
Doctoral Dissertation

Utilizing Computational Intelligence to Support
Decision-making in Distributed Software Systems and

Cloud-based Environments

Andreas Christoforou

Limassol, April 2020

CYPRUS UNIVERSITY OF TECHNOLOGY

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING, COMPUTER

ENGINEERING AND INFORMATICS

Doctoral Dissertation

Utilizing Computational Intelligence to Support

Decision-making in Distributed Software Systems and

Cloud-based Environments

Andreas Christoforou

Limassol, April 2020

i

Approval Form

Doctoral Dissertation

Utilizing Computational Intelligence to Support Decision-making in
Distributed Software Systems and Cloud-based Environments

Presented by

Andreas Christoforou

Supervisor: Dr. Andreas S. Andreou, Professor

Signature

Member of the committee: Dr. Chrysostomos Stylios, Professor

Signature

Member of the committee: Dr. Constandinos X. Mavromoustakis, Professor

Signature

Cyprus University of Technology

Limassol, April 2020

iii

Copyrights

Copyright© 2020 Andreas Christoforou

All rights reserved.

The approval of the dissertation by the Department of Electrical Engineering, Computer

Engineering and Informatics does not imply necessarily the approval by the Department of the

views of the writer.

v

to Maria, Ioanna and Marina

vii

Acknowledgements: I would like to express my special appreciation and say a

big thank you to my advisor Professor Andreas S. Andreou. Without his guidance

and constant support, this PhD would not have been achievable. I am grateful for

giving me the opportunity to work with him and become a member of his team.

I would also like to thank my committee members, professor Chrysostomos

Stylios and professor Constandinos X. Mavromoustakis who devoted much of

their precious time to read my thesis and provide me valuable comments and

suggestions.

Furthermore, I would especially like to thank the members of the Software

Engineering and Intelligent Information Systems Research Laboratory for their

support and outstanding cooperation we had these years.

An exceptional thanks to my family, my parents Christakis and Koulla, my parents

in-law Yiannis and Androulla and my brothers Panayiotis and George for their

persistence, love and support.

Last, but most important, I would like to express my deep gratitude to my beloved

wife, Maria and my two daughters Ioanna and Marina. Their endless love and

support was the driving force behind what I have achieved so far.

ix

ABSTRACT

The design and development of distributed software systems appears nowadays as a prominent

way to provide modern, reliable and functional systems. The growth of such systems was

greatly supported by the development and rapid expansion of Cloud Computing (CC), the latter

offering a variety of on-demand services, thus alleviating the need to purchase and maintain

expensive or sophisticated hardware and/or development tools, and supporting efficient data

processing and storing.

Cloud Computing has been established as an attractive development environment on which

software development companies can deliver and deploy their services in response to the

increasing demands. Inevitably this has brought great challenges in the software engineering

field, mostly for setting up a new software development environment that simplifies the

procedure of building and hosting applications on the Cloud. Despite the great number of

solutions proposed in recent years, the continuous evolution and growth of the demands and

services offered, the corresponding research challenges in this area remain untackled. These

challenges revolve mainly around three axes: delivery of the software system on time, within

budget and with a minimum acceptable level of quality.

The persistent incorporation of numerous new technologies, makes Cloud infrastructure

management highly complex, with multi-conflicting factors affecting it. Computational

intelligence and machine learning techniques appear to have great success when dealing

with complex and multifaceted problems. Aiming to investigate a series of research issues

and problems in software engineering for the Cloud, this thesis proposes the use of various

computational intelligent techniques and approaches which are modified and extended to meet

specific challenges of the problem in hand. Α special reference is made to techniques based

on Artificial Neural Networks, Fuzzy Logic and Evolutionary Computation, which seem to

dominate the relevant literature yielding promising results.

The contribution of this thesis may be analyzed into six research steps. The first step introduces

a novel, integrated analysis framework based on Multi-Layer Fuzzy Cognitive Maps models,

as well as a series of actions to gather useful static and dynamic information. This framework

allows the representation of problems described by multiple and intertwined factors, as

the ones dealt with in the present thesis. Moreover, the proposed framework provides the

means for performing advanced dynamic analysis in the form of what-if scenarios. In the

second step, research is focused on the analysis and study of the factors that affect the

xi

adoption of Cloud services. Four different approaches based on Fuzzy Cognitive Maps

and Influence Diagrams are proposed in an attempt to support the decision-making process.

The third step extends the aforementioned analysis framework with the incorporation of an

evolutionary approach based on a novel formulation proposed. Next, the fourth research step

involves the construction of a Multi-Layer Fuzzy Cognitive Map to support decision-making

towards microservices architecture migration. The fifth step proposed a novel process for the

decomposition of existing software components and ultimately their partial or full replacement

of their functionality parts with a number of suitable and available microservices. Finally,

the sixth step suggests a new resource management approach in a Function-as-a-Service

platform. The proposed approach is based on Multi Objective Genetic Algorithms and aims

to solve the problem of finding a set of near-optimal solutions that support developers in

a Function-as-a-Service environment to select an efficient resource allocation scheme with

respect to cost and time.

All of the proposed approaches and models are evaluated both theoretically and practically

over real-world case studies. In each case the experimental process is designed, executed and

analyzed followed by discussion of the results.

Keywords: Software Engineering, Cloud Computing, Distributed Systems Development, Ser-

vice Oriented Architecture, Microservices Architecture, Serverless Computing, Computational

Intelligence, Decision Support

xii

TABLE OF CONTENTS

ABSTRACT . xi

TABLE OF CONTENTS . xiii

LIST OF TABLES . xvii

LIST OF FIGURES . xix

LIST OF ABBREVIATIONS . xxi

LIST OF PUBLICATIONS . xxiii

1 Introduction . 1
1.1 Problem Statement . 2

1.2 Research Challenges . 4

1.2.1 Cloud Adoption . 4

1.2.2 Microservices Architecture Migration 5

1.2.3 Component-Based to Microservices Architecture Migration 5

1.2.4 Resource Management on a Function as a Service Environment . . . 6

1.3 Thesis Structure . 7

2 Theoretical and Technical Background . 9
2.1 Software Engineering for Distributed Systems Development 9

2.1.1 Software Engineering . 9

2.1.2 Cloud Computing . 10

2.1.3 Software Development and Operation on the Cloud 12

2.1.3.1 Microservice Architecture 12

2.1.3.2 Serverless Computing - Function as a Service 13

2.2 Computational Intelligent Techniques . 13

2.2.1 Fuzzy Cognitive Maps . 13

xiii

2.2.2 Multi-Layer Fuzzy Cognitive Maps 16

2.2.3 Influence Diagrams . 17

2.2.3.1 Generic Influence Diagrams 17

2.2.3.2 Fuzzy Influence Diagrams 19

2.2.4 Genetic Algorithms . 20

2.2.4.1 Multi-Objective Genetic Algorithms 21

3 A Framework for Analyzing Multi-Layer Fuzzy Cognitive Maps 23
3.1 Introduction . 23

3.2 Literature Overview . 25

3.3 Static Analysis . 26

3.4 Dynamic Analysis . 29

3.5 Stepwise Analysis and Inference Process 31

3.6 Summary . 32

4 Modeling the Cloud Adoption Decision . 35
4.1 Introduction . 35

4.2 Literature Overview . 36

4.3 ID Modeling . 38

4.3.1 Generic ID . 40

4.3.1.1 Experimental Results . 41

4.3.2 Fuzzy ID . 43

4.3.2.1 Experimental Results . 44

4.3.3 Comparison of the ID Models . 45

4.3.4 What-if Scenario Simulations . 47

4.4 FCM Modeling . 48

4.4.1 Single Layer FCM . 48

4.4.1.1 Experimental Results . 50

4.4.1.1.1 Extreme Scenarios 51

4.4.1.1.2 Real-World Scenarios 52

4.4.1.2 Discussion . 55

4.4.2 Multi Layer FCM . 55

4.4.2.1 Experimental Results . 56

4.4.2.1.1 Extreme Scenarios 59

4.4.2.1.2 Real-World Scenarios 59

xiv

4.4.2.2 Discussion of Results . 60

4.4.2.3 MLFCM Model Analysis 61

4.4.2.3.1 Static Analysis 61

4.4.2.3.2 Dynamic Analysis 64

4.5 Summary . 67

5 A Novel Computational Approach for MLFCM 69
5.1 Introduction . 69

5.2 Literature Overview . 70

5.3 Computational Approach . 70

5.3.1 Activation Levels Genetically Evolved MLFCM 72

5.4 Summary . 74

6 Supporting the Decision of Migrating to Microservices Architecture 75
6.1 Introduction . 75

6.2 Literature Overview . 77

6.3 A Novel MLFCM Model . 78

6.3.1 Model Construction . 78

6.3.2 Model Validation and Calibration 82

6.4 Static and Dynamic Model Analyses . 85

6.4.1 Static Analysis . 86

6.4.2 Dynamic Analysis . 89

6.5 Model Application Over a Real-World Case Study 92

6.6 Summary . 97

7 Migration of Software Components to Microservices: Matching and Synthesis 99
7.1 Introduction . 99

7.2 Literature Overview . 101

7.3 Automatic Specification and Matching of Microservices 102

7.3.1 Specification and Matching framework 102

7.3.2 Profiling . 103

7.3.3 Components Decomposition and Microservices Matching 108

7.3.3.1 Component and Microservices Ontology 108

7.3.3.2 Matching Process . 109

7.4 Experimental Process . 113

7.4.1 Proof of Concept . 114

xv

7.4.2 Composition Assessment . 115

7.5 Results and Discussion . 115

7.6 Summary . 118

8 An Effective Resource Management Approach in a FaaS Environment 119
8.1 Introduction . 119

8.2 Literature Overview . 120

8.3 Multi-objective Optimization Approach . 121

8.4 Experimental Process . 122

8.4.1 Experimental Environment . 122

8.4.2 Exhaustive Algorithm . 123

8.4.3 Multi-objective Genetic Algorithms 124

8.5 Results and Discussion . 125

8.5.1 Assessing MOGAs’ Performance Through Quality Indicators 125

8.6 Summary . 128

9 Conclusions and Future Research Steps . 129
9.1 Overview . 129

9.2 A Framework for Analyzing Multi-Layer Fuzzy Cognitive Maps 130

9.3 Modeling the Cloud Adoption Decision . 131

9.4 A Novel Computational Approach for MLFCM 132

9.5 Supporting the Decision of Migrating to Microservices Architecture 133

9.6 Migration of Software Components to Microservices: Matching and Synthesis 133

9.7 An Effective Resource Management Approach in a FaaS Environment 134

REFERENCES . 147

xvi

LIST OF TABLES

4.1 Factors influencing Cloud adoption . 39

4.2 Brief description of real-world cases. 40

4.3 Input values for the five scenarios tested . 42

4.4 Calculating probabilities on Trust node . 43

4.5 Fuzzy values . 43

4.6 Input values of the nodes participating in the FID model for the five scenarios

tested . 44

4.7 Evaluating Trust node in FID . 44

4.8 Model’s decisions compared with real decisions 45

4.9 Conceptual nodes of the proposed model . 49

4.10 Causal relationships and weight values between conceptual nodes on a Likert

scale from 1 (very low) to 5 (very high) positive and negative - Row influences

column. 50

4.11 FCM initial activation level values of the concepts for the positive scenario. . 52

4.12 FCM initial activation level values of the concepts for the negative scenario. . 53

4.13 Brief description of real-world cases. 54

4.14 Initial activation level values for real world cases. 54

4.15 Model’s decisions compared with real decisions. 55

4.16 Conceptual nodes of the proposed MLFCM model. 57

4.17 Sub-FCM Groupings . 58

4.18 Initial activation levels for each real-world case 60

4.19 Model’s output decisions compared with real decisions 61

4.20 Complexity static measurements for the MLFCM modeling the Cloud Adop-

tion problem . 62

4.21 Strength and tendency indicators for the sub-FCMs of the MLFCM model for

the Cloud Adoption problem . 63

4.22 Correlation coefficient values between each concept and the central node of

interest in each sub-FCM (in parentheses) of the MLFCM model 65

xvii

6.1 Concepts related to the decision of adopting microservice architectures, and

their groupings (FCMs) derived from literature review and evaluated by experts

(central concept of each FCM in bold). 80

6.2 Normalized Weight Matrix for causal relationships in FCM1 82

6.3 Industrial Case Studies . 86

6.4 Complexity static measurements. 87

6.5 Strength indicators for the sub-FCMs of the MLFCM model for the Microser-

vices Adoption problem. 88

6.6 Indicative simulations part of the dynamic analysis of the model. 91

6.7 Industry case study: Final activation levels 93

6.8 Industry case study: How to improve the final decision 94

6.9 Five ALGE-MLFCM runs targeting a ”Very High” value for Microservices

Adoption and a constant ”High” value for Security against the nearest solution

(NS) reference. 96

7.1 Scoring results of components’ functional parts without dependencies. 116

7.2 Scoring results of components’ functional parts with dependencies. 116

8.1 Hypervolume(HV) values . 126

8.2 Inverted Generational Distance(IGD) values 127

8.3 Pairwise comparison for HV indicator . 127

8.4 Pairwise comparison for IGD indicator . 127

xviii

LIST OF FIGURES

2.1 An example FCM with its weight matrix and initial activation levels (AL) vector. 14

2.2 An example Multi-Layer FCM with two layers. 16

2.3 A simple Influence Diagram . 18

2.4 Scalable Monotonic Chaining example combining F-Type and G-Type fuzzy sets 20

4.1 ”Adopt Cloud or Not” Influence diagram . 40

4.2 An alternative inductive structure of our FID model 46

4.3 The Cloud adoption CNFCM model. 51

4.4 Extreme scenarios: (a) Positive Case, (b) Negative Case. 53

4.5 The Cloud adoption MLFCM model. 58

6.1 Fuzzification of linguistic variables according to triangular membership func-

tions: (a) seven values, (b) five values . 81

6.2 Visual representation of the MLFCM model for the Microservices Architecture

adoption . 83

6.3 Model validation over two extreme scenarios 84

6.4 The profile of the survey participants . 85

6.5 The convergence of the ALGE-MLFCM algorithm for different target values . 92

6.6 The attempt of the ALGE-MLFCM algorithm to find a solution that leads the

final decision to “Very High” value with the value of “Security” to start at and

remain “High” . 95

7.1 The proposed process for component decomposition and microservices substi-

tution. 104

7.2 Component profile in EBNF . 106

7.3 Microservice profile in EBNF . 107

7.4 Component ontology . 108

7.5 Microservice ontology . 109

7.6 Near-optimal pareto fronts. 118

xix

8.1 Proposed multi-objective optimization approach 121

8.2 Experimental environment . 123

8.3 Pareto front for 1000 fitness evaluations (FE) 126

xx

LIST OF ABBREVIATIONS

DSS: Decision Support System

CI: Computational Intelligence

AI: Artificial Intelligence

ANN: Artificial Neural Networks

FS: Fuzzy Systems

EC: Evolutionary Computation

CC: Cloud Computing

FCM: Fuzzy Cognitive Map

ID: Influence Diagram

QoS: Quality of Service

FaaS: Function as a Service

SLA: Service-Level Agreement

GA: Genetic Algorithm

SE: Software Engineering

IT: Information Technology

SME: Small-Medium Enterprise

PaaS: Platform as a Service

IaaS: Infrastructure as a Service

SaaS: Software as a Service

SOC: Service Oriented Computing (SOC)

MDE: Model Driven Engineering

MCC: Mobile Cloud Computing

SOA: Service Oriented Architecture

MLFCM: Multi-layered Fuzzy Cognitive Map

GID: Generic Influence Diagram

FID: Fuzzy Influence Diagram

ALGE-MLFCM: Activation Levels Genetically Evolved MLFCM

MOP: Multi-objective Optimization Problems

IGD: Inverted Generational Distance

CNFCM: Certainty Neuron Fuzzy Cognitive Maps

CBSE: Component-based Software Engineering

CBD: Component-based Development

xxi

LIST OF PUBLICATIONS

1. Christoforou A, Andreou AS. A cloud adoption decision support model based on fuzzy

cognitive maps. In International Conference on Product Focused Software Process

Improvement (PROFES) 2013 Jun 12 (pp. 240-252).

2. Christoforou A, Andreou AS. A cloud adoption decision support model using influence

diagrams. In IFIP International Conference on Artificial Intelligence Applications and

Innovations (AIAI) 2013 Sep 30 (pp. 151-160).

3. Christoforou A, Andreou AS. A multilayer fuzzy cognitive maps approach to the cloud

adoption decision support problem. In2015 IEEE International Conference on Fuzzy

Systems (FUZZ-IEEE) 2015 Aug 2 (pp. 1-8).

4. Christoforou A, Andreou AS. Investigating cloud adoption using influence diagrams as

a decision support model. International Journal on Artificial Intelligence Tools. 2015

Dec 21;24(06):1560005

5. Christoforou A, Andreou AS. A framework for static and dynamic analysis of

multi-layer fuzzy cognitive maps. Neurocomputing. 2017 Apr 5;232:133-45.

6. Christoforou A, Garriga M, Andreou AS, Baresi L. Supporting the decision of

migrating to microservices through multi-layer fuzzy cognitive maps. In International

Conference on Service-Oriented Computing (ICSOC) 2017 Nov 13 (pp. 471-480).

Springer, Cham.

7. Christoforou A, Andreou AS, An effective resource management approach in a FaaS

environment. European Symposium on Serverless Computing and Applications

(ESSCA) 2018 Dec 21.

xxiii

8. Christoforou A, Odysseos L, Andreou, A. Migration of Software Components to

Microservices: Matching and Synthesis.In Proceedings of the 14th International

Conference on Evaluation of Novel Approaches to Software Engineering (ENASE)

2019 (pp. 134-146).

9. Christoforou A, Andreou AS, Garriga M, Baresi L. Adopting Microservices

Architecture: A Decision and Analysis Support Model Based on Activation Levels

Genetically Evolved Multi-layer Fuzzy Cognitive Maps (ALGE-MLFCM). Applied

Soft Computing. (Submitted March 2020)

xxiv

Chapter 1

Introduction

The design and development of distributed software systems has seen tremendous growth in

recent years and appears to be a prominent way to provide reliable and functional systems. The

rapid expansion of distributed software systems was enabled by Cloud Computing (CC), which

offers an alternative form of services without the need to purchase and maintain expensive

or sophisticated hardware in order to support data processing and storing. Cloud computing

systems have benefited by minimizing the initial cost without, at the same time, falling short

of a high-level performance, availability, scalability, and fault tolerance.

Software developers may utilize one or more of the offered types of services on the Cloud de-

pending on the kind of application they are building for their prospective clients. Nevertheless,

no matter the service offered in a distributed Cloud environment, there are universal software

development and delivery issues to tackle. These issues can be considered as highly complex

problems with competing and conflicting factors. For example, cost, security, availability,

and elasticity are often the factors juxtaposed with performance, and, while addressing these

factors, the compliance with the Service Level Agreements should also be taken into account.

In recent years, the rapid development of technology, along with the simultaneous increase in

the offered computing power, enable the development of significant approaches from the field

of Computational and Artificial intelligence (CI/AI). The utilization of such kind of techniques

and approaches in decision-making support is now the dominant trend that is applicable

to many fields such as economics, industrial production lines, pharmacology and medicine.

Computational Intelligence (CI) is a sub-branch of Artificial Intelligence (AI), which attempts

to apply methods and techniques that enable or facilitate intelligent behavior in complex and

uncertain environments [1, 2]. These techniques mainly consist of Artificial Neural Networks

1

(ANN), Fuzzy Systems (FS) and Evolutionary Computation (EC) techniques. CI applications

may be found in various engineering and scientific fields, like Software Engineering, Robotics,

Economics, Bioinformatics, Telecommunications, etc.

The main goal of a Decision Support System (DSS) is to support the decision-making process;

however, over time, this definition and the application scope change. In the early 1970s, DSS

was described as a computer-assisted DSS. Towards the end of the 1970s, the DSS began

to focus on supporting users in making a more interactive decision to solve unstructured

problems. In the 1980s, a DSS should be able to use the available technology to improve

the efficiency of administrative and professional activities. From the late 1980s onwards,

the challenge was to use smart methods to solve problems. It is evident that at least three

parameters form the aim, the application, and the definition of a DSS: The first parameter

refers to the evolution and increased complexity of the problems that the DSS undertakes to

solve, the second parameter has to do with the available involved technologies, and, finally,

the third reflects the emergence of new application fields.

Nowadays, DSS are called upon to address problems of exceptional complexity, having at

the same time a vast amount of data to process. An essential parameter for the successful

application of a DSS in a particular problem is the utilization of intelligent methods and

algorithms that will be able to deliver support by providing reliable information within a

reasonable time, but also be able to provide appropriate explanations for the support outcomes

they deliver. In addition, what is equally important, it the description of the interaction

capabilities mainly to support the execution of simulations so that the user is able to study

alternative scenarios before reaching a final decision.

This thesis is involved with a particular area of research that deals with several aspects of

software engineering for distributed software systems and Cloud environments. The research

activities introduced are targeting to provide methods, algorithms, or frameworks from the area

of CI, aiming to meet significant challenges in each sub-area and provide efficient solutions.

The ultimate goal is to provide efficient decision support for a number of related problems

in the corresponding scientific area, enabling domain experts and practitioners analyze the

pertaining factors and take more informative actions.

1.1 Problem Statement
Delivery of a software system on time, within budget and with an acceptable level of quality,

remains a challenging issue and an unsolved problem in the area of Software Engineering

2

through the years, despite the great and sometimes drastic changes proposed both from the

software process perspective and the tools used. In recent years the emergence and spread of

CC has reset and redefined the way that notions like quality, time and budget are approached.

In this context, CC appears to be a beneficial IT paradigm that promises reduced costs,

increased efficiency, and better performance. Although the research community has already

addressed many issues related to CC, its rapid growth, as well as the persistent incorporation

of new technologies, many issues still need further and deeper investigation. Security, resource

management, Cloud adoption, pricing, and energy efficiency are only a few of a wide range of

issues.

As an attractive development environment, CC motivates software development companies

to join a market with increasing demands and turning their focus on Cloud services delivery.

Inevitably, this has brought great challenges in the software engineering field, mostly for

setting up a new software development environment that simplifies the procedure of building

and hosting applications on the Cloud. Building Cloud aware applications needs a full

review of available software processes considering the new Cloud architecture and associated

capabilities. The transition from a conventional software development environment to the

Cloud environment brings about several research problems that need to be addressed.

The target of this thesis is the introduction of models, approaches, and activities in the form

of an integrated DSS to support the decision making in migration to the Cloud environment,

as well as to tackle a series of challenges in the Cloud-based software development process.

The proposed solutions are taking into account the management of the complex and multi-

conflicting Cloud infrastructure and aim to shed light on the problem’s insights with the

utilization of computational intelligence techniques.

Computational intelligence approaches appear to have profound success when dealing with

complex and multifaceted problems. In this work, various such techniques and models are

utilized and their application in addressing the aforementioned research issues on the Cloud

is investigated, while in some cases modifications and enhancements of the models used are

proposed to improve their effectiveness and performance. Α special reference is made to

techniques based on Fuzzy Cognitive Maps (FCMs), Evolutionary Computation (EC) and

Influence Diagrams (IDs), which seem to dominate the relevant literature yielding promising

results.

3

1.2 Research Challenges
Despite the tremendous and drastic solutions proposed in recent years in the area of software

engineering for a distributed environment, many related aspects remain challenging and

unsolved problems. The research challenges, the unsolved problems as well the corresponding

implications on the problem under study were determined through comprehensive literature

reviews and surveys. Particular reference to the sources is given in the chapters where each

challenge is addressed, while a brief overview of the challenges investigated in this thesis is

given below.

1.2.1 Cloud Adoption

Despite all benefits and advantages that Cloud computing offers, many potential customers are

still unwilling to proceed and adopt Cloud services. The Cloud environment is highly complex,

comprising multiple and conflicting factors with in-commensurable units of measurements.

These factors often impede adoption of Cloud services and each one separately constitutes a

great challenge. It is quite important to properly identify and analyze them aiming to assist

decision makers to take the correct decision regarding their transition to a Cloud environment.

Proper analysis and assessment of current factors in a Cloud environment is vital not only for

Cloud clients, but also for Cloud vendors since the results can turn their focus to those factors

that may need to change in order to satisfy clients’ concerns.

Nowadays CC is an established technology with a great level of maturity. Νevertheless, the

adoption of CC from companies-customers is still a major challenge. Prospective customers

need to consider the benefits and risks before proceeding with use and adoption of Cloud

services, while on the other side CC vendors are trying to identify customers’ concerns and

barriers in order to adjust their offered services accordingly. A primary open research issue is

the lack of efficient tools and approaches that are able to support decision making with respect

to Cloud services adoption from both the customer’s and the vendor’s perspective. Another

equally important open problem is the increase of Cloud reliability by enhancing the various

key factors that influence Cloud adoption, such as security, performance, availability etc.

Aiming to address this challenge, the development and application of an integrated model

based on FCMs and IDs are examined. The model construction process involves an extensive

literature review, as well as the utilization of a group of experts. The suitability and effective-

ness of these approaches are assessed on real-world problems. Both approaches appear to

4

tackle the problem successfully by delivering the correct estimation of the final decision. The

multi-layered form of the MLFCM appears to be the best alternative, allowing a more detailed

analysis of the problem being studied.

1.2.2 Microservices Architecture Migration

Microservices architecture are gaining more and more momentum as means for the devel-

opment of applications as suites of small, autonomous and conversational services, which

are then easy to understand, deploy and scale [3]. Migrating to microservices enables opti-

mizing the autonomy, replaceability, decentralized governance and traceability of software

architectures [4]. Despite the hype for microservices, both industry and academia still lack

consensus on the definition of microservices and particularly in the identification of adequate

conditions to embrace and benefit from this new paradigm. Most organizations and their

on-premise application architectures are not ready to fully exploit the benefits of microservices,

and adapting them to this environment is a non-trivial task [5].

Microservices technology is not a silver bullet, as it introduces new complexities to the system,

while many factors should be considered to support the decision of adopting this architec-

tural style [6]. Therefore, the study of the parameters and drivers forming the environment

behind the decision of migrating to microservices is of paramount importance for different

stakeholders.

A specially designed MLFCM model is introduced to support the decision of adopting the

microservices architecture, which is constructed following a dedicated process. The model is

formed through an extensive literature review followed by experts’ feedback aiming at identi-

fying the concepts and drivers related to the decision of adopting microservices architecture.

A series of analyses and executions are then performed utlizing this model. With considerable

success, the model proves its readiness to overcome bias, increase its performance and improve

its explainability.

1.2.3 Component-Based to Microservices Architecture Migration

Once software development organizations decide to adopt the microservices architecture,

their attention turns to migration-related challenges [7]. These challenges mainly concern

the process of migrating a monolithic software system to one based on microservices. While

monolithic applications constitute a large part of the software systems that are currently in

5

operation, an equally significant number of software systems are based on systematic reuse

and more specifically on the component-based architecture.

The migration process from a component-based software system to microservices involves two

critical steps, the decomposition of a software component into a set of independent services

and the synthesis of selected microservices to substitute their functionality. The decomposition

step requires that the component characteristics be identified at the finer level, including

those of its individual functional parts. The microservice synthesis relies on locating and

combining small functional service components in which their characteristics match those of

the decomposed system and put them in the proper order to meet the characteristics and the

requirements of the initial component.

This challenge is addressed with a series of tasks proposed to achieve the desired result. Both

software components and available microservices are expressed in a semi-formal notation that

helps the similarity identification with the use of a particular ontology scheme. A matching

algorithm is then employed to introduce a list of candidate microservices ranked based on a

specific score. Additionally, the proposed process is integrated with search-based techniques

and recommends the optimal synthesis of microservices yielded by Multi-Objective Genetic

Algorithms. The proposed process is evaluated through a two-stage experimental process and

yields a successful performance in delivering proper solutions.

1.2.4 Resource Management on a Function as a Service Environment

Serverless computing has emerged as new Cloud processing paradigm that appears to be the

ideal environment for the deployment of Cloud applications and services. Serverless platforms

provide developers a sophisticated environment for the design and implementation of their

applications, eliminating at the same time various operational concerns. Serverless model

adoption has great impact on several software engineering aspects, such as the development

process, pricing model and Quality of Service (QoS). Function as a Service (FaaS) is the lead-

ing representative of this new service architecture and is considered as the ideal environment

to host and deploy microservices.

A developer can gain various benefits and advantages from the serverless computing adoption,

like zero server management, no up-front provisioning, high availability, auto-scalability and

an attractive pricing scheme. However, a number of weaknesses still exist and should be taken

into account. QoS assurance and the Service Licence Agreement (SLA) satisfaction is essential

6

for the software development process and relies on an efficient resource management of the

whole environment. The identification of the optimum scenario for resource allocation to serve

adequately a specific workload is a tedious, computationally complex and time consuming

process, since multiple objectives need to be satisfied.

Specific multi-objective genetic algorithms are employed to deal with this problem since

it moves in a multi-objective environment. The applicability and the effectiveness of the

selected MOGAs are assessed through an experimental process that enables the comparison

between the solutions provided with the optimal solutions. The results show the success of the

algorithms for approaching optimal solutions with high accuracy and thus demonstrate their

ability to serve adequately the problem under study.

1.3 Thesis Structure
This thesis is organised as follows: Chapter 2 provides the theoretical and technical background

around the topics of the thesis. Chapter 3 introduces an integrated analysis framework and a

series of steps to extract useful static and dynamic information regarding Multi-Layer Fuzzy

Cognitive Maps models. The investigation of applying integrated models in different forms to

support the decision making process on the Cloud adoption research challenge is presented

in Chapter 4. Following this, Chapter 5 proposes a novel Multi-Layer Fuzzy Cognitive Map

computational process, which involves a new formulation and a new evolutionary algorithm

which is integrated with the model. Chapter 6 introduces a specially designed Multi-layer

Fuzzy Cognitive Map model to support the decision of adopting the microservices architecture.

Next, Chapter 7 introduces a dedicated automatic process that supports the migration of

software components to microservices. Chapter 8 investigates the application of Multi-

objective Genetic Algorithms to tackle the resource management challenge in a serverless

platform. Finally, the last chapter concludes the thesis by providing a summary for the work

carried out, as well as by giving a number of directions for future work.

7

8

Chapter 2

Theoretical and Technical Background

To study the research issues addressed by this thesis, specific techniques and models have

been selected where they will be used to provide solutions. The selection of these models is

based on the success they have shown in dealing with similar problems. The problems under

study, in addition to the increased complexity, are distinguished by uncertainty and conflicting

intentions. This imposes the use of approaches with high-performance, high adaptability, and

scalability as well as the ability to interact with the decision-makers.

This chapter introduces both the theoretical and technical background of the proposed research

activities. Initially, a reference is made to all theoretical aspects related to the research

challenges, followed by a reference to selected Computational Intelligence (CI) techniques.

Specifically, a particular reference is made to Fuzzy cognitive Maps (FCMs), Influence

Diagrams (IDs), and Genetic Algorithms (GAs).

2.1 Software Engineering for Distributed Systems Develop-

ment

2.1.1 Software Engineering

The importance of Software Engineering (SE) is highlighted by the fact that the economies

of all developed nations are dependent on software. SE is an engineering discipline that is

concerned with the development and maintenance of software systems [8]. There are no

universal solutions, methods and techniques for SE since different types of software require

different approaches. Software engineers should be able to apply methods, theories and tools

9

where these are appropriate and always try to discover solutions to problems even when there

are no applicable theories and methods. At the same time engineers should follow and work

within organizational and financial constraints.

Software process is the systematic approach that is used in SE and consists of a number of

activities which lead to the production of a software system. There are four fundamental

software activities, namely specification, development, validation and evolution. Software

specification activity is where customers and engineers define the software to be produced

and the constraints to be met by its operations. Software development activity is where the

software is designed and programmed. Software validation activity is where the software

is checked to ensure that it is what the customers require. Finally, software evolution is the

activity where the software is modified and adjusted to reflect changing customer and market

requirements. As previously mentioned, there is no universal SE method or technique that

is applicable for all types of software; however, there are fundamental ideas that affect all

types. These ideas include managed software process, software dependability and security,

requirements engineering and software reuse.

Since 1968 when the term “software engineering” was first proposed [9], a variety of new

software engineering techniques and methods were developed and extensively used. During the

years the software process was adjusted to comply with the available hardware infrastructure

and software platforms. The development and evolution of the World Wide Web (WWW),

as well the possibility of developing web enabled software, radically changed the software

process approach.

2.1.2 Cloud Computing

Cloud Computing (CC) has been considered as the biggest evolution in the Information

Technology (IT) industry that has already reshaped, redefined and redesigned Information

Society. Offering powerful processing and storage resources with reduced cost and increased

efficiency and performance, CC seems nowadays as a very attractive solution to a large

group of cases, ranging from single users, to Small-Medium Enterprises (SMEs) and large

organizations [10].

Among the many formal definitions that have been proposed [11], the US National Institute of

Standards and Technology (NIST) [12] captured the most common agreed aspect and provided

the most widely used definition: “Cloud computing is a model for enabling convenient, on

10

demand network access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and released

with minimal management effort or service provider interaction”. The Cloud framework is

composed of five essential characteristics, three service models and four deployment models.

The five characteristics are on-demand self-service, broad network access, resource pooling,

rapid elasticity, and measured service. The four deployment models involve private Clouds,

community Clouds, public Clouds, and hybrid Clouds. The three service models offer Software

as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS).

Back in 1969, Leonard Kleinrock [13], an American engineer and computer scientist who

played an influential role in the development of the Advanced Research Projects Agency

Network (ARPANET), the precursor to the internet, said: “As of now, computer networks are

still in their infancy, but as they grow up and become sophisticated, we will probably see the

spread of ‘computer utilities’ which, like present electric and telephone utilities, will service

individual homes and offices across the country”. This vision became a reality during the 21st

century, while computing services are being offered and are available on demand similarly to

other utility services.

Any resource can be hosted in CC [7], such as database services, virtual servers, service

workflows, complex configurations etc. All these resources, regardless of their nature, are

provided to clients via services, e.g. those offered by Amazon, Google, and Microsoft. In

addition to services and resources, CC has two forms of providers, service and Cloud providers.

A Cloud provider is the entity that offers and maintains hardware in the Cloud (Infrastructure

as a Service) and at the same time may offer internally developed software services (Platform

as a Service). A service provider is an entity that creates and maintains software services

that are published in and run on Clouds (Platform as a Service and Software as a Service).

Following the same concept, CC clients can be defined both as service providers and as

end-users.

CC forced pre-existing models, like Service Oriented Computing (SOC) [14] and Model-

Driven Engineering (MDE) [15], to be redesigned and reshaped, as well as boosted the

emergence of new paradigms like Mobile Cloud Computing (MCC) [16, 17]. While CC has

positive effects providing the IT community with many benefits and options, a number of

risks, threats and vulnerabilities have to be considered and addressed properly [18].

11

2.1.3 Software Development and Operation on the Cloud

CC is an attractive business model where hardware, software, tools and applications can be

leased out as a service over the Internet. This beneficial model offers many advantages like no

capital expenditure, speed of application deployment, shorter time to market, lower cost of

operation and easier maintenance of resources for the customers [19]. Due to these advantages

CC forms an ideal platform for software development and deployment. Consequently, and

under these increasing demands, software engineering has to be adapted with relevant activities

adjusted on a distributed, shared and self-provisioning environment.

Radical changes brought about by the adoption of CC on software development may be sum-

marized to: (a) New development environment which directly affects methods and techniques

for software design, development, testing, deployment and evolution. (b) New architectural

and execution infrastructure on which software systems are operating and interacting with a

completely new user profile. (c) Users that utilize Cloud services can be defined as always-on

users with increasing demands and a wide range of options for accessing services such as

laptops, smartphones, tablets etc.

2.1.3.1 Microservice Architecture

Microservice Architecture is a relatively new software development approach that focuses on

the creation and synthesis of small autonomous service modules. The most widely adopted

definition of microservices architecture is “an approach for developing a single application as

a suite of small services, each running in its own process and communicating with lightweight

mechanisms, often an HTTP resource API” [20]. As an architectural style, microservices over-

come the problems of centralized, monolithic architectures [21], in which the application logic

is encapsulated in big deployable chunks. In contrast, microservices foster the identification of

small components built around business capabilities [22], that are easy to understand, deploy,

and scale independently, even using different technological stacks [5].

Microservices share a similar definition with SOAP and RESTful services, that highlights

the relationship between microservices and Service-oriented Architectures (SOA). Although

microservices can be seen as an evolution of SOA, they are inherently different regarding

sharing and reuse. SOA is built on the concept of fostering reuse, a share-as-much-as-possible

architecture style, whereas microservices architecture is built on the concept of a share-as-

little-as-possible architecture style [23]. Given that service reuse has often been less than

12

expected [24], instead of reusing existing microservices for new tasks or use cases, they should

be “micro” enough to allow for rapidly developing a new one that can coexist, evolve or

replace the previous one according to the business needs [4].

2.1.3.2 Serverless Computing - Function as a Service

Serverless computing introduces a new Cloud service which consists of an increasingly popular

architecture for building distributed applications. This relatively new service constitutes a new

processing paradigm or model, that emerged through the continuous and vast development

of the Cloud; it provides a service in which developers can write and deploy code without

provisioning or managing servers or containers. The adoption of this paradigm has great

impact on several software engineering aspects, such as the development process, pricing

model and Quality of Service (QoS) assurance.

Serverless computing appear to excel other Cloud-based infrastructures by offering a number

of advantages and benefits. Serverless architecture offers zero server management, no up-front

provisioning, high availability, auto-scalability and pay only for the resources used which

means reduced operation cost.

The main representative of this new service architecture is Function as a Service (FaaS) or

event-based programming [25], where a function may be triggered through an API call, or

by an event. Since Amazon introduced the Lambda serverless platform in late 2014 [26],

many other Cloud providers adopted, offer and currently support this architecture. AWS

Lambda [27], IBM Cloud Functions [28], Google Cloud Functions [29] and Microsoft Azure

Functions [30] are currently the major serverless providers.

2.2 Computational Intelligent Techniques

2.2.1 Fuzzy Cognitive Maps

Fuzzy Cognitive Maps (FCMs) are computationally intelligent, soft computing tools that

combine elements of fuzzy logic and neural networks [31–33]. In essence, a FCM is a directed

graph with nodes that represent concepts in a domain and weighted edges that describe the

various causal relationships that exist among these concepts, either positive or negative. The

potential of FCMs is enhanced by the contribution of fuzzy logic which indicates both the

type of representation of the causal relationships between the concepts and the strength of

13

Figure 2.1: An example FCM with its weight matrix and initial activation levels (AL) vector.

presence of each concept within the modeled environment.

Causal relationships are defined by taking numerical values in the interval [−1,+1]. When a

positive (negative) correlation exists between two concepts a positively (negatively) weighted

arrow is drawn from the causing to the influenced concept. Two nodes without a direct link

represent two concepts which are independent from each other.

The interrelations between concepts can be also expressed by a square matrix, the weight

matrix w. A value wi j > 0 means a positive interrelation between concepts Ci and C j, that is,

an increase or decrease of Ci value causes an increase or decrease of C j value respectively.

Inversely, when wi j < 0 there is a negative interrelation between concepts Ci and C j. Finally,

if wi j = 0 then there is no interrelation between concepts Ci and C j. Figure 2.1 shows a

sample FCM with three nodes and four edges. Naturally, the higher the number of nodes and

relationships, the higher the complexity of the resulting map.

A numeric activation level AL (or activation value) per concept denotes the strength of its

presence in the problem domain. Activation levels are defined as a vector that takes values in

the interval [[−1,1]] or [[0,1]], depending on the modelling scheme followed. For the FCM

in Figure 2.1 the activation levels for a sample scenario could be AL = [[1,0.6,0]], where

concept C1 = 1 is fully active for that scenario, C2 = 0.6 is somewhat active and C3 = 0 is

not active.

The map is initialized with a set of activation levels which represent a particular situation or

problem in hand, and then it is executed on a series of discrete steps. Equation 2.1 describes

the update rule that calculates the total causal input for a node Ai at a given iteration (t +1).

This is how the activation level of node Ai is updated on that step, based on its value in the

previous iteration At
i, and the influence it receives from all nodes At

j that are connected with it

14

(also known as feeders or sources).

At+1
i = f

(
n

∑
j=1,i 6= j

w jiAt
j +At

i

)
(2.1)

After calculating the total causal input for a node, the updated activation value is decided

according to a transfer function f : R→ I which monotonically maps the total causal input R

into the normalized range I = (0,1).

Different types of update functions have been proposed by the research community [34].

However, no rule exists that recommends the use of a specific function; this depends on the

requirements of the decision-maker (in our case, as we will see later on, the person(s) in charge

of deciding for microservices adoption) and the characteristics of the domain under analysis.

Similarly to ANN, four transfer functions are widely used in FCMs [35]: (a) sigmoid, (b)

hyperbolic tangent, (c) step, and, (d) threshold linear. Generally, most of the studies that

use FCMs for decision making use the unipolar sigmoid function, which exhibits the highest

predictive capacity among all [36]. FCMs that use sigmoid functions are also called sigmoid

FCMs.

f (x) =
1

1+ e−λx
(2.2)

The slope of the sigmoid function determines how “sensitive” the model is to changes in the

activation levels. It is defined by parameter λ in Equation 2.2, adjusted by the designer of

the model through simulations and testing with example scenarios. For higher values of λ ,

the sigmoid function becomes more sensitive to changes in activation levels, and approaches

output values close to the upper or lower bounds of the range.

The execution of the map (i.e., the iterative application of the transfer function over the

concepts) concludes in one of three ways, as the model: (1) reaches an equilibrium state, (2)

exhibits cyclic behavior, or (3) exhibits chaotic behavior. The former two cases are considered

”stable”, and allow one to make inference. The third case implies that the model is not suitable

for analysis and should be revisited. The main outcome of the execution is the final activation

value of the central concept of the model, which is then interpreted in the context of the

problem.

15

Figure 2.2: An example Multi-Layer FCM with two layers.

2.2.2 Multi-Layer Fuzzy Cognitive Maps

When the problem under study is highly complicated, it is often observed that some of the

concepts in a FCM model are composed of other (sub)concepts that influence their activation

levels. This issue may be tackled by means of Multi-Layer Fuzzy Cognitive Maps (MLFCM)

which are able to handle the complexity introduced by multifaceted concepts [37].

A MLFCM (Figure 2.2) is basically a hierarchical tree structure, with the top-most level

(root) including the most abstract or composite concepts, while the lower branches add more

details by decomposing concepts of the immediate higher layer. In this way, several ”local”

sub-FCMs are formed. The advantage of this structure is the creation of small and more easily

manageable models (sub-FCMs), which co-work supporting the main, high level FCM, and at

the same time it provides the level of detail required for fully capturing the dynamics of the

problem under study.

In Figure 2.1, let us assume that concept C3 is too complex and that it can be further decom-

posed in C3.1 and C3.2 as shown in Figure 2.2. This generates a two-layer MLFCM with

FCM1 at the root level and FCM2 at the leaf level.

Two different approaches have been proposed for traversing and executing MLFCMs. The

16

first approach follows the Depth-First Search (DFS) recursive algorithm that traverses a graph

in a depth-wise motion. When the lower sub-FCM of a branch is visited (leaf), then this

sub-FCM is executed and transfers its updated activation level to the upper FCM. The second

approach [38] works similarly with the first approach with the difference being that each

sub-FCM is executed for one iteration only. The multi-layered map is being traversed as many

times as the number of iterations, and each connected node feeds its updated activation level

back to the parent FCM during each iteration. The second approach is computationally more

simple than the first one in maps where the connected nodes have many interactions in all

layers involved. Nevertheless, the first approach is more sensitive to changes observed at lower

levels which are immediately propagated upwards affecting all parent-FCMs in the chain to

the root. This is the reason why this thesis adopted the first approach.

2.2.3 Influence Diagrams

In general, techniques that use Influence Diagrams (IDs) in modeling the decision process

seem to improve the way the problem is approached by offering various benefits: IDs offer the

flexibility of representing many dependencies among factors and manage to represent a highly

complex problem in a human understandable way [39]. Also, they allow interaction with

the experts through execution of the model using various input combinations thus enabling

calibration of the model so as to achieve reasonable and helpful answers.

An ID may be conceived as a general, abstract, intuitive modeling tool that is nonetheless

mathematically precise [40]. IDs are essentially directed graph networks, with different types

of nodes representing uncertain quantities, decision variables, deterministic functions and

value models. They were first developed in mid 1970s as a decision analysis tool to offer an

intuitive way to identify and display the essential elements, including decisions, uncertainties,

and objectives, and how these elements influence each other.

2.2.3.1 Generic Influence Diagrams

In general, an ID is a directed acyclic graph with three types of nodes and three types of arcs

between nodes. The first is called Decision node, it is drawn as a rectangle and corresponds to

some decision to be made. Chance or Uncertainty node is the second type, which is drawn as

an oval and represents an uncertainty to be modeled. The third one is the Value node, which

is drawn as a hexagon (or octagon) or diamond, and calculates all possible combinations

17

received from factors in the modeling environment that act as parent nodes. A Functional arc

ends at a value node and represents the contribution of the node at its tail to the calculated

value. The second type of arc is the Conditional, which ends at a chance node and indicates

that the uncertainty at its head is probabilistically related to the node (oval) at its tail. Finally,

an Informational arc ends at a decision node and indicates that the decision at its head is made

according to the outcome of the node at its tail, which is known beforehand.

A simple example of an ID is presented in Figure 2.3, which represents a decision situation

where a venture capitalist wants to know the gain on a prospective investment. The diagram

includes a decision node, Investment Decision, two chance nodes, Success of the Venture and

Expert Forecast and one value node, Financial Gain. It also includes two functional arcs,

which end at Financial Gain indicating that the calculated value of the latter depends on

Success of the Venture and Investment Decision nodes, and one conditional arc which ends at

Expert Forecast node indicating that Expert Forecast and Success of the Venture nodes present

a form of dependability.

Figure 2.3: A simple Influence Diagram

The nodes of a system under modeling and the weighted arrows connecting these nodes are

set to specific values based on the knowledge and beliefs of experts. Some nodes are more

important than others, influencing more the value of their direct children nodes and less their

indirect ones. The methods for evaluating and solving IDs are based on probabilities: The

input and output values of a node in an ID are represented by probabilities. A common

technique for evaluating and solving an ID is based on the Bayesian Theorem [41]. Initially,

the possible values of each frontier node are defined, as well as the probability of occurrence

18

of any value. The same procedure is followed iteratively for the direct descendant nodes

considering all possible combinations of values of their direct ancestors that yield their own

value and then defining the probability of occurrence for each such value. This procedure is

terminated when the value node is reached, the latter calculating all possible combinations

received.

2.2.3.2 Fuzzy Influence Diagrams

Fuzzy Influence Diagrams (FID) were firstly proposed by [42] in an attempt to combine the

features of IDs and the flexibility of Fuzzy Logic. The FID architecture is the same as that of a

generic ID in terms of structure, except that it employs fuzzy reasoning instead of probabilities.

Let us assume that we have constructed an FID with l nodes, some of which have children and

all these children are summed-up to n. Each of the (l−n) nodes, which are considered the

outer elements of the FID, that is, they receive directly the values from the environment, is

associated with a fuzzificator F which converts the node’s input values to fuzzy values via

its membership function [42]. Then, for each of the children nodes there is a fuzzy set Gi

which represents the way the current node influences the given child node and its membership

function is selected from a set of sigmoid and bell-shaped (Gaussian) functions. In cases of

multiple parents m, the influence of each parent node on a certain child is weighted by the set

of the m scalars (weights) using a technique called hedges. The output to the ith child node

is produced by the combination of F and Gi using Scalable Monotonic Chaining [43]. An

example of scalable monotonic chaining methodology is shown in Figure 2.4 . This method

is effective in cases where two fuzzy areas are correlated with a single analog or inductive

inference rule. It can form an expected value, avoiding to fuzzify and defuzzify a fuzzy

set, by using the transformation Gi(F(input)), where input is the value received from the

environment. Therefore, the input received by a children node is the average of the weighted

sum of the set of transformations of its parents.

Initialization of the values of each frontier node and the determination of the weights for all

nodes are the first steps that should be performed prior to executing the FID model. After

initialization, the model is run and the values of the direct children nodes are calculated

sequentially using the scalable monotonic chaining approach mentioned above.

19

Figure 2.4: Scalable Monotonic Chaining example combining F-Type and G-Type fuzzy sets

2.2.4 Genetic Algorithms

In 1950s and 1960s the need for developing optimization tools to solve engineering problems

guided scientists to study and develop evolutionary systems [44]. The main idea in all

these techniques was based on evolutionary principles [45], i.e. to evolve a population of

candidate solutions to a given problem, using operators inspired by genetic variation and

natural selection. Various models of evolutionary computation have been proposed, usually

referred to as Evolutionary Algorithms (EA). For many people evolutionary algorithms are

synonymous with Genetic Algorithms (GAs), which are the dominant practice.

Algorithm 1 Genetic algorithm
1: Set xmin,xmax, t = 0, pc, pm

2: for each individual i ∈ POP(t) do
3: xi = rand(xmin,xmax)

4: while maximum iterations reached or stopping criteria satisfied do
5: for each individual i ∈ POP(t) do
6: Evaluate the position, xi, of the individual using objective function F(xi)

7: POP′(t) = select(POP(t))

8: POP′(t) = crossover(POP′(t), pc)

9: POP′(t) = mutate(POP′(t), pm)

10: Set POP(t +1) = POP′(t)

11: Set t = t +1

Genetic Algorithms (GA) were proposed as a new type of evolutionary algorithms by John

Holland in 1975 [46]. In its simplest form a GA, as proposed by Holland (see Algorithm 1),

is based on the notion of survival of the best (fittest) and has the following elements [44]:

20

populations of chromosomes, selection according to fitness, crossover to produce new offspring

and a random mutation of new offspring. Chromosomes in a GA population are usually

encoded into bit-strings and each position in the chromosome can take two possible values

0 and 1. A fitness function is required to assign a score (fitness) to each chromosome

in the population reflecting how well each chromosome solves the problem under study.

Based on their fitness, chromosomes are selected (selection process) for a subsequent genetic

manipulation process which consists of two steps: Crossover operation is the first step that

recombines parts taken from two selected chromosomes. During the second step, called

mutation, parts at one or more (randomly selected) positions of chromosomes are altered. A

new population of chromosomes is thus produced by this genetic manipulation and represents

the new set of solutions to be evaluated under a repeatable generational process. The latter

step is repeated until a termination condition has been reached.

2.2.4.1 Multi-Objective Genetic Algorithms

In the real world, a wide range of problems involves the simultaneous optimization of multiple

objectives. These problems are called Multi-objective Optimization Problems (MOP). One

of the most popular approaches that tackle such kind of optimization problems is the Multi-

objective GAs (MOGAs) [47] which mainly constitute a modification type of the standard

GAs. While single-objective GAs deliver a single optimal solution, the MOGAs end up

with a set of optimal solutions, known as Pareto-optimal solutions. This set is also called

the non-dominated solution set in the sense that no other solution in the search space is

superior to them, considering all objectives simultaneously. Another important element is the

Pareto-optimal front which is a boundary defined by the set of all points mapped from the

Pareto-optimal set. The ultimate goal for a MOGA is to find a set of solutions as close to the

Pareto-optimal front as possible. Equally important is the level of diversity of the resulting

solutions, that is, the higher the diversity the better the solution set.

min/max f (x) = [(f1(x), f2(x), ..., fk(x)]T , k = 1,2, ...,K

sub ject to x ∈ X
(2.3)

In its simplest form the formulation of the MOP is represented by Equation 2.3. Integer k is

the number of objectives and set X , is the feasible set of decision variables that is typically

defined by some constraint functions.

Multi-objective optimization has been applied in many fields of science, engineering, eco-

21

nomics and logistics, where optimal decisions need to be taken in the presence of trade-offs

between two or more conflicting objectives. Usually, in case of conflicting and competing

objectives, no single solution exists that optimizes each objective simultaneously. The goal for

a decision-maker is to use the Pareto set and then to select one or more single solutions that

satisfy a particular objective.

In recent years along with the development of new algorithms for multi-objective optimization,

a large number of performance indicators have been introduced to measure the quality of

Pareto fronts approximations produced by these algorithms [48]. Two of the most widely used

performance indicators were selected to be used to evaluate and compare the applied MOGAs

during this thesis. The Hypervolume (HV) [49] and the Inverted Generational Distance

(IGD) [50] quality indicators were employed to assist in comparing the MOGAs with respect

to performance and scalability, given their ability to assess both convergence and diversity

(uniformity and spread) of the algorithms. The HV indicator assesses the volume covered

by the non-dominated solutions of a Pareto front in the objective space and therefore, the

larger the volume covered by the solutions generated in a run, the higher the HV value, which

indicates a better performance. The IGD indicator assesses how far the elements of the true

Pareto front are from the non-dominated points of an approximation Pareto front and therefore,

the greater the extent of the true Pareto front that is covered by the non-dominated points

generated by a run in the objective space, the lower the IGD value, which denotes a better

performance.

22

Chapter 3

A Framework for Analyzing Multi-Layer
Fuzzy Cognitive Maps

3.1 Introduction
The fast growth of technology innovation, as well as the continuous technological develop-

ments and achievements, have resulted in an increase in complexity for systems and processes

that aim to support them. No matter the scientific area, experts, analysts and decision makers

in general, often face the inability to effectively and efficiently describe a given problem

and thus study its parameters so that they take the proper decisions at the right time. This

problem is usually associated with the fact that there exists a high number of intertwined

parameters describing the underlying environment, which hinder an in depth description of

the behavior under study and, therefore, make it very hard to study the circumstances behind a

proper decision. Problems exhibiting a high variety of interacting factors, each with unknown

strength of contribution to the formation of the general observed behavior, like for example

the tendency of certain groups or cycles in social networks to grow or shrink, or the virality

of videos in YouTube, or the forecasting of the outcome of peace negotiations in a war zone,

necessitate the use of intelligent, as well as flexible models, that are capable of capturing the

underlying dynamics of the problem and describe the complex interactions of the participating

factors. One such category of models is the one that introduces FCMs.

As described in Chapter 2, MLFCMs are an extended form of FCMs that introduce the concept

of sub-FCMs, that is, smaller structures (maps) of nodes organized in layers, with concepts

being grouped together in neighborhoods so as to focus on specific aspects of the same

23

environment under modeling. This grouping offers a way for analyzing parameters at finer

levels of granularity [37] [38] [51]. Therefore, a modeler or decision maker may represent

all possible parameters present in a given problem using a parent FCM, then decompose and

analyze them into finer details through the creation of child FCMs, and finally study their

behavior in conjunction with the general outcome of the parent map. This enables tracking

the evolution of the outcome down to the last detailed parameter and studying the associated

causes and effects.

Models like MLFCMs work in discrete time steps during which numerical calculations are

carried out at different layers. The problem faced with such models is the lack of a systematic

and disciplined way of analyzing the model structure and its effect on the determination

of its outcome. Due to the high level of complexity introduced by the various layers on

one hand, and the number and type of interconnections between nodes in each layer on the

other, the analysis of properties like stability, node influence and centrality, or convergence to

specific ranges of values, is often a very tedious task. Such kind of analysis, though, becomes

very useful when seeking for advanced decision support information, like the discovery of

the leading determinants of the model’s output. This may lead to strategy formulation or

modification so as to lower their impact in case this leads to undesirable effects, or promote

the influence of other parameters that may be considered beneficiary. In such cases a what-if

analysis is facilitated, offering the ability to simulate hypothetical scenarios and examine their

outcome. For example, if we take a MLFCM model representing a cloud service environment,

and assume that the node representing the pricing scheme has been characterized through the

specialized analysis as one of the stronger parameters that affect the decision of a customer to

buy this service or not, then the service provider may decide to change its pricing policy in

general so that they attract more customers in the future.

Even though MLFCM modeling offers a visual representation of a problem exhibiting highly

complexity, the “observation” of the map itself usually offers very little to the human eye,

meaning that its analysis is a quite tedious task. Static and dynamic analysis of the map can

help modelers to sense the system better and assess its modeling representation from different

perspectives in an attempt to reveal various findings regarding its shape and behavior. This will

ultimately lead to a better understanding of the constructed map by bringing to light “hidden”

properties and features, as well as by highlighting points that require particular attention.

This section is devoted to elaborating on the aforementioned types of FCM analysis and to

proposing specific steps that will enable collection of useful information about the model.

In the above context, the present chapter introduces a framework for conducting static and

24

dynamic analysis of MLFCMs. The former addresses issues like model balance and stability,

and calculates different indices for individual nodes and sub-FCMs. The latter analysis

investigates how the different layers work together in an intra- and inter-connectivity manner,

and suggests ways to study the influence that different nodes exercise on the central node of

interest at run-time (dynamically).

3.2 Literature Overview
Despite the big volume of research studies that discuss applications of FCMs, extensions and

methodologies, very little research has been devoted to the analysis of FCMs, both static and

dynamic [52], the latter being applied individually to the problem under study. Very few and

isolated research studies focus on some types of dynamic and static analyses, but these are

confined to revealing certain factors of interest: In [53], a form of static analysis is applied

which includes the identification of cycles to uncover nontrivial relationships between concepts,

the calculation of the model density to obtain an indication of its complexity, and the analysis

of importance of individual nodes. In [54] dynamic analysis was performed with simulations

using different initial conditions on concepts, and offered a description of the behavior of

the model that can be used to support decision making. In [55], the authors performed an

experimental evaluation in the form of dynamic analysis to assess the effectiveness of an

intuitionistic FCM model for medical decision making.

Based on the above, it becomes evident that currently there is no framework for analyzing the

structure and behavior of FCMs. The constantly growing rate of application of FCM models,

as well as the increase in complexity of the problems studied, highlight the need for such a

framework to help and guide modelers in their effort for better understanding the behavior

of their systems and performing the necessary reconfiguration for devising more appropriate

models. This is exactly the subject of the present work, that is, to offer a simple and effective

framework for performing such type of FCM analyses. More to that, this work focuses on a

new construction process of MLFCMs, which works exactly the same way as in simple FCMs

but offer the ability to decompose multifaceted concepts and study the factors that determine

the model’s output in more details. Therefore, the proposed model may be applied on all types

of FCMs, and, additionally, it will be explained how to take into consideration the layered

form of MLFCMs so as to offer information that will explain the internal dynamics of the

interacting nodes at each layer.

25

3.3 Static Analysis
Static analysis examines a model’s properties irrespectively of its behavior over time, that is,

the model is examined without execution. Among the different advantages that FCMs offer in

modeling complex problems, the capability of analyzing such models, which stems from its

graph-based representation, is of utmost importance. Approaches, methods and metrics from

the area of Graph Theory [56] can be applied and the results may be used for a quantitative

static analysis of the map.

Graph Theory is a branch of Mathematics that deals with the formal description and analysis of

graphs, which are defined as representations of a set of nodes linked by edges. Graphs are being

used for graphical representation of real-world systems providing a description of a system’s

elements and their interactions. Some basic concepts and definitions from Graph Theory are

quoted below, with their mathematical description as originally defined in literature [56], as

well as the corresponding notion or information extracted that is useful for studying our model.

All concepts and definitions thereafter are based on the broad consideration of a FCM as a

directed weighted graph.

A directed weighted graph is defined as a graph G = (V,E) where V is a set of vertices

and E is e set of directed edges between the vertices E = {(u,v)|u,v ∈V} associated with a

weight function w : E→ R. Edge weight wi j between node i and j represents the value of the

connection from i to j.

Graph density is an indication of the complexity of the map and is defined as the ratio between

the number of edges in the map and the maximum number of edges the map can have.

Several centrality indicators may be used to identify the level of significance of a node in a

graph. Degree centrality for directed networks shows that an important node is involved in

a large number of interactions. Each node has two different degrees, the in-degree, degin(i)

and the out-degree, degout(i), which correspond to the number of incoming to and outgoing

edges from node i respectively. Since a FCM is a directed weighted graph, in addition to node

degrees and following the same rationale, node value indicators will also be used in this work.

Having introduced the basic notions we will now proceed with describing the parameters and

notations that are used in the static analysis of MLFCM models by dividing them into three

major categories:

A. Complexity

This category deals with the characterization of the model in terms of complexity of its

26

structure. The metrics used assess the density, depth and breadth of the MLFCM graph.

Specifically, density is given by the following formula:

D =
|E|

|V |(|V |−1)
(3.1)

Therefore, density defines how rich a MLFCM model is in terms of nodes and interac-

tions. Furthermore, due to the multi-layer nature and the decomposition property of

MLFCMs, complexity is also investigated from the perspective of the sub-FCMs. More

specifically, the structure of a MLFCM model is analyzed by measuring its depth, that

is, the maximum number of layers from the root to the leaves, as well as its breadth (see

Eq 3.5), the latter assessing the level of decomposition that takes place in the model. De-

composition is measured with dec deg, which shows the number of sub-FCMs present

and br deg, which averages the number of nodes in these sub-models.

Let us assume that C denotes the set of decomposed nodes and FC the set of the

sub-FCMs produced, both amounting the same number of elements:

C = {decomposed nodes}= {c1,c2, ...,cn},where C ⊆V (3.2)

FC = {sub−FCMs}= { f c1, f c2, ..., f cn} (3.3)

dec deg = |C|= |FC| (3.4)

Then, the breadth degree and the depth of the MLFCM are given as follows:

br deg =
1
n

n

∑
i=1
| f ci| (3.5)

depth =
deg deg

∑
i, j=1,i6= j

li, j, li, j =

1, i f ∃ e j,i ∈ E, where Ci ∈ f ci AND ∈ f c j

0,otherwise
(3.6)

B. Strength

In this category the aim is to gather information that will enable the characterization

of the significance of each node in the MLFCM. Therefore, all metrics and indicators

target to reveal how strong the presence of each concept in the MLFCM is at all layers

and sub-models.

In-value is the sum of the weights of all incoming edges to node i and is denoted by

valin(i) =
|V |

∑
j=1
|w ji| (3.7)

27

Out-value is the sum weight of all outgoing edges from node i and is given by

valout(i) =
|V |

∑
j=1
|wi j| (3.8)

The total value of a node is defined by

valtot(i) = valin(i)+ valout(i) (3.9)

Using the above we may calculate the node in-value over maximum in-value with valin(i)
∑w∈E w ,

the node out− value over maximum out− value with valout(i)
∑w∈E w and the node sum− value

over maximum sum-value with valtot(i)
∑w∈E w .

Similarly, the degree of a node denotes its significance based on the number of concepts

it interacts with (is affected by and it affects). To account for this, node in-degree, node

out-degree and node total-degree metrics are calculated:

degin(i) = ∑δ j, δ j =
1, w j,i 6= 0
0, w j,i = 0

(3.10)

degout(i) = ∑δ j, δ j =
1, wi, j 6= 0
0, wi, j = 0

(3.11)

degtot(i) = degin(i)+degout(i) (3.12)

Continuing, we may calculate the node in−degree over maximum in-degree degin(i)
|V |−1 , the

node out−degree over maximum out-degree with degout(i)
|V |−1 and the node total−degree

over maximum total-degree with degtot(i)
2(|V |−1) .

C. Tendency

According to graph theory, a cycled or closed walk is a sequence of vertices that are

traversed through connecting edges consistently with their direction; a cycle starts and

ends at the same vertex.

The number of feedback cycles in a graph is considered as a strong indicator for the

tendency of the map. A positive cycle acts as an amplifier of any initial change, leading

to a constant increase of the activation at the end of that cycle. Conversely, a negative

cycle reduces any initial change leading to a constant decrease of the activation at the

end of the cycle. Therefore, it is important to calculate the number of positive and

negative cycles present in the map so that we can infer the tendency of the model

towards increasing or decreasing the initial stimuli. Following the same reasoning, it

28

is equally important to investigate the number of cycles in which a node takes part,

negative and positive, so that we can characterize the importance of that particular node

in the definition of the tendency of the model.

All tendency indicators are calculated at every layer of the MLFCM, where the discrete

cycles present in a certain sub-model are studied independently. Also, the effect of their

grouping is assessed in terms of cycles gradually as we move from leaf-FCMs to the

upper layers until we reach the root FCM.

Summarizing the above, static analysis of MLFCMs may be performed using the metrics

described previously, aiming at revealing certain characteristics that belong to one of the

three categories, complexity, strength and tendency. The sequence of their application is not

important as there is no formal dependence between them. What we should note, though, is

that the MLFCM structure is intrinsically more complex than simple graphs or FCMs, and

most of the aforementioned parameters should be applied and measured on each sub-FCM

separately. The significance of the nodes on each sub-FCM individually, as well as the

different characteristics of the sub-FCMs, provide guidance for further analysis of the model

in conjunction with the map’s topology. Particular attention should be given to nodes which

transfer their activation levels from Layern(child) to Layern−1(parent).

By the end of the static analysis that is applied across the model, modelers shall be able to (i)

identify the strong concepts of each sub-FCM and how each of them influences the central

concept of the map and to what degree, (ii) reap a strong indication of how each sub-FCM

influences the sub-FCM of the upper layer, and, (iii) use indications from static analysis

towards setting dynamic analysis simulations.

3.4 Dynamic Analysis
Additional observations regarding the model’s behavior could be extracted by applying dy-

namic analysis. More specifically, in this type of analysis the model is executed and its

behavior is investigated. The main target here is the study of the activation levels of the partic-

ipating concepts (nodes) and how these values change over time. A number of simulations are

required under specific and targeted rules that can lead to infer some interesting behavioral

properties and to reach to some conclusions.

Before moving, though, to presenting the approach suggested for conducting dynamic analysis,

it is imperative to describe a constraint which should be satisfied in order for this type

29

of analysis to have meaning. This constraint essentially reflects the result of preliminary

assessment of the model in terms of correctness and accuracy. More specifically, when starting

to investigating a ML-FCM model, what we initially have is a representation of the problem

under study, which was derived usually with the aid of domain experts who defined the

concepts and their causal relationships. In the absence of any observed behavior, that is, of

historical data describing the actual behavior of the corresponding parameters influencing

each other similarly to what that model attempts to describe, we must first assess whether

this model behaves as expected to. Therefore, we construct and execute two scenarios we

call “extreme”; one with extremely favorable parameters which should drive the model to

the extreme positive outcome (i.e. the concept of interest to a value close or equal to +1),

and one to the extreme negative (i.e. to a value close or equal to 0). Both scenarios should

present the anticipated output in equilibrium conditions. If either of the two scenarios yields

an outcome different from what is expected, or the model does not present equilibrium (fixed

point) conditions, then the suitability of the structure of that particular model is questioned

and further dynamic analysis cannot be performed. In such a case the modelers should return

back to the “drawing” table and their experts, and try to revise the model so that it passes

successfully the extreme scenarios evaluation. Once it does, the various steps of dynamic

analysis that are described in the rest of this section may be taken.

The present work suggests two approaches as regards the dynamic analysis of MLFCM

models:

Firstly, a number of simulations is performed with randomized initial activation levels, fol-

lowed by a study of the correlation between the initial activation level of each concept and the

final activation level of the central concept of interest. This type of performance investigation

is expected to build upon the findings derived from the static analysis with respect to the

evaluation and ranking of the concepts’ significance.

Secondly, the performance of the model is assessed on specific what-if scenarios, which are

built based on the findings of the preceding static analysis, as well as on the characteristics

of the problem under modelling. One such scenario is to investigate whether the n strongest

nodes suggested by the corresponding indicators of the static analysis may determine the

model’s decision irrespective of, or with very limited contribution by, the values of the rest

of the concepts. In the same context, simulations may be used to identify the contribution

of each sub-FCM to the final decision, with focus on the decomposed (transfer) node. If the

latter is again characterized as strong by the findings of the dynamic analysis, and hence it is

regarded as a leading determinant of the model’s output, then the contribution of the effect

30

the decomposed parts exercise on this node should be further analyzed and assessed. The

suggested way to do this is to perform a bottom-up analysis where the values for all initial

activation levels of the map are kept constant and the corresponding activation level values of

“child” nodes on a specific sub-FCM at the lower layer are varied. The process should start

from the leaves and working all the way up the modeler will be able to trace the degree of

influence to the upper layers and identify if this declines or strengthens.

It should be noted that for each what-if scenario the definition of the initial values of the con-

cepts should reflect the settings of the problem at the time of execution. In our demonstration

example for the Cloud Adoption problem, which will be described later on, such a case would

be for instance the current situation of a client that wishes to move its transactions to a Cloud

service provider describing notions of concern like security, cost and performance. Similarly,

each scenario will reflect the given situation under study, including hypothetical settings which

will enable us to study the future behavior of various cases.

3.5 Stepwise Analysis and Inference Process
The stepwise process to be followed in the proposed framework is as follows:

Phase A’ - Static Analysis:

Apply the metrics defined in the three categories of parameters, complexity, strength and

tendency, in any order of sequence. Collect the corresponding measurements and analyze the

model as follows: First identify the complexity of the sub-FCMs and the root-FCM. High

magnitude of complexity makes a sub-FCM at a certain layer a good candidate for revision so

that this magnitude is lowered. This will be addressed by simulation during dynamic analysis

and discovery of unnecessary relationships and/or concepts. Second, rank the concepts in

ascending order of significance/strength using the val and deg indicators. Specific simulations

may then be performed focusing on the effect of the strong and significant concepts (nodes) of

interest at different layers of the MLFCM. Third, calculate the number of possible cycles, both

negative and positive, that exist in a specific sub-FCM. Assess the tendency of each sub-FCM

and relate this tendency with the existence of strong and decisive nodes. Finally, evaluate the

contribution of the type of cycles present, in conjunction with strong nodes, to the formation

of the model’s final output. The latter will enable understanding the internal computational

dynamics of the MLFCM structure and will lead to indicating further simulations that will

identify how the output of the model is actually formed, thus contributing to eliminating the

effect of the black-box type of execution that FCMs are often criticized for.

31

Phase B’ - Dynamic Analysis:

First set-up and execute the two extreme scenarios. Examine their outcome and analyze the

conditions of stabilization (equilibrium). If the results of the model agree with each scenario’s

expected value at equilibrium, then proceed to the execution of various simulation scenarios.

If not, revise the initial model accordingly and repeat the process.

In case the behavior of the model is consistent with the extreme scenarios, take the significant

nodes for each sub-FCM and execute simulations to derive how its central node that transfers

its activation to the upper layer is affected by its neighborhood. Repeat this working from

bottom to top until you reach the root FCM where this process is repeated for the node

that yields the final output of the model. Conduct as many what-if scenarios as required to

understand fully which node or combinations of nodes primarily define the value of the node

of interest, as well as perform an investigation of how the weights of the causalities contribute

to this definition. Based on the above, there will be two different types of inference/actions

associated with the corresponding findings:

Inference/action set A’: Check whether the original model as defined by the domain

experts is actually behaving as expected to or not, and if not, identify the concepts

and/or causal relationships that disturb this intended behavior. If yes, define what the

internal dynamics that determine the model’s behavior are. Therefore, the modeler may

thus calibrate or modify the model to reflect better the dynamics of the problem under

investigation.

Inference/action set B’: Some nodes, or groups of nodes, may have negligible effect on

the behavior of the map (e.g. on the central node of interest) so the question posed to the

modeler is whether to keep these nodes or not. In the latter case, removal of redundant

nodes and/or causal relationships is highly desirable as it decreases the overall complexity

of the model, as well as the associated computational burden (e.g. initializations, nodes’

updating, discrete sub-FCM executions, etc.) without compromising accuracy and

performance.

3.6 Summary
The simplicity and effectiveness of Fuzzy Cognitive Maps have turned them nowadays to a

useful tool for modeling real-world problems and supporting the decision making process.

Multi-layer FCM structures offer the ability to approach a problem from every relevant

32

perspective by decomposing multi-faceted parameters and forming neighborhoods of concepts

at any level of detail or granularity. One of the main issues when constructing and executing

such complex models is to understand the internal dynamics behind their execution so that

optimization of their structure can be performed, but most importantly, inferences regarding

which node or groups of nodes determine the final outcome can be made. Currently there is

lack of methodologies for understanding how FCM-based models work. In this respect the

work in this chapter addressed the issue of the analysis, both static and dynamic, of MLFCM

models by proposing a framework for conducting a series of steps that aim to reveal the hidden

properties of their execution.

The proposed framework was divided into two approaches: The first studied the MLFCM as

a graph model extracting information about its complexity, the significance of the discrete

nodes at every layer and its tendency to promote or inhibit an initial activation as a result of the

presence of a number of positive and negative cycles. The second approach analyzed the run-

time behavior of the model and provides insights regarding its behavior in terms of correctness,

correlations between nodes and the effect of the latter to the final outcome yielded. Executions

of different simulations and what-if scenarios enabled the revision and restructuring of the

model taking into account issues like complexity and computational burden.

33

34

Chapter 4

Modeling the Cloud Adoption Decision

4.1 Introduction
CC has been considered as the next big thing in the IT field that is transforming the whole

perspective with which we understand computing today. Offering powerful processing and

storage resources with reduced cost and increased efficiency and performance, CC seems

nowadays as a very attractive solution to a large group of cases, ranging from single users,

to SMEs and large organizations. Especially for business organizations that produce and

process considerable volumes of information on a daily basis during their working activities,

Cloud adoption is still a major challenge. The ever-growing trend from the industry towards

adopting Cloud computing has led many of the major software developers or service providers

to turn their strategy towards Cloud services, mostly targeting at increasing their market share.

On one hand, companies-customers need to consider the benefits, risks and effects of Cloud

computing on their organization in order to proceed with adopting and using such services,

and on the other, Cloud Computing providers need to be fully aware of customers’ concerns

and to understand their needs so that they can adjust and fit their services accordingly.

During the last decade the research community has focused on the field of Cloud computing

with increasing interest. Nevertheless, a quick review of the relevant literature suggests that

there are yet no mature techniques or toolkits to support decision making as regards the

adoption of Cloud services. Cloud adoption in general depends on multiple, conflicting factors

which introduce high levels of ambiguity and uncertainty in the decision process, making it

a highly complex task that cannot be tackled with classical and linear methods. The rapid

changes in the Cloud computing environment, both at the supply and the demand level, reveal

35

how difficult it may be for any model to assist the relevant decision making process timely and

correctly. This statement imposes that a framework or model to support the study of Cloud

computing adoption should be flexible enough and dynamically adaptable to accommodate

these continuous shifts.

The work in this chapter aims to deliver integrated models in different forms to support the

decision making process on the Cloud adoption research challenge. More specifically, the

application of two methodologies are being examined based on FCMs [57] and IDs [58]. The

development of all proposed models is based on the analysis of information that was collected

and analyzed in a systematic manner: Firstly, a study was performed of the most recent and

relevant literature on Cloud computing and particularly on Cloud adoption, through which all

possible factors that influence the final Cloud adoption decision were identified. The results

of this study led to the next steps which include the categorization of factors, as well as the

building and distribution of a questionnaire to a group of experts. This questionnaire targeted

to utilize their knowledge and expertise for approving the list of factors already identified.

Furthermore, the experts were asked to define the relation of each factor to Cloud adoption

and assign a corresponding weight following a Likert scale. Although the development of all

models followed the same rationale as described above, in each case the process was repeated

and adapted to the characteristics of each model. In addition, the different timing of the

implementation of the two models is also reflected in the outputs, such as the number of nodes

used, their categorization, etc.

The constructed models were used to answer the question “Adopt Cloud Services or Not?”

under the current state of the offered service and the associated factors describing each cus-

tomer’s particular situation at the moment of decision. Moreover, the benefits and capabilities

provided by the proposed approaches are fully exploited during the simulation analysis which

is based on targeted what-if scenarios. Particular and extended reference is made to the

application of the step-wise analysis and inference process in the Multi-layer approach of the

FCM models.

4.2 Literature Overview
An investigation of the current literature revealed a relatively small number of papers discussing

Cloud adoption from the perspective of decision making and also current feasibility approaches

fall short in terms of decision making to determine the right decision. We introduce a summary

of these studies, examining the contribution of each work to the decision making problem.

36

In [59] a Cloud adoption toolkit is presented which provides a framework to support decision

makers in identifying their concerns and match them with the appropriate techniques that can

be used to address them. In [60] various issues are examined that impede rapid adoption of

Cloud computing such as cost, compliance and performance. The authors in [61] attempted to

contribute to the development of an explorative model that extends the practical applications

of combining Technology Acceptance Model (TAM) related theories, with additional essential

constructs such as marketing effort, security and trust, in order to provide a useful framework

for decision makers to assess the issue of SaaS adoption and for SaaS providers to become

sensitive to the needs of users. Wu [62] explores the significant factors affecting the adoption of

SaaS by proposing an analytical framework containing two approaches: TAM related theories

and the Rough Set Theory (RST) data mining. In [63], a solution framework is proposed

that employs a modified approach named DEMATEL [64] to cluster a number of criteria

(perceived benefits and perceived risks) into a cause group and an effect group, respectively,

presenting also a successful case study. Even though all of the above techniques contribute a

significant piece to this new open research field, they may be classified as “traditional”, single

layer approaches, which examine only a specific part of the problem.

A framework called CloudGenius is proposed in [65], which automates the decision-making

process based on a model that includes factors specifically for Web server migration to the

Cloud. This framework stands over a well-known multi-criteria technique, namely the Ana-

lytic Hierarchy Process, to automate the selection process based on a model, factors and QoS

parameters related to an application. Aiming to help companies to analyze several character-

istics regarding IT resources and identify their favor-ability in the migration to the Cloud, a

general ROI model is proposed in [66]. Two decision support tools for Cloud migration in the

enterprise are described in [67]. The first is a modeling tool that produces cost estimates of

using public IaaS and can be used to compare the cost of different Cloud providers, deployment

options and usage scenarios. The second tool is a spreadsheet which outlines the benefits

and risks of using IaaS from an enterprise perspective and provides a starting point for risk

assessment. In [68] a Cloud adoption toolkit is presented, which provides a framework to

support decision makers in identifying their concerns and matching them with the appropriate

techniques that can be used to address them. Five techniques have been incorporated to support

the process: Technology Suitability Analysis, Energy Consumption Analysis, Stakeholder Im-

pact Analysis, Responsibility Modeling and Cost Modeling. CloudDSF, which was proposed

and presented in [69], is a framework in which knowledge about the problem domain (i.e.

migration to the Cloud) is gathered, organized, visualized and offered as a publicly available

37

Web application [70]. Finally, in [71] CloudStep describes a step-by-step decision process that

consists of nine activities including enterprise, legacy application and Cloud provider profiling,

constraint identification analysis and alternative migration scenarios evaluation and ranking.

4.3 ID Modeling
The work in this section proposes two approaches based on IDs, generic and fuzzy-based,

which are able to provide a successful model to support decision making for Cloud adoption.

Two methods were employed to gather the necessary information for modeling the Cloud

adoption decision-making process: (i) Literature study and (ii) Collection of expert opinion

through specially prepared questionnaires followed by interviews. More specifically, a small-

scale literature review on the subject was conducted in order to identify a number of factors

that potentially influence such a decision and therefore be considered as nodes in our models.

A group of three experts with strongly related background to the subject was identified in the

next step (i.e. key personnel in Cloud providers). An initial list of factors was then prepared

and the experts were asked to evaluate the list and prompted to add or remove factors based

on their expertise and working experience. A last round of discussion with the experts was

conducted, in order to finalize the list of factors which were used to form the nodes of the ID

model. The factors identified are listed in Table 1.

The relationships between the nodes were defined using again the two-stage approach: Firstly,

by reviewing the relevant literature and identifying dependencies an initial model was de-

veloped. Then, this model was verified, corrected and modified after consultation with the

experts. Considering the influencing factors that were extracted, as well as the limitations

posed by the combinatorial form of the generic model, the ID model was formed as shown in

Figure 4.1. The corresponding factors were grouped in such a way so as to represent better the

problem under study. The proposed representation may be characterized as relatively simple

with a two-level structure. All factors extracted are formed as frontier nodes in the diagram.

Groups of those factors form (and influence) intermediary nodes, which, in turn, influence the

unique Value node.

After the model form was finalised, both ID approaches were then validated in terms of

expected performance. More specifically, two synthetic (hypothetical but realistic) scenarios

were created representing the so called “extreme cases”, that is, a certain situation where

everything would be in favor of Cloud adoption (positive scenario) and another one where the

opposite would hold (negative scenario). The target was to assess the verdict of the evaluation

38

Table 4.1: Factors influencing Cloud adoption

Name Definition
Legal Issues Cloud adoption compliance with all legislative issues. Ability to adjust

when legal requirements grow.
Availability The amount of time that Cloud Service(s) is operating as the percentage

of total time it should be operating.
Security Security of service: data transfer, data stores, web servers, web browsers.
Cost / Pricing Operational - running costs, migration costs etc. Cost benefits from

Cloud adoption.
ROI Return on Investment.
Compliance Business and Regulatory compliance.
Performance/Processing Does Cloud adoption perform the process to the desired quality?
Scalability Ability to meet an increasing workload requirement by incrementally

adding a proportional amount of resources capacity.
Privacy/ Confidentiality Privacy and confidentiality coverage.
Elasticity Ability to commission or decommission resource capacity on the fly.
Data Access / Import-Export Access to data in various ways.
Technology Suitability Does Cloud technology exhibit the appropriate technological characteris-

tics to support the proposed SaaS?
Hardware Access Degree of Cloud Service accessibility, on local hardware.
Audit ability Ability of Cloud service to provide access and ways for audit.

node of the models under known situations and check whether their outputs indicated that the

model behaves correctly. Finally, the models were tested on the three real-world scenarios

that are listed in Table 4.2, that is, cases collected from three international Cloud services

providers and were related to real customers. A series of interviews were conducted with

the Cloud providers and the customers so as to be able to retrieve the leaf node values for

each case separately. The values recorded and adjusted essentially reflect the state of the

offered service and the associated factors describing each customer’s particular situation at

the moment of decision. The first case involved an academic institution of a medium to

large size, which requested a comprehensive solution for email services. The second case

described an industrial organization which requested a complete email Cloud package and

also a Cloud based document management system. Finally, the third case was about a medium

insurance broker organization, which requested a complete email Cloud package and also a

Cloud infrastructure to fit a heavy tailored-made owned system.

39

Figure 4.1: ”Adopt Cloud or Not” Influence diagram

Table 4.2: Brief description of real-world cases.

Case Line of Business Users Cloud Services
A Academic Institution 4500 Mail Server / Mailbox / Mail client
B Supplies Industry 85 Mail Server / Mailbox / Mail Client / Document Management
C Insurance Brokers 125 Mail Server / Mailbox / Mail Client / Custom Business System

4.3.1 Generic ID

Initially, all possible values of each frontier node were defined. These values were determined

by first considering that all nodes, including the Value node, can be set to three different

linguistic value levels, Low, Medium and High. Next, the probability of realization of each

level value for each node-factor was defined. Table 4.3 presents the input values that describe

the current situation at the point of time when the decision was about to be made for each

of the five scenarios tested. Following the procedure described above, we defined the values

for each direct ancestor node considering all possible combinations of values of all direct

40

descendant nodes, including the values of the current node. We should mention here that for

the construction of this model, a total of 3024 combinations needed to be calculated, something

which proves the computational burden associated with this form of ID modeling.

At this point a brief presentation will be made of how the ID calculations are performed

using an indicative part of the diagram containing Privacy, Security and Trust nodes. In order

to evaluate probabilities on the Trust node using the Bayesian Theorem [41], a number of

calculations (combinations) must be performed as shown in Table 4.4. In these calculations

the numerical values of 0.9 for High, 0.5 for Medium and 0.1 for Low were used , as well as

the specific weight of contribution of each leaf node (Security, Privacy) to its parent (Trust).

Each combination yields the numerical value of the probability P that the value of the Trust

node is High (and consequently 1−P for Low).

4.3.1.1 Experimental Results

After the execution of the positive scenario, the evaluation node yielded the value of 0.77 for

“Yes” and 0.23 for “No”. This means that the model indeed recognized correctly the positive

environment and suggested that, based on the values “read” in the nodes and the current

influences between them, a decision in favor of Cloud adoption should be taken. Executing

the model using the values for the negative scenario, the value of 0.75 for “No” and 0.25 for

“Yes” were calculated at the evaluation node, which perfectly matched the expected behavior

once again. Therefore, the ID model successfully passed the validation test: By using the

above “extreme” scenarios it became evident that the proposed model behaves successfully as

it recognized correctly the conditions of the environment and predicted the right decision.

Close inspection of the input values of the first real-world scenario indicates that the condition

described are in favor of a positive decision. On the contrary, the input values of the second

and third real-world scenarios leave practically no room for a safe prediction of the final

decision. The execution of the proposed ID model for the first real scenario returned the value

of 0.61 for “Yes” and 0.39 for “No”. This answer may easily be translated to a clear “Yes”,

which coincides with the actual decision taken. The second real case yielded a “strong” 0.74

for “No” and 0.26 for “Yes”, with this suggestion again coinciding with the actual decision. In

the third case our model returned 0.57 for “Yes” and 0.43 for “No”. This result is slightly in

favor of Cloud adoption and although the decision was not so strong the model once again

succeeded in projecting the real decision as there was indeed a debate regarding the cost and

benefits of moving to the Cloud but the main argument was that the latter were quite serious to

41

Table 4.3: Input values for the five scenarios tested

Factor Term Positive Negative Real1 Real 2 Real 3

Legal
High 0.8 0 0.6 0.2 0.6

Medium 0.2 0.2 0.3 0.6 0.3
Low 0 0.8 0.1 0.2 0.1

Availability
High 0.8 0 0.6 0.2 0.6

Medium 0.2 0.2 0.3 0.6 0.3
Low 0 0.8 0.1 0.2 0.1

Security
High 0.8 0 0.6 0.2 0.6

Medium 0.2 0.2 0.3 0.6 0.3
Low 0 0.8 0.1 0.2 0.1

Cost / Pricing
High 0 0.8 0.3 0.7 0.1

Medium 0.2 0.2 0.6 0.3 0.6
Low 0.8 0 0.1 0 0.3

ROI
High 0.8 0 0.3 0 0.1

Medium 0.2 0.2 0.6 0.2 0.6
Low 0 0.8 0.1 0.8 0.3

Compliance
High 0.8 0 0.6 0 0.6

Medium 0.2 0.2 0.3 0.2 0.3
Low 0 0.8 0.1 0.8 0.1

Performance
High 0.8 0 0.3 0 0.6

Medium 0.2 0.2 0.6 0.2 0.3
Low 0 0.8 0.1 0.8 0.1

Scaleability
High 0.8 0 0.8 0 0.8

Medium 0.2 0.2 0.2 0.6 0.2
Low 0 0.8 0 0.4 0

Privacy /
Confidentiality

High 0.8 0 0.3 0 0.0
Medium 0.2 0.2 0.6 0.2 0.2

Low 0 0.8 0.1 0.8 0.8

Elasticity
High 0.8 0 0.8 0 0.8

Medium 0.8 0 0.2 0.6 0.2
Low 0.2 0.2 0 0.4 0.0

Data Access /
Import-Export

High 0 0.8 0.6 0 0.6
Medium 0.8 0 0.3 0.6 0.3

Low 0.2 0.2 0.1 0.4 0.1

Technology Suitability
High 0 0.8 0.6 0 0.6

Medium 0.8 0 0.3 0.6 0.3
Low 0.2 0.2 0.1 0.4 0.1

Hardware Access
High 0 0.8 0.3 0.2 0.3

Medium 0 0.8 0.6 0.8 0.6
Low 0.2 0.2 0.1 0 0.1

Auditability
High 0.8 0 0.3 0 0.6

Medium 0.8 0 0.6 0.6 0.3
Low 0.2 0.2 0.1 0.4 0.1

ignore and therefore determined the final positive decision. Therefore, the model correctly

recognized this situation as well and matched correctly the decision.

42

Table 4.4: Calculating probabilities on Trust node

Security Privacy Trust
w = 0.65 w = 0.35 P(Trust = High|Security,Privacy) P(Trust = Low|Security,Privacy)

High High 0.9 0.1
High Medium 0.76 0.24
High Low 0.62 0.38

Medium High 0.64 0.36
Medium Medium 0.5 0.5
Medium Low 0.36 0.64

Low High 0.38 0.62
Low Medium 0.24 0.76
Low Low 0.1 0.9

4.3.2 Fuzzy ID

To achieve the best representation of the factors describing the problem under modeling, the

combined knowledge of the experts and literature was used to set and construct F- and G-type

fuzzy sets. For all nodes in the diagram a common F-type graph shape was selected which

represents best the fuzzy set shown in Table 4.5.

Table 4.5: Fuzzy values

Linguistic value Numerical value Fuzzy value
negatively very high -5 0
negatively high -4 0.1
negatively medium -3 0.2
negatively small -2 0.3
negatively very Small -1 0.4
positively very Small 1 0.6
positively small 2 0.7
positively medium 3 0.8
positively high 4 0.9
positively very high 5 1

It is obvious that the influence of each node to its child can be described as absolutely linear.

Inversely, but in the same spirit, the sigmoid equation (2.2), has been selected to represent the

G-Type fuzzy set for all nodes in the model. The range of the G-type fuzzy set is between

(−0.5) and (+0.5), with l = 5. The FID model was executed using the fuzzy values depicted

43

in Table 4.6, which describe each of the five scenarios tested.

An example of how the calculations described in Section 2.2.3.2 are performed for evaluating

FID nodes is shown in Table 4.7 focusing on the Trust node. Numerical values x, which

reflect the initial state of a node, are transformed to F(x) values using the F-type fuzzy set

shown in Table 4.5. Next, the combination of the F-type and G-type Fuzzy sets using Scalable

Monotonic Chaining computes the G(F(x)) values. Finally, the weighted sum of the G(F(x))

values produces the fuzzy input value for the Trust node.

Table 4.6: Input values of the nodes participating in the FID model for the five scenarios tested

Factor Positive Negative Real 1 Real 2 Real 3
Legal 0.9 0.1 0.8 0.5 0.8
Availability 0.9 0.1 0.8 0.5 0.8
Security 0.9 0.1 0.8 0.5 0.8
Cost / Pricing 0.1 0.9 0.7 0.8 0.3
ROI 0.9 0.1 0.7 0.1 0.3
Compliance 0.9 0.1 0.8 0.1 0.8
Performance/Processing 0.9 0.1 0.7 0.1 0.8
Scalability 0.9 0.1 0.9 0.3 0.9
Privacy/ Confidentiality 0.9 0.1 0.7 0.1 0.1
Elasticity 0.9 0.1 0.9 0.3 0.9
Data Access / Import-Export 0.9 0.1 0.8 0.3 0.8
Technology Suitability 0.9 0.1 0.8 0.3 0.8
Hardware Access 0.9 0.1 0.8 0.6 0.7
Auditability 0.9 0.1 0.7 0.3 0.8

Table 4.7: Evaluating Trust node in FID

Nodes x F(x) G(F(x)) Weight F(Trust)
Security 3 0.8 0.78 0.65

0.73
Privacy 2 0.6 0.58 0.35

4.3.2.1 Experimental Results

Our model was led to the value of 0.8529 for the positive scenario, which is translated as

“positively high”, and, as expected, to the value of 0.1471, that corresponds to “negatively

high”, for the negative scenario. Like the generic ID model, the performance of the FID

44

was also validated as successful through these two “extreme scenarios”. The first real-world

scenario returned the value 0.7585, which can be translated as “positively medium” and

succeeded to suggest the real decision. The second real-world scenario returned 0.2946, which

corresponds to “negatively small”, succeeding also to match the actual decision. Following the

previous scenarios, the third case again succeeded to match the real decision and the debate

scenery, returning 0.5786 as “positively very small”.

4.3.3 Comparison of the ID Models

Summarizing the results listed in Table 4.9, one may infer that both models succeeded to

correctly predict the real decisions. Another significant aspect is the fact that both models

reached their decision with similar “weights” and this gives an extra value to their reliability

and credibility. Considering that the modeling process can be divided into three parts, that is,

data collection, model design/construction and model execution (results), then an argument

can be made that both models are identical as regards the first and third part, and differ only

in the construction and design part. The success of both approaches in the modeling process

allows to focus on some differences that are important for the future selection among the two

and further study of the process.

Table 4.8: Model’s decisions compared with real decisions

Real-world scenarios ID FID Real decision
1 Yes 60% 0.7585 (positively medium) Yes
2 No 74% 0.2946 (negatively small) No
3 Yes 57% 0.2786 (positively very small) Yes

A generic ID, comparatively to a FID, carries a large volume of literature study and this is an

essential fact for its reliability, unlike a FID which is a relatively new model and its relative

area may be considered virgin, not so matured and surely not so much studied. However, the

FID offers some key benefits which make it a promising approach with valuable contribution

in decision making problems. An FID model seems to overcome problems and difficulties

associated with probabilities, avoiding increased combinatorial cost in the corresponding

calculations. Fuzzy sets values can be estimated in an easier way using a linguistic Likert scale

compared to the usual n-level scale of generic IDs. In addition, by using FIDs the interaction

of the experts through the execution of the model becomes even easier because each individual

45

node can be studied separately and different weights and values may be set independently of

the other nodes, thus avoiding the recalculation of all ancestors’ probabilities.

As mentioned before, the effort and time spent to assign probabilities to all possible outcomes

of each node in a large ID is huge and this is prohibitive to construct ID models including

nodes with a large number of outgoing arcs. Since this problem is practically overcome by

FIDs, for inductive and experimental purposes, an alternative extreme structure of FID model

was constructed as shown in Figure 4.2. Exactly the same data was used as before, but without

grouping the factors and having the corresponding weight values influencing directly the

evaluation node. If this structure was attempted based on the probabilistic approach of the

generic ID then it would require the huge number of 14,348,907 combinations.

Figure 4.2: An alternative inductive structure of our FID model

The alternative FID model was tested on the same three real-world scenarios and returned

0.7308, that is, “positively small”, 0.2543, that is, “negatively small”, and 0.5720, that is

“positively very small” respectively. The performance of this model confirms the strong ability

of the FID approach to succeed in cases of resource demanding structures.

46

4.3.4 What-if Scenario Simulations

As mentioned above, one of the most significant benefits of the proposed models is their

ability to perform simulation analysis based on what-if scenarios making them an efficient

tool in the hands of decision makers. More specifically, influence diagrams provide interactive

capabilities and enable the study of the effects of changing various parameters (factors) of the

problem under modeling so as to trace the source of undesired situations like in our case a

negative prediction of Cloud adoption. In such a case, the vendor will be able to identify which

factors are responsible for the negative picture and examine if and how their values may be

changed, and to what extent, in order to revert the decision. This simulation process essentially

provides critical information to vendors and guides them towards performing possible actions.

The latter, of course, is always subject to cost/benefit analysis and feasibility depending on the

situation. For example, if cost is the decisive factor that drives a Cloud adoption decision to

the negative end and the vendor is able to acknowledge the impact of this factor to the final

decision, then the vendor may choose not to lower costs in order to make transition to Cloud

more appealing to its customers and possibly revert decision simply because by doing so the

margins for profit become too narrow. Presented below is a demonstrative example describing

how we can work to revert the decision in the second real-world scenario from negative to

positive.

Based on the literature review initially performed and the input received from the experts,

which finally led to the determination of the significance of the participating factors, the factors

were ranked according to their weight of influence on the final decision and selected to process

the top five of them, namely Cost, Return of Investment, Security, Legal and Availability. The

new FID model was considered and used the new input values for the second real scenario

shown in Table 4.6, which reflect a low to medium increase in the levels of Legal, Availability,

Security and ROI factors, and a significant decrease (of 50%) for the Cost level. The FID

model was executed under these changed values and returned 0.5232 that corresponds to

“positively very small”. Therefore, the negative decision was reverted, simply by following

an interactive process which altered the conditions prevailing in the FID model and tested

specific input values under a simulation environment. This interactive simulation process may

be repeated by vendors using different input values that investigate the evolution of various

hypothetical scenarios and planning certain actions according to various considerations each

time. As already mentioned, these hypothetical scenario simulations will be examined under

the prism of feasibility; for example, if cost reduction is not feasible at the level described

47

above, then other means of policy making in the associated determinant factors must be sought

for reverting the negative decision. The whole process is, of course, time and effort consuming

as it is based on trial and error; therefore, a more “sophisticated” approach is needed in this

case supported by an automated solution as regards identification of the appropriate values for

the determinants.

4.4 FCM Modeling

4.4.1 Single Layer FCM

The development of a single-layered FCM for modeling the Cloud adoption decision-making

process was implemented following the two methods mentioned above, specifically literature

study and collection of experts opinion through specially prepared questionnaires followed by

interviews. Each identified concept is unique in the sense that no overlaps exist between the

interpretation of what each concept represents. For example, concept Compliance focuses on

functional requirements rather than the issues of security, the latter being addressed by Privacy

/ Confidentiality concept. An initial list of concepts was then prepared and the experts were

asked to evaluate the list and prompted to add or remove concepts based on their expertise and

working experience. The last step included one more round with the experts discussing their

comments and reaching to consensus as regards the final list of concepts. These concepts were

used to form the nodes of the map and are described in Table 4.9.

Based on the final concept list, the experts were again asked to complete a questionnaire

concerning the causal relationships between the nodes of the map and the weights involved,

i.e. the degree to which concepts influence each other. The influences were fuzzified using

eleven linguistic variables : “negatively very high”, “negatively high,” “negatively medium,”

“negatively small,” “negatively very small,” “neutral,” “positively very small,” “positively

small,” “positively medium,” “positively high,” “positively very high”. For simplicity’s sake,

these variables were encoded in a Likert scale corresponding to integer values within the

range [-5, 5]. At the same time, for each defined relation the experts would have to declare

the value of confidence of their answers by using integer values in the range [0, 5], which

corresponded to six linguistic variables: “zero”, “small”, “medium”, “high”, “very high”. The

experts’ ranking was then combined with their answers in a weighted average scheme and the

relationships of the nodes in the model were represented by the normalized weight matrix

shown in Table 4.10.

48

Table 4.9: Conceptual nodes of the proposed model

Id Name Definition
C1 Legal Cloud adoption compliance with all legislative issues.

Ability to adjust when legal requirements grow.
C2 Availability The amount of time that Cloud Services is operating as

the percentage of total time it should be operating.
C3 Security Security of service: data transfer, data stores, web

servers, web browsers.
C4 Cost / Pricing Operational - Running costs, migration costs etc. Cost

benefits from Cloud adoption.
C5 Compliance Business and Regulatory compliance.
C6 Performance / Processing Does Cloud adoption perform the process to the desire

quality?
C7 Scalability Ability to meet an increasing workload requirement

by incrementally adding a proportional amount of

resources capacity.
C8 Privacy / Confidentiality Privacy and confidentiality coverage.
C9 Elasticity Ability to commission or decommission resource capac-

ity on the fly.
C10 Data Access / Import-

Export

Access to data in various ways.

C11 Technology Suitability Does Cloud technology exhibits the appropriate techno-

logical characteristics to support proposed SaaS?
C12 Hardware Access Degree of Cloud Service accessibility, on local hard-

ware.
C13 Audit ability Ability of Cloud service to provide access and ways for

audit.
C14 Exit Process Guarantee and ensure the output process from provider.
C15 Disaster Recovery Ability of Cloud service vendor to provide the required

disaster recovery.
C16 Cloud Adoption Central concept of the model.

Figure 4.3 depicts a graphical representation of the map. It is obvious that the structure of the

map is quite complex, with 141 total number of connections between nodes. In this modeling,

the Certainty Neuron Fuzzy Cognitive Maps (CNFCM) [53] structure was selected, which

introduces additional fuzzification to the traditional neuron, that is, it allows various activation

levels of each concept instead of only the two extreme cases, activation or not.

The map is initialized by setting values to the concepts (activation levels) so as to reflect

the different scenarios being considered. Each scenario represents a certain situation under

49

Table 4.10: Causal relationships and weight values between conceptual nodes on a Likert scale

from 1 (very low) to 5 (very high) positive and negative - Row influences column.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16
C1 0 -2 5 0 3 0 -3 0 4 3 0 2 0 0 5
C2 0 0 5 2 0 0 4 0 0 -3 4 4 0 2 4
C3 -3 0 5 0 -4 0 5 0 4 -4 -3 -4 0 0 5
C4 5 5 5 5 5 5 5 3 5 5 5 5 0 5 -5
C5 5 4 -3 5 0 0 -2 0 2 4 4 4 2 4 5
C6 1 0 -2 5 3 0 -4 3 3 0 0 0 2 0 5
C7 5 0 0 5 2 3 0 2 5 0 0 0 0 0 5
C8 0 2 0 5 4 -3 0 -2 3 -4 -3 -3 0 0 5
C9 5 0 -2 5 3 4 0 0 5 0 0 0 0 0 5
C10 4 3 2 5 2 3 5 3 4 4 4 4 0 4 5
C11 0 4 -5 4 4 0 0 -4 0 4 0 5 0 0 4
C12 0 2 -3 5 4 2 0 0 0 4 1 2 0 0 4
C13 0 5 3 5 4 2 0 2 0 2 0 2 0 0 3
C14 0 4 0 5 0 0 0 0 0 0 0 0 0 0 5
C15 0 2 0 5 0 2 0 0 0 5 3 0 0 0 5
C16 -3 0 -3 5 -3 -3 5 0 0 4 0 0 0 0 0

modeling as this is described through the activation levels, with the aim being to study the

evolution of these levels as follows: After a sufficient number of iterations, if the map succeeds

to reach equilibrium at a fixed point, then the final values may be further studied. The most

important value is that of the central concept of the map, while at the same time the final

values of the rest of the concepts may also provide useful information to decision makers and

assist in reaching to important conclusions.

4.4.1.1 Experimental Results

Aiming to test and evaluate the performance of the proposed model, two hypothetical scenarios

were first conducted representing the so called “extreme cases”, that is, a situation where

everything would be in favor of Cloud adoption (positive scenario) and the opposite case

(negative scenario). The target was to reach to equilibrium under known situations and assess

the performance of the model proving that the model behaves correctly and as expected

to. Next, the map was tested on a number of real-world scenarios, that is, cases collected

from real customers of three international Cloud services providers with the aid of the same

experts that were utilized to construct the map. The two extreme scenarios and the real-world

50

Figure 4.3: The Cloud adoption CNFCM model.

cases experimentation are described below. In all experiments the map was executed for 250

iterations and the results were assessed first to inspect whether they reached equilibrium and

then to examine the value of the concept of interest (Cloud adoption).

4.4.1.1.1 Extreme Scenarios

The first case assumes an ideal environment where the Cloud services offered perfectly match

a customer’s needs. Thus, the initial values for each concept were chosen so that they reflect

this ideal setting and guide the central concept of interest to a positive value. Following the

same logic with linguistic variables as in the case of relation-ships between the concepts, the

initial activation levels for this scenario were defined as listed in Table 4.11

The map was executed using the activation level values of Table 4.12 and the normalized form

of the weights listed in Table 4.10, transformed in the range [-1, 1]. As shown in Figure 4.4(a),

the model reaches an equilibrium state and thus inference is possible. The basic finding here is

that the map behaves correctly and leads the central concept of interest to the positive value of

0.795. This means that the model correctly recognized the positive environment and suggested

51

Table 4.11: FCM initial activation level values of the concepts for the positive scenario.

Concept Linguistic value Numerical value Normalised value
C1 positively high 4 0.8
C2 positively high 4 0.8
C3 positively high 4 0.8
C4 negatively high -4 -0.8
C5 positively high 4 0.8
C6 positively high 4 0.8
C7 positively high 4 0.8
C8 positively high 4 0.8
C9 positively high 4 0.8

C10 positively high 4 0.8
C11 positively high 4 0.8
C12 positively high 4 0.8
C13 positively high 4 0.8
C14 positively high 4 0.8
C15 positively high 4 0.8
C16 zero 0 0

that a decision in favor of Cloud adoption should be taken based on the values “read” in the

concepts and the current influences between the nodes.

Working in the same way as with the positive scenario, appropriate initial values for each

concept were chosen this time to guide the central node to a negative value. The initial

activation levels for the negative scenario are shown in Table 4.12.

Executing the model using the values for the negative scenario again the map reached equi-

librium with its behavior being the one anticipated: the central concept of the map takes the

negative value of -0.795 (see Figure 4.4(b)).

From the above “extreme” scenarios it is evident that the proposed model behaves correctly by

recognizing the setting fed and therefore we may now proceed with evaluating its performance

on real-world cases.

4.4.1.1.2 Real-World Scenarios

As previously mentioned, with the help of Cloud providers four different cases were identified:

Two customers who decided to proceed with Cloud adoption and two cases in which they

rejected it. These four cases, along with some related information describing the required

52

Table 4.12: FCM initial activation level values of the concepts for the negative scenario.

Concept Linguistic value Numerical value Normalised value
C1 negatively high -4 -0.8
C2 negatively high -4 -0.8
C3 negatively high -4 -0.8
C4 positively high 4 0.8
C5 negatively high -4 -0.8
C6 negatively high -4 -0.8
C7 negatively high -4 -0.8
C8 negatively high -4 -0.8
C9 negatively high -4 -0.8
C10 negatively high -4 -0.8
C11 negatively high -4 -0.8
C12 negatively high -4 -0.8
C13 negatively high -4 -0.8
C14 negatively high -4 -0.8
C15 negatively high -4 -0.8
C16 zero 0 0

Figure 4.4: Extreme scenarios: (a) Positive Case, (b) Negative Case.

Cloud services, the size of the organization, the line of business and the final decision regarding

Cloud adoption, are summarized in Table 4.13.

A series of interviews was conducted, both with the Cloud providers and the customers, so

as to identify the initial activation level values for each case separately, which essentially

reflected the state of the offered service and the associated factors describing each customer’s

particular situation at the moment of decision. These initial activation level values for each

53

Table 4.13: Brief description of real-world cases.

Case Line of Business Users Cloud Services
A Academic Institution 4500 Mail Server / Mailbox / Mail client
B Industry 220 Mail Server / Mailbox / Document Management
C Supplies Industry 85 Mail Server / Mailbox / Mail Client / Document Management
D Insurance Brokers 125 Mail Server / Mailbox / Mail Client / Custom Business System

case are shown in Table 4.14 in linguistic form, which was found by the people involved in

the questionnaires easier to understand and follow.

Table 4.14: Initial activation level values for real world cases.

Concept Case A Case B Case C Case D
C1 positively very high positively medium positively medium positively medium
C2 positively medium positively medium positively medium positively medium
C3 positively medium positively medium positively medium positively medium
C4 negatively very high negatively small positively very small positively high
C5 positively very high positively medium positively medium negatively very small
C6 positively very high positively medium positively medium negatively very small
C7 negatively high positively very high positively very high negatively medium
C8 positively medium negatively very high positively very small positively very small
C9 positively medium positively very high positively very high negatively medium
C10 positively very high positively medium positively medium negatively small
C11 positively very small positively medium positively medium negatively small
C12 positively very small positively very small positively very small positively very small
C13 positively very small positively medium positively very small negatively medium
C14 negatively very small negatively very small negatively very small negatively high
C15 positively very high positively very high positively very high positively very high
C16 zero zero zero zero

The first case involved an academic institution of a medium to large size, which requested

a comprehensive solution for email services. In this case it is easy for someone to discern

from the initial activation level values that the conditions were in favor of a positive decision.

The second case described a medium industrial organization which requested the provision of

some Cloud email services and a Cloud-based document management system. This case can

be described also as positive. The third case represented another industrial organization which

requested a complete Cloud email package and also a Cloud-based document management

system. The decision environment seems again to be positive. Finally, the fourth case involved

54

a medium insurance broker’s organization which requested a complete Cloud email package

and also a Cloud infrastructure to fit their own, heavily customised system. This case is hard

to detect if it is positive or not based on the initial activation values.

The model was executed again for 250 iterations and reached equilibrium in all cases. The

outcome of the model for each of the aforementioned cases is given in Table 4.15 with the

actual decisions taken by the customers for comparison purposes.

Table 4.15: Model’s decisions compared with real decisions.

Case FCM model’s decision Real Decision
A Yes Yes
B Yes No
C Yes Yes
D No No

4.4.1.2 Discussion

It is evident that the model succeeded in matching its estimation or suggestion with the real

decision in three out of four cases. More specifically, in cases A and C our model suggested

a positive decision achieving a match with the actual decision. Also, in case D the model

estimated a negative decision again in agreement with the real decision. Unlike the previous

cases, the model failed to coincide with the actual decision taken for real case B. We attempted

to investigate the reason for this and after consulting our experts it became evident that this

customer should have decided positively given the context of the particular needs; nevertheless,

despite the fact that the offered Cloud package was fulfilling all requirements, the decision

was turned negative as a result of the mistrust of the company towards the Cloud environment,

something which, on one hand, is definitely beyond the scope of this study, and, on the other,

it suggests that the result was correct in the first place.

4.4.2 Multi Layer FCM

To take advantage of the capabilities offered by the MLFCM modeling, and be able to apply

a more detailed analysis of the problem under study, an updated process was followed. The

literature used in the survey conducted as described in the previous section was revised and

enriched with a significant number of research and empirical papers on the subject. The factors

55

that were identified previously were assessed once again, but, most importantly, through this

process new parameters emerged, as well as information regarding groupings of parameters

that describe a concept at a higher level of the model’s hierarchy. Finally, one more round of

discussion with our experts was performed in order to update and finalize the list of parameters,

which now comprises the thirty-one concepts listed in Table 4.16.

Following the creation steps of the ML-FCM as described in [38] [37], the identified concepts

were grouped in seven sub-FCMs as shown in Table 4.17. Each sub-FCM comprises a different

number of concepts that describe one central concept of interest. FCM1 is the main model’s

FCM and consists of eleven concepts with C31 (Cloud Adoption) being the central concept of

this map.

Once the MLFCM with all concepts and their causal relationships between them were identi-

fied, the fuzzification process followed. The influences between the concepts were fuzzified

using eleven linguistic variables : “negatively very high”, “negatively high,” “negatively

medium,” “negatively small,” “negatively very small,” “neutral”, “positively very small,”

“positively small,” “positively medium,” “positively high,” and “positively very high”.

A graphical representation of the model is presented in Figure 4.5. One can easily observe

the complexity of the problem, with numerous interactions existing between the concepts,

the latter being broken down to various layers and neighborhoods according to the MLFCM

structure.

4.4.2.1 Experimental Results

Before proceeding with applying the model on a set of real-world cases, two realistic hypo-

thetical scenarios will be used as before (”extreme scenarios”), aiming to test and evaluate its

performance. The target is to assess whether a reasonable answer is yielded as this is expressed

by the activation level of the central concept of interest, thus validating the performance of the

model against the expected behavior. In every experiment, each FCM was executed for 250

iterations.

Two extreme cases are produced, one as a positive scenario where the environment is set to be

in favor of Cloud adoption and one as a negative scenario where the factors in the decision

environment promote a negative stance towards Cloud adoption.

56

Table 4.16: Conceptual nodes of the proposed MLFCM model.

Id Name Definition
C1 Legal Cloud adoption compliance with all legislative issues. Ability to

adjust when legal requirements grow
C2 Compliance Business and Regulatory compliance
C3 Compliance Service compliance ability
C4 ROI Return of Investment in a midterm period
C5 Pricing Pricing model of the Cloud service provided
C6 Running/Operational Cost Operational - running costs
C7 Migration cost Migration cost i.e training, company’s structure changes etc.
C8 Cost Cloud service general cost
C9 Privacy/Confidentiality Privacy and Confidentiality coverage
C10 Data Access / Imp-Exp Access to data in various ways
C11 Backup Data Backup option
C12 Disaster Recovery The required disaster recovery provision
C13 Data Management Managing data and information ability
C14 Exit Process Guarantee and ensure the output process from provider
C15 Compatibility Compatibility with existing applications
C16 Hardware Access Degree of Cloud Service accessibility, on local hardware
C17 Integration Accessing and sharing information ability
C18 Migration Complexity How the migration affects to the processes and structures
C19 Availability The amount of time that Cloud Services is operating as the percent-

age of total time it should be operating
C20 Processing Does Cloud adoption perform the process to the desire quality

(Speed)?
C21 Scalability Ability to meet an increasing workload requirement by incremen-

tally adding a proportional amount of resources
C22 Elasticity Commission or decommission resource capacity on the fly
C23 Support An interface made available by the Cloud service provider to

handle issues and queries raised by customer
C24 Performance The performance of the Cloud service
C25 Quality of Service Assure Operational controls to ensure that the results match the desired

outcomes
C26 Authentication & Autho-

rization

Verification of the claimed identity of an entity and the process of

verifying permissions privileges
C27 Audit ability Ability of Cloud service to provide access and ways for audit
C28 Reliability Cloud service to perform its function correctly and withoutfailure
C29 Security The security level being offered by a Cloud service
C30 Technology Suitability Does Cloud technology exhibits the appropriate technological

characteristics to support proposed SaaS?
C31 Cloud Adoption Central Concept of the model

57

Table 4.17: Sub-FCM Groupings

FCM Concepts Central Concept Layer
1 C3, C8, C13, C14, C17, C18 C24, C25, C29, C30, C31 C31 1
2 C15, C16, C17 C17 2
3 C1, C2, C3 C3 2
4 C4, C5, C6, C7, C8 C8 2
5 C19, C20, C21, C22, C23, C24 C24 2
6 C26, C27, C28, C29 C29 2
7 C9, C10, C11, C12, C13 C13 2

Figure 4.5: The Cloud adoption MLFCM model.

58

4.4.2.1.1 Extreme Scenarios

An ideal environment was set in which Cloud services offered perfectly match the customer’s

needs. Therefore, the initial values of each concept on the map were chosen so that they

reflect this positive to the Cloud adoption influence. Following the execution process described

earlier for MLFCM, the maps of the second layer were firstly executed in order to transfer

the final activation levels values of the sub-concepts of interest to their parent nodes, which

then use these values as their initial activation level values in the main map. At the end of the

process the model reached equilibrium and led the central concept to the positive value of

0.85, meaning that the model correctly recognized the positive environment and suggests a

positive decision for Cloud adoption.

Working in the same way as described in the previous paragraph, the initial values were chosen

to reflect a negative environment in order to guide the central concept to a negative value.

Executing the model again the map reached to an equilibrium state leading the central concept

to the negative value of -0.85 as expected.

4.4.2.1.2 Real-World Scenarios

After the successful initial evaluation, we proceeded to test our model under four real-world

scenarios as these are described in Section 4.4.1.1.2. Since the MLFCM model has a different

structure than the single-layer FCM, a new round of dedicated interviews was conducted, both

with the Cloud providers and the customers, to identify the initial activation values for the

cases under study. These values essentially reflected the state of the offered service and the

associated factors describing each case separately at the time of decision. Table 4.18 lists the

initial activation values of the main FCM and sub-FCMs for each real-world case. The final

activation levels reached after executing the sub-FCMs are shown in the corresponding row

for each concept of interest.

The model reached equilibrium after completing the execution steps in all four cases. The

numerical values of the final activation level of the central concept of the map, as well as the

linguistic interpretation for each of the corresponding cases, are given in Table 4.19 juxtaposed

with the actual decisions that were taken by the customers.

59

Table 4.18: Initial activation levels for each real-world case

FCM Concept Case A Case B Case C Case D

1

C3 0.9 0.5 0.5 -0.1
C8 -0.9 -0.3 0.1 0.7

C13 0.7 0.5 0.5 0.3
C14 -0.1 -0.1 0.1 -0.7
C17 0.1 0.3 0.3 -0.3
C18 0.5 0.5 0.3 0.9
C24 0.9 0.5 0.5 -0.1
C25 0.9 0.9 0.9 0.7
C29 0.5 0.5 0.5 0.5
C30 0.1 0.5 0.5 -0.3
C31 0 0 0 0

2
C15 0.9 0.5 0.5 -0.1
C16 0.1 0.1 0.1 0.1
C17 0.1(0.89) 0.3(0.89) 0.3(0.89) -0.3(-0.89)

3
C1 0.9 0.5 0.5 0.5
C2 0.9 0.5 0.5 -0.1
C3 0.9(0.86) 0.5(0.86) 0.5(0.86) 0.1(0.86)

4

C4 0.7 0.1 -0.1 -0.5
C5 -0.7 -0.1 0.1 0.7
C6 -0.5 -0.3 0.1 0.5
C7 0.5 0.5 0.5 0.5
C8 -0.1(-1) 0.1(-1) 0.3(0.9) 0.5()0.9

5

C19 0.9 0.5 0.5 -0.1
C20 -0.7 0.9 0.9 -0.5
C21 0.5 0.9 0.9 -0.5
C22 0.7 0.7 0.7 0.3
C24 0.7(0.91) 0.5(0.91) 0.5(0.91) -0.3(-1)

6

C26 0.9 0.9 0.9 0.7
C27 0.1 0.5 0.1 -0.5
C28 0.9 0.7 0.9 0.1
C29 0.5(0.79) 0.5(0.79) 0.5(0.79) 0.5(0.79)

7

C9 0.5 -0.9 0.1 0.1
C10 0.9 0.5 0.5 -0.3
C11 0.7 0.7 0.7 0.7
C12 0.9 0.9 0.9 0.9
C13 0.7(0.90) 0.5(0.90) 0.5(0.90) 0.3(0.90)

4.4.2.2 Discussion of Results

The execution of the proposed model against the four real-world cases presents some interesting

findings worth pointing out: First of all, the final decision results coincide with those of the

60

Table 4.19: Model’s output decisions compared with real decisions

Case Model’s final value Model’s decision Real decision
A 0.8226 Yes Yes
B 0.8226 Yes No
C 0.8226 Yes Yes
D -0.8226 No No

previous study with the single-layer FCM, indicating successful behavior of the model with

respect to matching its suggestion with the real decision in three out of four cases. More

specifically, in cases A and C our model suggested a positive decision while in case D a

negative decision, all three being in total agreement with the real decision. In real case B the

model’s output did not coincide with the actual decision, and as was explained before, when

investigating the reason for this and after consulting our experts it became evident that this

customer should have decided positively given the context of his particular needs; therefore,

the result was correct in the first place.

4.4.2.3 MLFCM Model Analysis

This section describes the application of the stepwise analysis and inference process, as

presented in Chapter 3. These analyses aim to gather useful static and dynamic information

from the proposed MLFCM model, such as the complexity of the model, the tendency of each

sub-FCM, and the strength of the participating concepts (nodes). Also, through dedicated

what-if scenarios, the model’s behavior is investigated and the influence of specific individual

concepts on the final decision is studied.

4.4.2.3.1 Static Analysis

Following the framework’s stepwise process, firstly the static analysis was performed by

applying metrics and indicators regarding graph complexity. The corresponding measurements

are listed in Table 4.20.

It is easily discernible that the density of all sub-FCMs that constitute the MLFCM model is

rich and thus the model can be characterized as a highly complex, two-layer structure. Three

of the sub-FCMs are complete graphs with density values equal to 1, but this effect is mitigated

by their fairly small size which amounts up to 4 nodes.

61

Table 4.20: Complexity static measurements for the MLFCM modeling the Cloud Adoption

problem

FCM Layer # nodes # edges Density Cycles(+) Cycles(-)
1 1 11 75 0.68 20335 20051
2 2 3 6 1 5 0
3 2 3 6 1 5 0
4 2 5 11 0.55 4 0
5 2 6 16 0.53 4 0
6 2 4 12 1 11 9
7 2 5 13 0.65 14 3

The number of feedback cycles have also been calculated for each sub-FCM, divided into

positive and negative; the corresponding results are also listed in Table 4.20. As a general

outcome it can be inferred that all sub-FCMs appear to have more positive cycles than negative

and this is a strong indication of how the model tends to behave: Given a slight positive

modification in the activation level of any node, the corresponding level of the central node of

interest (Cloud Adoption) is promoted and vice-versa.

Continuing with the static analysis, measurements were recorded for all sub-FCMs aiming

to identify the significance of each node in the MLFCM model. These measurements define

the strength of each node, as well as the tendency of each sub-FCM, and are provided in

Table 4.21.

Specifically, the metrics degin(i), degout(i), degtot(i) και valtot(i) were applied, which show

how strong the presence of each node is in the sub-FCM it belongs to. Also, the participation

of each concept in cycles was also examined by calculating the number of positive and negative

feedback loops containing that concept; these results are also reported in Table 4.21.

A close examination of the results derived from the static analysis reveals a very strong

indication regarding node significance, which leaves no doubt as to which are the top three

concepts on the main FCM: Cost, Security and Data Management. All three are decomposed

at the lower level transferring activation levels from their neighborhood of nodes. This finding

calls for further investigation of the behavior of these concepts individually on one hand,

and as a group on the other. Further to that, it paves the way to study the behavior of the

lower sub-FCMs from which these three important concepts receive their values. Cycles

measurements confirm and strengthen the static analysis findings derived thus far.

62

Table 4.21: Strength and tendency indicators for the sub-FCMs of the MLFCM model for the

Cloud Adoption problem

SubFCM Concept degin(i) degout(i) degtot(i) valtot(i) Cycles+ Cycles-

FCM1
decdeg = 6

brdeg = 4.33

Compliance 6 8 14 8.4 17121 16831
Cost 9 10 19 15.4 18755 18503

Data (Management) 7 9 16 11.4 17841 17551
Exit Process 6 5 11 7.4 15306 15129
Integration 5 7 12 8.2 14845 15284

Migration Complexity 6 4 10 4.8 13674 13424
Performance 7 6 13 8.6 16539 16163

QoS Assurance 6 6 12 9.2 15788 15672
Security 9 10 19 12.4 18675 18583

Technology Suitability 4 10 14 11.2 16966 16738
Cloud Adoption 10 0 10 8.6 0 0

FCM2
decdeg = 0
brdeg = 0

Compatibility 2 2 4 2.8 4 0
Hardware Access 2 2 4 2 4 0

Integration 2 2 4 2.8 4 0

FCM3
decdeg = 0
brdeg = 0

Legal 2 2 4 3.2 4 0
B&R Compliance 2 2 4 3.4 4 0

Compliance 2 2 4 3.4 4 0

FCM4
decdeg = 0
brdeg = 0

ROI 3 4 7 5.8 4 0
Pricing 1 3 4 3.6 2 0

Running Operational Cost 2 2 4 3.8 2 0
Migration Cost 1 2 3 2 1 0

Cost 4 0 4 3.6 0 0

FCM5
decdeg = 0
brdeg = 0

Availability 3 3 6 5.4 2 0
Processing 4 3 7 4.4 3 0
Scalability 1 4 5 3.6 1 0
Elasticity 1 4 5 3.4 1 0
Support 2 2 4 2.6 2 0

Performance 5 0 5 4.6 0 0

FCM6
decdeg = 0
brdeg = 0

Authentication & Authorization 3 3 6 5.2 8 7
Auditability 3 3 6 4.4 8 7
Reliability 3 3 6 4.6 8 7
Security 3 3 6 4.2 6 9

FCM7
decdeg = 0
brdeg = 0

Privacy/ Confidentiality 2 2 4 2.4 5 3
Data Access / Import-Export 3 4 7 5 12 2

Backup 2 2 4 3.6 8 1
Disaster Recovery 2 2 4 3.2 8 1

Data (Management) 4 3 7 5.8 11 3

63

Starting the investigation of the strong nodes from the root level to the leaves, the study is

focused on the sub-FCMs which are responsible for defining their values. Cost is decomposed

into the concepts of FCM4, which, according to Table 4.21, is dominated by concepts ROI,

Pricing and Running Operational Cost. All three nodes appear to have the strongest position

in this sub-FCM and their participation in only positive cycles proves their positive effect

on Cost. Data is broken down to the concepts of FCM7; Data Access / Import-Export node

seems to have the strongest position in this sub-FCM, which also participates in almost all of

the cycles with positive influence. Finally, the value of node Security is determined by the

concepts of FCM6, which appears to be the most balanced map of all sub-FCMs, with concept

Authentication & Authorization standing out for its influence on Security. Dynamic analysis

scenarios will follow, which will be directed by the aforementioned results in an attempt to

confirm or question these findings through execution.

4.4.2.3.2 Dynamic Analysis

The successful behavior of the model in the extreme scenarios, as well as in the real-world

cases, allows performing simulations towards a dynamic analysis. A number of simulations

have been set-up and executed following again the stepwise process described in Chapter 2. In

all simulations the CNFCM approach [72] was employed, with the corresponding updating

function (see eq. 3).

The first step of the dynamic analysis involved 1000 executions with randomised initial

activation levels. Then the correlation coefficient between the initial activation level of each

concept and the final activation level of the central concept of interest at each layer and

sub-FCM was calculated. The corresponding results are provided in Table 4.22 where the

strong nodes are indicated in bold letters. It should be noted that for the root FCM the top

three nodes are indicated in bold, while for the rest of the sub-FCMs only the strongest one.

The ranking of the concepts based on their correlations perfectly matched the findings of the

static analysis indicating once again that the initial activation levels of Cost, Security and Data

Management have a significant impact on the final activation level of the central node Cloud

Adoption. In addition, all three nodes, when decomposed, are influenced by exactly the same

nodes at the lower level as those that were indicated by the static analysis. Therefore, so far

the results between the two types of analysis are enhanced and cross-checked.

Another important finding derived from the correlation analysis is that under randomized

initial activation levels the model reached equilibrium with a positive value in 57% of the cases

64

Table 4.22: Correlation coefficient values between each concept and the central node of interest

in each sub-FCM (in parentheses) of the MLFCM model

Sub-FCM Concept Correlation Coef.

FCM1
(Cloud Adoption)

Compliance 0.05
Cost 0.44

Data Management 0.31
Exit Process 0.28
Integration 0.12

Migration Complexity -0.21
Performance 0.28

QoS Assurance 0.17
Security 0.44

Technology Suitability 0.14
FCM2

(Integration)
Compatibility 0.70

Hardware Access 0.58
FCM3

(Compliance)
Legal 0.55

B&R Compliance 0.63

FCM4
(Cost)

ROI -0.41
Pricing 0.62

Running Operational Cost 0.36
Migration Cost 0.17

FCM5
(Performance)

Availability -0.03
Processing 0.74
Scalability 0.43
Elasticity 0.03
Support 0.05

FCM6
(Security)

Authentication & Authorization 0.56
Auditability 0.43
Reliability 0.50

FCM7
(Data)

Privacy / Confidentiality -0.01
Data Access / Import-Export 0.56

Backup 0.26
Disaster Recovery 0.48

and with a negative value in 43% of them. This proves that the map’s tendency is towards

positive values, something that was already suggested by the majority of the positive cycles

in the static analysis. Therefore, in this case, if the desired modeling outcome should have

been a perfectly balanced map where the number of cycles would be (nearly) the same and

this tendency should have been neutralized, the modelers should revisit the structure of the

map with focus on studying and possibly changing the sign of the cycles present. This, of

65

course, does not mean that one should arbitrarily change the map to fix possible anomalies

introduced by the cycles; on the contrary, this finding can be used as guidance for modelers

to seek corrections by introducing new concepts or removing less significant ones so that a

balance is reached cycle-wise. In the case under study and aiming to decrease complexity,

it was decided to remove concepts, but this will be performed after gathering some more

information via experimentation regarding the significance of the current concepts, which will

provide more insights as to which nodes have the least contribution to the final outcome and

thus may be deleted.

Since Cost was confirmed through static and dynamic analysis to be a key concept with strong

influence to the final activation level of the central node of the root map, further investigation

was deemed necessary to investigate how this concept receives its value from its sub-model

FCM4. Several simulations were set up and executed focusing on the concepts that comprise

FCM4, based on the findings of the static and dynamic analysis. These scenarios aimed

to confirm or question the significant role of ROI, Pricing and Running Operational Cost

concepts on Cost. A very weak value (0.1 or -0.1) was selected for the initial activation

levels of the rest of the nodes in all scenarios, so that by setting a high value to the strong

nodes any change in the behavior of the model may be observed. Having established from

the simulations thus far that Cost positively affects Cloud Adoption, it will now be examined

exactly how the value of Cost is affected in the FCM4 environment. The corresponding static

analysis results clearly indicated that both the ROI and Pricing nodes decisively influence

Cost but with opposite signs. Several scenarios were run with different values and confirmed

that Cost is led to positive or negative values, with the strongest influence received from ROI.

Nevertheless, Pricing is also a very decisive factor, which, combined with ROI, directs the

evolution of the final activation level for Cost. To make this clearer, an indicative numerical

example is the following: Having set ROI=0.9 we varied Pricing from -0.1 to -0.2. The value

of Cost is initially calculated by the model to be equal to -0.78, while that of Cloud Adoption

rises to 0.70. The small decrease by 0.1 in the value of Pricing leads Cost to -0.82, a slight

change compared to its precious value, but nevertheless enough to revert Cloud Adoption’s

value to the negative side, calculated to be equal to -0.55. Therefore, it may additionally be

inferred that the Pricing node can have a serious and decisive contribution to the final value

of Cloud Adoption through the transfer of the value of concept Cost from its decomposed

parts. Similar investigation was performed with Running Operational Cost, which revealed

the exact same contribution to Cost. Such sensitivity of the model to certain nodes can easily

be revealed by following specific paths for executing the model with different scenarios. This

66

is exactly where the framework can be extremely useful to modelers and domain experts.

Similar analysis was conducted for FCM6 and FCM7 to investigate Security and Data (Man-

agement) concepts that appeared to have a very strong influence on the final decision of the

model. In the case of FCM6, the participating nodes appear to have the same contribution

to the final value of Security in all scenarios, wherein opposite initial values were mutually

neutralized. Setting positive values to all nodes of the FCM6 drives Security to a strong

positive value which is then transferred to the root map. FCM7 seems to exhibit similar

behavior to FCM6 except that on this map the node Data Access / Import-Export has a very

strong influence on the local central concept Data (Management) and it was verified that it

prevails and overlaps the influence of the remaining nodes. High initial values for that node

determine the value of Data (Management) no matter the value or sign of the activation level

of the other nodes.

The investigation in relation to the actions that may be taken can be concluded with the

following: Since the model behaved consistently with the extreme scenarios there was no

need to revise it to achieve correct behavior. Further to that, the simplification of the model’s

structure was also investigated by removing the three nodes QoS Assurance, Exit Process and

Migration Complexity that were characterized as the most “weak”. The simplified MLFCM

executed the extreme scenarios once again and the behavior did not change. Therefore,

this simplification may be applied permanently to the model under analysis without loss of

accuracy.

4.5 Summary
This chapter attempted to tackle the complex problem of the adoption of cloud computing

with the use of approaches coming from the area of computational intelligence. Specifically,

the application of the two methodologies was examined based on FCMs and IDs. Four

different models, two of each methodology, were constructed following a systematic process

that involved a literature review and expert’s opinion through interviews and questionnaires.

All four models were successfully evaluated against extreme scenarios and have shown

considerable success in real-world cases. The modeling process highlighted the advantages

and disadvantages of each method and what a decision-maker should know when choosing an

approach. Furthermore, the benefits from the interactive capabilities of both approaches were

studied by executing simulations based on dedicated what-if scenarios and locating the effect

of each factor to the problem under study. Particular emphasis was given to MLFCMs and

67

extensive experimentation was conducted through the application of the static and dynamic

analyses , as described in Chapter 3 which revealed very interesting and helpful, to the decision

making process, findings.

68

Chapter 5

A Novel Computational Approach for
MLFCM

5.1 Introduction
As the complexity of a problem grows, so does the uncertainty inherent in the results that a

modeling approach delivers. This fact underlines the importance and need for techniques that

can be interpreted by humans, and justifies the growing interest of the research community [73].

As models and techniques delivering predictions, and in general support decision making,

become more complex, the task of producing a transparent version becomes more difficult. In

many cases, companies or organizations are reluctant to adopt such kind of technologies due

to their weaknesses in explaining the results. The composite challenge that arises is the design

and development of models that are able to overcome bias, performance and explainability

issues in a balanced coexistence.

Towards the delivery of a sufficient model with enhanced features, this chapter introduces a

new MLFCM computational process which involves two new approaches. The first approach

comprises a new FCM formulation that handles a number of weaknesses and drawbacks

of existing methods, and boosts up the abilities for multidimensional and multi-targeted

analyses. The second approach introduces the utilization of a genetically evolved algorithm as

an extension of the dynamic analysis. This algorithm evolves the initial activation levels of

the concepts participating in the MLFCM aiming at finding solutions that satisfy a target final

activation value (i.e. after execution of the map) of the concept(s) of interest which correspond

to a certain scenario. This work can be considered as an extension of the work introduced in

69

Chapter 3 and proposes an integrated framework with a novel model able to cope with the

challenges imposed by the need to analyze and explain complex decisions.

5.2 Literature Overview
The need for delivering intelligent models that could simultaneously achieve both the goals

of accuracy and the ability to explain their decisions, led many research groups to focus on

the so-called explainable Artificial Intelligence (XAI). As a result, the number of relevant

publications has a significant increase in recent years. A comprehensive background of the

field is introduced in [74], with the authors attempting to address a wide range of relevant

aspects. A particular reference to a number of definitions, approaches and applications is

made, while conclusively, the need for further and deeper research is underlined. The research

work in [75] quotes the current state of the research field on machine learning interpretability

through an extensive literature review. A special reference is made on the social impact, the

developed methods and metrics, and, finally, on the future directions for the work that needs

to be done. An overview of the relevant field is conducted in [76] which mostly focuses on

concepts related to XAI models and on an XAI literature taxonomy in terms of explainability

of different AI models.

5.3 Computational Approach
Despite the promising and successful results yielded by the application of FCM models on

various systems and problems, such type of modelling suffers from certain drawbacks and

limitations [77]. This section describes an attempt to provide solutions that tackle the following

drawbacks: (i) The activation level of a concept may change during the iterative execution of

the map, even if the specific concept is not influenced by any other concept. Normally, this

should not be allowed; on the contrary, the concept must bear the same activation level at all

discrete execution steps. (ii) Due to the implementation of the sigmoid function (Equation 2.2),

the final activation values are confined to the interval [0.5, 1] and therefore the lower part

of the (0,1) fuzzification scale remains unused. (iii) The ability of the model to converge

to reasonable values, even for λ < 0, is limited. (iv) It is occasionally observed that certain

concept activation levels converge to the same output no matter the initial activation value. (v)

The representation and calculation of the initial activation level for inactive concepts must be

provided.

A new FCM mathematical formulation is introduced here aiming to address the aforementioned

70

problems and improve the capabilities of the model. This new formulation is described in

Equations 5.1 to 5.4.

At+1
i =


f (Bt +Ct) , Bt 6= 0

At
i, Bt = 0

(5.1)

where:

Bt =
n

∑
j=1,i 6= j

w ji∆At
j (5.2)

where:

∆At
j =


At

j−At−1
j , t ≥ 1

0, t = 0

(5.3)

and:

Ct =


f−1(x) =

ln(
1−At

i
At

i
)

−λ
, At

i 6= 0

0, At
i = 0

(5.4)

Equation 5.1 is the general form of the new evolved formulation that is derived from Equa-

tion 2.1. The lower part of the new equation handles the case of leaving the activation level

value unchanged through the iterative process in case of a concept with zero external influence,

Bt = 0. The calculation of Bt , is given by Equations 5.2 and 5.3 and suggests the following

reasoning: The new value At+1
i is affected by the change ∆At

j and not by At
j directly. This

approach was proposed by Vergini and Groumpos in [78] and addresses the problem of conver-

gence to the same value irrespective of the initial value. Due to the fact that an activation level

can take values near to zero but never exactly zero during either the defuzzification process

or the iterative execution, it is considered that activation values fall within the interval [0+,

1]. This allows the possibility of assigning the zero value to concepts that have unknown

initial activation levels. In such a case, At
i = 0 in the calculation of the new concept activation

71

value and therefore, only the value of the influence it receives from Bt is taken into account.

Otherwise, with At
i 6= 0, the contribution of Ct in Equation 5.1 represents the value of At

i before

applying to it the activation function of Equation 2.2. The latter two claims are described by

Equation 5.4. This ”anti-bounded” method is achieved with the application of the inverse

sigmoid function over the At
i value and restores the correct sign in the aggregated value Bt +Ct .

Subsequently, the new calculated activation levels can also take values below 0.5 .

5.3.1 Activation Levels Genetically Evolved MLFCM

Aiming at enhancing and strengthening the dynamic analysis, and, therefore, the explainability

of the model, this work proposes the Activation Levels Genetically Evolved MLFCM (ALGE-

MLFCM). This new approach integrates a Genetic Algorithm (GA) for the production of a

set of near-optimal solutions in the form of initial activation values for achieving particular

targeted final activation values throughout the multilayered model’s structure. To the best of

our knowledge, this is the first time that the evolution of the set of initial activation levels is

reported in literature. The use and integration of GAs for the evolution of the activation values,

keeping the weight values constant, became feasible with the adoption of the new formulation

proposed in Section 5.3 and described by Equations 5.1 to 5.4.

Genetic algorithms are the most popular type of Evolutionary Computation (EC) algorithms

and belong to the area of Artificial and Computational Intelligence [79]. The evolution process

is based on a probabilistic algorithm that maintains a population Pt , of individuals xi for each

generation t (t ∈ [1..G]) with G the maximum number of generations set aiming to optimize

an objective function ϕ . Each individual xi represents a potential solution to the problem at

hand and it is evaluated using some measure of its ”fitness”. While the termination conditions

are not satisfied, the new population Pt+1 is formed following the Selection, Crossover and

Mutation steps. After some number of generations the algorithm terminates and the best

individual is expected to represent a near optimum solution.

The proposed ALGE-MLFCM is targeting an optimal set of initial activation values vector

that result in one or more desired final activation values as these are calculated by the MLFCM

model. The fitness of each population P is calculated by the following equation:

Fitness(P) =
1

1− ∑
N
i=1 f itness(xi)

N

(5.5)

72

where N is the size of the population and f itness(xi) is calculated by:

f itness(xi) =
∑

M
j=1(Yj−Tj)

M
,Yj,Tj ∈ [0..1] (5.6)

where M is the number of objectives, Yj and Tj are the calculated value and the target value

of objective j respectively. Objectives in this case correspond to the desired value of specific

concepts.

The structure of the proposed algorithm in a pseudo code form is shown in Algorithm 2.

Algorithm 2 The ALGE-MLFCM algorithm in pseudo-code
1: #The ALGE-MLFCM algorithm

2: t = 0

3: InitializeP(t)

4: EvaluatePopulation(P(t))

5:

6: while not(termination condition) do
7: t = t +1

8: #Evolution of the population

9: Pnew = Selection()−>Crossover()−> Mutation()

10: Pt = Pnew

11: EvaluatePopulation(P(t))

12: Return(best individual xi in P(t))

1: procedure EVALUATEPOPULATION(P)

2: for (each individual xi in P) do
3: FinalActivationValues(xi) = MLFCM(xi)

4: SumFitness += Fitness(FinalActivationValues(xi))

5: Fitness(P) = Mean(SumFitness)

The utilization of the proposed algorithm offers enhanced capabilities to the model’s dynamic

analysis and also in the analysis and study of real cases. A series of actions, that complement

the action sets introduced in Section 3.5, may be designed and executed depending on the

desired type of analysis or study. Below, three such indicative actions are described and

explained.

Action 1: Identify the tendency of the map through the execution of simulations over random

scenarios. Specifically, with random initial activation values the ALGE-MLFCM algorithm is

73

called to search for solutions that lead the main concept of interest (objective) to a particular

value i.e. to ”Very High” or to ”Very Low”. After conducting a relatively large number of

simulations, by examining the center of gravity of the convergence speed for each objective

value separately, an inference for the map’s tendency becomes possible.

Action 2: Working with the same pattern as in the previous step, useful conclusions can be

extracted by analyzing the suggested solutions that have emerged for targeted values of one or

more objectives. Targeted simulations can also be executed by keeping constant, and out of

the evolution process, initial activation values corresponding to one or more concepts.

Action 3: The comparison of any set of initial activation values that reflect a specific case

study with solutions from a reference list, can provide explanation of success or failure of

meeting the target value. Specifically, once the unique solutions provided by ALGE-MLFCM

algorithm are filtered and cleared, the resulting list can be used as a comparison reference

for one or more specific target values. Furthermore, through this exercise, the changes to the

initial values that need to be made so as to achieve the desired value(s) for the concept(s) of

interest may be defined. Finally, it should be mentioned that in each of the aforementioned

actions, the resulting solutions must be processed and filtered before being adopted as potential

solutions. This is mainly due to the fact that solutions may be produced that do not describe

well the problem under study and should be discarded.

5.4 Summary
This chapter introduced a new MLFCM computational process, which relies on two new

approaches and aims to provide enhanced decision support capabilities and increased explain-

ability. The first approach is dealing with a new formulation for the computational steps, which

addresses several known FCM weaknesses and drawbacks. The second approach involves an

extended dynamic analysis with the utilization of a new genetically evolved algorithm, the

ALGE-MLFCM. The algorithm is able to deliver a set of solutions in terms of initial activation

levels that drive the model to yield particular targeted final activation values, thus enabling the

study of particular scenarios of interest and their outcome. This type of analysis also addresses

the challenge of designing models that are able to overcome bias, increase performance, and

improve explainability.

74

Chapter 6

Supporting the Decision of Migrating to
Microservices Architecture

6.1 Introduction
Microservice architectures are the new weapon-of-choice for the development of cloud-native

applications as suites of small, autonomous, and conversational services, which are then

easy to understand, deploy, and scale. Microservice architectures enable optimizing the

autonomy, replaceability, and decentralized governance of software systems. Despite the

hype for microservices, both industry and academia still lack consensus on the adequate

conditions to embrace and benefit from this new paradigm [6]. Most organizations and their

on-premise application architectures are not ready to fully exploit the benefits of microservices,

and adapting to this environment is a non-trivial task [5], since such architectures are highly

complex, and comprise multiple, often conflicting factors. Moreover, projects intending to

adopt microservices from scratch risk to pay the microservices premium price, entailing extra

complexity and cost where it was not actually needed, given the requirements of the system

under construction [80]. Therefore, the study and the analysis of the factors forming the

environment behind the decision of adopting microservices, either for migrating a legacy,

monolithic system, or for developing a new one from scratch, is of paramount importance for

different stakeholders. Particularly, an approach to assist in the decision making process is

still needed [81].

The importance and the need of human interpretable techniques increasingly concern the

research community [73]. As models and techniques delivering predictions, and in general

75

support for decision making, become more complex, the task of producing a transparent

version becomes more difficult. In many cases, companies or organizations are reluctant

to adopt such kind of technologies due to their weaknesses in explaining the results. The

composite challenge that arises is the design and development of models that are able to

overcome bias, performance and explainability issues in a balanced coexistence. The research

work described in this chapter picks up this challenge and introduces a fine tuned model to

support the decision of adopting microservices architecture in a more sophisticated form with

enhanced explainability and interpretability features.

The construction of the proposed model starts with a literature review conducted to identify an

initial set of concepts that potentially influences the decision of adopting microservices. When

the set of concepts is finalized, a group of experts with related background on the subject, are

called to refine and organize the identified concepts, as well as to define their relationships

(causalities). The outcome of this process is a model in the form of a Multi-Layer Fuzzy

Cognitive Map (MLFCM), a graph-based computational intelligent model that captures the

behavior of a given problem in nodes which essentially represent knowledge in the domain,

and edges that represent their influence and interrelation. Towards the delivery of a sufficient

model with enhanced features, the construction process involves the analysis framework

introduced in Chapter 3 and the new computational approach introcuced in 5.

Over the resulting MLFCM a two step validation and calibration process is performed. The

first step is to execute two ”extreme” (synthetic) scenarios to drive the model to a positive

and negative outcome respectively and provide a first level of assessment. The second step

includes the execution of the model over a number of real-world cases targeting at calibrating

its accuracy in terms of the actual decision taken.

Once the model is fine-tuned through the validation and calibration process, both a static and

a dynamic analysis y performed, with graph analysis and simulations execution respectively.

These simulations enable the investigation of whether such intelligent techniques can help

reveal insights about the behavior of the problem under study and find answers to hypothetical

but very likely situations (scenarios) upfront.

Finally, the model is applied over an industrial case study. In this case the model and its

supporting procedures are applied to a completed migration project by assessing the final

outcome and running simulations to the benefit of the company’s decision makers with whom

extensive discussions took place to assess the results and predictive ability of the model.

76

6.2 Literature Overview
From the industrial perspective, Netflix was one of the early adopters of microservices,

transitioning from a traditional development model with hundreds of engineers maintaining

a monolithic video-on-demand application, to many small teams responsible for the end-to-

end development of hundreds of microservices to serve millions of users on a daily basis1.

The main goals for this migration at Netflix were three. First, to speed-up the development

process, by providing the corresponding automation tooling. Second, to embrace cloud-based

virtualization technologies, such as virtual machines and containerization, that drastically

increase the performance and scalability of the architecture. Third, to isolate problems and

failures by adopting novel design-for-failure patterns, such as circuit-breakers2.

At organizational level, Netflix shifted from traditional siloed teams to product-oriented teams

following a DevOps methodology [82]: each microservice is owned by a team that handles

its whole lifecycle, from conception through deployment to operation. This also fosters

continuous delivery, where each microservice can be containerized and updated independently

of the others [83].

Similarly, SoundCloud also started as a single, monolithic application3 and shifted to mi-

croservices to support the increasing demand (about 12 hours of music uploaded per minute,

and hundreds of millions of users). This was achieved by slicing domain logic into very

small components, designed according to the Bounded Context principle [84] and exposing a

well-defined API.

The academia is still in an early stage of documenting and analyzing the adoption of microser-

vices that is taking place in industry [85, 86]. Balalaie et al. [87] document the steps for the

microservification of an on-premise Software-as-a-Service (SaaS) platform. According to the

authors’ experience, the main drivers for adopting microservices are the need for reusability

(of cohesive functionality in the form of microservices), decentralized data governance (since

a shared database blurs the boundaries among different services), automated deployment (to

decouple the build lifecycle of each service), and scalability (fine tuned for each individual

microservice through load-balancing and service discovery).

Taibi et al. [86] performed a survey among industry practitioners who adopted microservices,

1https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
2http://microservices.io/patterns/reliability/circuit-breaker.html
3https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-1-dealing-with-the-

monolith

77

https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/

in order to analyze the motivations, as well as the pros and cons, of migrating from monolithic

to microservice architectures. Maintainability problems were rated as a very important driver,

whilst scalability, delegation of responsibility to independent teams, and easy support for

DevOps also frequently drive adoption. Interestingly, several practitioners reported to be

adopting microservice architectures because “a lot of other companies are adopting them”.

Then, the authors propose a framework for the migration process based on the feedback from

practitioners.

To summarize, almost all successful stories about microservices adoption have started with a

monolith that grew too much and then had to be decomposed into microservices. However, how

to decide whether the conditions are favorable to adopt microservices [88] is still unclear, and

“because other companies are adopting them” cannot be the main driver [86]. The suitability

of a Decision Support System (DSS) in the context of such a decision is also suggested in [81],

based on reference models for enterprise architectures.

6.3 A Novel MLFCM Model
As mentioned earlier, the main contribution of this chapter is to propose and deliver an

enhanced MLFCM model to support the decision of adopting microservices architecture with

a dedicated structure, new execution formulas and innovative supportive methods of analysis

compared to what has been previously proposed in literature. The following paragraphs

describe in detail the actions performed towards the development of this model.

6.3.1 Model Construction

The development of the proposed model followed a multistep process, with the first step being

a Literature Review (LR) that helped to identify the concepts that are potentially relevant to the

decision of migrating to microservices architecture. This process followed the key guidelines

proposed in [89]. Although a full, systematic review is outside the scope of this work, the pro-

cess of finding and classifying relevant works was organized carefully. Search was performed

for articles in the broader topic of microservices, indexed in different online databases, namely

Scopus [90], Science Direct [91], Wiley Online [92], IEEExplore [93], Springer Link [94]

and ACM [95]. The search strings used were “microservices”, “microservice architecture(s)”,

“microservice migration”, and “microservice adoption”, with publication year up to 2018.

Then, snowballing [96] was applied, by looking at the relevant references included in the

78

works originally found and trying to identify other potentially relevant ones. Both journal and

conference/workshop articles were considered, while duplicates were removed.

The initial list of concepts that emerged from the previous step, was shared with a group of

experts consisted of researchers, as well as industry practitioners with background related to

the subject. The experts evaluated the list and provided suggestions to add, remove, group,

or decompose concepts working with the same rationale as described before. This process

concluded with the list of concepts and their groupings presented in Table 6.1. The resulting

list of concepts was organized and shaped as a MLFCM with a total of six sub-FCMs divided

into two layers (see also figure 6.2).

Based on the identified concepts and groups/decomposition, a second round of feedback

collection through structured interviews with the experts was conducted. This time the experts

were asked to complete a questionnaire concerning the causal relationships between concepts

and their weights, i.e., the degree to which concepts influence each other. Such a degree of

influence was fuzzified using seven linguistic values (from negatively high to positively high,

see Figure 6.1(a)). For example, if an expert considers that Security strongly affects Reliability

in a positive way (i.e. when Security rises Reliability rises as well), then in the questionnaire

she marks the corresponding cell as ”positively high”. Conversely, if Governance does not

affect Cost, she marks their relationship as ”Neutral”.

After the experts defined the causal relationships between concepts as described above, they

declared their degree of confidence (fuzzified from ”low” to ”very high”), which was used to

form a weighted average of causality scores. The calculation of the level of causality from the

concept i to concept j was performed by the formula in Equation 6.1, where N is the number

of experts and Ck and Wk are the levels of confidence and influence respectively for each expert

k.

wi, j =
∑

N
k=1WkCk

∑
N
k=1Ck

(6.1)

The fuzzification method for both the activation levels and the relationship (weight) values

utilized the triangular membership function [97]. The triangular function allows one to map

and normalize the linguistic scale to the range [0,1] for the activation values, and [−1,1]

for the relationships. The membership functions used to represent the fuzzified linguistic

values for the causal relationships between concepts and their activation levels, are depicted in

Figure 6.1 ((a) and (b) respectively).

79

Table 6.1: Concepts related to the decision of adopting microservice architectures, and their

groupings (FCMs) derived from literature review and evaluated by experts (central concept of

each FCM in bold).

No. FCM Concept Name
C1 1, 2 Governance
C2 1, 3 Infrastructure and Management Services
C3 1 Maintainability and Evolvability
C4 1 Operational Complexity
C5 1 Business Complexity
C6 1 Reliability
C7 1 Security
C8 1, 4 Cost
C9 1, 5 Design
C10 1, 6 DevOps
C11 1 Data Migration
C12 2 Decentralized Governance
C13 2 Data Governance
C14 3 Containerization
C15 3 Scalability/Elasticity
C16 3 Monitoring
C17 3 Serverless Architecture
C18 4 Migration Cost
C19 4 Operations Cost
C20 5 Design For Failure
C21 5 Granularity and Bounded Context
C22 5 Service Contracts
C23 5 Communication Model
C24 5 Decentralization
C25 6 Organization Culture
C26 6 Skilled and Educated DevOps Teams
C27 6 Tool Support
C28 6 Continues Activities
C29 6 Automated Tasks
C30 6 Information Sharing
C31 1 Microservice Adoption

All linguistic variables proposed by the experts were aggregated using a weighted average

scheme and deffuzzified following the Center of Gravity (COG) method [98]. The result

of the process is that of several normalized weight matrices, one for each sub-FCM, which

numerically represent the concepts and their relationships as values in the interval [0, 1]

and [-1, 1] respectively. Table 6.2 shows the weight matrix for concepts in the main FCM

80

(a) Positive Scenario

(b) Negative Scenario

Figure 6.1: Fuzzification of linguistic variables according to triangular membership functions:

(a) seven values, (b) five values

(FCM1). The last column shows the influence of each concept over the central one (C31

- Microservices Adoption), according to the experts’ feedback. For example, Operational

Complexity (C4) has a negative influence over C31, with a weight value of -0.5. This suggests

that a high operational complexity in a given situation will go against the decision of adopting

microservices.

81

Table 6.2: Normalized Weight Matrix for causal relationships in FCM1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C31
C1 0 -0.2 0.5 0.8 0 -0.2 -0.5 -0.5 0 0.5 -0.3 0.8
C2 0.5 0 0.5 0.8 0 0.2 0.2 0.5 -0.5 0.5 0.3 0.5
C3 0.5 0 0 -0.2 0 0.5 0.5 -0.5 0.5 0.5 0.2 0.5
C4 -0.5 0.8 -0.5 0 0 -0.2 -0.2 0.5 -0.2 -0.5 0.3 -0.5
C5 -0.5 0 -0.5 0 0 0 0 0.8 -0.8 -0.5 0.2 0.8
C6 0.5 0.5 0.5 0.5 0 0 0.5 -0.5 -0.5 -0.2 0.1 0.2
C7 -0.2 0.8 -0.5 0.8 0 0.5 0 0.5 -0.2 -0.2 -0.3 -0.5
C8 0 0 0 0 0 0 0 0 0 0 0 -0.8
C9 0.8 -0.2 0.8 -0.5 -0.2 0.8 0.8 -0.5 0 0.8 -0.3 0.8

C10 0.5 0 0.5 -0.5 0 0.5 -0.2 0.5 0 0 0.3 0.8
C11 -0.1 -0.2 -0.3 0.4 0.2 -0.1 -0.4 0.7 -0.4 0 0 -0.5
C31 0 0 0 0 0 0 0 0 0 0 0 0

The visual representation of the final map structure (derived from the weight matrices) consists

of FCM1 at the top layer and five sub-FCMs at the lower layer, as depicted in Figure 6.2.

6.3.2 Model Validation and Calibration

The performance of the resulted model was validated over two realistic hypothetical scenarios,

which were constructed and executed to assess whether the model yields a reasonable output-

answer, as this expressed by the final activation level of the central concept of interest,

Microservice Adoption. Two “extreme” positive and negative scenarios were produced and

executed, which were expected to drive the model to the extreme positive or negative outcome

respectively. For the positive scenario the environment was set in favor of the Microservices

Adoption and, inversely, the initial values in the negative scenario were selected to reflect a

negative situation so as to guide the central concept to a negative response (i.e., close to 0

value).

The results of the two scenarios described above are depicted in Figure 6.3. It is easily

discernible that in both executions the model behaved as expected and correctly led the

concept of interest to the desired outcome. Specifically, as shown in Figure 6.3a, the model

successfully recognized the positive environment and yielded the value of 0.83 that corresponds

to the ”Very High” linguistic value. Similarly, the model successfully recognized the negative

environment that was set against the Microservices Adoption and converged to 0.22 (”Low”)

82

Figure 6.2: Visual representation of the MLFCM model for the Microservices Architecture

adoption

(Figure 6.3b).

The model’s calibration process that followed, incorporated a series of experiments over real-

world cases, in order to identify the ”optimal” λ value with which the model achieves the best

performance, i.e. the most correct answers compared to the actual ones. Industrial case studies

were gathered through a focused questionnaire4 distributed among industry practitioners with

long experience in software development projects in large companies. The profile of the survey

participants is shown in Figure 6.4.

4Survey available at: https://goo.gl/5mbHgN

83

https://goo.gl/5mbHgN

(a) Positive Scenario

(b) Negative Scenario

Figure 6.3: Model validation over two extreme scenarios

The 16 cases gathered essentially defined the initial activation values of the concepts in the

model. These cases were then used to compare the outcome with the actual decision using

different λ -values (Table 6.3). Particularly, the bottom row of the table shows a distance value,

which denotes the difference between the actual decision taken and the output of the model,

where the lower the value the better the result. The best result (i.e. the lowest distance) is 8

with λ = 0.5, having 56% of the cases matching the expected outcome, and the other 44%

84

(a) Main Occupation (b) Size of the Company

(c) Phase of Interest (d) Age of the Company

Figure 6.4: The profile of the survey participants

with a deviation of only one degree in the fuzzification scale. One may note that there is a

slight positive predisposition towards adoption in comparison with the experts’ answers; this

will be investigated during the static analysis of the model, that is, whether the model tends to

behave positively. In such a case, the selection of the λ -value to lay below 1 will restrain the

final values at lower levels.

6.4 Static and Dynamic Model Analyses
Aiming to investigate the model’s behaviour and form a better understanding of its internal

features properties and features, a series of steps were applied that belong to two classes

of analysis, static and dynamic. In particular, the step-wise process introduced in [36] was

followed, enhanced by the new evolutionary approach proposed in this work which extends

and strengthens the dynamic analysis part.

85

Table 6.3: Industrial Case Studies

number actual
λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6

num ling. num ling. num ling. num ling. num ling.

1 Med 0.593 Med 0.639 High 0.683 High 0.723 High 0.760 High

2 High 0.589 Med 0.634 High 0.678 High 0.719 High 0.757 High

3 High 0.598 Med 0.648 High 0.696 High 0.740 High 0.779 High

4 High 0.576 Med 0.618 High 0.660 High 0.700 High 0.738 High

5 V.High 0.580 Med 0.622 High 0.662 High 0.701 High 0.737 High

6 High 0.580 Med 0.622 High 0.662 High 0.700 High 0.736 High

7 High 0.610 High 0.663 High 0.711 High 0.755 High 0.792 High

8 Low 0.530 Med 0.550 Med 0.573 Med 0.600 Med 0.630 High

9 Med 0.566 Med 0.604 High 0.643 High 0.682 High 0.720 High

10 High 0.564 Med 0.601 High 0.641 High 0.683 High 0.724 High

11 High 0.546 Med 0.571 Med 0.597 Med 0.625 High 0.655 High

12 V.High 0.578 Med 0.618 High 0.657 High 0.694 High 0.727 High

13 High 0.572 Med 0.615 High 0.659 High 0.703 High 0.745 High

14 Med 0.504 Med 0.511 Med 0.521 Med 0.537 Med 0.558 Med

15 V.High 0.578 Med 0.618 High 0.657 High 0.696 High 0.732 High

16 Med 0.572 Med 0.610 High 0.648 High 0.684 High 0.718 High

Distance 14 8 8 7 8

6.4.1 Static Analysis

Static analysis examines the properties of a model prior to its execution irrespectively of its

behavior during run-time, by exploiting the structure of the FCM. The graph-based representa-

tion of FCMs and their consideration as directed weighted graphs, allow the application of

methods and metrics from the area of graph theory and offer important information about the

model’s structure and its constituent elements, as well as their interactions.

Three major indicators were used for the static analysis of our FCM model: (i) Complexity,

which comprises density (number of nodes and interactions), depth (number of layers), and

breadth (sub-FCMs and their nodes), deals with the characterization of the model in terms of

complexity of its structure. (ii) Strength, comprises metrics which indicate the significance

of each node in the model and are calculated using the weight and number of its incoming

86

(in-value, in-degree) and outgoing (out-value, out-degree) edges. Finally, (iii) Tendency, which

counts the total number of feedback cycles in the graph (positive and negative), and also the

number of cycles in which each node takes part and it is considered as a strong indicator of

the tendency of the map.

Table 6.4: Complexity static measurements.

FCM Layer Density Cycles+ Cycles-
1 1 0.72 64642 65900

2 2 1 5 0

3 2 1 68 16

4 2 1 5 0

5 2 1 409 0

6 2 1 2365 0

Table 6.4, presents the applied metrics and measurements regarding the map’s complexity

and tendency. The density appears to be very high for all sub-FCMs and, thus, one can easily

claim that the two-layer structure model is quite complex. As regards the tendency of the

model, this is reflected in the number of feedback cycles of each sub-FCM. The main FCM

is differentiated by introducing more negative cycles than positive, while for each individual

FCM the ratio between positive and negative cycles is greater than one. This result makes the

determination of the general tendency of the model unclear and suggests a deeper and further

study and analysis.

Aiming to identify the strength and the significance of each concept in the model, a series

of measurements were recorded for all sub-FCMs. These measurements show how strong

the presence of each node is in the sub-FCM it belongs to, by calculating the total number

of incoming and outgoing degrees and values, as well as the number of positive and negative

cycles containing that node. The corresponding results are provided in Table 6.5 and the

discussion over the main findings follows.

Examining the results derived from the static analysis, various indications regarding the

strongest concepts are given in boldface letters. By combining the results of the corresponding

measurements, one may argue that the top three concepts of the main FCM are Operational

Complexity (C4), Design (C9) and Data Migration (C11). This finding calls for further

attention to the behavior of these concepts individually on one hand, and as a group on the

other. Moreover, Design should be further decomposed to understand which factors influence

87

Table 6.5: Strength indicators for the sub-FCMs of the MLFCM model for the Microservices

Adoption problem.

FCM Node degtot(i) valtot(i) Cycles+ Cycles-

1

C1 18 8.4 56703 57479
C2 16 7.2 53897 54464
C3 18 8.5 56149 57610
C4 18 8.7 56724 57633
C5 9 4.5 30705 31338
C6 18 7 56355 58002
C7 18 7.8 56445 57912
C8 11 6.3 0 0
C9 18 9.6 57279 58307
C10 16 7.5 54070 55041
C11 19 5.6 58390 59921
C31 11 6.7 0 0

2
C1 4 1.3 4 0

C12 4 2 4 0
C13 4 1.4 4 0

3

C2 8 4.2 53 11
C14 8 3.5 53 11
C15 8 3.8 53 11
C16 8 2.1 48 16
C17 8 3.8 48 16

4
C8 4 1.7 4 0
C18 4 1.3 4 0
C19 4 1.2 4 0

5

C9 10 4.3 325 0
C20 10 3.2 325 0
C21 10 4.2 325 0
C22 10 3.5 325 0
C23 10 2.8 325 0
C24 10 4.4 325 0

6

C10 12 7.3 1956 0
C25 12 5.1 1956 0
C26 12 5.1 1956 0
C27 12 4.7 1956 0
C28 12 5.6 1956 0
C29 12 5.8 1956 0
C30 12 6.2 1956 0

this concept at a finer level of granularity, since Design is already decomposed into the

concepts of FCM5. Interestingly, Business Complexity (C5) and Cost (C8) are the weakest

88

concepts in the main FCM, which is logical since they correspond to “business” aspects rather

than technological ones.

Moving to the second layer and examining Design, which appears through the static analysis

to be the strongest concept, further investigation over FCM5 was conducted focusing on

measurements of the constituent concepts. The strongest position in this sub-FCM is held by

Decentralization (C24), which positively affects the central concept of the map, Microservices

Adoption (C31).

A part of the dynamic analysis that follows is directed by the results of the static analysis in an

attempt to confirm or question the aforementioned findings through execution.

6.4.2 Dynamic Analysis

As previously mentioned, the successful performance of the model over the two extreme

scenarios during the validation process (Section 6.3.2) is a prerequisite for performing dynamic

analysis. The dynamic analysis is a powerful and effective decision support tool that serves

multiple purposes: Firstly, it can be used to assess whether a given MLFCM model may

be simplified, that is, whether certain nodes may be removed without loss of accuracy or

explainability. Secondly, it may verify or contradict the results of the static analysis, the

latter providing indications about the tendency of the map towards a positive or negative

output based on the cycles formed in the model. Thirdly, and most importantly, it may be

employed to construct and execute what-if scenarios with different configurations (i.e., initial

activation levels of the participating concepts) and study their outcome. This task practically

offers the ability to a decision-maker to form hypothetical situations and forecast their result

through their simulation via the MLFCM model. In addition, she may then focus on tracing

the causes for reaching the value level of the concept(s) of interest, as well as investigating

how things should change among the leading determinants (i.e. the initial values of the key

factors-concepts) to drive the target value(s) at lower or higher levels as desired. The latter

is feasible through the ALGE part of the proposed model, while the solutions yielded by the

ALGE algorithm provide enough insights for more informed decisions.

As a first step, a series of executions were conducted targeting at simplifying the model by

investigating the behavior of the n strongest or weakest nodes, as these were suggested by

static analysis, in terms of defining the final outcome (decision) of the model. The goal was

to make the model simpler, easier to execute and understand, as one will have to define and

89

analyze fewer concepts. More specifically, various experiments were designed and executed

on one hand to verify the strongest and weakest nodes in the model, and, on the other, to

investigate if keeping only the strongest nodes, or removing part or all of the weakest nodes,

causes a significant change in the final decision value compared to that of the full map. Further

executions of the model were performed to assess also the contribution of each sub-FCM to

the final outcome, by focusing on their central concepts, i.e., those nodes that transfer their

values to the upper-layer FCM. This process was applied in a bottom-up manner varying the

activation values of the child nodes in each specific sub-FCM. In all executions, the approach

described in Section 5.3 was used, with the transfer function being the sigmoid as given in

Equation 2.2.

The results of the above series of executions confirmed the results of the static analysis

regarding the 3 strongest and 2 weakest concepts. To this end, the results of four indicative

scenarios are listed in Table 6.6, which clearly suggest this. The first two scenarios examined

the effect of concept C4, which was characterized as a strong node, while in the last two,

the effect of node C5, which was defined as a weak node, was assessed. In both cases, two

initial values were considered, 0.1 and 0.9, while the initial activation value of every other

concept was kept constant. After execution the difference observed in the corresponding final

activation values of the main concept, although marginal (being equal to 0.08 for the C4 case

and 0.04 for the C5) is considered significant. This result also fully supports the findings of

static analysis in Table 6.5 as the effect of C4 on the final output is double that of C5.

Investigating the possibility of simplifying the model without affecting the outcome, various

simulations were executed considering a map formed only with the top three strongest concepts

and the corresponding sub-FCMs, or removing the weakest ones. The results produced showed

a significant difference between the output of the simplified map and that of the full map

in both cases, with the strongest case, though, yielding a larger difference. Although these

findings confirmed that the strength and level of influence of the participating concepts in

the model vary, essentially suggests that none of the strongwer concepts or even an isolated

group of concepts is able to dominate the model’s final outcome. In addition, the concepts

with the smallest influence in the model may not be considered negligible as they play a small

but significant role in forming the final output.

The rest of the steps of the dynamic analysis incorporated additional experiments utilizing

the proposed ALGE-MLFCM algorithm. For all scenarios tested the variables involved,

as well as the algorithm’s configuration, were set as follows: The population size was set

equal to 50 and the number of generations to 250. The Elitistic method was used for the

90

Table 6.6: Indicative simulations part of the dynamic analysis of the model.

No. Sim1 Sim2 Sim3 Sim4
Initial activation values

C1 0.5 0.5 0.5 0.5

C2 0.3 0.3 0.3 0.3

C3 0.9 0.9 0.9 0.9

C4 0.1 0.9 0.7 0.7

C5 0.7 0.7 0.1 0.9
C6 0.3 0.3 0.3 0.3

C7 0.3 0.3 0.3 0.3

C8 0.5 0.5 0.5 0.5

C9 0.3 0.3 0.3 0.3

C10 0.1 0.1 0.1 0.1

C11 0.5 0.5 0.5 0.5

Final activation values
C31 0.71 0.63 0.61 0.65
Diff. 0.08 0.04

evolution of the generations. Moreover, the Roulette Wheel method was used for the selection

of individuals that undergo genetic alteration. Finally, Single-point crossover and Random

Resetting operators, both with probability equal to 0.1, were used for the Crossover and

Mutation steps, respectively.

The next step employed the ALGE-MLFCM algorithm to identify the tendency of the model.

Initially, the target value for the central concept, C31, was set to 0.9 (Very High) and then to

0.1 (Very Low). For each case, a series of executions were performed and the convergence

performance was recorded. The corresponding results are shown in Figure 6.5. By observing

the results, one can easily discern that when the target value was set to Very High, the algorithm

delivered solutions faster than when it was set to Very Low. This indicated that there are more

combinations of initial activation values, and, therefore, solutions that can lead the model to

higher-level positive values than in the opposite case. Although the static analysis initially

suggested a negative tendency, this result indicates that the model’s tendency is clearly in

favor of microservices adoption. This finding sheds some light on the question posed in

Section 6.4.1: A partial positive tendency exists in the sub-FCMs which indeed affects the

overall tendency of the model.

91

Figure 6.5: The convergence of the ALGE-MLFCM algorithm for different target values

6.5 Model Application Over a Real-World Case Study
A real-world case study is presented in this section to demonstrate the applicability of the

model and the analysis process. This case study was modeled by capturing the dynamics of a

migration project within an international content delivery company. Specifically, the project

was involved with the holistic migration of the monolithic architecture of the company’s main

92

running software services to a SOA. Starting from a dedicated version of questionnaire, two

rounds of interviews were conducted with the Chief Technical Officer (CTO) of the company:

The first one aimed to describe the situation, both at a project and organizational level, at the

time of the decision, expressed in the initial activation levels of the model’s concepts prior

to execution. The second one was utilized after execution to discuss the output of the model

regarding the actual decision and the main concepts that formed such a decision. Indeed,

the model successfully matched the real decision, which was in favor of moving to the SOA

environment, yielding the numerical value 0.64 which corresponds to the linguistic value

”High”.

The next step involved the investigation of the model’s ability to correctly match the final

concepts’ values with the level of status of each concept after the project completion. Although

the central concept, that is, Microservices Adoption (C31), is only influenced by other concepts

and does not feed any other, it was quite interesting to investigate whether the interrelations

between the rest of the concepts were able to correctly estimate their future status.

Table 6.7: Industry case study: Final activation levels

No. Initial AL Real FAL Model FAL
C1 Medium High High
C2 Low High High
C3 Very High Very High Very High
C4 High Very High Very High
C5 High High High
C6 Low Low Low
C7 Low Low Low
C8 Medium High High
C9 Low Low Medium

C10 Very Low High Low

C11 Medium Low Medium

C31 - High High

Table 6.7 shows the initial activation levels, in linguistic form, of the concepts which constitute

the main FCM. In the first column the values listed are those formed through questionnaires

and interviews, and reflect the environment before the migration project started. The values in

the second column represent the status of each concept after the completion of the migration,

and were also extracted through questionnaires and interviews. The third column presents

93

the final activation values calculated through the execution of the model. It is clear that the

model’s output matches the real values in eight out of eleven concepts (bold letters). This result

is considered satisfactory, while at the same time underlines the need for further investigation

focusing on the structure of the model.

As described in Section 5.3.1, the utilization of the results yielded by the ALGE-MLFCM

algorithm may provide answers or explanations for the results of a particular case study. In

this case, the ALGE-MLFCM algorithm was employed to deliver solutions targeting the value

0.9 (Very High) for the concept of interest, so as to investigate how the environment should

have been shaped before the adoption to reach such a value.

A particular solution was selected that reflects a realistic status for each concept of the model.

The corresponding linguistic values, along with those of the industrial case study, are compared

in Table 6.8. The operators ”+” and ”-” are used to indicate the increase or decrease in the initial

activation values compared to the original initialization, which led to the desired outcome.

The number of operators used indicate the level of increase or decrease respectively.

Table 6.8: Industry case study: How to improve the final decision

No. Real AL Proposed AL Indicator
C1 Medium Very High + +

C2 Low High + +

C3 Very High Very High

C4 High Very Low - - -

C5 High Very High +

C6 Low High + +

C7 Low Very Low -

C8 Medium Very Low - -

C9 Low Very High + + +

C10 Very Low High + + +

C11 Medium Very Low - -

As shown by the comparison in Table 6.8, the three concepts that need to change their values

the most are Operational Complexity (C4), which is considered to be high and should be

decreased, Design (C9) that should be increased and DevOps (C10) that should also be

increased. For five other concepts a significant change in their values is indicated: Governance

(C1), Infrastructure and Management Services (C2) and Reliability (C6) should be increased,

while Cost (C8) and Data Micration (C11) should be decreased. For concepts Business

94

Complexity (C5) and Security (C7) a slight or no change is suggested, while Evolvability (C3)

is identical.

The results above call for further investigation by focusing on particular scenarios involving

concepts of significant interest. Specifically, the decision-makers from the company side

expressed their interest in studying the scenario involving the concept of Security (C7) and

Microservices Adoption (C31). This scenario was formed in a way to address a specific

question: How the environment should initially be formed in terms of concept activation

values, to lead the model to a definite positive final decision and also preserving a high level

of security?

Figure 6.6: The attempt of the ALGE-MLFCM algorithm to find a solution that leads the final

decision to “Very High” value with the value of “Security” to start at and remain “High”

To provide an answer to this question, a systematic approach was followed: First, the main

objective was defined, with the ALGE-MLFCM algorithm being directed to deliver solutions

that would lead the central concept Microservice Adoption (C31) to 0.9 (Very High). The

algorithm was executed with the maximum number of generations being set to 250 and resulted

in a set K of near-optimal solutions that matched perfectly the acceptance fitness criterion (see

Figure 6.6).

Further investigation of this result was then conducted to introduce the second objective, which

is the level of security. A filtering process was applied according to which identical solutions

95

Table 6.9: Five ALGE-MLFCM runs targeting a ”Very High” value for Microservices Adoption

and a constant ”High” value for Security against the nearest solution (NS) reference.

No. (NS) Runs
C1 0.8 0.9 0.7 0.8 0.9 0.9

C2 0.8 0.9 0.8 0.9 0.8 0.7

C3 0.9 0.9 0.9 0.9 0.9 0.8

C4 0.1 0.1 0.1 0.1 0.2 0.1

C5 0.7 0.9 0.9 0.9 0.9 0.9

C6 0.9 0.9 0.8 0.7 0.8 0.8

C7 0.1 0.7 0.7 0.7 0.7 0.7

C8 0.1 0.1 0.1 0.1 0.1 0.1

C9 0.9 0.9 0.9 0.9 0.9 0.9

C10 0.8 0.8 0.9 0.9 0.9 0.8

C11 0.1 0.1 0.1 0.1 0.1 0.1

and solutions that did not satisfy the objectives set were removed. The remaining M solutions

were then processed to calculate the median for each gene, that is, of each initial activation

level for each concept in the map. Thus, a reference solution S was formed containing the

medians for each gene. Next, the pool of M solutions was used to identify the nearest solution

NS to S, i.e. with the smallest difference in the values of the initial activation levels, calculated

as distances of a linguistic form. The latter measured the difference between the fuzzy sets that

the two initial activation level values (of a solution compared to S) fell into. Finally, solution

NS was used as a baseline to conduct experiments and investigate the performance of the

algorithm, this time keeping the value of Security (C7) to 0.7 (High) apart from leading C31

to 0.9. The algorithm was executed five times and the results are given in Table 6.9. In all five

runs the algorithm managed to reach the same level for microservices adoption (C31=0.83)

with security stable at the level of 0.7. It is interesting to note that all solutions converge to the

same initial activation levels values for all concepts except for Business Complexity (C5) which

rises by 0.2 compared to the baseline configuration. This finding was cross-checked with the

company experts and was confirmed that there are cases in which the required level of security

must be high so as to compensate with the rich complexity of the business environment in terms

of business rules, processes and requirements. Therefore, the experts verified the significance

of the results and greatly appreciated the support provided by the model. Fianlly, it should

be noted that the small difference between the target level and the actual solutions for the

concept of interest (C31) clearly indicates that the expected solution is not that easy to achieve

96

in full. Interpreting the resulting effect for the problem under study, it can be inferred that the

model reflects nicely the big concern about reduced security when adopting a microservices

architecture. Moreover, one may assume that the two concepts, Security and Microservices

Adoption, are directly or indirectly conflicting. Therefore, to find the best trade-off solution,

the use of Multi-Objective Optimization (MOO) approaches may be required.

6.6 Summary
This chapter introduced a specially designed MLFCM model to support the decision of

adopting the microservices architecture. The proposed model provides enhanced decision

support capabilities and increased explainability. The contribution of this work is multifaceted:

First, a fine-tuned model based on MLFCM was constructed through literature review and

experts feedback, which was formed as a set of interacting concepts and drivers related to

the decision of adopting microservices architecture. The model captures the dynamics of the

problem under study, that is, of the factors that decisively affect the decision of migrating

from a monolithic application environment to microservices. Second, the utilization of the

proposed framework as described in Chapters 3 and 5 , provided a better understanding of the

dynamics of the environment under study, as well as an explanation of the model’s results.

The proposed model was initially validated over two ”extreme” scenarios and then it was

calibrated over a number of real-world cases. After calibration, investigation of the model

was performed by means of (static) graph analysis and (dynamic) simulation over various

customized scenarios, aiming to reveal the strongest and weakest concepts in terms of influ-

encing the relevant decision, and study their behavior. Further experimentation was conducted

next, with the model being applied over an industrial case study. The model successfully

managed to match the real decision, as well as to correctly describe the status of each concept

after project completion as this was expressed in the final concept activation values. Moving

a step further, the outcome of the model over the industrial case was analyzed by studying

the solutions resulted by ALGE-MLFCM and suggesting changes and improvements to the

company’s environment aiming to strengthen the decision in favor of microservices adoption.

The practitioners led this investigation and defined concepts of significant interest to study

in detail their behavior, interrelation and contribution to the final decision of the model. The

whole process was acknowledged as quite supportive and informative, while the flexibility

in setting-up and executing hypothetical scenarios was commented very positively by the

participating practitioners.

97

The work in this chapter was mainly focused on the analysis and study of the factors forming

the environment behind the decision of migrating to microservices, either from a monolith

system or for developing a new one from scratch. Throughout the research carried out, a

particular challenge emerged that needs special attention; that is, the migration from the

software components architecture to the microservices architecture. A significant number of

software systems that are currently operating in many companies are based on a component-

based architecture, and in this context, the next chapter described an attempt to address the

challenge of full or partial migration from software components to microservices.

98

Chapter 7

Migration of Software Components to
Microservices: Matching and Synthesis

7.1 Introduction
Nowadays more and more software companies, as well as individual software developers,

adopt the microservice architecture for their software solutions. Although many software

systems are being designed and developed from scratch, a significant number of existing

monolithic solutions tend to be transformed to this new architectural style. What is less

common, though, is how to migrate component-based software systems to systems composed

of microservices and enjoy the benefits of ease of changes, rapid deployment and versatile

architecture. This chapter proposes a novel and integrated process for the decomposition of

existing software components with the aim being to fully or partially replace their functional

parts with by a number of suitable and available microservices. The proposed process is

built on semi-formal profiling and utilizes ontologies to match between properties of the

decomposed functions of the component and those offered by microservices residing in a

repository. Matching concludes with recommended solutions yielded by multi-objective

optimization which considers also possible dependencies between the functional parts.

Despite the differences in their approach and the time lag in their introduction to the software

engineering community, Component-based Software Engineering (CBSE) [99], or, alterna-

tively Component-based Development (CBD), and Microservices Architecture (MSA) [100]

share the same inceptions, motivation and focus towards reuse of software artefacts. Both

approaches aim at reducing complexity of the software development process, facilitate easy

99

maintenance and support the operations for IT support. It may be argued that Service-Oriented

Architecture (SOA) [101], as the most recent emerging distributed development architecture,

constitutes the common denominator between these two paradigms as it originated from

component-based architecture and evolved to microservices architecture.

Following the new software engineering trends, Microservices architecture is tightly connected

to the DevOps approach [5], which inherits its basic principles from agile methodologies

and describes best practices to support the software development and operation processes.

One may also argue that Microservices architecture actually supports the DevOps automation

process and affects software engineering in a positive manner. To be more specific, it affects

Software Engineering by introducing a different development approach. As regards how the

DevOps process is automated, the latter relies primarily on the fact that the adoption of the

Microservices architecture comprises a number of critical tasks than may be automated apart

from the rest automated tasks like communication, coordination, monitoring, problem solving

and deployment.

As has been said in the previous chapter, in recent years, Microservices architecture is gaining

popularity in software development and the research community has turned its attention

to related challenges [7], such as the decomposition of a monolithic system into a set of

independent services, followed by synthesis of selected microservices to substitute their

functionality. Microservice synthesis relies on locating and combining small functional

service components the characteristics of which match those of the decomposed system and

put them in a proper order so as to meet the characteristics and the requirements of the initial

monolithic system.

While literature includes a number of research works for decomposition approaches and

migration from monolithic to microservice architecture, to the best of our knowledge, no work

has been yet published that deals with software component decomposition and replacement of

its functional parts with microservices. This work aims to introduce an automatic process that

identifies and recommends the full or partial replacement of a software component by a number

of available microservices that support specific business operations. The proposed process

adopts the basic principles proposed in [102] related to a layered component-based software

development architecture, which was adapted and refined to accommodate the differences and

peculiarities of the Microservices environment. The framework in [102] supports the process

of matching available components against a set of specifications expressed in a formalised

syntax and utilizing ontologies. Apart from modifications to this framework, the present work

adds new tasks that extend and improve its recommendation layer.

100

7.2 Literature Overview
To the best of our knowledge this is the first attempt to propose a structured process targeting

the decomposition of well described software components and replace the identified functional

parts with microservices to the greatest possible degree. However, a brief literature overview

has been carried out over the two topics that are strongly related to this research work, the

software decomposition and the services synthesis.

Several different approaches have been proposed to deal with the decomposition of monolithic

systems or services. Baresi, Garriga and De Renzis in [103] propose a clustering-like approach

to support the identification of microservices and the specifications of the extracted artefacts

during either the design phase of a new system, or while the re-architecting of an existing

system. Service Cutter [104] is a tool framework that is based on a structured repeatable

approach to decompose a monolith into microservices. A stepwise technique to identify

microservices on monolithic systems is proposed in [105] in which the authors deliver an

approach based on a dependency graph among three distinct parts of an application, client,

server and database. Balalaie, Heydarnoori and Jamshidi in [106] describe their experiences of

an ongoing project on migrating an on-premise application to microservice architecture. Their

approach is based on architectural refactoring, considering the characteristics of microservice

architecture.

The vast majority of the literature which deals with services composition is concerned with

web services. The work in [107] presents a review of existing proposals for services selection

by quoting the advantages and disadvantages of each approach. A systematical review of recent

research on QoS-aware web service composition using computational intelligence techniques is

presented in [108]. A classification was developed for various research approaches along with

the analysis of the different algorithms, mechanisms and techniques identified. An analysis

and comparison of the latest representative approaches in the area of automated web service

composition is the main contribution of the work in [109]. The existing research approaches

were grouped into four distinct categories, workflow-based, model-based, mathematics-based

and AI planning.

It is evident that the current literature on software services synthesis is limited, and especially

in the case where this synthesis targets the migration from component-based development to

microservices is rare if not non-existent. This is the gap the current paper aspires to fill.

101

7.3 Automatic Specification and Matching of Microservices

7.3.1 Specification and Matching framework

As previously mentioned, the present work aims to introduce an automatic process that

identifies and recommends the full or partial replacement of a software component by a

number of available microservices. The proposed process adopts basic principles proposed by

the authors in a previous work [102]. More specifically, the utilization of the description layer

in that work leverages the decomposition of a software component into distinct operations

and respectively profiles all candidate microservices that may substitute these operations and

simultaneously adhere to the same constraints (e.g. performance). Additionally, the translation

of software components and microservices textual profiles into ontologies assists the automatic

matching process towards the integrated replacement.

The proposed process follows the same 5-layers architecture as in previous work [102]: (i)

The Description layer provides a profile structure which includes all relevant information

that describes the component(s) under decomposition and the available microservice(s). A

developer/vendor of a component or microservice, defines a set of properties (functional and

non-functional) that describe the specific artefact: (a) the component description which will

serve as the basis for its decomposition and the properties characterizing each decomposing

part, and, (b) the properties of a microservice that describe what it has to offer in terms of

functionality, performance, availability, reliability, robustness etc. that one may look for when

attempting to locate suitable microservices for integration and substitution of the component

parts. (ii) The Location layer essentially provides general-purpose actions, like searching,

locating and retrieving the microservice(s) of interest that match the profile of the component’s

decomposed parts. (iii) The Analysis layer evaluates the level of suitability of the candidate

microservice(s) and provides matching results that will guide the selection of microservices

for integration. (iv) The Recommendation layer uses the information provided by the previous

layers and produces suggestions as to which of the candidate microservice(s) may be best

integrated and why, based on an assessment made to ensure that certain requirements at the

microservice level are preserved also at the integrated level. (vi) Finally, the Build level

essentially comprises a set of integration and customization tools for combining component(s)

to build larger systems. The present paper focuses on the first four layers and describes a

novel way for automatic matching between desired and available microservice(s) based on the

directions provided in [6] and extending or revising them where appropriate. The interested

102

reader may refer to that work for more details on the layered component architecture, whilst

every effort has been made to make the current paper self-explanatory.

Components and microservices are first expressed in a semi-structured form of natural language

which is then transformed into an ontology. This ontology standardises the description of the

properties of the two software artefacts and will constitute the cornerstone of the specifications

that will be used to match decomposed parts of components with the available microservice(s),

the latter being stored in a repository. Thus, the problem of finding suitable microservice(s) to

replace component functionality is reduced to matching (aligning) ontologies. This process is

executed by automatically parsing the profile(s) of the two software artefacts (for simplicity

we assume one component and N microservices) and their translation into instance values

of two dedicated ontologies, one for each artefact, which are built so as to reflect the most

critical properties suggested in literature for that artefact. At the same time, as the ontology

of the component is being built, certain parts are marked so that a second step may then be

executed which isolates these parts, as these are recognised to be directly comparable to parts

of the microservices ontology. Hence, the latter step transforms them into a meta-ontology

(subset of the component’s initial ontology) describing the so-called ‘required’ or possible

functions to be executed by available microservices. Then the matching of properties between

the required and offered microservice(s) takes place automatically at the level of ontology

items and a suitability ratio is calculated that suggests which microservice(s) to consider for

possible integration. The whole process is graphically depicted in Figure 7.1.

7.3.2 Profiling

Based on the previous work mentioned above and an extended literature study, we identified

a set of desired properties for components and microservices thus providing their profile. A

profile is categorized into functional, non-functional and other properties:

(i) Functional properties: Include those properties that describe what the component

or microservice actually does. It involves a general description of the functionality

delivered through methods along with their specific descriptions.

(ii) Non-functional properties: Include properties reflecting how the component or

microservice behaves, mostly in terms of performance, using indicators such as time for

execution, bytes of data processed per second, operations executed per second, number

of concurrent users supported, cold start (the transition time from deployment to actual

103

Figure 7.1: The proposed process for component decomposition and microservices substitu-

tion.

execution), etc.

(iii) Other properties: Such properties involve other critical attributes of a component or

microservice that may not be considered as functional or non-functional. These consti-

tute mostly properties that provide useful general information regarding the artefact and

its usage. In this part a profile provides information regarding the programming language

it is implemented with, the level of security it provides, its auditability, data exchange,

interaction protocol, type (data source, application login, GUI, etc.), data format, load

balancing, obligations and constraints, automation and level of binding, verification and

validation issues, cost, the data storage which describes how the component stores its

data, and, lastly, a service descriptor. Numerical properties included in the categories

above may provide minimum or maximum threshold values, which will be used to guide

the matching process for selecting suitable microservices for substitution.

The Extended Backus-Naur Form (EBNF) was selected to be used to express the component

and microservice descriptions. This form allows the formal proof of key properties, such as

formatting and closure, thus helping to validate semantics. The proposed grammar has been

developed with the Another Tool for Language Recognition (ANTLR) (http://www.antlr.org/),

a parser and translator generator tool that supports language grammars in EBNF syntax. Fig-

104

ures 7.2 and 7.3 depict the EBNF description of a component and a microservice respectively,

which are analysed below.

The profile of a component includes, from top to bottom, the following: First, some definitions

of component items are provided, including a name and a list of one or more services it

offers. Each service is defined by a primary and a secondary function, the latter being more

informative, as well as an optional description. Primary types involve general functionality,

like I/O, security, networking, etc.; the secondary types explicitly define the actual function it

executes, e.g. printing, authentication, video streaming, audio processing etc. For example,

the service could be [Security, Login Authentication].

When decomposition takes place, this is one of the main features that will guide the searching

for a microservice and it is considered as a Constraint, something which means that a candidate

microservice will be rejected if it does not offer such functionality. Interfacing information

comes next that outlines the various methods that implement its logic; a method is further

analysed to Preconditions, Postconditions, Invariants and Exceptions, if any. This piece of

information is provided upfront by the component developer/vendor. Non-functional require-

ments or properties are defined next denoting mandatory behaviour in terms of performance.

Finally, general information intended to serve reusability purposes (application domain, pro-

gramming language, OS etc.) is provided. It should also be mentioned that certain features in

the profile may be assigned specific values along with a characterization as to whether this

feature is minimised (i.e. the value denotes an upper acceptable threshold) or maximised (i.e.

the value denotes a lower acceptable threshold) in the component under decomposition. For

example, if performance is confined under 15 seconds, then next to the performance indicator

the couple (15, minimise) is inserted.

The definition of the attributes included in the microservice profile is defined in a more

detailed form compared to the component profile and thus the microservice profile may be

considered as a more refined version of the component profile. The microservice profile

first describes the data types used to define the property values. These types suggest three

categories of microservice attributes. The first category is the ‘functional requirements’ where

a specific textual description is provided regarding the function a microservice delivers. Since

microservices are smaller and more specific than components, so is their description, which

intuitively documents what it does. The second category is the ‘non-functional requirements’

which includes information describing mostly performance, as well as other constraints.

These attributes include performance indicators like bytes processed per second and operations

executed per second, the level of security it provides, and information regarding its data storage

105

Figure 7.2: Component profile in EBNF

106

Figure 7.3: Microservice profile in EBNF

(SQL, GraphDB, Document Store, File). The third and last category is ‘other requirements’

and provides additional general information regarding the microservice. The properties in

this category include the programming language used to implement the microservice, the

ability to audit events in logs (auditability), information regarding the data exchange protocol

(REST, SOAP, RPC) and interaction protocol (Synchronous, Asynchronous) supported, data

format in which data is exchanged (JSON, XML), load balancing, cost etc., as shown in Figure

7.3. After briefly describing both profiles, we will now focus on the process which connects

components with microservices and demonstrate how component decomposition is performed

and microservices are matched through ontology instances.

107

7.3.3 Components Decomposition and Microservices Matching

7.3.3.1 Component and Microservices Ontology

A special form of ontology is devised to facilitate the subsequent steps of decomposing a

component into individual functional parts, and then locating and assessing the suitability of

available microservices for integration using a self-contained description. The ontology is built

around the property axes of the components and microservices profiles described above, the

latter conforming to the same semantic rules as the former, so as to facilitate their automatic

transformation to instances of the ontology. Figures 7.4 and 7.5 depict the largest parts of

these ontologies, while some details have been intentionally omitted due to size limitations.

Figure 7.4: Component ontology

The matching process works at the level of the ontology tree and not the textual descriptions

of the profile, something that makes comparisons more easy and quick, both computationally

and graphically (visually). This is due to an ontology alignment algorithm used to compare

(align) two same-structured ontology instances aiming at locating attribute similarities and

attribute values distances. The ontology alignment algorithm works by parsing both ontologies

as ontology tree instances and investigates their structure level by level in a tree structure

hierarchy. After the schema similarity is compared, the algorithm calculates the value distance

for each attribute depending on their data type since there is a form of heterogeneity between

attribute values. For example, some attributes may be of binary type, while some others may be

of numerical. The solution is to handle distance calculation differently depending on the data

type compared in each attribute. In this case the ontology alignment algorithm used is Graph

108

Matching for Ontologies (GMO) [110]. GMO initially parses two ontologies and transforms

them to RDF bipartite graphs following some matrix operations to determine the structural

similarity. This is the first and most crucial step of the proposed methodology as it initially

discards non-matching microservices from the pool of available candidate microservices. The

matching process is described in detail in the next section.

Figure 7.5: Microservice ontology

7.3.3.2 Matching Process

Different methods are proposed in literature for description processing, such as simple string,

[111], signature matching [112] and behavioural matching [113]. The approach followed in

this chapter is slightly different; it employs a hybrid form combining string and behavioural

matching. More specifically, a dedicated parser is implemented that recognises certain parts in

a profile (functional, non-functional and other properties as previously described) which is

translated into an ontology instance (either of a component or a microservice).

The parser first verifies that the profile is expressed in the proper context and semantics of

the structures presented earlier (see Figures 7.2 and 7.3) using the ANTLR framework and

then proceeds with building the ontology tree of instances according to the the recognized

parts. Parsing and transformation essentially build the ontology tree instances that describe the

software components under decomposition and the available microservices. The next step is to

match properties between ontology items. The tree instance of the component under migration

is projected on top of any other candidate microservice assessing the level of requirements

fulfilment in two phases: The first phase checks that all required functions (the component’s

part to be replaced) are satisfied by the available microservices; therefore, we treat these as

functional constraints. In this case the list of services sought (decomposed part) must be at

109

least a subset of the services offered (candidate microservices). The second phase is executed

once all functional constraints are satisfied and calculates the level of suitability of each

candidate microservice. A demonstration example for this phased approach is given in the

experimental section, while a more detailed description of the matching process is provided

below.

Firstly, the functionality offered by a software component is decomposed into one or more

functions (methods) and the associated non-functional aspects (performance indicators). This

is performed by traversing the ontology tree in a depth-first-search manner until we reach

the leafs, that is, the details of the methods (e.g. interfaces, arguments, conditions, etc.) the

component is made of (see component profile in figure 2). Then the algorithm climbs up

the ontology structure until it reaches the definition of the method to which this detailed

information refers. This way the functional parts of interest in the component’s ontology

instance are isolated creating a form of meta-ontology as depicted in Figure 7.1 and described

earlier. The non-functional properties are then visited on the ontology tree top-down using a

string-matching approach, where we differentiate between two cases: (i) The overall perfor-

mance indicator(s), which describe how the component behaves as one entity of integrated

functions. This will be used during the synthesis part of the matching algorithm to guide

the process of recommending microservices for integration taking into consideration how

their combination should behave as a whole, any incompatibilities in terms of interfacing,

timing (synchronous/asynchronous), its type (SOAP, REST), etc. (see experimental part

in Section 7.4); (ii) Method-specific indicators, that constrain the way a certain function

(method) delivers its functionality as a single unit. This piece of information will be used by

the matching algorithm when assessing the suitability of a microservice as it is considered a

mandatory requirement. As soon as all meta-ontology parts (i.e. methods) are isolated, the

proposed matching algorithm is invoked. Considering a single function (method) from the

derived decomposition, we aim to match it with a candidate microservice that resides in the

pool of available microservices. For simplicity, let the instance of the source (component)

function for microservice substitution be denoted as Msk (k=1..M, where M is the number of

decomposed component functions), which is considered as the profiled microservice sought

after decomposition (from now on we will refer to this as the ‘source microservice’). At the

other end, the profile of all of the available microservices is also parsed and ontology instances

are created, let these be Mti (i=1..N, where N is the number of available microservices). Due

to the fact that there is a form of heterogeneity between microservice attributes that concern

their data types, a combination of metrics is used in order to assess the matching score of each

110

target microservice instance Ti while taking into account the aforementioned heterogeneity.

The ontology profile, as described through EBNF, has three distinct data types, namely binary,

numerical and string. Therefore, a different metric function is used for each data type. For the

binary data type, the similarity function score is given by the following formula:

Sbin =
1
N

N

∑
i=1

bst,i (7.1)

where,

bst,i =

0, i f binary attribute i required in Ms is not satis f ied in Mt

1, i f binary attribute i required in Ms is satis f ied in Mt

and Ms and Mt are the source and target microservice ontology instances respectively.

Respectively, the score between any two sets of numerical attributes is given by:

Snum =
1
N

N

∑
i=1
{maxst,i,minst,1} (7.2)

where, maxst,i is the formula for attribute i to be maximized between source and target ontology

instances given by:

maxst,i = 1−
ns,i−nt,i

max(ns,i,nt,i)
(7.3)

and minst,i is the formula for attribute i to be minimized between source and target ontology

instances given by:

minst,i = 1+
ns,i−nt,i

max(ns,i,nt,i)
(7.4)

Since some attribute values can be maximized or minimized, we use the correct formula for

attribute value similarity calculation each time. For example, the attribute bytes processed

per second is maximized because it has to score higher if the value offered is higher than the

desired one. On the contrary, the attribute cost has to be minimized due to the exact opposite

reason. Cost similarity value has to score higher if the offered value is less than the desired

one.

Lastly, the score between any two sets of string attributes ss and st is given by the mean of the

Jaccard similarity coefficient:

Sstr = (J(Ss,St)) (7.5)

111

where (Ss,St) is the Jaccard similarity coefficient between source and target string sets respec-

tively, and is calculated as:

J(Ss,St) =
|Ss
⋂

St |
|Ss
⋃

St |
=

|Ss
⋂

St |
|Ss|+ |St |− |Ss

⋂
St |

(7.6)

where |Ss| is the number of terms contained in string Ss, |St | is the number of terms contained

in string St , and |Ss
⋂

St | is the number of shared terms between strings Ss and St respectively.

Using the equations above we can now describe the procedural flow of the matching algorithm.

The algorithm consists of two sequential phases:

Phase 1: All attributes of the source microservice, which are considered as mandatory,

must map one-on-one to the attributes of the target microservice. This means that, by

traversing all of the available target microservices, each attribute of the source microser-

vice is verified to exist in the target microservice. Otherwise, the target microservice

is discarded and it is removed from the pool of candidate microservices. Therefore,

after Phase 1 concludes, the pool of candidate target microservices has been reformed

to include only those target microservices that in general match the mandatory require-

ments of the source microservice; the level of suitability of the microservices in this pool

may vary depending on secondary, desired features or properties they may possess, the

respective values of which are subsequently assessed in Phase 2 by the score functions

previously described. As previously mentioned, Phase 1 is supported by a variation of the

GMO algorithm which was developed to parse every pair of the compared microservice

ontologies (source and target) and defines their structural similarity.

Phase 2: The similarity between a source microservice and a specific target microservice

in the pool of candidate microservices formed by Phase 1 is assessed through the relevant

score functions depending on their data type. The algorithm calculates the mean of

binary, numerical and string score of the pair and produces a similarity value. This

is repeated for every pair of source and target microservice in the pool, and the final

outcome is a ranked matching score:

Stot = (Sbin +Snum +Sstr) (7.7)

The matching algorithm is shown in Algorithm 3.

112

Algorithm 3 Microservice ontology matching algorithm
1: #Decompose software component

2: source microservices = decompose(component)

3:

4: #Parse Ontologies

5: for s ∈ source microservices do
6: Ms = parseOntology(s)

7: for Mt ∈ target ontologies do
8: #Phase 1

9: candidates = []

10: #Structurally similar microservices cause the target microservice to be included

11: #in the microservice candidate pool

12: if GMO(Ms,Mt) == 1 then
13: #Phase 2

14: candidates.append(Mt : score(Ms,Mt))

1: #The score function is the algorithm’s phase 2 which is implemented below according

2: #to the similarity functions as defined above

3: function SCORE(Ms,Mt)

4: Sbin = scoreBinary(Ms.getBinaryAttributes(),Mt .getBinaryAttributes())

5: Snum = scoreNumerical(Ms.getNumericalAttributes(),Mt .getNumericalAttributes())

6: Sstr = scoreString(Ms.getStringAttributes(),Mt .getStringAttributes())

7: score = (Sbin +Snum +Sstr)/3

8: return score

7.4 Experimental Process
A two-stage experimental process was designed and executed aiming to assess the efficiency

of the proposed framework. Specifically, in the first stage (proof of concept) we examined

the ability of the framework to deliver and recommend a list of microservices that are suit-

able to replace specific functions of a component, ranked based on the suitability score of

equation 7.7. In the second stage (composition assessment) two MOGAS were employed to

deliver near-optimal synthesis of candidate microservices taking into account the required

dependencies as these were defined in the software component design. All scripts that support

the aforementioned experimental environment were implemented in Python 3.7 and the full

sets of results are available in this link . The two stages are described in detail below:

113

7.4.1 Proof of Concept

During the first stage of the experimental evaluation, we have tested the proposed framework

using two specific cases. In the first case we consider having the functional parts (profiles) of

a decomposed CRUD component, which provides the simple functions of create, read, update

and delete for a business artefact (e.g. a customer or invoice). We assume in this case that

there are no dependencies across the functional parts of the decomposed component, that is,

every operation is individual and does not depend on any other operation. This means that

execution of one of the above operations does not require the prior execution of another. In

the second case we focus on seeking to replace the functional parts of a component that are

part of an inventory system and are dedicated for invoice updating. This component consists

of five different functions as follows: Update Invoice Items, Update Invoice Headers, Update

Corresponded Posting, Update Debtor’s Balance and Print Invoice. These functions are all

sequentially dependent (in the order listed), that is, every function depends on its previous one

and starts as soon as its predecessor has concluded.

For the execution of the experiments, two EBNF profiles, aligned with the proposed framework,

were created so as to fulfil the description of the two software components in hand for the

stages described above. A pool of 5000 synthetic microservices profiles were randomly

constructed ensuring that a minimum number of 200 microservices match the requirements

of each functional part for both software components. This intuitively means that we make

sure that every decomposed part has at least 200 candidate microservices in the pool that are

matched and satisfy the mandatory requirements but with unknown suitability score. This will

enable examining the correctness of the matching algorithm.

The scores computed by the matching algorithm were validated by varying certain attribute

values of the functional parts that derive from the decomposed component and repeating the

matching process. We observed that by varying the attribute values in a series of repetitions

and experiments, the matching algorithm correctly yields different scores and proper rankings

among the candidate microservices as expected. This verified that changing the requirements

of the functional parts triggers different scores and microservices that previously matched a

specific functional part with a relatively high score tend to score lower when the requirements

shift and vice versa.

114

7.4.2 Composition Assessment

As explained above, this experimental stage aims to examine the suitability of the utilization

of heuristic approaches to deliver near-optimal microservices synthesis considering the sat-

isfaction of two or more objectives related to non-functional characteristics of the software

component. The vast solution space of the problem under study prohibits the utilization of

increased time required and the complexity of the computational process. We resorted to using

heuristic approaches and, more specifically, genetic algorithms, as the problem under study

was rich in candidate solutions with conflicting objectives. Therefore, multi-objective genetic

optimization was selected, as it has been proven to be quite efficient in such cases.

Two MOGAS were selected to solve the multi-objective optimization problem, which will

also be used to compare their performance and effectiveness: The Non-dominated Sorting

Genetic Algorithm II (NSGA-II) and the Strength Pareto Evolutionary Algorithm 2 (SPEA2).

The selection of these two specific algorithms was made due to their wide acceptance and

use, but most importantly, their good performance in such kind of applications, which was

proven in this case too, after a quick verification with preliminary runs. The multi-objective

optimization environment was accordingly adjusted and configured based on the problem

under study. The minimization of the microservice cost and the execution time (performance)

are formed the two objectives. We assume that the two are competing in the sense that the

higher the performance, the more expensive the microservice. The set of decision variables

was constructed by five vectors, each corresponding to a decomposed function and yielding

values related to the selected candidate microservice that delivers the same functionality. Two

constraints were also set, one for each objective, both denoting an upper value for the objectives

(cost, time) that cannot be tampered. The experimental implementation of the algorithms was

performed using Platypus1, a Python-based multi-objective optimization algorithms library.

7.5 Results and Discussion
The results generated by the execution of the proposed process over the two experimental cases

are provided in Tables 7.1 and 7.2 respectively (sample of the best five ranked microservices).

The results consist of the id of the best five microservices for each functional part along with

their matched score in descending order.

For the first case, a total number of 955 unique microservices have been positively assessed

1https://platypus.readthedocs.io

115

Table 7.1: Scoring results of components’ functional parts without dependencies.

Create Read Update Delete
184 (0.48) 1316 (0.62) 445 (0.89) 1317 (0.75)
37 (0.48) 227 (0.56) 406 (0.89) 814 (0.63)
91 (0.47) 353 (0.54) 524 (0.87) 747 (0.55)
53 (0.44) 236 (0. 53) 409 (0.87) 659 (0.53)
73 (0.44) 379 (0.51) 563 (0.86) 728 (0.52)

Table 7.2: Scoring results of components’ functional parts with dependencies.

Print
invoice

Update
invoice
items

Update
invoice
headers

Update
debtors
balance

Update
posting

800 (0.65) 104 (0.50) 329 (0.63) 740 (0.61) 421 (0.90)
1455 (0.60) 1506 (0.49) 1612 (0.60) 692 (0.59) 545 (0.89)
1995 (0.58) 65 (0.48) 312 (0.55) 706 (0.58) 499 (0.89)
2079 (0.57) 101 (0.47) 273 (0.53) 611 (0.55) 524 (0.88)
2137 (0.57) 82 (0.47) 231 (0.52) 1506 (0.54) 1480 (0.87)

and included in the candidate microservices pool in descending order based on the calculated

suitability score. Specifically, Create function included 249 candidates, Read function 225

candidates, Update function 233 candidates and finally Delete function 248 candidates. As

regards the second case, a total number of 1709 unique microservices have fulfilled the

mandatory requirements and were selected to be included in the candidate microservices

pool as follows: 652 microservices were included in Print Invoice function’s list, 283 in

Update Invoice function’s list, 236 microservices in Update Invoice Headers function’s list,

280 microservices in Update Debtors Balance function’s list, and, finally, 258 microservices

are included in Update Posting function’s list.

Firstly, we observed that the proposed algorithm performed successfully discarding all can-

didate microservices that failed to satisfy even one mandatory requirement. Secondly, by

choosing and comparing arbitrarily microservices from the same list of candidates we con-

firmed the correct assessment of the microservices by the matching algorithm reflected in the

calculated suitability scores, as well as the correctness of their prioritization.

As described in the experimental process design, the results extracted from the second case

(software component decomposed into a series of dependent actions), were then used for the

116

assessment of the microservices synthesis. The number of possible solutions (PS) in this case

is calculated by Equation 7.8 to be over 3 trillions.

|PS|=
N

∏
i=1

xi (7.8)

N in Equation 7.8 corresponds to the number of decomposed functions and Xi is the number

of recommended microservices for function i.

Each MOGA was run 100 times for 500000 fitness evaluations (FE) resulting in the generation

of 100 Pareto fronts. By combining these Pareto fronts, a near-optimal Pareto front was

produced for each algorithm. The two near-optimal Pareto fronts are depicted in Figure

7.6. The first observation one can make when inspecting the Pareto fronts is that both

MOGAs delivered similar solutions. Going a step further and by studying the microservices

combinations which corresponded to the optimal solutions, we observed that microservices

with high individual suitability scores were missing from the proposed optimal solutions and

respectively microservices belonging to the optimal solutions sets had relatively low suitability

scores compared to others. This finding is perfectly reasonable as the specific experiment was

focused on optimising cost and performance, while the suitability score is the collection of

other parameters as well. Therefore, the recommended solutions that will drive the synthesis

of microservices will always depend on the aspects designers need to optimise each time.

The performance of the two MOGAs was assessed and compared with the use of the Hyper-

volume (HV) [49] and the Inverted Generational Distance (IGD) [50] quality indicators. Each

algorithm was run 10 times and both HV and IGD values were calculated for each algorithm.

In order to compare the performance of the two algorithms the median HV and IGD were

calculated. The HV value for both algorithms was identical and equal to 0.0257. The IGD

value for the NSGA-II was 0.6113 and for SPEA2 0.6150.

Considering that the results of the two indicators suggest a balanced performance with no clear

distinction being observed between the two algorithms used, we may safely conclude that

none of the two overcomes the other. Two statistical tests were used to determine if there is

any statistical difference between the two algorithms. Both the Wilcoxon signed-rank test and

the Mann-Whitney U test suggested that there is no statistical difference (p¡0.05) between the

HV and IDG results of the two algorithms. Therefore, the two MOGAs are equally suitable to

offer a sound basis for automatically guided microservices synthesis.

117

Figure 7.6: Near-optimal pareto fronts.

7.6 Summary
The contribution of the research work presented in this chapter is to support software developers

to migrate from software components to microservices. This work aimed to provide a well-

described automatic process that identifies and recommends the full or partial replacement

of a software component’s functionality from a list of available microservices. The proposed

process comprises a series of tasks that a developer may follow to receive a recommended

solution. The component is expressed in a semi-formal notation in EBNF, which is parsed

to identify its functional parts. This identification takes place using an ontology scheme.

The decomposed functions are then matched against available microservices. First, the

microservices are screened based on the required functionality, and the successful candidates

are scored using a matching algorithm. Additionally, the proposed process is integrated with

search-based techniques and recommends the optimal synthesis of microservices yielded by

Multi-Objective Genetic Algorithms. The proposed process was evaluated through a two-stage

experimental process and presented a successful performance in delivering proper solutions.

118

Chapter 8

An Effective Resource Management
Approach in a FaaS Environment

8.1 Introduction
The work in this chapter investigates and proposes a new resource management approach in

a FaaS platform, based on intelligent techniques. A number of experiments were performed

through a dedicated framework consisting of a client application and a Lambda function.

Three GAs were employed to deliver optimal solutions in a multi-objective environment with

the results appearing quite promising.

Despite the various benefits and advantages of serverless computing, like for example zero

server management, no up-front provisioning, high availability, auto-scalability and pay only

for the resources used, there are also several weaknesses that should also be taken into account:

As currently offered from providers, it is not suitable for long term tasks because of the

limited time a service can run; additionally, there is increasing complexity of the underlying

architecture, which is intensified by the lack of appropriate operational tools.

This new cloud paradigm is becoming increasingly popular and is gaining great attention

from the software industry and research community. This is not irrelevant with the fact

that FaaS appears to be an ideal platform to host microservices since provides everything

required for their development and deployment. A number of new technical challenges and

open problems [114] have emerged, while a number of questions have been posed about the

importance and future of serverless computing.

Resource management support in such a FaaS environment is essential for the software

119

development process itself, which is directed towards satisfying the SLA and providing

QoS assurance. The identification of the optimum scenario for resource allocation to serve

adequately a specific workload is a tedious, computationally complex and time consuming

process since multiple objectives need to be satisfied. This research work addresses this

challenge by investigating the implementation and application of intelligent techniques for the

delivery of efficient resource management support in such an environment.

The Amazon Lambda platform is considered a complete platform as it offers the most features

compared to the rest, while it presents the greatest market share; for these reasons it was

selected as the experimental environment of this chapter.

8.2 Literature Overview
Very few relevant research works were identified and as a result, a short literature review has

been carried out that is not limited to resource management approaches only.

Two research works refer to efficient resource management: In [115] a solution using a well-

known resource allocation strategy for a Lambda platform was presented based on the model

predictive controller (MPC). This solution designs a resource allocation policy through the

understanding of the run-time attributes of the workload. The authors in [116] performed a

dedicated test to identify if cost optimization is feasible when utilizing increased resources for

lowering processing times.

Evaluation of main FaaS providers was performed in [117] and relevant results were presented

in terms of throughput, network bandwidth, file I/O and performance computed according to

concurrent invocations. In [118], the authors report results from a comprehensive investigation

on the performance of microservices hosted by a serveless platform. The investigation

dealt with implications of infrastructure elasticity, load balancing, provisioning variation,

infrastructure retention, and memory reservations. A micro-benchmark introduced in [119]

was used to evaluate the performance and cost model of popular FaaS providers.

An open-source FaaS tool called Snafu was introduced in [120] which is employed for

managing, executing and testing functions across provider-specific interfaces.

Finally, the work of Hong et al. [121] describes six serverless design patterns that can be used

to build serverless applications and services.

120

8.3 Multi-objective Optimization Approach
The general purpose here is to allocate a sufficient amount of resources in a FaaS environment

that should be able to serve a specific workload. By utilizing an exhaustive algorithm the

aim is to identify the optimal solutions for both objectives, cost and performance. Exhaustive

approaches have great demands on resources and, subsequently, on cost, and thus they cannot

be the answer to the first research question. In this research work an exhaustive algorithm will

be applied on a low demand environment and a small scale workload, with the results obtained

being considered as the reference data for the proposed intelligent approaches, the latter being

able to reach to solutions faster.

Figure 8.1: Proposed multi-objective optimization approach

This work proposes the employment of multi-objective genetic algorithms (MOGAs) [122]

as the optimization method that will generate near-optimal solutions, with their performance

being assessed by comparing their outputs with the reference optimal solutions extracted by

the exhaustive algorithm.

As described in Chapter 2, genetic algorithms are a type of evolutionary algorithm, which

are widely used to solve search-based optimization problems by simulating the theory of

natural evolution on a population of individuals (candidate solutions). Problems like the one

this study is dealing with, require the optimization of multiple criteria at the same time. In

such a case multi-objective genetic algorithms can be adopted, where the goal is to find the

best solution by otimizing a set of objective functions. In case of conflicting or competing

objectives, a multi-objective genetic algorithm normally delivers the Pareto optimal set (or

Pareto front) that contains those solutions that are not dominated by any other solution yielded

during evolution. Since each optimal solution constitutes a specific balance between the

objectives under optimization, where any improvement in one of them leads to worsening the

other (conflicting targets, e.g. cost vs time in this case), a decision maker is supported to take

decisions as to which values of the decision variables are most suited based on the targets and

121

the requirements of his/her application.

In the context of the application, the candidate solutions, or alternatively the decision variables,

consist of two of the available configuration options offered by AWS Lambda platform, namely

memory allocation and number of maximum concurrency functions, as well as a third variable,

the batch size, that represents the number of inputs that each individual function is required to

process. The proposed approach is graphically demosntrated in Figure 8.1 where the three

decision variables, in conjunction with the characteristics of the workload, define the level of

Cost and Duration.

8.4 Experimental Process

8.4.1 Experimental Environment

A software application that is used to perform the experimental process has been implemented

by utilizing services offered by Amazon AWS platform. More specifically, this application

is based on the idea introduced in Amazon Big Data Blog 1 where in a map-reduce style it

counts the words in files stored in an S3 2 bucket. This application streams the total number of

words each function has calculated, returns it back to the user in real-time and demonstrates

how a Lambda function can efficiently process large amounts of data in short time and provide

immediate results to users.

In the context of the experimentation study, the application was implemented as follows: On

the client side, besides the main function that triggers the whole process, a cascade function was

also implemented which is responsible to sense the workload size and accordingly distribute

the data in a synchronous way over a number of Lambda functions. This function is also

responsible to collect and aggregate the results taken from the lambda functions responses;

when all functions are completed it returns the final result to the user. On the AWS platform, a

Lambda function was created that counts the words of a given batch of files which are stored in

a AWS S3 bucket. Data stored in the S3 bucket represents the workload that will be processed

with specific features. Both the client and lambda sides were implemented in Python 3.7 and

the integration with the AWS services, S3 and Lambda was achieved through the Boto3 3,

the AWS SDK for Python. The synchronous invocations of Lambda functions is executed

1https://aws.amazon.com/blogs/big-data/building-scalable-and-responsive-big-data-interfaces-with-aws-

lambda/
2https://aws.amazon.com/s3/
3https://aws.amazon.com/sdk-for-python/

122

Figure 8.2: Experimental environment

and controlled by utilizing Python’s multi-threading module. The integrated experimental

environment is depicted in Figure 8.2.

8.4.2 Exhaustive Algorithm

As mentioned before, the proposed multi-objective optimization approach was adjusted and

configured based on the AWS Lambda platform and taking into account the available options

offered. The two objectives are cost and performance. The cost objective is the minimization

of the total cost required for the completion of the process of the input workload and is

calculated using the formulas and rules as these are given by Amazon 4. The calculation of the

cost depends on the number of Lambda functions executions, the total duration of all executed

functions and the allocated memory. The performance objective is also the minimization of

the total duration needed for the completion of the workload process and is calculated as the

time from the moment the user sends the start request until the application delivers back to the

user the total count of words. The set of decision variables consists of the memory allocation

size, the number of maximum concurrent functions and the batch size. Memory allocation

denotes the amount of memory you want to allocate for your lambda function. The values

4https://aws.amazon.com/lambda/pricing/

123

of memory ranged from 128MB to 3008 MB, with 64MB increment step. The concurrent

execution limit varies from 1 to 1000. Finally, the batch size represents the number of files

that each function will process.In our experiments the corresponding values are relative to a

percentage of the workload size and fall into the following set: [1, 2, 5, 10, 20, 25, 50, 100].

The S3 bucket used for the workload, contains 100 text files, with each file containing 638

words.

The exhaustive algorithm calculated and delivered all possible candidate solutions. To reduce

execution time and cost, the solutions for concurrency over 100 were discarded since the size

of the workload is 100. The number of Possible Solutions (PS) was calculated using equation

8.1 to be equal to 36800.

|PS|=
N

∑
1

M

∑
1

K

∑
1

(8.1)

where, N=1..100, M=1..46, K=1..8

8.4.3 Multi-objective Genetic Algorithms

Three well-known and widely used MOGAs were selected to assess their ability to solve the

problem in hand and compare their results: The Non-dominated Sorting Genetic Algorithm II

(NSGA-II) [122], the Non-dominated Sorting Genetic Algorithm III (NSGA-III) [123] and

the Strength Pareto Evolutionary Algorithm 2 (SPEA2) [124]. The selection of these specific

algorithms was made after performing some preliminary experimentation which indicated that

these three present a consistently good performance.

The relative configuration of the required parameters, as well as the overall implementation of

the algorithms, were performed using Platypus 5, a Python-based multi-objective optimization

algorithms library. The aim was to minimize a vector consisting of the two objective functions,

Cost and Duration, for values that belong to the PS set (see equation 8.2).

minimize f (x) = (fduration(x), fcost(x)),x ∈ PS (8.2)

Since all three decision variables are real-valued, we accordingly use best practices for

setting the MOGAs configuration. For crossover and mutation operators, the Simulated

5https://platypus.readthedocs.io/en/latest/index.html

124

Binary Crossover (SBX) and Polynomial Mutation (PM) were selected respectively. The

same parameters and settings were used for all executions (see next section). As one can

easily discern from Figure 8.3, all algorithms yielded very similar solutions which are almost

identical to the reference optimal. A more detailed analysis of the results follows.

8.5 Results and Discussion
The execution of the exhaustive algorithm on the experimental application delivered a complete

list of PS. The extracted values constitute the aggregation of five different executions in order

to minimize or even eliminate possible variations between the results under exactly the same

configuration conditions. As described above, the results from the exhaustive algorithm were

considered as the reference data and were used for the assessment of the three MOGAs

employed. Each MOGA was run 100 times for different values of fitness evaluations (FE)

ranging from 500 to 4500 with increment step 500. The Pareto optimal front that emerged

from the reference optimal solutions in contrast to the Pareto near-optimal solutions yielded by

each MOGA for 1000 fitness evaluations, is depicted in Figure 8.3. By observing the Pareto

fronts, one can easily conclude that all three MOGAs approached the optimal solutions to a

high degree; in fact, in some cases the dominant MOGA solutions are exactly the same as

those of the reference set. At this point some metrics will be utilised in an attempt to assess

further and compare the performance [125] of the three MOGAs were employed.

8.5.1 Assessing MOGAs’ Performance Through Quality Indicators

The hypervolume (HV) [49] and the inverted generational distance (IGD) [50] quality indica-

tors were employed to assist in comparing the three MOGAs with respect to performance and

scalability. Each algorithm was run 100 times for each number of FE and the median values of

the HV and IGD were calculated for each algorithm. These values are presented in Tables 8.1

and 8.2 respectively.

The differences observed in the indicators values between the compared algorithms are too

small, and this most probably is the result of the small complexity of the workload used;

however, in cases of application workloads with increasingly greater complexity and/or scale,

these differences will become more profound. As regards the HV indicator, SPEA2 presents

the best performance, that is, the highest hypervolume value, and this is consistent along all

fitness evaluation numbers used. Second best for this indicator is the NSGAII. It is important

125

Figure 8.3: Pareto front for 1000 fitness evaluations (FE)

Table 8.1: Hypervolume(HV) values

FE HV (x10−6)

NSGAII NSGAIII SPEA2
500 999667.063 999658.576 999755.043
1000 999755.043 999656.438 999960.329
1500 999960.329 999655.593 999960.329
2000 999960.329 999654.920 999960.329
2500 999960.329 999655.384 999960.329
3000 999960.329 999655.777 999960.329
3500 999960.329 999655.230 999960.329
4000 999960.329 999655.687 999960.329
4500 999960.329 999657.071 999960.329

to observe that in the case of SPEA2 with 1000 fitness evaluations, the HV value stabilizes at

a constant value from the second measurement onwards. The same behaviour is also observed

for NSGII but from the third measurement onwards. On the contrary, NSGIII presents more

fluctuations in its measurements.

In the case of the IGD indicator, things appear more complicated since none of the algorithms

seems to prevail. A notable point is that for the lowest measure of the fitness evaluations

numbers, SPEA2 clearly outperforms the others. The values for NSGII and SPEA2 starting

126

Table 8.2: Inverted Generational Distance(IGD) values

FE IGD (x10−6)

NSGAII NSGAIII SPEA2
500 60727.255 61344.367 57375.237

1000 60250.148 57791.945 57792.130
1500 57792.130 57792.189 57792.130
2000 57792.130 57787.907 57792.130
2500 57792.130 57792.125 57792.130
3000 57792.130 57791.964 57792.130
3500 57792.130 57790.733 57792.130
4000 57792.130 57792.097 57792.130
4500 57792.130 57792.179 57792.130

from the third measurement onwards are fully identical, while NSGAIII fluctuates more, while

in three cases it seems better than the other two.

Table 8.3: Pairwise comparison for HV indicator

NSGAII NSGAIII SPEA2
NSGAII 0.074 0.18
NSGAIII 0.005
SPEA2

Table 8.4: Pairwise comparison for IGD indicator

NSGAII NSGAIII SPEA2
NSGAII 0.241 0.18
NSGAIII 0.285
SPEA2

The Wilcoxon signed-rank test was applied on both quality indicators to detect whether or

not a statistically significant difference exists among the three algorithms. To handle the

family-wise error rate accumulated, p-values were adjusted using a post-hoc Holm procedure.

The p-values resulting from the pairwise comparison for the HV and IGD indicators are shown

in Tables 8.3 and 8.4 respectively, where pairs of algorithms with a statistically significant

difference (p <0.05) are shown in boldface. According to the pairwise comparisons, no

127

significant difference is observed between NSGA-II and NSGA-III, NSGA-II and SPEA2, and

NSGA-III and SPEA2 in either indicator except only for the pair NSGA-III and SPEA2 in the

case of HV.

8.6 Summary
This chapter presented a preliminary investigation to assess whether heuristic approaches for

multi-objective optimization, are able to deliver near-optimal solutions that support developers

in a FaaS environment to select an efficient resource allocation scheme with respect to cost and

time. A dedicated experimental process was designed over a specific framework consisting of a

client application and a Lambda function. Firstly, an exhaustive algorithm was utilised with the

aim to identify the optimal solutions for both objectives, cost and performance. Subsequently,

three multi-objective genetic algorithms (MOGAs) were employed to generate near-optimal

solutions and their performance was compared with the reference optimal solutions extracted

by the exhaustive algorithm. Τhe results were particularly successful and confirmed the ability

of the proposed approaches to accurately approximate the optimal solutions.

128

Chapter 9

Conclusions and Future Research Steps

9.1 Overview
The present thesis was motivated by a series of challenges from a particular scientific area

that deals with several aspects of software engineering for distributed systems and Cloud

environments. In addition, the management of the Cloud infrastructure is characterised

as highly complex, with multi-conflicting factors due to the continuous development and

integration of various new technologies.

The main target of this thesis was to support decision making in different problems of dis-

tributed software systems development and servicing on the Cloud environment, through the

introduction of models, techniques, and methods belonging to the broader area of Compu-

tational Intelligence. Such approaches appear to have profound success when dealing with

complex and multifaceted problems. Moreover, an investigation over a series of challenges in

the Cloud-based software development process was performed.

The contribution of this thesis may be summarized in six major research steps and outcomes.

The first step introduced a novel, integrated analysis framework based on Multi-Layer Fuzzy

Cognitive Maps models which were used as the spearhead of all modeling cases thereafter. The

framework included also a series of actions to gather useful static and dynamic information of

the model developed. The second step of our research focused on the analysis and study of the

factors that affect the adoption of Cloud services. The third step extended the aforementioned

analysis framework with the incorporation of an evolutionary approach based on a new

formulation and computational execution of the nodes in the model. Next, the fourth research

step involved the construction of a dedicated Multi-Layer Fuzzy Cognitive Map to support

129

decision-making towards microservices architecture migration. The fifth step proposed a

novel process guiding the decomposition of existing software components and their partial or

full replacement with a number of suitable and available microservices. Finally, in the sixth

step, a new Cloud resource management approach was introduced in a Function-as-a-Service

platform.

Future research steps involve many potential topics that can be studied and explored further.

These steps are aimed at two directions: The first direction targets the improvement and

extension of the current approaches and models, while the second involves the application of

these models to more real-world cases. The analysis of future work is described in each of the

topics addressed in this thesis in the following sub-sections.

9.2 A Framework for Analyzing Multi-Layer Fuzzy Cogni-

tive Maps
The introduction of a novel framework for the analysis of MLFCM models was motivated

by the lack of methodologies for understanding how FCM models work. In this respect, the

corresponding research work addressed the issue of the analysis, both static and dynamic,

of MLFCM models by proposing a framework for conducting a series of steps that aim to

reveal hidden properties in their execution. The proposed framework was divided into two

approaches: The first studied the MLFCM as a graph model extracting information about its

complexity, the significance of the discrete nodes at every layer and its tendency to promote

or inhibit an initial activation as a result of the presence of a number of positive and negative

cycles. The second approach analyzed the run-time behavior of the model and provided

insights regarding its behavior in terms of correctness, correlations between nodes and the

effect of the latter to the final outcome yielded. Executions of different simulations and what-if

scenarios enabled the revision and restructuring of the model taking into account issues like

complexity and computational burden. The demonstration of the framework over real world

problems proved the efficiency and efficacy of the proposed approach, as the results obtained

described successfully and fully the relationships between the factors that affected such a

decision. Moreover, the findings of the two types of analysis showed that the framework is

able to work equally well in different domains and sizes of models, with the results being

perfectly aligned with the real circumstances faced in the corresponding application domain,

as these were described by the corresponding literature and the domain experts.

The future research steps in this topic will involve the application of the framework on several

130

other real-world problems and will investigate further the issues of computational complexity

and ease of use. A software tool is currently under development, which will automate the

different steps of the framework, and especially support the dynamic analysis by offering an

interactive way for defining and executing what-if scenarios in conjunction with the results of

the static analysis.

9.3 Modeling the Cloud Adoption Decision
Although Cloud Computing has gone from infancy to a more mature state, customers are still

facing many challenges with respect to its adoption. The study and understanding of various

parameters, such as benefits and problems that are involved in this transition, is far from an easy

and straightforward procedure. This challenge was addressed by investigating the applications

of integrated models in different forms to support the decision making process on the Cloud

adoption. The application of two methodologies based on FCMs and IDs were examined. All

of the proposed models were formed using on one hand parameters that are addressed in the

relevant literature, and expert knowledge on the other. In general, all models followed the

same rationale as described above, but in each case separately the process was repeated and

adapted to the characteristics of each model. In the ID modeling it was demonstrated how

two new models based on Influence Diagrams can be constructed and applied to face decision

making issues of the Cloud adoption problem. Both ID models succeeded in matching their

estimation with the corresponding real decisions in three real-world cases. Moreover, the

two models successfully demonstrated their ability to execute hypothetical scenarios in an

interactive environment, something which suggests their efficiency in actively supporting

the decision-making process. While both models performed equally well, the fuzzy version

clearly outperformed the generic one in flexibility and the ability to handle larger structures.

Modeling and analysis of this problem continued with FCMs. In this context, two FCM

models were constructed and applied to face the decision making on the Cloud adoption

problem, exploiting the advantages offered by using techniques that combine fuzzy logic

and neural networks. Both models were based on the CNFCM type, with the former being

single-layered and the latter multi-layered. The resulted MLFCM was a significantly enhanced

model compared to the single-layer CNFCM, both in terms of the number and type of the

participating parameters, as well as of the way these were organized in layers of interacting

concepts thus requiring a totally new computational approach. The models were evaluated by

applying them over four real-world scenarios collected from experts/developers in the local

131

Cloud software industry. Although both models exhibited high-performance succeeding in

matching their estimation with the corresponding real decisions, the multi-layered form of

the MLFCM enabled a more detailed investigation so as to trace the causes for its behavior in

each case.

Although the results from the application of both FCM and ID approaches in the Cloud

adoption problem may be considered quite encouraging, there are quite a few steps that may

be executed in the future to enrich and optimize these models. The speed with which Cloud

Computing and its corresponding technology evolves necessitates the continuous study of the

parameters (factors) taking part in the models. Also, more real-world case scenarios could give

helpful feedback for better calibration of the models used. In addition, possible expansion and

re-identification of the maps and/or the diagrams, respectively, will be investigated to include

more nodes representing better the real Cloud environment and reflecting more accurately the

decision scenery.

9.4 A Novel Computational Approach for MLFCM
Beyond the very encouraging results yielded by the application and analysis of the MLFCM

thus far, the need for improvement also emerged. Towards the delivery of a sufficient and

enhanced model, a new MLFCM computational process was introduced. The proposed model

involved two new approaches. The first approach comprised a new FCM formulation that

handles a number of weaknesses and drawbacks of existing methods, and boosts up the

abilities for multidimensional and multi-targeted analyses. The second approach introduced

the utilization of a genetically evolved algorithm as an extension of the dynamic analysis,

the ALGE-MLFCM. This algorithm evolves the initial activation levels of the concepts

participating in the MLFCM aiming at finding solutions that satisfy a target final activation

value (i.e. after execution of the map) of the concept(s) of interest corresponding to a certain

scenario. This work can be considered as an extension of the previous steps as it proposed

an integrated framework with a novel model able to cope with the challenges imposed by the

need to analyze and explain complex decisions.

Μore experimental applications to real-world problems are included in the future research

steps of this topic. Τhrough these applications, the assessment of the proposed approach in

terms of applicability and efficiency will become feasible, as well as the demonstration of its

generalizability.

132

9.5 Supporting the Decision of Migrating to Microservices

Architecture
Τhe number of factors involved in the decision, as well as the complexities presented in

the connections between them, make the decision to adopt the microservices architecture

extremely tough. A specially designed MLFCM model was introduced aiming to provide

enhanced decision support capabilities and increased explainability. The model construction

and analysis process utilized the enhanced framework for MLFCM introduced in this thesis.

The model captured the dynamics of the problem under study and the hidden properties of the

model were highlighted through the static and dynamic analysis. The model was evaluated

over an industrial case study and successfully managed to match the real decision, as well

as to correctly describe the status of each concept after execution. Moving a step further,

the outcome of the model over the industrial case was analyzed by studying the solutions

resulted by ALGE-MLFCM and suggesting changes and improvements to the company’s

environment aiming to strengthen the decision in favor of microservices adoption. The

practitioners led this investigation and defined concepts of significant interest to study in

detail their behavior, interrelation and contribution to the final decision of the model. The

whole process was acknowledged as quite supportive and informative, while the flexibility

in setting-up and executing hypothetical scenarios was commented very positively by the

participating practitioners.

The future research steps in this topic include, at domain level, further improvement of the

model by considering other concepts at finer levels of detail, i.e. decomposing more nodes to

sub-FCMs, and then performing simulations with new what-if scenarios engaging yet more

experts with different backgrounds. At MLFCM level, effort will be devoted to test different

activation functions, e.g. hyperbolic tangent, instead of the sigmoid and assess whether there

is improvement of performance. Finally, future work will involve integrating multi-objective

optimization approaches with ALGE-MLFCM and extending the pool of scenarios, as well as

automating the reasoning process applied over the produced results.

9.6 Migration of Software Components to Microservices:

Matching and Synthesis
Although, a significant number of software systems which are based on the component-based

architecture are currently in operation, the current literature which targets the migration from

133

component-based development to microservices is rare, if not non-existent. Aiming to fill this

gap, a well-described automatic process was introduced that identifies and recommends the

full or partial replacement of a software component’s functionality by a number of available

microservices. The proposed process comprises a series of tasks which a developer may

follow to receive a recommended solution. The component is expressed in a semi-formal

notation in EBNF which is parsed to identify its functional parts. This identification takes

place using an ontology scheme. The decomposed functions are then matched against available

microservices. First, the microservices are screened based on the required functionality and

the successful candidates are scored using a matching algorithm. Additionally, the proposed

process is integrated with search-based techniques and recommends the optimal synthesis of

microservices yielded by Multi-Objective Genetic Algorithms. The proposed process was

evaluated through a two stage experimental process and presented successful performance in

delivering proper solutions.

Quite a few challenges and open issues still exist in this area, some of which may constitute

future work. Specifically, the constant increase in the availability of microservices with

business orientation will require the design and execution of more advanced and extended

experiments. Furthermore, an investigation will be performed for improving the profiling

tasks by adopting different description models and assess whether this may improve also the

automation level of the proposed process. Finally, more real-world cases will be employed to

assess further the practical benefits of the proposed approach.

9.7 An Effective Resource Management Approach in a FaaS

Environment
The final research step involved a preliminary investigation to assess whether heuristic ap-

proaches for multi-objective optimization are able to solve the problem of finding a set of

near-optimal solutions that support developers to select an efficient resource allocation scheme

with respect to cost and time. The general aim was to allocate a sufficient amount of resources

in a FaaS environment that should be able to serve a specific workload. This target was

verified through a dedicated experimental process which involved an application that utilized

services offered by Amazon AWS platform. An exhaustive algorithm was executed over

the experimental application that yielded a set of optimal solutions which considered as the

reference data. Then, the execution of three well-known MOGAs followed, with each of them

resulting in with a set of near-optimal solutions. The Pareto optimal front that emerged from

134

the reference optimal solutions in contrast to the Pareto near-optimal solutions yielded by each

MOGA was used to assess the MOGAs performance. The results demonstrated the success of

the algorithms to approximate optimal solutions very accurately and thus demonstrated their

ability to serve the problem under study adequately.

Future research steps involve, primarily, examining the scalability of the proposed approach in

terms of checking whether it performs equally well on larger workloads. Furthermore, it is

worth investigating further the performance of the MOGAs in real-time response environments,

”execution on the fly as workloads come in” and the level to which this support can be

generalized to cover also workloads of unknown characteristics.

135

136

REFERENCES

[1] Engelbrecht AP. Computational intelligence: an introduction. John Wiley & Sons;

2007.

[2] Konar A. Computational intelligence: principles, techniques and applications. Springer

Science & Business Media; 2006.

[3] Lewis J, Fowler M. Microservices: a definition of this new architectural term; 2014.

Retrieved from: http://martinfowler.com/articles/microservices.

html.

[4] Hassan S, Bahsoon R. Microservices and their design trade-offs: A self-adaptive

roadmap. In: 2016 IEEE International Conference on Services Computing (SCC).

IEEE; 2016. p. 813–818.

[5] Balalaie A, Heydarnoori A, Jamshidi P. Microservices architecture enables devops:

Migration to a cloud-native architecture. Ieee Software. 2016;33(3):42–52.

[6] Wootton B. Microservices: a definition of this new architectural term;

2014. Retrieved from: http://highscalability.com/blog/2014/4/8/

microservices-not-a-free-lunch.html.

[7] Esposito C, Castiglione A, Choo KKR. Challenges in delivering software in the cloud

as microservices. IEEE Cloud Computing. 2016;3(5):10–14.

[8] Sommerville I. Software engineering 9th Edition. ISBN-10. 2011;137035152.

[9] Bauer FL. Software engineering: report on a conference sponsored by the NATO

Science Committee, Garmisch, Germany, 7th to 11th October 1968. Scientific Affairs

Division, NATO; 1969.

137

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html
http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html

[10] A Vouk M. Cloud computing–issues, research and implementations. Journal of

computing and information technology. 2008;16(4):235–246.

[11] Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee G, et al. Above the clouds:

A berkeley view of cloud computing. Dept Electrical Eng and Comput Sciences,

University of California, Berkeley, Rep UCB/EECS. 2009;28(13):2009.

[12] Mell P, Grance T, et al. The NIST definition of cloud computing. 2011;.

[13] Kleinrock L. A vision for the Internet. ST Journal of Research. 2005;2(1):4–5.

[14] Wei Y, Blake MB. Service-oriented computing and cloud computing: Challenges and

opportunities. IEEE Internet Computing. 2010;14(6):72–75.

[15] Bruneliere H, Cabot J, Jouault F. Combining Model-Driven Engineering and

Cloud Computing. In: Modeling, Design, and Analysis for the Service Cloud-

MDA4ServiceCloud’10: Workshop’s 4th edition (co-located with the 6th European

Conference on Modelling Foundations and Applications-ECMFA 2010); 2010. .

[16] Klein A, Mannweiler C, Schneider J, Schotten HD. Access schemes for mobile cloud

computing. In: 2010 eleventh international conference on mobile data management.

IEEE; 2010. p. 387–392.

[17] Dinh HT, Lee C, Niyato D, Wang P. A survey of mobile cloud computing: architec-

ture, applications, and approaches. Wireless communications and mobile computing.

2013;13(18):1587–1611.

[18] Grobauer B, Walloschek T, Stocker E. Understanding cloud computing vulnerabilities.

IEEE Security & privacy. 2010;9(2):50–57.

[19] Guha R. Impact of semantic web and cloud computing platform on software engineering.

In: Software Engineering Frameworks for the Cloud Computing Paradigm. Springer;

2013. p. 3–24.

[20] Fowler M, Lewis J. Microservices a definition of this new architectural term. URL:

http://martinfowler com/articles/microservices html. 2014;p. 22.

[21] Fowler M. Monolith first (2015); 2017.

[22] Newman S. Building microservices: designing fine-grained systems. ” O’Reilly Media,

Inc.”; 2015.

138

[23] Richards M. Microservices vs. service-oriented architecture. O’Reilly Media; 2015.

[24] Wilde N, Gonen B, El-Sheikh E, Zimmermann A. Approaches to the evolution of SOA

systems. In: Emerging Trends in the Evolution of Service-Oriented and Enterprise

Architectures. Springer; 2016. p. 5–21.

[25] Fox GC, Ishakian V, Muthusamy V, Slominski A. Status of serverless computing and

function-as-a-service (faas) in industry and research. arXiv preprint arXiv:170808028.

2017;.

[26] Adzic G, Chatley R. Serverless computing: economic and architectural impact. In:

Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering.

ACM; 2017. p. 884–889.

[27] AWS Lambda;. Accessed: 2018-09-30. https://aws.amazon.com/lambda/.

[28] IBM Cloud Functions;. Accessed: 2018-09-30. https://www.ibm.com/cloud/

functions.

[29] Google Cloud Functions;. Accessed: 2018-09-30. https://cloud.google.

com/functions/.

[30] Microsoft Azure Functions;. Accessed: 2018-09-30. https://azure.

microsoft.com/en-us/services/functions/.

[31] Jang JSR, Sun CT, Mizutani E. Neuro-fuzzy and soft computing: a computational

approach to learning and machine intelligence. 1997;.

[32] Earl C. The Fuzzy systems handbook. A practitioner’s guide to building, using, and

maintaining fuzzy systems. AP Professional.; 1994.

[33] Kosko B. Neural networks and fuzzy systems: a dynamical systems approach to

machine intelligence/book and disk. Vol 1Prentice hall. 1992;.

[34] Felix G, Nápoles G, Falcon R, Froelich W, Vanhoof K, Bello R. A review on methods

and software for fuzzy cognitive maps. Artificial Intelligence Review. 2017;p. 1–31.

[35] Bueno S, Salmeron JL. Benchmarking main activation functions in fuzzy cognitive

maps. Expert Systems with Applications. 2009;36(3):5221–5229.

139

https://aws.amazon.com/lambda/
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/

[36] Christoforou A, Andreou AS. A framework for static and dynamic analysis of multi-

layer fuzzy cognitive maps. Neurocomputing. 2017;232:133–145.

[37] Mateou NH, Andreou AS. Tree-structured multi-layer fuzzy cognitive maps for mod-

elling large scale, complex problems. In: International Conference on Computational

Intelligence for Modelling, Control and Automation and International Conference on

Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06).

vol. 2. IEEE; 2005. p. 131–139.

[38] Mateou N, Andreou AS, Stylianou C. A new traversing and execution algorithm

for multilayered fuzzy cognitive maps. In: 2008 IEEE International Conference on

Fuzzy Systems (IEEE World Congress on Computational Intelligence). IEEE; 2008. p.

2216–2223.

[39] Papatheocharous E, Trikomitou D, Yiasemis PS, Andreou AS. Cost Modeling and

Estimation in Agile Software Development Environments using Influence Diagrams.

In: ICEIS (3); 2011. p. 117–127.

[40] Howard RA. Readings on the principles and applications of decision analysis. vol. 1.

Strategic Decisions Group; 1983.

[41] Shachter RD. Evaluating influence diagrams. Operations research. 1986;34(6):871–882.

[42] Mateou NH, Hadjiprokopis A, Andreou AS. Fuzzy influence diagrams: an alternative

approach to decision making under uncertainty. In: International Conference on

Computational Intelligence for Modelling, Control and Automation and International

Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-

IAWTIC’06). vol. 1. IEEE; 2005. p. 58–64.

[43] Howard RA, Matheson JE. The principles and applications of decision analysis. Strate-

gic Decisions Group, Palo Alto, CA. 1984;p. 719–762.

[44] Mitchell M. An introduction to genetic algorithms. MIT press; 1998.

[45] Dumitrescu D, Lazzerini B, Jain LC, Dumitrescu A. Evolutionary computation. CRC

press; 2000.

[46] Holland JH, et al. Adaptation in natural and artificial systems: an introductory analysis

with applications to biology, control, and artificial intelligence. MIT press; 1992.

140

[47] Murata T, Ishibuchi H. MOGA: multi-objective genetic algorithms. In: IEEE interna-

tional conference on evolutionary computation. vol. 1; 1995. p. 289–294.

[48] Audet C, Bigeon J, Cartier D, Le Digabel S, Salomon L. Performance indicators in

multiobjective optimization. Optimization Online. 2018;.

[49] Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study

and the strength Pareto approach. IEEE transactions on Evolutionary Computation.

1999;3(4):257–271.

[50] Van Veldhuizen DA, Lamont GB. Multiobjective evolutionary algorithms: Analyzing

the state-of-the-art. Evolutionary computation. 2000;8(2):125–147.

[51] Mateou N, Andreou A, Stylianou C. Evolutionary multilayered fuzzy cognitive maps:

a hybrid system design to handle large-scale, complex, real-world problems. In: 2006

2nd International Conference on Information & Communication Technologies. vol. 1.

IEEE; 2006. p. 1663–1668.

[52] Papageorgiou EI, Salmeron JL. A review of fuzzy cognitive maps research during the

last decade. IEEE Transactions on Fuzzy Systems. 2012;21(1):66–79.

[53] Tsadiras AK, Kouskouvelis I, Margaritis KG. Using fuzzy cognitive maps as a decision

support system for political decisions. In: Panhellenic Conference on Informatics.

Springer; 2001. p. 172–182.

[54] Stylios CD, Georgopoulos VC, Malandraki GA, Chouliara S. Fuzzy cognitive

map architectures for medical decision support systems. Applied Soft Computing.

2008;8(3):1243–1251.

[55] Iakovidis DK, Papageorgiou E. Intuitionistic fuzzy cognitive maps for medical

decision making. IEEE Transactions on Information Technology in Biomedicine.

2010;15(1):100–107.

[56] Wilson RJ. Introduction to Graph Theory. Longman; 1996.

[57] Kosko B. Fuzzy cognitive maps. International journal of man-machine studies.

1986;24(1):65–75.

[58] Howard RA, Matheson JE. Influence diagrams. Decision Analysis. 2005;2(3):127–143.

141

[59] Khajeh-Hosseini A, Greenwood D, Smith JW, Sommerville I. The cloud adoption

toolkit: supporting cloud adoption decisions in the enterprise. Software: Practice and

Experience. 2012;42(4):447–465.

[60] Kim W, Kim SD, Lee E, Lee S. Adoption issues for cloud computing. In: Proceedings

of the 7th International Conference on Advances in Mobile Computing and Multimedia.

ACM; 2009. p. 2–5.

[61] Wu WW. Developing an explorative model for SaaS adoption. Expert systems with

applications. 2011;38(12):15057–15064.

[62] Wu WW. Mining significant factors affecting the adoption of SaaS using the rough set

approach. Journal of Systems and Software. 2011;84(3):435–441.

[63] Wu WW, Lan LW, Lee YT. Exploring decisive factors affecting an organization’s

SaaS adoption: A case study. International Journal of Information Management.

2011;31(6):556–563.

[64] Gabus A, Fontela E. World problems, an invitation to further thought within the

framework of DEMATEL. Battelle Geneva Research Center, Geneva, Switzerland.

1972;p. 1–8.

[65] Menzel M, Ranjan R. CloudGenius: decision support for web server cloud migration.

In: Proceedings of the 21st international conference on World Wide Web. ACM; 2012.

p. 979–988.

[66] Misra SC, Mondal A. Identification of a company’s suitability for the adoption of cloud

computing and modelling its corresponding Return on Investment. Mathematical and

Computer Modelling. 2011;53(3-4):504–521.

[67] Khajeh-Hosseini A, Sommerville I, Bogaerts J, Teregowda P. Decision support tools

for cloud migration in the enterprise. In: 2011 IEEE 4th International Conference on

Cloud Computing. IEEE; 2011. p. 541–548.

[68] Greenwood D, Khajeh-Hosseini A, Smith J, Sommerville I. The cloud adoption toolkit:

Addressing the challenges of cloud adoption in enterprise. Arxiv preprint; 2010.

[69] Andrikopoulos V, Darsow A, Karastoyanova D, Leymann F. CloudDSF–the cloud

decision support framework for application migration. In: European Conference on

Service-Oriented and Cloud Computing. Springer; 2014. p. 1–16.

142

[70] Andrikopoulos V, Strauch S, Leymann F. Decision support for application migration to

the cloud. Proceedings of CLOSER. 2013;13:149–155.

[71] Beserra PV, Camara A, Ximenes R, Albuquerque AB, Mendonça NC. Cloudstep: A

step-by-step decision process to support legacy application migration to the cloud. In:

2012 IEEE 6th international workshop on the maintenance and evolution of service-

oriented and cloud-based systems (MESOCA). IEEE; 2012. p. 7–16.

[72] Tsadiras AK, Margaritis KG. Cognitive mapping and certainty neuron fuzzy cognitive

maps. Information Sciences. 1997;101(1-2):109–130.

[73] Došilović FK, Brčić M, Hlupić N. Explainable artificial intelligence: A survey. In:

2018 41st International convention on information and communication technology,

electronics and microelectronics (MIPRO). IEEE; 2018. p. 0210–0215.

[74] Adadi A, Berrada M. Peeking inside the black-box: A survey on Explainable Artificial

Intelligence (XAI). IEEE Access. 2018;6:52138–52160.

[75] Carvalho DV, Pereira EM, Cardoso JS. Machine Learning Interpretability: A Survey

on Methods and Metrics. Electronics. 2019;8(8):832.

[76] Arrieta AB, Dı́az-Rodrı́guez N, Del Ser J, Bennetot A, Tabik S, Barbado A, et al.

Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and

challenges toward responsible AI. Information Fusion. 2020;58:82–115.

[77] Groumpos PP. Overcoming Intelligently Some of the Drawbacks of Fuzzy Cognitive

Maps. In: 2018 9th International Conference on Information, Intelligence, Systems and

Applications (IISA). IEEE; 2018. p. 1–6.

[78] Eleni V, Petros G. New concerns on fuzzy cognitive maps equation and sigmoid

function. In: 2017 25th Mediterranean Conference on Control and Automation (MED).

IEEE; 2017. p. 1113–1118.

[79] Goldberg DE, Holland JH. Genetic algorithms and machine learning. Machine learning.

1988;3(2):95–99.

[80] Fowler M. Microservices Premium; 2015. Retrieved from: https://

martinfowler.com/bliki/MicroservicePremium.html.

143

https://martinfowler.com/bliki/MicroservicePremium.html
https://martinfowler.com/bliki/MicroservicePremium.html

[81] Zimmermann A, Schmidt R, Sandkuhl K, Jugel D, Bogner J, Möhring M. Decision-

Controlled Digitization Architecture for Internet of Things and Microservices. In:

International Conference on Intelligent Decision Technologies. Springer; 2017. p. 82–

92.

[82] Bass L, Weber I, Zhu L. DevOps: A Software Architect’s Perspective. Addison-Wesley

Professional; 2015.

[83] Baresi L, Guinea S, Leva A, Quattrocchi G. A Discrete-time Feedback Controller for

Containerized Cloud Applications. In: Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering. FSE 2016. ACM;

2016. p. 217–228.

[84] Evans E. Domain-driven design: tackling complexity in the heart of software. Addison-

Wesley Professional; 2004.

[85] Richardson C. Microservices Architectures: Who is using microservices?; 2014. Re-

trieved from: http://microservices.io/articles/whoisusingmicroservices.html.

[86] Taibi D, Lenarduzzi V, Pahl C. Processes, Motivations, and Issues for Migrating to

Microservices Architectures: An Empirical Investigation. IEEE Cloud Computing.

2017 September;4(5):22–32.

[87] Balalaie A, Heydarnoori A, Jamshidi P. Migrating to cloud-native architectures using

microservices: An experience report. In: European Conference on Service-Oriented

and Cloud Computing. Springer; 2015. p. 201–215.

[88] Fowler M. Monolith First; 2015. Retrieved from: http://martinfowler.com/

bliki/MonolithFirst.html.

[89] Kitchenham B. Guidelines for performing systematic literature reviews in software

engineering. In: Technical report, Ver. 2.3 EBSE Technical Report. EBSE. sn; 2007. .

[90] 2017. Scopus; 2017. https://www.scopus.com/search/.

[91] 2017. ScienceDirect; 2017. https://www.sciencedirect.com/.

[92] 2017. Wiley Online Library; 2017. https://onlinelibrary.wiley.com/.

[93] 2017. IEEE Xplore Digital Library; 2017. https://ieeexplore.ieee.org/

Xplore/.

144

http://martinfowler.com/bliki/MonolithFirst.html
http://martinfowler.com/bliki/MonolithFirst.html
https://www.scopus.com/search/
https://www.sciencedirect.com/
https://onlinelibrary.wiley.com/
https://ieeexplore.ieee.org/Xplore/
https://ieeexplore.ieee.org/Xplore/

[94] 2017. Springer Link; 2017. https://link.springer.com/.

[95] 2017. ACM Digital Library; 2017. https://dl.acm.org/.

[96] Wohlin C. Guidelines for snowballing in systematic literature studies and a replication

in software engineering. In: Proceedings of the 18th international conference on

evaluation and assessment in software engineering. ACM; 2014. p. 38.

[97] Pedrycz W. Why triangular membership functions? Fuzzy Sets and Systems.

1994;64(1):21 – 30. Available from: http://www.sciencedirect.com/

science/article/pii/0165011494900035.

[98] Huang Z, Shen Q. A new fuzzy interpolative reasoning method based on center

of gravity. In: The 12th IEEE International Conference on Fuzzy Systems, 2003.

FUZZ’03.. vol. 1. IEEE; 2003. p. 25–30.

[99] Cai X, Lyu MR, Wong KF, Ko R. Component-based software engineering: technologies,

development frameworks, and quality assurance schemes. In: Proceedings Seventh

Asia-Pacific Software Engeering Conference. APSEC 2000. IEEE; 2000. p. 372–379.

[100] Dragoni N, Giallorenzo S, Lafuente AL, Mazzara M, Montesi F, Mustafin R, et al.

Microservices: yesterday, today, and tomorrow. In: Present and ulterior software

engineering. Springer; 2017. p. 195–216.

[101] Rosen M, Lublinsky B, Smith KT, Balcer MJ. Applied SOA: service-oriented architec-

ture and design strategies. John Wiley & Sons; 2012.

[102] Andreou AS, Papatheocharous E. Automatic matching of software component require-

ments using semi-formal specifications and a CBSE ontology. In: 2015 International

Conference on Evaluation of Novel Approaches to Software Engineering (ENASE).

IEEE; 2015. p. 118–128.

[103] Baresi L, Garriga M, De Renzis A. Microservices identification through interface anal-

ysis. In: European Conference on Service-Oriented and Cloud Computing. Springer;

2017. p. 19–33.

[104] Gysel M, Kölbener L, Giersche W, Zimmermann O. Service cutter: A systematic

approach to service decomposition. In: European Conference on Service-Oriented and

Cloud Computing. Springer; 2016. p. 185–200.

145

https://link.springer.com/
https://dl.acm.org/
http://www.sciencedirect.com/science/article/pii/0165011494900035
http://www.sciencedirect.com/science/article/pii/0165011494900035

[105] Levcovitz A, Terra R, Valente MT. Towards a technique for extracting microservices

from monolithic enterprise systems. arXiv preprint arXiv:160503175. 2016;.

[106] Barba L. Computing high-Reynolds number vortical flows: a highly accurate method

with a fully meshless formulation. In: Parallel Computational Fluid Dynamics 2004.

Elsevier; 1996. p. 305–312.

[107] Moghaddam M, Davis JG. Service selection in web service composition: A comparative

review of existing approaches. In: Web Services Foundations. Springer; 2014. p. 321–

346.

[108] Jatoth C, Gangadharan G, Buyya R. Computational intelligence based QoS-aware web

service composition: A systematic literature review. IEEE Transactions on Services

Computing. 2015;10(3):475–492.

[109] Zeginis C, Plexousakis D. Web service adaptation: State of the art and research

challenges. Institute of Computer Science, FORTH-ICS, Heraklion, Crete, Greece,

Tech Rep Technical Report. 2010;410.

[110] Hu W, Jian N, Qu Y, Wang Y. Gmo: A graph matching for ontologies. In: Proceedings

of K-CAP Workshop on Integrating Ontologies; 2005. p. 41–48.

[111] Frappier M, Matwin S, Mili A. Software metrics for predicting maintainability. Software

Metrics Study: Tech Memo. 1994;2.

[112] Zaremski AM, Wing JM. Signature matching: a tool for using software libraries. ACM

Transactions on Software Engineering and Methodology (TOSEM). 1995;4(2):146–

170.

[113] Zaremski AM, Wing JM. Specification matching of software components. ACM

Transactions on Software Engineering and Methodology (TOSEM). 1997;6(4):333–

369.

[114] Baldini I, Castro P, Chang K, Cheng P, Fink S, Ishakian V, et al. Serverless computing:

Current trends and open problems. In: Research Advances in Cloud Computing.

Springer; 2017. p. 1–20.

[115] HoseinyFarahabady M, Taheri J, Tari Z, Zomaya AY. A dynamic resource controller

for a lambda architecture. In: Parallel Processing (ICPP), 2017 46th International

Conference on. IEEE; 2017. p. 332–341.

146

[116] Hoang A. Analysis of microservices and serverless architecture for mobile application

enablement. California State University, Northridge; 2017.

[117] Lee H, Satyam K, Fox G. Evaluation of production serverless computing environments.

In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). IEEE;

2018. p. 442–450.

[118] Lloyd W, Ramesh S, Chinthalapati S, Ly L, Pallickara S. Serverless computing: An

investigation of factors influencing microservice performance. In: Cloud Engineering

(IC2E), 2018 IEEE International Conference on. IEEE; 2018. p. 159–169.

[119] Back T, Andrikopoulos V. Using a Microbenchmark to Compare Function as a Service

Solutions. In: European Conference on Service-Oriented and Cloud Computing.

Springer; 2018. p. 146–160.

[120] Spillner J. Snafu: Function-as-a-service (faas) runtime design and implementation.

arXiv preprint arXiv:170307562. 2017;.

[121] Hong S, Srivastava A, Shambrook W, Dumitras T. Go serverless: securing cloud via

serverless design patterns. In: 10th {USENIX} Workshop on Hot Topics in Cloud

Computing (HotCloud 18). USENIX; 2018. .

[122] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE transactions on evolutionary computation. 2002;6(2):182–

197.

[123] Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-

point-based non dominated sorting approach, part I: Solving problems with box con-

straints. IEEE Trans Evolutionary Computation. 2014;18(4):577–601.

[124] Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary

algorithm. TIK-report. 2001;103.

[125] Riquelme N, Von Lücken C, Baran B. Performance metrics in multi-objective opti-

mization. In: Computing Conference (CLEI), 2015 Latin American. IEEE; 2015. p.

1–11.

147

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF PUBLICATIONS
	Introduction
	Problem Statement
	Research Challenges
	Cloud Adoption
	Microservices Architecture Migration
	Component-Based to Microservices Architecture Migration
	Resource Management on a Function as a Service Environment

	Thesis Structure

	Theoretical and Technical Background
	Software Engineering for Distributed Systems Development
	Software Engineering
	Cloud Computing
	Software Development and Operation on the Cloud
	Microservice Architecture
	Serverless Computing - Function as a Service

	Computational Intelligent Techniques
	Fuzzy Cognitive Maps
	Multi-Layer Fuzzy Cognitive Maps
	Influence Diagrams
	Generic Influence Diagrams
	Fuzzy Influence Diagrams

	Genetic Algorithms
	Multi-Objective Genetic Algorithms

	A Framework for Analyzing Multi-Layer Fuzzy Cognitive Maps
	Introduction
	Literature Overview
	Static Analysis
	Dynamic Analysis
	Stepwise Analysis and Inference Process
	Summary

	Modeling the Cloud Adoption Decision
	Introduction
	Literature Overview
	ID Modeling
	Generic ID
	Experimental Results

	Fuzzy ID
	Experimental Results

	Comparison of the ID Models
	What-if Scenario Simulations

	FCM Modeling
	Single Layer FCM
	Experimental Results
	Extreme Scenarios
	Real-World Scenarios

	Discussion

	Multi Layer FCM
	Experimental Results
	Extreme Scenarios
	Real-World Scenarios

	Discussion of Results
	MLFCM Model Analysis
	Static Analysis
	Dynamic Analysis

	Summary

	A Novel Computational Approach for MLFCM
	Introduction
	Literature Overview
	Computational Approach
	Activation Levels Genetically Evolved MLFCM

	Summary

	Supporting the Decision of Migrating to Microservices Architecture
	Introduction
	Literature Overview
	A Novel MLFCM Model
	Model Construction
	Model Validation and Calibration

	Static and Dynamic Model Analyses
	Static Analysis
	Dynamic Analysis

	Model Application Over a Real-World Case Study
	Summary

	Migration of Software Components to Microservices: Matching and Synthesis
	Introduction
	Literature Overview
	Automatic Specification and Matching of Microservices
	Specification and Matching framework
	Profiling
	Components Decomposition and Microservices Matching
	Component and Microservices Ontology
	Matching Process

	Experimental Process
	Proof of Concept
	Composition Assessment

	Results and Discussion
	Summary

	An Effective Resource Management Approach in a FaaS Environment
	Introduction
	Literature Overview
	Multi-objective Optimization Approach
	Experimental Process
	Experimental Environment
	Exhaustive Algorithm
	Multi-objective Genetic Algorithms

	Results and Discussion
	Assessing MOGAs' Performance Through Quality Indicators

	Summary

	Conclusions and Future Research Steps
	Overview
	A Framework for Analyzing Multi-Layer Fuzzy Cognitive Maps
	Modeling the Cloud Adoption Decision
	A Novel Computational Approach for MLFCM
	Supporting the Decision of Migrating to Microservices Architecture
	Migration of Software Components to Microservices: Matching and Synthesis
	An Effective Resource Management Approach in a FaaS Environment

	REFERENCES

