).  

 

 

 

 

 

 

 

 

 

 

Figure 3.11. SAVE Firm-Specific Event. 
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Figure 3.12. FLXN Firm-Specific Event. 

 

 

 

 

 

 

 

 

 

Figure 3.13. AUXL Firm-Specific Event 
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 Summary and Conclusions 

A stock price crash is an unusual sharp decrease in the stock’s price caused by unexpected 

bad news. Recent empirical financial literature is trying to explore the stock price crash 

exposure in behavioural characteristics of CEOs/CFOs (age, gender, overconfident), 

religious beliefs, and others. The idea is that managers withhold the firms’ bad news for 

several reasons such as career prospects (Hutton et al., 2009). When a negative firm-

specific shock becomes public, there is an extreme outlier in the return distribution 

leading to a stock price crash. 

 The presence of outliers in the 52-weekly return series drives the standard deviation 

to be inflated. This chapter attempted to explore the validity of the percentage of crashes 

using the OLS and a robust framework based on a model developed by Theodossiou and 

Theodossiou (2019). Literature used the market model regression for each firm and year 

to estimate the return’s residuals (Dimson, 1979). The log-transformed measure is derived 

by taking the logarithmic residual returns plus one. A further investigation of the stock 

price crashes is presented using the un-transform residual returns using the OLS and the 

outlier robust technique. A stock price crash is an indicator that takes the value of one 

when at least one firm-specific weekly returns falling 3.09/3.20 standard deviation below 

the mean firm-specific weekly returns and the value of zero, otherwise.  

 Monte – Carlo simulations show that the standard binary OLS measures detect a 

lower percentage of crashes compared to the robust. Likewise, the un-transform binary 

measure detects a lower percentage of crashes compared to the log transform measure.  

The empirical findings verified the concerns of this chapter. The robust method 

detects higher percentage of crashes in relation to the standard methodology. The 

importance of the different percentage of crashes is highlighted by presenting an analysis 

of the common percentage of crashes as well as the differences between the measures.  

More importantly, this chapter sheds light on the identification of the crash firms 

using a robust technique. This methodology also contributes on the existing literature 

using a statistical framework since a statistical theory in the crash risk literature does not 

exist. This is illustrated using case studies of companies in various industries. The analysis 

shows firms in the sample that are categorized as crash firms for a specific year using the 

robust technique (and non-crash using the OLS measures) by showing the negative firms 

returns for the specific dates. 
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This chapter provides the foundation for future research using robust statistics. 

The chapter of this dissertation focuses to explore the binary crash risk measure 

commonly used in the stock price crash literature. The primary objective of this chapter 

was to show the contamination issue on standard deviation and the impact of outliers to 

detect the stock price crashes. However, empirical studies also use continuous crash risk 

measures. Continuous measures are important, and it will be interesting to further explore 

the continuous crash risk measures using the robust technique. Furthermore, the detection 

of stock price crashes is important for investors, risk management, and researchers. 

Therefore, this chapter sheds light on the stock price literature to further investigate the 

stock price crash measures.  
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CONCLUSIONS 

Financial data has been found in the academic literature to reject the Gaussian null 

hypothesis. Based on this, this dissertation focuses on the investigation of several 

financial puzzles using asymmetric models that account for skewness and/or kurtosis 

characteristics. The family of SGT distribution, as well as a robust technique, were used 

to explain three different topics documented in financial literature.   

The SGT family of distributions nested by several well-known distributions, such 

as Skewed T (ST), Skewed Generalized Error Distribution (SGED), Skewed Normal 

(SN), Cauchy (C), Skewed Laplace (SLP), Laplace (LP), and Normal (N). The SGT is a 

fifth parameter distribution, where, using the log-likelihood maximum likelihood 

technique, it provides the estimated parameters. The parameters k and n are the two 

parameters that control the tails and the peakedness of the distribution. The asymmetry 

parameter, λ, controls the shape of the probability distribution. If the asymmetry 

parameter is positive, it generates a positively skewed distribution and if it is negative, it 

generates a negatively skewed distribution. The expected value and standard deviation 

are the well-known measures used in finance in many cases such as portfolio analysis. 

Setting k = 2, n = ∞, and λ = 0 gives the Normal distribution, k = 1 and n = ∞ the Skewed 

Laplace, k = 1, n = ∞, and λ = 0 the Laplace, and so on.  

This dissertation focuses on the Skewed Normal (SN) and the Skewed 

Generalized Error Distribution (SGED) as capable distributions to incorporate in the 

models. The financial puzzles that this dissertation explores are related to Behavioural 

Finance, the Cryptocurrency market, and specifically Bitcoin’s behaviour, and the 

measurement of stock price crashes as an outlier event using a robust technique. An 

outlier-resistant method was used because the standard ordinary least square technique 

(OLS) underperforms in the presence of outliers. 

The first chapter develops a unified probabilistic framework based on the Skewed 

Normal (SN) distribution to explain the perceptions of managers in the aspect of the 

expected value and uncertainty. The statistical framework and Monte-Carlo simulations 

showed that overconfident and optimist managers overestimate the expected value and 

underestimate the downside risk, value-at-risk, and expected shortfall. This finding leads 

to the conclusion that the probability distribution of overconfident and optimistic 

managers is skewed to the right (positively skewed probability distribution). On the other 
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hand, underconfident and pessimist managers underestimate their expected value and 

overestimate the risk, downside risk, value-at-risk, and expected shortfall. Therefore, 

underconfident managers are characterized by a negatively skewed distribution. Also, an 

analytical framework is extended on the professional forecasters based on the Skewed 

Generalized Error Distribution (SGED). The findings show that professional forecasters 

are underconfident since their forecast errors are followed by a negatively skewed 

distribution. 

The second chapter investigates the stochastic behaviour of Bitcoin compared to 

the common exchange rates (Euro, Japanese Yen, Canadian Dollar, and the British 

pound). The risk-return univariate relationship is examined using the ST-GJR-GARCH 

model under the Skewed Generalized Error Distribution (SGED). Adding to this, a 

bivariate analysis is conducted to examine the mean and volatility spillover effects from 

Bitcoin to exchange rates and vice versa. Lastly, the forecasting ability of the ST-GJR-

GARCH-SGED is compared with the well-known GARCH and GJR models under 

different probability distributions.  

The findings showed that Bitcoin has excess kurtosis (leptokurtosis), and 

extremely higher volatility compared to the other assets. The risk-return relationship 

showed that the skewness/kurtosis price of risk is important in all cases and especially in 

the case of Bitcoin. Bivariate analysis proved that there is a negligible inter-relationship 

between Bitcoin and exchange rates and it is a useful asset to diversify the portfolio’s risk 

since it behaves in a very different way compared to the other assets; Bitcoin’s behaviour 

is extremely leptokurtic compared to the other assets. Also, the shape distributional 

characteristic of Bitcoin is not affected when spillover effects are presented. Furthermore, 

the ST-GJR-GARCH-SGED model performs better than the rest models.  

The third chapter investigates the measurement of stock price crashes using an 

outlier resistant method. Stock price crash is an unusual decline in the firm’s prices. 

Literature concluded that managers withhold bad news for several reasons and when this 

information becomes available in the market, it leads to a stock price crash. Also, a stock 

price crash is the conditional skewness of the distribution of returns. The presence of these 

outliers in the 52-weekly return series drives the binary measure of crashes to be mis-

specified due to the standard deviation that is contaminated. In this chapter, a robust 

framework is developed to show this contamination issue and proposes a robust measure 

that accounts for the above problem. This methodology also contributes on the existing 
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literature using a statistical framework since a statistical theory in the crash risk literature 

does not exist. 

Monte – Carlo simulations and empirical findings show that the standard (OLS) 

methodology detects a lower percentage of crashes compared to the robust methodology. 

This is due to the outliers that affect the standard deviation of the residual returns. 

Additionally, the un-transformed measure detects a lower percentage of crashes 

compared to the log transformed measure. Therefore, the log transformed measure, that 

academic literature used to explain several financial puzzles, detects a higher percentage 

of crashes in relation to the un-transformed measure. Specifically, the empirical findings 

show that 6,145 firm-year observations are detected in the robust measure and not in the 

standard OLS method. Also, 6.59% (or 10,934 firm-year observations) higher percentage 

of crashes are detected using the robust un-transform measure compared to the un-

transform OLS measure. The findings suggest that it is better to use a robust technique 

that corrects the inflation of variance driven by outliers.  

Summarizing, this dissertation develops three different statistical frameworks to 

investigate three financial puzzles on behavioural finance and specifically on 

psychological biases using a probabilistic framework under a skewed distribution, the 

investigation of Bitcoin through an asymmetric GARCH model under a skewed 

distribution and the measurement of crashes using an outlier-resistant method. The 

models have also been tested using Monte-Carlo simulations and empirical analysis. The 

conclusions provide insightful findings on the importance of asymmetric models to 

explain several issues in finance.  
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APPENDIX I 

Moment Function - Skewed Normal Distribution 

Using the equation (1.4), the moment function of x (excess of the mode), is 41 

( ) ( )
s s

s xM E x m x m dF
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1 .
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= −   The moment function of x can be re-

written as 
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41 Ellina et al. (2020). 



179 

 

The substitution of this result into Ms gives 
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Downside Risk 

The downside moment function of x (excess the mode) is  
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Therefore, the downside variance of x is 
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Upside Risk 

The upside moment function of x (excess of the mode) is  
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Therefore, the upside variance of x is 

( ) ( )
2

2

2 1var
x x m

x x m M M + +


=  = − ( ) ( )

2 22 22
1 1   


= + − +  . 

  ( ) ( )
2 21 1 2  = + − .  (A5)  



181 

 

APPENDIX II 

The random variable 1 2 ...n nZ z z z= + + +  is the sum of n random variables.42, 43 Therefore, 

the third (SK) and fourth (KU) moments of zt are the standardized skewness and 

standardized kurtosis of the logarithmic return yt. The above leads to the following: 1. 

The expected value of Zn is zero, i.e., E(Zn) = 0, 2. E(zt zs) = 0 for t ≠ s (under the 

assumption of i.i.d. returns) and 3. Var(Zn) = n. 

The third centered moments of Zn is 

( )
33

3 1 2 ...n nM EZ z z z= = + + +  

3 23t t s t s p

t t s t s p

Ez Ez z Ez z z
  

= + +                    (B1) 

The fourth centered moments of Zn is  
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The assumption that zt are i.i.d. for t ≠ s ≠ p ≠ r, implies that  

0,t s pEz z z =  
2 0,t sEz z =  0,t s p rEz z z z =  

2 2 2 2 1,t s t sEz z Ez Ez= =  
3 0.t sEz z =  

The deviations of these measures are the result of the presence of higher order 

moment dependencies in the logarithmic returns.   

 Substitute these equations into (B1) and (B2) give 

3

3 3 ,nM EZ nm= =                           (B3) 

and  

 

42 where ( )t tz y  = − , μ is the average and σ is the standard deviation of the logarithmic return 

yt 

43 See also Theodossiou (2015). 
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   ( )4

4 4 3 1 ,nM EZ nm n n= = + −                            (B4) 

where 
3

3m Ez=  and 
4

4m Ez=  are the standardized skewness and standardized kurtosis 

for z. 

 The skewness for Zn is 
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The kurtosis for Zn is 
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Equations (B1) and (B2) are used to construct the test statistics for the higher-order 

dependencies in the series,   

2

1

t t jz z
mz

T

−
=


  and ( )
4

1var ,tEz
mz

T
=                  (B7) 

1 2

2

t t tz z z
mz

T

− −
=


 and ( )2

1
var ,mz

T
=                  (B8) 

3

1

3

t tz z
mz

T

−
=


 and ( )
6

3var ,tEz
mz

T
=                  (B9) 

( )2 2

4

1t t jz z
mz

T

− −
=


 and ( )
( )

2
4

4var ,
tEz

mz
T

=               (B10) 

2

1 2

5

t t tz z z
mz

T

− −
=


and ( )
4

5var ,tEz
mz

T
=                 (B11) 

1 2 3

6

t t t tz z z z
mz

T

− − −
=


and ( )6

1
var ,mz

T
=                (B12) 

where ( )tz y y S= − , y  and S are the sample average and standard deviation of 

logarithmic returns yt, respectively. The sample size is denoted by T and j = 1,2, and 

 

44 As n → ∞, the standardized skewness SK and kurtosis KU 
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3.45 The statistics have a zero mean. The sequence zt is i.i.d random variables, 

therefore, the variances are computed under this hypothesis.  

The conditional heteroscedasticity refers to the fact that large changes are 

followed by large changes, of either sign.  The presence of volatility clustering in the data 

implies that  

                                           
2 2 2 2 ,t s t sEz z Ez Ez for t ≠ s.                                               (B13) 

These statistics are computed using 
2 2

t sz z  when s = t – j where j = 1, 2 and 3. 

Also, the asymmetric volatility phenomenon is the tendency for the volatility to 

be higher when the market downs than when the market is rising. The asymmetric 

volatility implies that   

                                ( ) ( )2 20 0t s t sE z z E z z     or 
2 0,t sEz z  for t > s.                 (B14) 

These statistics are computed using the product 
2 ,t sz z  when s = t – j where j = 1, 

2 and 3. A negative asymmetric volatility means that volatility is higher when the market 

downturns. 

 

 

 

 

 

 

 

 

 

 

45 The moments 
4

tEz  and 
6

tEz are estimated using the equations 
4

4 tm z T= and 
6

6 .tm z T=  
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APPENDIX III 

Fama and French Industry Classification 46 

 
 1   Agriculture 

 2   Food Products 

 3   Candy & Soda 

 4   Beer & Liquor 

 5   Tobacco Products 

 6   Recreation 

 7   Entertainment 

 8   Printing and Publishing 

 9   Consumer Goods 

10   Apparel 

11   Healthcare 

12   Medical Equipment 

13   Pharmaceutical Products 

14   Chemicals 

15   Rubber and Plastic Products 

16   Textiles 

17   Construction Materials 

18   Construction 

19   Steel Works Etc 

20   Fabricated Products 

21   Machinery 

22   Electrical Equipment 

23   Automobiles and Trucks 

24   Aircraft 

25   Shipbuilding, Railroad Equipment 

26   Defense 

27   Precious Metals 

28   Non-Metallic and Industrial Metal Mining 

29   Coal 

30   Petroleum and Natural Gas 

31   Utilities 

32   Communication 

33   Personal Services           

34   Business Services 

35   Computers 

36   Computer Software  

37   Electronic Equipment 

38   Measuring and Control Equipment 

39   Business Supplies 

40   Shipping Containers 

41   Transportation 

42   Wholesale 

43   Retail  

44   Restaurants, Hotels, Motels 

45   Banking 

46   Insurance 

47   Real Estate 

48   Trading 

49   Other Almost Nothing 

 

46 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html (accessed: April 2021). 

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html

