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ABSTRACT

Several data protection laws include special provisions for protect-

ing personal data relating to religion, health, sexual orientation, and

other sensitive categories. Having a well-defined list of sensitive

categories is sufficient for filing complaints manually, conducting

investigations, and prosecuting cases in courts of law. Data protec-

tion laws, however, do not define explicitly what type of content

falls under each sensitive category. Therefore, it is unclear how to

implement proactive measures such as informing users, blocking

trackers, and filing complaints automatically when users visit sensi-

tive domains. To empower such use cases we turn to the Curlie.org

crowdsourced taxonomy project for drawing training data to build

a text classifier for sensitive URLs. We demonstrate that our clas-

sifier can identify sensitive URLs with accuracy above 88%, and

even recognize specific sensitive categories with accuracy above

90%. We then use our classifier to search for sensitive URLs in a

corpus of 1 Billion URLs collected by the Common Crawl project.

We identify more than 155 millions sensitive URLs in more than 4

million domains. Despite their sensitive nature, more than 30% of

these URLs belong to domains that fail to use HTTPS. Also, in sen-

sitive web pages with third-party cookies, 87% of the third-parties

set at least one persistent cookie.

CCS CONCEPTS

· Security and privacy→ Privacy protections; · Information

systems → World Wide Web; · Networks → Network measure-

ment.
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1 INTRODUCTION

The Web is full of domains in which most people would rather not

to be seen by third-party tracking services. Indeed, being tracked

on a cancer discussion forum, a dating site, or a news site with

non-mainstream political affinity, is at the core of some of the most

fundamental anxieties that several people have about their online
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privacy. Many people visit such sites in incognito mode. This can

provide some privacy in some cases, but it has been shown that

tracking can be performed regardless as was demonstrated in recent

studies [10, 38, 87].

The European General Data Protection Regulation (GDPR) [37]

includes specific clauses that put restrictions on the collection and

processing of sensitive personal data, defined as any data łrevealing

racial or ethnic origin, political opinions, religious or philosophical be-

liefs, or trade union membership, also genetic data, biometric data for

the purpose of uniquely identifying a natural person, data concerning

health or data concerning a natural persons sex life or sexual orienta-

tionž. Other governments and administrations around the world,

e.g., in California (California Consumer Privacy Act (CCPA) [76]),

Canada [63], Israel [79], Japan [65], and Australia [62], are following

similar paths [40, 44].

The above laws are setting the tone regarding the treatment of

sensitive personal data, and provide a legal framework for filing

complaints, conducting investigations, and even pursuing cases in

court. Such measures are rather reactive, i.e., they take effect long

after an incident has occurred. To increase further the protection

of sensitive personal data, proactive measures should also be put in

place. For example, the browser, or an add-on program, can inform

the user whenever he visits URLs pointing to sensitive content.

When on such sites, trackers can be blocked, and complaints can

be automatically filed. Implementing such services hinges on the

ability to automatically classify arbitrary URLs as sensitive and

it cannot be achieved simply by installing the popular AdBlock

extension or visiting the web site in incognito mode, because none

of those solutions checks the actual content of web page.

At the same time, determining what is truly sensitive is easier

said than done. As discussed earlier, legal documents merely pro-

vide a list of sensitive categories, but without any description, or

guidance about how to judge what content falls within each one of

them. This can lead to a fair amount of ambiguity since, for example,

the word łHealthž appears both on web pages about chronic dis-

eases, sexually transmitted diseases, and cancer, but also on pages

about healthy eating, sports, and organic food. For humans it is

easy to disambiguate and recognize that the former are sites about

sensitive content, whereas the latter, not so much. The problem

becomes further exacerbated by the fact that within a web domain,

different sections and individual pages may touch upon very diverse

topics. Therefore, commercial services that assign labels to top level

domains, become inadequate for detecting sensitive URLs that may

appear deeper in these domains. The purpose of this paper is to

demonstrate how to solve the above mentioned ambiguity problem

and to develop an efficient mechanism to evaluate the extent of the

sensitive content on the open Web.
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Our contributions: As with all classification tasks, to train a clas-

sifier for sensitive personal data, one needs a high quality training

set with both sensitive and non sensitive pages. Our first major

contribution is the development of a semi-automated methodology

for compiling such a training set by filtering the Curlie [30] crowd-

sourced web taxonomy project. We develop a novel and scalable

technique that uses category labels and the hierarchical structure

of Curlie to address the core ambiguity challenge. Our carefully

selected training set comprises 156k sensitive URLs. To the best of

our knowledge this is the largest dataset of its type1.

We then consider different classification algorithms and perform

elaborate feature engineering to design a series of classifiers for

detecting sensitive URLs. We examine both meta-data driven clas-

sifiers that use only the URL, title, and meta description of a page,

as well as classifiers that use the text of web pages. We apply our

classifier on the largest publicly available snapshot of the (English

speaking) Web and estimate, for the first time, the percentage of

domains and URLs involving sensitive personal data. Finally, we

look within the identified sensitive web pages and report our pre-

liminary observations regarding the privacy risks of people visiting

these pages.

Our findings:

•We show that classifying URLs as sensitive based on the categories

and content of their corresponding top-level domain is inaccurate.

This means that popular domain classifications services such as

Alexa and SimilarWeb may either fail to identify sensitive URLs

below non-sensitive top level domains, or mis-classify as sensitive,

non-sensitive URLs below a seemingly sensitive top level domain.

This should not come as a surprise, given that such services are

either general purpose, or are optimized for other tasks that have

nothing to do with classifying sensitive content. In essence, DNS-

based blocking/domain blacklisting of sensitive content becomes

ineffective at the URL level.

• On the positive side, we show that Bayesian classifiers based on

word frequency can detect sensitive URLs with an accuracy of at

least 88%. However, meta-data based classification, and text-based

classification with do not seem to perform well. Also, word em-

bedding techniques such as Word2Vec and Doc2Vec yield marginal

benefits for our classification task.

• When it comes to detecting specific sensitive categories, such as

those defined by GDPR: Health, Politics, Religion, Sexual Orienta-

tion, Ethnicity, our classifier achieves a high classification accuracy

as well. For specific categories, such as Health (98%), Politics (92%),

Religion (97%), our classifier achieves an accuracy that exceeds the

basic classification accuracy between sensitive and non-sensitive

URLs (88%).

• Applying our classifier on a Common Crawl snapshot of the

English speaking Web (around 1 Billion URLs), we identify 155

million sensitive URLs in more than 4 million domains. Health,

Religion, and Political Beliefs are the most popular categories with

around 70 millions, 35 millions, and 32 millions URLs respectively.

• Looking among the identified sensitive URLs we reach the conclu-

sion that sensitive URLs are handled as any other URL, without any

1For the benefit of other research efforts in the field, at the following URL we make
publicly available our classifier and the categories we used to train it:
https://bitbucket.org/srdjanmatic/sensitive_web/

special provision for the privacy of users. For example, we show

that 30% of sensitive URLs are hosted in domains that fail to use

HTTPS. Also, in sensitive web pages with third-party cookies, 87%

of the third-parties sets at least one persistent cookie.

2 EXTRACTING TRAINING DATA FROM A
HUMAN-LABELEDWEB TAXONOMY

The starting point for the creation of any classifier is a solid training

set. This is a compelling requirement to understand the extent

of the content related to sensitive personal data on the Web. In

such case, the training set should be of high quality, well assorted

and large to allow the classifier to deal with a wide range of web

pages. Unfortunately, to the best of our knowledge, such a dataset

is not readily available. In this section we explain how we built

the training set for our classifier using hundreds of thousands of

carefully selected URLs.

2.1 Limitations of Existing Commercial
Taxonomy Services

Previous work relied on security solutions from vendors such as

McAfee [53] and Symantec [78] to categorize URLs [8, 73, 75]. Most

of these services are focused on fighting malware, and, therefore,

their taxonomy includes a limited number of generic labels which

categorize Effective Second Level Domains (ESLDs). Alexa [11]

and SimilarWeb [74] are other extremely popular, but non security-

oriented, solutions that characterize web sites at the domain level.

An inherent limitation of all those approaches is that the service

cannot accurately categorize subdomains that are used for differ-

ent purposes than the original ESLD. In particular scenarios this

might not be an issue, especially if a web site is homogeneous in

terms of content, or when the objective is to characterize just the

domain [69]. An example are web sites labeled as pornography

where the majority of web pages actually contains pornographic

material [45].

On the contrary, when the objective is to characterize individual

web pages, all of the above services start having problems. This

is especially true for web sites such as news portals and blogging

services, that include diverse and non-homogeneous content. Limi-

tations are further exacerbated when the categories of interest are

sensitive ones. In such cases commercial services have low coverage

and, even when they do, they still suffer from the ambiguity prob-

lem mentioned earlier. For example, in the Alexa top domains for

Health, we find the US National Institute of health and UN World

Health Organization in the top two positions. Looking at top-20

entries, we find also several fitness related web sites in the list. Be-

ing tracked while visiting such domains is probably less worrisome

than when the domain relates to cancer or HIV treatment.

In addition to the coverage and ambiguity, another possible

source of problems are the labels that services use. On one side

those labels could be few and generic, without the ability to provide

additional details (e.g., sub-categories). On the other, commercial

services typically lack transparency in terms of how they assign

labels to domains. Even in scenarios where such issues are not a lim-

itation, oftentimes commercial services offer expensive APIs which

are made available only to a small and targeted elite. This translates

in an audience which is composed exclusively of advertisers that
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The Web

1,525,865 URLs

344,227 categories

5,100 keywords

48,042 categories

265,588 URLs

Crowd-sourcing

Manual

Automated

The Sensitive Web

Automated + Manual

Classification

Automated

Curlie

Common Crawl

301 sensitive

keywords

Figure 1: From Web to Sensitive Web. Mixing and matching

crowd-sourcing with automated and manual filtering to cre-

ate the largest ever training set for sensitive content classi-

fiers.

want to make sure their ads are placed in appropriate contexts [2]

or to proprietary solutions that work only when content is served

through a specific platform [3].

2.2 The Curlie Dataset

To overcome the limitations described above, we choose to build our

training set by selecting sensitive URLs from Curlie [30], the largest

publicly available taxonomy of web pages. In the following sections

we provide details about Curlie, its content and our methodology

for distinguishing sensitive from non-sensitive web pages. Figure 1

illustrates how we blend crowd-sourcing (done by Curlie) with

automated and a manual steps (done by us) on the łthin-waistž of

an overall methodology that can identify the sensitive part of the

Web (Section. 4). The manual step at the łthin-waistž of the overall

process needs to be performed only once to identify (un-ambiguous)

GDPR-sensitive categories that can then be used repeatedly to draw

from the Curlie truly sensitive URLs.

What is it? Curlie is an open source project and the successor of

DMOZ, a community-based effort to categorize popular web pages

across the Internet [88]. Thanks to the collaboration of 92,000 ed-

itors that manually evaluate and organize web pages [29], Curlie

represents one of largest human-edited directories of the Web. Edi-

tors join Curlie by applying to edit a category that corresponds to

their interests, and each editor is responsible for reviewing submis-

sions to the categories she is in charge. New editors are initially

allowed to edit only a few categories, but once they have accumu-

lated a sufficient number of edits they are allowed to edit additional

areas. Community senior editors are responsible for evaluating

new editors’ applications in a transparent process that assures high

quality labeling of URLs [29]. Curlie contains 3.3 millions annotated

web pages, that cover 1 million different categories organized as

a hierarchical ontology. At the top of the hierarchy there are the

15 top-categories visible at https://curlie.org, with the addition of a

16th, not listed, Adult category. Each one of the top-categories is

further divided into sub-categories that provide additional granu-

larity up to maximum depth of 14 nested layers.

Why we chose it? We chose Curlie for several reasons. First, unlike

Alexa and SimilarWeb, it categorizes full URLs instead of just ESLDs.

Second, the number of its categories is several orders of magnitude

greater than those used by analogous commercial solutions [31, 91].

Third, the organization of the dataset in a hierarchical ontology

allows us to efficiently navigate through the category tree and

extract all the URLs that belong to a particular category. Finally,

access to Curlie is free and not subject to any rate limitation.

Data collection. In March 2017 Curlie stopped redistributing weekly

RDF2 dumps, and, therefore, we created a crawler to download

the most recent information [27, 28, 84]. We focus only on English

content and thus, our crawler is seeded with the paths of the top-

categories visible at https://curlie.org/en. For each seed path, the

crawler performs a depth-first search to collect all the URLs included

under that particular branch. It is common that a sub-category

contains links to another sub-category on a completely different

branch, and the crawler keeps track of all the processed categories

to avoid entering loops. After completing the crawling, we collected

1,525,865 URLs that belong to 344,227 categories.

Characterizing the collected data. By inspecting how the URLs are

spread across the top-categories, we notice that half of the collected

URL belongs to Regional. This is a meta-category that acts as aggre-

gator and groups other top-categories while providing information

at the regional or country level. The remaining 15 top-categories are

relatively balanced, with an average of 58,600 URLs per category.

The only exceptions are Adult and News that contain less than

10,000 elements each. Such layout confirms that Curlie editors have

a wide range of interests, and that the collected dataset contains

enough variety for building a well assorted training set.

Next, we investigate the dataset coverage in terms of different

web sites from which the URLs are sampled. We characterize web

sites through their Fully Qualified Domain Name (FQDN), and

across the entire dataset we observe 1,137,997 unique FQDNs. On

average, each FQDN is represented by 1.3 URLs, but this distribution

is extremely skewed and only 4% of FQDNs have two or more URLs.

This small set of web sites contributes with 431,707 URLs, which

corresponds to approximately one third of the entire dataset. This is

a potential problem, because if we train the classifier with content

obtained from a limited number of web sites, we run the risk of

ending up with an over-fitted classifier that will not generalize

well to unknown domains. To test if our dataset contains enough

variety, we manually inspect the top-100 FQDNs in terms of overall

number of URLs associated to them. Collectively, such web sites

account for 10.4% of all the Curlie URLs, and each one of the top-32

contributors hasmore than 1,000 unique URLs. In Table 1 we include

the top-10 FQDNs. The values in the second column show that those

FQDNs are associated to thousands of categories, which in turn

cover the vast majority of Curlie top-categories (third column). In

the last column we point out services that allow users to participate

in the creation of new content. Common examples are services

where users can build their own web site (e.g., www.angelfire.com

2RDF or Resource Description Framework is a family of World Wide Web Consor-
tium specifications for conceptual description or modeling of information that is
implemented in web resources, e.g. URLs.
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Table 1: Top-10 FQDNs contributing with the largest num-

ber of URLs. For each domain we report the total number

of categories and top-categories associated to it. A ✔in the

last column indicates thatmultiple users are allowed to con-

tribute with the creation of new content.

FQDN # URLs # Cat. # Top-Cat. Multi-user

www.angelfire.com 19,918 12,970 16 ✔

en.wikipedia.org 15,070 14,026 15 ✔

www.newadvent.org 11,658 1,828 6 -
www.imdb.com 10,112 10,020 9 ✔

www.weather.com 5,737 5,752 2 -
groups.yahoo.com 5,350 3,245 14 ✔

members.tripod.com 4,731 4,044 16 ✔

wunderground.com 3,929 3,918 4 -
www.facebook.com 3,435 2,833 15 ✔

tools.ietf.org 3,196 99 4 ✔

Table 2: Unique categories and top-categories associated to

FQDNs and ESLDs with two or more URLs.

Cat. Top-Cats.

# Categories FQDNs ESLDs FQDNs ESLDs

1 2,307 1,622 18,772 14,260

2 17,683 13,278 17,325 13,709

3 8,779 6,933 4,672 3,717

4 4,232 3,347 1,500 1,259

5+ 10,838 9,375 1,570 1,610

and members.tripod.com) or they are encouraged to contribute by

adding comments and documents on a particular topic (e.g., www.

imdb.com and tools.ietf.org). A third dominant category which is

not visible in Table 1, are news websites that account for 20% of the

top-100 FQDNs. In such case, the content creators are the numerous

journalists and editors. In general, those three types of service are

extremely popular and 84% of the top-100 FQDNs belongs to one

of them. The remaining 16 FQDNs are specialized services offering

information on aviation, plants and hotels. After isolating the URLs

associated with these 16 FQDNs, we observe that they account only

for 1.4% of the dataset, and thus their impact on the training set

can only be marginal.

As final assessment we study the differences among per-URL and

per-domain categorization. Our goal is to understand the possible

benefits of having categories assigned to individual URLs instead

of using a the same category for all the elements under an ESLD.

To this end, for all the FQDNs associated to two or more URLs, we

extract the corresponding ESLDs as well as the overall number of

categories assigned to those domains. The results of this process

are shown in Table 2. When we use full category names only 5% of

all the URLs under a particular FQDNs or ESLDs belong to the same

category. This is somehow expected since Curlie has more than

340,000 extremely fine-grained categories. These values change

significantly if we adopt a more coarse-grained grouping, using

the top-categories; in this case 42% of the URLs under a particular

domain belong to the same category. Despite having only 16 top-

categories, and even if they include extremely generic types such

as Society or Regional, still 18% of the domains are flagged with

at least three different top-category names. Those results suggest

that any commercial solution that uses a unique category for all

the URLs under the same ESLD, in 58% of the cases would erro-

neously categorize at least one of the URLs. Our analysis on Curlie

demonstrates that the collected dataset (i) contains enough variety

for building a well-assorted training set, and (ii) offers significant

advantages compared to commercial solutions. In the next section

we explain how we leverage this dataset to create the training set

for our classifier.

2.3 Building the Classifier Training Set

Using the Article 9 of GDPR we define five sensitive categories

that include Ethnicity, Health, Political Beliefs, Religion and Sexual

Orientation. According to GDPR, the collection and processing of

information about any of these categories should be subjected to

special rules [36]. Our goal is to create a classifier that can identify

web pages that belong to those five sensitive categories. To this

end, we first identify the Curlie categories that are related to the 5

sensitive categories under GDPR, and then we collect the resulting

URLs from Curlie. Finally, we download the content associated to

those URLs and use it as training set for our classifier.

Identifying sensitive categories. Curlie contains hundreds of thou-

sands of categories and, thus, we cannot simply inspect them man-

ually to determine which ones meet the requirements for being

considered sensitive. We cannot leverage the organization of cat-

egories into a hierarchy, because we do not know the maximum

depth at which to stop the exploration without missing elements

contained in deeper branches (e.g., the category Regional/United_

States/Illinois/Localities/C/Chicago might seem not rele-

vant to health without knowing that it contains a sub-branch called

Addictions). Finally, as we do not have a list of descriptive key-

words associated to each category, we cannot either select URLs

by looking in the web pages for those keywords. It is extremely

challenging to craft such a list because the keywords we might

choose might not be representative for the Curlie dataset. For ex-

ample, a lookup of the łLGBTž across the Curlie dataset, generates

a set of 240 URLs, while searching for the keyword łgayž selects

3,873 URLs. By using our own list we incur in the risk of including

many ambiguous keywords (e.g., łvirusž) that characterize both

sensitive and non-sensitive content, or others that are too specific

(e.g., łHIVž). In both cases the consequence of the inability to in-

clude enough elements for particular categories, would result in a

significant loss in performance or even the impossibility to use the

classifier on other datasets.

We develop a technique that extracts structured knowledge from

the Curlie dataset, see Figure 1, and we use it to generate our train-

ing set. Our approach leverages the names that Curlie editors choose

for their categories to detect relevance with sensitive categories. In

detail, we first create a list of all the keywords included in the names

of the Curlie categories. Next, by selecting all the categories that con-

tain a particular keyword, we associate a keyword to the list of URLs

under those categories. For example, let’s assume that the dataset

contains only three categories Health, Health/Addictions/Food

and Health/Animals/Food with respectively 3, 100 and 20 URLs.

In such case, the list with the counting of the URLs associated to

each keyword would be: (Health, 123), (Addictions, 100), (Food,

120), (Animals, 20).

622



Identifying Sensitive URLs at Web-Scale IMC ’20, October 27–29, 2020, Virtual Event, USA

Ethnicity 37 20 8 10 12

Political

Beliefs
20 14 9 12

Religion 76 12 7 9 12

Sexual

Orient.
9 7 15 12

0 20 40 60 80 100 120
# of keywords

#Sensitive Categories:

Health 107 4 7 124

1-cat. 2-cat. 3-cat. 4-cat. 5-cat.

Figure 2: Sensitive categories and corresponding set of key-

words. For each set of keywords, we report how many other

sensitive categories might be associated to this same set.

After applying this process on the entire Curlie dataset, we ob-

tain a set of 110,475 unique keywords. Next, we manually inspect

those keywords to identify those that could be could be potentially

associated to sensitive categories. For this process we restrict the

focus on a subset of 5,1000 most representative keywords, which

are associated to at least 100 URLs. Moreover, we apply a greedy

approach and we include as many generic keywords as possible

(e.g., łHealthž) while discarding only those that are unlikely to

be associated with any sensitive content (e.g., łAnimalsž). At the

end of this analysis, we generate a set of 301 carefully selected

keywords which we annotate with all of the sensitive categories

that could be connected to them. Some keywords are extremely

specific (e.g., łJudaismž), while others could be linked to multiple

sensitive categories (e.g., łCommunitiesž). In the final step, weman-

ually inspect 48,042 the Curlie categories where the 301 keywords

appear, and we verify if they are indeed sensitive. When a Curlie

category is confirmed to be sensitive, all the URLs contained under

this category are added to the corresponding GDPR sensitive cate-

gory. This is a slow and time-consuming activity, but is necessary

to ensure that all the URLs are included in the correct category.

Furthermore, this manual step needs to be done only once, and we

can then re-draw URLs from Curlie with high confidence that they

will indeed be sensitive. For some elements we were able to assess

the sensitivity of the URLs by leveraging only the keyword that

appears in the category name (e.g., all the URLs under the 553 cate-

gories that embed the łLocal_Churchesž keyword). In other cases,

we inspected the structure of the Curlie categories together with

the location of the keyword. For example, of the 13,299 categories

that include the łHealthž keyword, 4,927 were under the łRegionalž

top-category and łHealthž always appeared as final sub-category

(e.g., Regional/Asia/India/Punjab/Health). After checking a

few dozen samples, in all those cases the URLs were pointing to

local services or clinics and we label all the URLs under those 4,927

categories as health-related. To facilitate the analysis, we use several

tricks including: sorting alphabetically the categories, leveraging

the information from sub-categories, checking URLs strings and

web page content. As side effect of the manual validation, all the

URLs in categories that are not sensitive are included into a sixth

Non-sensitive category.

Table 3: Content retrieved from the URLs of our training set,

grouped into the GDPR sensitive categories.

GDPR Cat. #URLs GDPR Cat. #URLs

Ethnicity 9,547 Health 59,025

Pol. Beliefs 15,668 Religion 68,625

Sex. Orientation 3,924 Non-sensitive 64,923

Figure 2 shows how representative the 301 keywords are for each

sensitive category. With respect to the specificity of the keywords,

we notice that in general 249 of the keywords (the red boxes in

the figure) are unambiguous and they uniquely identify only one

category. This is the case of łLocal_Churchesž or łMarxismž, which

immediately recall to the sensitive categories łReligionž and łPolit-

ical Beliefsž. Generic terms such as łClubs_and_Associationsž or

łOrganizationsž, that can be related to several sensitive categories,

appear to be rare and account only for 4% of all the keywords. Not

all of the sensitive categories have an equal number of keywords

and some categories are less represented. Moreover, categories such

as Ethnicity, Political Beliefs and Sexual Orientation also contain

higher percentage of generic keywords which can be associated to

multiple sensitive categories (the non-red boxes in Figure 2). A di-

rect consequence is that these sensitive categories are less likely to

generate many candidates for the corresponding Curlie categories.

At the end of the validation process, we are left with 265,558 URLs,

each one tagged with at least one GDPR-sensitive category, drawn

from 48,042 Curlie categories.

2.4 Final Labeled Dataset

After successfully mapping the GDPR sensitive categories on the

Curlie dataset, we use the labeled URLs to download the content

to train our classifier. As first step, we filter out all the URLs that

received more than one sensitive category as label. Since those

multi-category URLs will not be used to create the training set we

can avoid download the corresponding content. Next, we connect

to each URL from four different locations, two in Europe and two

in US, to maximize the likelihood of obtaining the content. We

also apply a mechanism to detect the presence of error pages, to

avoid training the classifier with spurious content. To this end, from

each web site associated to a URL, we download also a randomly

generated resource. The intuition behind this is that a request to

a non-existing resource will likely return an error page. We build

a list of hashes for the error pages, and we filter any content that

results being an error page. After this step, we generate a dataset

with 221,712 web pages that we use to train our classifier. The

dataset contains the five sensitive categories defined by GDPR, as

well as a sixth non-sensitive category. In this additional category

we include all web pages that our manual validation confirm that

do not belong to anyone of the five GDPR-sensitive categories. Table 3

shows the GDPR categories and the number of URLs associated

to each category; each URL belongs to only one GDPR category.

Health and Religion are the sensitive categories with the highest

number of URLs.
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3 BUILDING A CLASSIFIER FOR SENSITIVE
WEB PAGES

In this section we describe how we build an accurate classifier for

identifying sensitive web pages. Our objective is not to propose a

new text classification method, but rather combine existing work

in the area [12, 89] in the best possible manner for our goal.

3.1 Designing the Classifier

To develop the classifier we test different options for the algorithm,

the data preprocessing step, and the feature selection.

Classification algorithms. There is a wide range of popular algo-

rithms that are suitable for classifying web pages. Examples are

K-Nearest-Neighbors [19, 41, 49], Naïve Bayes [32, 33, 48], Sup-

port Vector Machines [21, 22, 77, 90], Decision Trees [35, 80, 85],

Neural Networks [42, 56] and different variations [59], maximum

entropy [23, 49]. Given the scope of this work, we choose the Naïve

Bayes classification algorithm for the reasons explained in Sec-

tion 3.2.

Input data. The input dataset consists of the Curlie web pages

identified using the approach outlined in Section 2.4. As first step,

we exclude from the HTML code any non-visible element (i.e.,

JavaScript, CSS, etc.) except for the HTML <META> tag. Note that

the <META> tags include a short list of keywords describing the

page content. We extract all the text from the visible content, we

call this input source łweb page contentž (C). Similarly, we refer to

the content obtained from the <META> tag as łmeta-dataž (M).

Data preprocessing. We apply standard text preprocessing steps on

both the web page content and the meta-data. Such steps include (1)

the transformation of all letters in lower case and (2) the removal of

stop words. In addition (3) we also impose a minimum word length

to three letters, numbers, or any combination of the two; and (4)

we remove content with less than 1,000 characters.

Feature engineering. With respect to feature engineering, we test a

wide variety of algorithms. Due to space limitations, in Section 3.3

we present only the results for the three algorithms with the best

performances.

3.2 Selecting and Training the Classifier

Our classifier has to be applied at Web scale while efficiently detect-

ing web pages that belong the five sensitive categories as defined

by GDPR. To this end, we choose a multinomial Naïve Bayes algo-

rithm, because it allows us to train a single supervised classifier

that can predict multiple classes. Our choice is based on several

reasons. First, it has a simple and easy training and classification

stages [77]. Second, it is a fast learning algorithm that can handle

large numbers of features and classes [21, 55]. Third, the algorithm

was already tested with good results on older versions of Curlie

for a multiclass web page classification purposes [64]. Fourth, the

algorithm showed comparable, and, in some cases, better perfor-

mance than other classifiers [9, 81]. Finally, several off-the-shelf

implementations are publicly available, making it easier for other

researchers to reproduce and validate our results.

We train the classifier using the training set described in Section 2.4.

Such set contains 221,712 web pages, with the corresponding GDPR

category as label. From each web page we extract both the human-

readable text and the meta-data information. Next, we filter the

content by applying the preprocessing steps described in Section 3.1.

This procedure generates a final set of 218,696 URLs with content.

Finally we use Bag-of-Words (BoW), Term Frequency-Inverse Doc-

ument Frequency (TF-IDF) and Word2Vec [60] & Doc2Vec [50] to

extract the features.

Bag-of-Words (BoW) [46] is a popular Information Retrieval (IR)

technique that represents texts as a multiset of words. When such

technique is applied, the classifier disregards grammar rules, but

keeps track only of the word multiplicity (i.e., the number of occur-

rences of a word within a single document or a corpus).

Term Frequency-Inverse Document Frequency (TF-IDF) [72]

is a popular IR numerical statistic which captures the importance

of a word within a document. The TF-IDF value increases propor-

tionally to the occurrences of the word within a document, and

inversely proportionally to its frequency across other documents.

Word2Vec & Doc2Vec [50, 60] are word embedding techniques

that take into consideration both the semantic meaning and the

order of words with in a given text. Word2Vec is generally applied

at the paragraph level, while Doc2Vec uses information obtained

from the entire document. In our case the documents are web pages

contents, and we leverage word embedding to extract the keywords

that are used to train the classifier. It can be used as an intermediary

stage in our case to extract key words and use them as features

during the training phase of the classification algorithm.

For all three feature extractions algorithms that we test above, we

keep all hyperparameters to their default value as defined by each

corresponding Python library, that includes, BoW [5] and TF-IDF [6]

from the sklearn (ver. 0.21.3 [7]), and Doc2Vec from gensim (Ver.

3.8.1 [4]) library. In the next section we discuss the results of each

algorithm and we explain the additional optimizations we apply.

3.3 Classification Accuracy and Optimizations

Classification accuracy is defined as the percentage score, from 0%

(lowest) to 100% (the highest), that a classifier can accurately assign

items (pages) to their correct category. The accuracy is influenced

both by the choice of the input data and by the algorithm used

to extract the features. To identify the combination of input data

and the algorithm that leads to the highest accuracy, we start by

restricting the set of feature only to 5k elements. We then apply

each algorithm, using as input data the web page content, the meta-

data, but also their combination. During this process, we reserve

70% of the input for the training phase and the remaining 30% for

testing. To avoid any bias, we also repeat our experiments using

10-fold validation obtaining consistent results.

Feature selection. Table 4 shows the accuracy for different com-

binations of the input data and the algorithms using 5k features.

When we use only web page content (C), the average accuracy

of the three algorithms is around 81%. TF-IDF and Doc2Vec ob-

tain nearly identical results, while the accuracy for BoW is slightly

lower, around 78.5%. When the input is only the meta-data (M),

the accuracy drops for two out of the three algorithms. In the case

of Doc2Vec, the accuracy is just above 56% if we use meta-data

as input. This result is a direct consequence of how the Doc2Vec

algorithm works, because it leverages full sentences to capture the
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Table 4: Classification accuracy using 5k features and all the

possible combinations of input data and algorithms to ex-

tract the features.

Feature Engineering

Feature Source BoW TF-IDF Doc2Vec

Content (C) 78.48% 82.17% 82.34%

Meta-data (M) 78.55% 79.62% 56.51%

C + M 79.90% 83.33% 82.77%

Table 5: The top-10 features that the classifier uses to deter-

mine the category of each web page.

Rank Health Ethnicity Religion Sexual Political Non-

Orientation Beliefs sensitive

1 Health Genealogy Church Sex Election Club

2 Care Family Catholic Gay Party Association

3 Dental County God Porn State Home

4 Medical Tree Worship Material District Members

5 Services History Bible Adult Democratic Events

6 Treatment Records Sunday Fetish Democrats News

7 Patients Indian Christ Escorts Senate Membership

8 Surgery Genealogical Christian Sexual Political Contact

9 Therapy American Jesus Lesbian Government Read

10 Dentistry Native Ministry Nude Republican Society

semantic relevance between adjacent words. Most of the times the

meta-data tag contains a list of keywords, in random order, that

describe the page content. Moreover, the same keyword can appear

in multiple uncorrelated lists across different web pages. The last

row of the table depicts the results for the combination of the two

different input data (C+M). In this scenario, we achieve the highest

accuracy when we extract features using the TF-IDF algorithm.

When we compare those results with the classifier that uses only

web page content, we observe that across all the feature extraction

algorithms we have an average increment of 1% in accuracy. We

chose TF-IDF on input data C+M as baseline for our evaluation and

refer to it as baseline classifier.

Feature sets. To understand the classifier robustness, for each class

we sort the 5k feature vector and we check what are the features

that received the highest weights. In Table 5, we list the top-10

features across the six different categories. We observe that for

each one of the five sensitive categories the top-10 most important

features are well suited to characterize the category. In the case

of Ethnicity we notice some bias toward Indian Americans; and a

similar behavior appears also with terms related to Christianity

in the Religion category. We attribute such bias to the fact that

from the Curlie dataset we extract only English content, that are

associated to the Western culture and more specifically United

States. Similarly, in the Non-sensitive category we see mainly terms

linked to organizations and social activities. Also in this case, the

result could be explained if we consider the Curlie dataset from the

perspective of the top-level categories, as we did in Section 2. We

attribute this bias to the fact that 80% of the web pages originate

from the largest Curlie top-level categories, namely Regional, Art,

Society and Business. Those four top-categories can be easily

connected with the 10 most representative terms that the classifier

associates to the Non-sensitive category.
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Figure 3: Confusion matrix of the baseline classifier.

Accuracy of individual categories. Figure 3 presents the confusion

matrix that visually summarizes the classification accuracy for each

sensitive category. The rows of the confusion matrix contain the

instances of a specific class, and columns represent the prediction of

the classifier. Shades on cells indicates the percentage of elements

that are predicted belonging to a particular class: white cells indi-

cate lower percentage values, darker cells higher ones. In an ideal

confusion matrix, all the cells are white except for the elements on

the main diagonal, which are all black. In such case, the classifier

always predicts the correct label for all of the input elements. In

our matrix we observe darker cells only for half of the categories

(i.e., Non-sensitive, Political Beliefs and Religion). In the remain-

ing three cases, the lighter coloration suggests that the instances

are spread among the correct and at least another class, typically

the Non-sensitive. This is particularly evident in the first column

that contains the highest concentration of gray cells. Such trend

indicates that all the five sensitive categories, with different degrees,

have some elements that get mis-labeled as Non-sensitive. We also

observe a small percentage, around 11%, of Non-sensitive web pages

that occasionally get labeled either as Health or Religion. The fact

that the majority of the mis-classifications are localized on the first

column, can be more, or less damaging, depending on the particular

use case. For example, since our goal is to build a framework that

can detect sensitive web pages across the Web, we can use this

kind of classifier to derive a conservative estimation on the number

of URLs and domains hosting sensitive content. In a similar use

case, the law enforcement agencies might leverage this classifier,

combined with third-party detection tools and methodologies, (see

[43]) to check GDPR compliance for a large number of web pages.

In such case the penalty is much higher if instead of just missing

some elements, the analyst has to manually go through tens of thou-

sands of web pages with legitimate content erroneously marked

as sensitive. Our results also show that the mis-classification of

non-sensitive web pages to sensitive categories is low, which is a

desired outcome as we do not want to penalize non-sensitive web

pages.

3.4 Balancing the Classifier

Up to this point all the presented results have been produced by

applying the baseline classifier and using the dataset discussed
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Table 6: The number of Curlie web pages used per classi-

fier. łInitialž: baseline classifier , łFinalž: balanced classifier ,

łAddedž: additional URLs included after applying baseline

classifier on the URLs in Unknown set.

URLs

GDPR Cat. Initial Added Final

Ethnicity 9,399 + 4,710 14,109

Health 58,533 + 16,231 74,764

Pol. Beliefs 15,543 + 21,646 37,189

Religion 67,593 + 23,541 91,134

Sex. Orientation 3,651 + 248 3,899

Non-sensitive 63,977 + 157,118 221,095

Unknown 1,060,077 - 223,494 836,583

in Section 3.2. In this section, we explain how to improve both

accuracy and coverage by adding more variety to the training set.

Table 6 offers a detailed overview of the contributions of each

category, after applying the preprocessing steps discussed in Sec-

tion 3.1. The vast majority of the web pages belong to the Unknown

category, that includes URLs from Curlie categories that we did not

manually validate. For this reason we cannot use them to test our

classifier. Since our manual validation technique was specifically

designed for identifying sensitive web pages, we were able to cover

only 17% of all the Curlie URLs. At the same time, since we want

to deploy the classifier on the Web, we would like to train it on a

dataset that is as large as possible. In addition, our original training

set contains unequal proportions of sensitive and non-sensitive

web pages. This stems from the fact that the initial dataset is build

leveraging the 301 łpotentially sensitive keywordsž, and then fol-

lowing the technique outlined in Section 2.3. Because of this, the

sensitive elements outnumber the non-sensitive ones by a factor

of 2.4. Having the majority of web pages be sensitive, can lead

to over-fitting and poor performance over different sets of web

pages. This is particularly true for a Naïve Bayes classifier, which

is known to have performance problems with datasets involving

unbalanced classes [47]. To overcome these problems, we train a

second classifier using the same ratio of sensitive and non-sensitive

elements. To create such a balanced training set, we first run our

baseline classifier on the web pages that we did not validate manu-

ally (those with the Unknown label). From the 1,060,077 Unknown

URLs we extract elements that we use to augment each individual

category, and at the same time, balance the ratio between sensitive

and non-sensitive ones. A detailed overview of the URLs that are

included in each category is available in Table 6. In Appendix A we

provide additional details on how we extract sensitive URLs from

the Unknown elements and how we validate their correctness.

The final łbalancedž dataset contains 442,190 web pages, equally

split among sensitive and non-sensitive ones. Using this dataset,

we train a second classifier, that we will henceforth call balanced

classifier. Figure 4 presents the confusion matrix for this balanced

classifier and Table 7 reports the percentage values of each cell of

the confusion matrix alongside the Precision, Recall and F1 scores
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Figure 4: Confusion matrix of the balanced classifier.

for each individual class (Last three columns from left to right). We

observe several benefits compared to the same matrix build for the

baseline classifier (Figure 3). First, the overall accuracy increases

by 5.2%. Second, only 6.2% of all the non-sensitive web pages are

occasionally labeled as sensitive. Third, the number of web pages

related to Political Beliefs that are mislabeled as non-sensitive drops

by half (from 21.9% to 11.7%). In the Sexual Orientation category,

the amount of web pages now considered non-sensitive increases

by 11.6%, which corresponds to a total of 173 new elements that

pass undetected. Given that Political Beliefs set is ten times bigger

than Sexual Orientation, the benefits for the former outweigh the

penalties for the latter. For the three remaining categories, the

percentages remain consistent with those obtained using the base-

line classifier. It is also worth noticing that the mis-classification of

non-sensitive web pages to sensitive categories decreases by 8.4%

with the new classifier. Nevertheless, for the Sexual Orientation

and Ethnicity classes, the F1 score remains low at 0.55 and 0.73,

respectively (Table 7 - last column)

3.5 Sensitivity to the Number of Features

In Figure 5 we report several performance metrics obtained by

gradually increasing the size of the feature vector of the balanced

classifier. We include the overall accuracy, the precision and recall

for each category, as well as their combination (F1 score). With

respect to the accuracy, we observe a marginal increase up to 1%

when we configure the classifier to use larger feature vectors. Such

increase is monotonic when using vectors with less than 10k fea-

tures, and stabilizes after the vector size has reached 30k elements.

For vectors with more than 30k elements the overall accuracy starts

gradually dropping following a trend that is inverse to the num-

ber of features that are used. For the majority of the categories,

increasing the size of the feature vector has positive effects both

on the precision and the recall. The main category in which we

observe a significant drop for both statistics is Sexual Orientation.

This category contains the smallest number of samples, and when

the feature vector becomes very large (i.e., more than 20k elements)

the classifier starts over-fitting causing negative impact on the re-

call. A similar behavior is observed for Ethnicity, where increasing

the number of feature improves the precision, but it affects nega-

tively the recall. Both those groups contain a significantly smaller
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Table 7: Quantitative results of the balanced classifier depicted in Figure 4.

Non-sensitive Ethnicity Health Political Beliefs Religion Sexual Orientation Precision Recall F1-Score

Non-sensitive 93.8% 0.4% 3.3% 0.8% 1.3% 0.4% 0.87 0.94 0.90

Ethnicity 32.5% 62.5% 0.5% 1.1% 3.3% 0.001% 0.86 0.63 0.73

Health 15.3% 0.001% 83.2% 0.3% 1.2% 0.001% 0.88 0.83 0.85

Political Beliefs 11.7% 0.5% 0.5% 86.5% 0.8% 0.001% 0.93 0.87 0.90

Religion 10.7% 0.2% 1.0% 0.3% 87.8% 0.001% 0.94 0.88 0.91

Sexual Orientation 44.1% 0.0% 6.0% 1.7% 2.0% 46.3% 0.68 0.46 0.55
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Figure 5: Accuracy, precision, recall and F1 scores Vs. num-

ber of features for the balanced classifier.

number of samples compared to other categories. This unbalance

is reflected in the scores of the macro- and micro-average. Micro-

average obtains much better results thanks to the fact that larger

categories such as Non-sensitive, Health and Religion have much

higher precision compared to those with fewer samples.

To select the most appropriate length of the feature vector, we

turn to the F1 scores. Using larger vectors, up to 30k features, gen-

erally benefits the overall scores (both micro- and macro-weights

increase). Unfortunately this behavior is limited only to categories

with a higher number of samples. The recall for Ethnicity drops

below 60% for vectors with more than 20k features, and in the case

of Sexual Orientation the peak value is observed when vectors con-

tain less than 20k elements. In an attempt to find the ideal trade-off

among the six categories, we decide to use a feature vector with 20k

elements. We choose such value because it is very close to the peak

value for four of the largest categories. In addition, such choice

allow us to maximize the overall accuracy, while not sacrificing the

recall in categories with fewer samples.
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Figure 6: The micro and macro-average AUC using the ba-

lanced classifier and the corresponding breakdown per cate-

gory.

In Figure 6 we plot the Area Under the Curve (AUC) for the

balanced classifier as well as the AUC values for each individual

sensitive category. The AUC depicts the performance of the classifi-

cation model at all classification thresholds (cut points), as opposed

to the overall accuracy that is based on a specific threshold, and can

provide an aggregate measure of performance across all possible

classification thresholds. We observe that the micro- and macro-

average AUC values are 0.98 and 0.97 respectively. With respect to

the individual categories, we observe that the lower AUC value at

0.95 belongs to the category Ethnicity followed by Non-sensitive at

0.96. Sexual Orientation is at 0.97 and Health at 0.98. Finally, Politi-

cal Belief and Religion show equal AUC value at 0.99. Our analysis

shows that the balanced classifier achieves very high accuracy. For

the rest of the paper we will use this classifier to analyze corpuses

of the Web to identify sensitive web pages.

4 SEARCHING FOR SENSITIVE WEB PAGES
IN THE WILD

We leverage our classifier to investigate the popularity of sensitive

content across the open Web, and we analyze the privacy and

security practices associated to this type of content. To perform

our study we use data obtained from a service with more than a

decade of experience in crawling the Web. In the following sections

we provide an overview of the dataset, we share our experience in

classifying Billions of web pages, we evaluate the extent of sensitive

web pages and we report potential privacy issues for the users

accessing this type of content. Our analysis identifies around 155
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Table 8: English-only web pages in the Common Crawl Oc-

tober 2019 snapshot after excluding duplicates, error pages

and content with less than 1,000 characters.

URLs FQDNs ESLDs

HTTP 276,876,278 6,561,287 5,286,123

HTTPS 709,263,254 8,005,488 6,294,040

HTTP+HTTPS - 540,230 586,622

Homepages 9,148,978 9,148,978 7,827,525

Total 986,139,532 15,107,005 12,166,785

million sensitive URLs in more than 4 million domains, with Health,

Religion, and Political Beliefs to be the top-3 sensitive categories.

4.1 The Common Crawl Dataset

Common Crawl is a nonprofit organization that maintains an open

repository ofWeb crawl data [25]. The project was launched in 2007

and since then it periodically releases all the collected information

in the form of monthly snapshots. All the data is made publicly

available and a single snapshot contains more than 3 Billions of

web pages [26].

Common Crawl October 2019 corpus. Each corpus (or snapshot) con-

tains a list of URLs and corresponding web pages, with the addition

of metadata about crawling. This information is packaged in the

Web ARChive (WARC) format, combining the raw HTML content

together with the HTTP headers fetched from servers. As alterna-

tive, users can choose the WET archives that contain only plain

text extracted from the raw crawls, once HTML tags are removed.

Since our classifier works with web page content, we speed up

the analysis by downloading the WET archives for the October

2019 snapshot. Before starting to classify content, we leverage the

Common Crawl language annotations [24] to identify documents

written in English language. We also apply a preprocessing similar

to the one used for the Curlie dataset, to remove extremely short

documents and error pages.

In Table 8 we present an overview of the October 2019 snapshot,

after applying our preprocessing steps. The dataset contains almost

1 Billion web pages in English, collected from 15,107,005 different

web sites (column FQDN). For 60.5% of the visited web sites the

crawler successfully downloaded the homepage. Almost 72% of the

pages were downloaded through HTTPS and the vast majority of

web sites was accessed using a single protocol; only a small fraction

of 3.4% of FQDNs was accessed both with HTTP and HTTPS. From

60% of the FQDNs the crawler collected at most ten URLs, and in

30% of the cases a web site is represented only through a single

URL. However, the distribution has a long tail and 115,084 FQDNs

in the snapshot contribute with more than 1,000 URLs each.

To check the popularity of the domains that are included in the

snapshot, we use the list from the Tranco project [66]. Such list

aggregates the ranks from four widely used services which provide

daily updated lists of popular domains. We use the Tranco list

generated on the 31 October 20193 which covers the same period

when the Common Crawl snapshot was created. By comparing

the two sets of domains, we notice that 475,637 of the FQDNs that

3https://tranco-list.eu/list/5XQN/1000000

Table 9: Classifier results on the October 2019 snapshot. We

report the percentage of URLs in each category and the

FQDNs associated to those URLs. In the last column we re-

port the FQDNs where all the URLs belong to that category.

Category % URLs # FQDNs % URLs # Ded. FQDNs

Ethnicity 0.52 112,300 0.03 12,935

Health 7.1 2,782,416 1.78 922,242

Pol. Beliefs 3.28 686,733 0.17 95,848

Religion 3.59 1,228,243 0.75 329,575

Sexual Or. 1.29 214,011 0.55 86,345

Non-sensitive 84.22 13,605,876 38.11 10,853,118

Mixed 58.28 2,752,758

appear in the snapshot are also included in the Tranco list of the

1 million most popular domains. This confirms that the Common

Crawl project collects information from well know and popular

web sites, together with other services which have less visibility.

Classifying the Common Crawl corpus. The 3 Billion web pages of

the October 2019 snapshot are partitioned into 56k zipped archives,

totaling 10 Terabytes of disk space. To classify the snapshot we

used a mid-level server with 30 cores and 192 GB or memory. To

make sure that I/O operations on the hard drive don not become a

bottleneck, we developed a framework with a dispatcher module

that coordinates a pool of workers that dynamically process the

files. The dispatcher iterates over all the archives, loads them in

memory in their uncompressed format, and assigns each pointer in

memory to a worker. The worker extracts the file, removes error

pages, non-English documents and any content with less than 1,000

characters. In the final step, all the contents that are not filtered

out receive a probability score for each one of the six categories

presented in Section 3. As soon as the worker finishes processing

a file, it contacts the dispatcher which replies with the next file

to be processed. To classify the entire October 2019 snapshot our

framework took ≈86 hours. After the classification, we manually

assessed the classifier accuracy by sampling around one hundred

URLs for each category and verified that the average accuracy of

the classifier was above 90%.

4.2 Analysis of the October 2019 Corpus

Table 9 shows the breakdown of classified pages into different cat-

egories. For each category, we report all the URLs with a specific

label and the FQDNs associated to those URLs. In the third column

we include only the subset of URLs that belong to dedicated FQDNs.

We use this term to refer to FQDNs in which all of their web pages

belong to the same category. Similarly, in the Mixed category we

include only FQDNs that at the same time served both sensitive and

non-sensitive content. Each of those FQDNs contains at least two

URLs: one sensitive and another non-sensitive. Across all the cate-

gories, the URLs are reported as a percentage of the 986,139,532 web

pages contained in the snapshot. Unsurprisingly, the vast major-

ity of elements in the snapshot is non-sensitive, whereas sensitive

pages account only for 15.78% of the URLs. Such value is very close

to the 17.29% of sensitive content that our balanced classifier de-

tected in the Curlie dataset. Within the sensitive categories the
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Figure 7: Cumulative Distribution Function with the per-

centages of web pages with sensitive content across the

FQDNs with mixed content.

highest number of labels originates for Health (70 millions), fol-

lowed by Religion (35 millions) and Political Beliefs (32 millions). By

comparing the percentages of URLs in the second and third column,

we notice that Sexual Orientation and Health are the categories

with the highest concentration of URLs hosted on dedicated FQDNs.

This suggests that pages related to these categories are much more

likely to identify websites where the majority of the web pages deal

with similar topics. The exact opposite happens for Ethnicity and

Political Beliefs, in which URLs are spread across a wide range of

FQDNs with different content. Overall, we found sensitive content

among 28% of the 15 millions domains included in the snapshot and

at least one sensitive URL in 97% of FQDNs included in the Tranco

list of popular domains. The 2,75 million FQDNs with mixed sensi-

tive and non-sensitive elements are responsible for 58.28% of the

snapshot content, which confirms that black-listing (white-listing)

web pages based solely on FQDNs is bound to produce lots of false

negatives (positives).

Mixed category. To determine how pervasive sensitive content is

across this category we split the 2.75 millions FQDNs into web

sites for which the homepage was available in the snapshot, and

those for which it was not. In case the homepage was included, we

further group FQDNs into those with sensitive and non-sensitive

homepages. Figure 7 depicts the percentage of sensitive elements

across the three groups of FQDNs. The largest group is one with

FQDNs with a non-sensitive homepage, and half of those FQDNS

contain at most 10% of sensitive URLs. Only a small fraction of

FQDNs, around 9%, have more than half of their content labeled

as sensitive. We observe the exact opposite trend in FQDNs that

have a sensitive homepage where half of the FQDNs have more

than 70% of their URLs labeled as sensitive. A possible explanation

is that sensitive web sites usually refer to a smaller set of topics

than generic, non-sensitive, ones. For example, in presence of a

homepage promoting religion or discussing a particular disease it

is extremely likely that other web pages on the web site will be

addressing the same subject. For FQDNs where the homepage was

not available in the snapshot, the percentage of sensitive content is

an average of the other two cases. Overall, we notice that around

half of the FQDNs with mixed content at most 20% of their URLs

labeled as potentially sensitive, and that in presence of a homepage

marked as sensitive such percentage goes up to 70%. Those results
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Figure 8: Protocol adoption for the URLs associated to the

eight categories in Table 9.

suggest that if a sensitive URLs has been identified, it is likely that

the web site will be hosting additional sensitive web pages.

Categories and protocols.We investigate possible correlations among

sensitive categories and the choice of the protocol that is used to

serve the content. To this end we compare dedicated and non-

dedicated FQDNs serving URLs that belong to each sensitive cate-

gory. The results of this analysis are presented in Figure 8. Across

all the categories the relative percentage of URLs offered through

HTTP is always higher on dedicated FQDNs. An explanation could

be that in presence of dedicated FQDNs we analyze fewer domains

and for this reason we are not able to observe the global picture. An-

other possible source of the bias could be related to the hyperlinks

that the crawler followed and the method that was used to fetch the

URLs. With those caveats, we observe that all sensitive categories

exhibit a similar behavior which differs from the non-sensitive and

mixed FQDNs. All sensitive categories excluding Health, seem to

choose HTTP as preferred protocol and in the case of Ethnicity

and Sexual Orientation nearly half of the content is offered over

HTTP. Even if those results are enough to draw a strong correlation

among the category and the protocol, they suggest that owners of

dedicated web sites do not seem to put special efforts in protecting

access to potentially sensitive content, and that those URLs are

handled like any other URL.

4.3 Preliminary Observations on the State of
the Sensitive Web

We conclude our analysis with a study on cookie usage across the

categories. Similarly as we did for protocols, our goal is to under-

stand the way different categories handle cookies, and to check

if some categories adopt stricter policies. To this end we use the

categories from Table 9 and from each dedicated FQDN we sam-

ple up to 5 URLs. In total we select 700,000 URLs and we visit

them with a framework that leverages a fully-fledged browser [57].

For each page we wait 60 seconds, and we do not perform any

action, mimicking a new user that accesses the web page for the

first time without giving consent for the installation of cookies.

The experiments were performed during the first months of 2020

from two different locations, one in Germany an a second one in
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Figure 9: Cookie usage across FQDNs with homogeneous

content. We group elements using the categories of Table 8

and at the top of each bar we indicate the FQDNs sampled

within each category.

United Kingdom. We choose those two locations to make sure that

GDPR applies and that we receive the minimum amount of cookies.

After a web page has finished loading, we use the CookieCheck

tool [54] to identify persistent cookies originating from third-party

trackers. For both the notions of persistence and tracker we use the

same definitions of [54]. The results for the analysis of cookies are

shown in Figure 9. We identify fewer third-parties, around 49%,

compared to the 75% reported in [54] that analyzed a set of popular

web sites. We observe smaller variations in the relative percentages

of third-party cookies across the sensitive categories, while in the

mixed group the distribution is more uniform. Independently from

the their origin, and across all the categories, web sites tend to use

persistent cookies with an expiration time that exceeds one month.

Around 71.5% of the sampled URLs sets at least one persistent cookie

without user’s consent. In the subset of persistent third-party track-

ers, Sexual Orientation and Political Beliefs have twice the amount

of cookies than the other sensitive categories. On the other hand,

we observe also some trends indicating that web site administrators

with content have started taking steps to protect the privacy of their

users. First, the percentage of web sites that do not set any cookie is

higher for sensitive categories compared to the other ones. Second

Ethnicity, Health and Religion have the lowest amount of persistent

third-party trackers across all the categories. Web sites that belong

to those categories use less cookies than FQDNs with mixed or

non-sensitive content. We conclude that even if the amount of per-

sistent third-party trackers appears to be smaller on some sensitive

categories, still 71.5% of URLs sets persistent cookies with no prior

consent from the user. More than half of such cookies originate

from third-parties, and only 13% of the third-parties does not use

persistent cookies.

Overall, our results make the conclusion that sensitive content is

widely spread, but it is handled similarly as any other URL, without

any special provision for the privacy of users. More than 30% of

sensitive URLs are hosted in domains that fail to use HTTPS, and

Table 10: The proposed solutions related to this work and

their corresponding key features.

Proprietary
Sensitive

Coverage

Granularity

Level

Scientific

literature

This work No Yes URL

Mayers et al. [58] No Partial Not available

Wills et al. [86] No Partial URL

Razaghpanah et al. [68] No Partial Mobile apps

Carrascosa et al. [20] No Partial Ads

Iordanou et al. [43] No Yes Domain

Reyes et al. [71] No Partial Mobile apps

Commercial

Services

Alexa.com [11] Yes Partial Domain

SimilarWeb [74] Yes Partial Domain

McAfee LLC [53] Yes Partial URL

Symantec [78] Yes Partial URL

zvelo [91] Yes Partial URLs

cyren [31] Yes Partial URLs

Google [39] Yes Partial
Domain /

Partial URL

when third-party cookies are set, in 87% of the cases at least one

cookie is persistent.

5 RELATED WORK

In Section 2.1 we discussed the limitations of commercial taxonomy

services (see also Table 10). In this section we focus on the small,

but recently growing literature on sensitive domains, and their

relationship with Web tracking. Studies like [20, 43, 58, 68, 86]

are mostly about tracking, but include sections on sensitive topics

usually to demonstrate that tracking happens even on such domains.

These works have none of the breadth of our study. Typically they

look at a limited number of hand-picked sensitive domains to detect

trackers.

Some recent papers are dedicated to studying tracking in par-

ticular types of sensitive domains, such as pornographic sites [82],

sites for minors [71] (falling under COPPA [1] jurisdiction), or in

Facebook [18, 61]. Again, our main difference with these works

is that they are mostly addressing the issue of who is tracking on

such domains, whereas we are concerned with how to find domains

of interest, and more importantly, individual URLs. To the best of

our knowledge, our work is the only one devoted to developing

classifiers which can detect multiple sensitive categories at the URL

level. Also, the only one to construct a training-set with more than

100k sensitive URLs, and to detect sensitive domains on the entire

Web instead of in a particular platform [61].

The literature on tracker detection is extensive [13ś15, 34, 51,

52, 67, 70, 83]. We focus on how to find sensitive URLs in the wild,

and we present only a very preliminary analysis of security and

privacy issues on such web sites. Looking at who is present and

what information is being collected is beyond the scope of this work

and part of our future work.

Web-domain and text classification are active research areas

upon which we draw tools like TF-IDF [72] and BoW [46] for fea-

ture engineering, and Naïve Bayes algorithm [9] for classification.

Our contribution is more on how we combine together techniques

rather on improving a specific approach. Curlie.org [30] is an ideal

taxonomy for finding large lists of sensitive domains efficiently via

a mix of automated and manual steps, as we did in this work. The
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methodology that we presented in this paper is generic enough

that such commercial labeled databases can also be used to develop

classifiers to detect sensitive web sites. Our work also shows that

relatively easy to implement classifiers are sufficient to identify

sensitive web sites, e.g., according to the GDPR. Moreover, web site

text classification increases in importance as web pages and con-

tent become increasingly dynamic. URL-based topic classification

techniques that used to work well in the past [16, 17], will fail to

classify dynamic web sites with sensitive content.

6 CONCLUSION

In this paper, we show how to develop a first of its kind classifier

for identifying URLs that point to sensitive content according to

Article 9 of GDPR. Being tracked on such sites may allow trackers

to make inferences about one’s health, sexual preference, political

beliefs etc. Independently of the legal dimension of thematter, being

able to identify such URLs programmatically in real time, opens up

the road for additional proactive measures such as warning users,

blocking third-parties, or even automatically filing complaints.

Training a classifier that can do this for any page on the Web

is a daunting task. The training set needs to be large and diverse

enough. This precludes using as training set any hand picked set

of terms or web pages. Even if one could do this, ambiguities in

the use of terms like Health, in both sensitive and non-sensitive

contexts, would break the attempt. Instead, we used as training

set a filtered subset of the largest open source taxonomy of the

Web curated by human editors. This, in conjunction with careful

algorithm design, feature selection, and tuning has allowed the best

of our classifiers to achieve a binary classification accuracy of close

to 90% and even detect individual sensitive categories with higher

accuracy, e.g., Health (98%), Politics (92%), Religion (97%). We have

used our classifier to search for sensitive URLs in the largest publicly

available snapshot of the English speaking Web from October 2019.

Our analysis of this corpus shows that a good 15.8% of the URLs

are sensitive, whereas a 28% of the domains contain at least one

sensitive URL. Looking at this set of domains and URLs we notice

questionable practices such using HTTP instead of HTTPS, and we

detect lots of persistent and third-party cookies.

In our future work we intend to analyses the identity and the

methods used by third-parties on the more than 155 million sensi-

tive URLs that we have detected. We also intend to design efficient

white-/black-listing methods to avoid having to perform per-URL

classification. Our initial results indicate that performing this at

domain level would create lots of false positives and negatives, since

many sensitive URLs are under top-level domains that seem non-

sensitive (and vice versa). We also intend to examine crowdsourced

approaches and federated learning techniques for distributing both

the collection of (re)training sets and the (re)execution of training

algorithms.
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APPENDIX

A EXTRACTING SENSITIVE URLS FROM
UNKNOWN ELEMENTS

In order to include more samples in each category we first classify

all the Unknown elements using the baseline classifier. Since the

overall number of categories in our classifier is six, the minimum

prediction probability needed in order to assign a class for a given

URL is ≈ 0.17, assuming that the URL content is diverse enough to

cover all the categories. Nevertheless, if a given URL shows biases

towards only two classes the prediction probability can climb up to

0.5. In order to avoid polluting our dataset with mis-classified URLs

we set a minimum threshold on the prediction probability for all

sensitive categories to be above 0.5. Note that during our analysis

the lower prediction probability that we observe for the sensitive

categories was equal among all of them at ≈ 0.3.

In the case of the Non-sensitive category, we include the top

157,118 URLs to balance the ratio between sensitive and non-sensitive

URLs based on their prediction probability. In this case, since the

number of URLs belonging to the Non-sensitive category is bounded

by the total number of URLs that we need for balancing the ratio be-

tween sensitive and non-sensitive, the lower prediction probability

that we observe for the included URLs was 0.97.

The second column of Table 6 reports the new elements that are

added to each category. Despite our attempt to keep the categories

balanced, we were unable to achieve an equal split among the five

sensitive categories. On one side, for extremely generic categories

such as Ethnicity, we had hard times finding those elements even

in our manually validated ground truth. On the other side, Curlie is

a community-driven project focused on detecting a wide range of

different topics, it might simply lack samples for specific categories

(e.g., Sexual Orientation). The column łFinalž shows the overall

number of URLs that were included in this expanded version of our

training dataset that we use to build the balanced classifier.

To confirm that the samples that were added to each category are

correctly classified, we sampled 100 elements from each category

and manually validated the categorization. Our investigation shows

that more than 90% of the elements were correctly labeled.
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