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Abstract: In this paper, we propose an algebraic model for turbulent scalar-flux vector that stems from
tensor representation theory. The resulting closure contains direct dependence on mean velocity gradients
and quadratic products of the Reynolds stress tensor. Model coefficients are determined from Direct
Numerical Simulations (DNS) data of homogeneous shear flows subjected to arbitrary mean scalar
gradient orientations, while a correction function was applied at one model coefficient based on a
turbulent channel flow case. Model performance is evaluated in Poiseuille and Couette flows at several
Reynolds numbers for Pr = 0.7, along with a case at a higher Prandtl number (Pr = 7.0) that typically
occurs in water–boundary interaction applications. Overall, the proposed model provides promising
results for wide near-wall interaction applications. To put the performance of the proposed model into
context, we compare with Younis algebraic model, which is known to provide reasonable predictions for
several engineering flows.

Keywords: scalar-flux; RANS; algebraic model; channel flows; high Reynolds numbers

1. Introduction

Reynolds-Averaged Navier–Stokes (RANS) and Large Eddy Simulations (LES) approaches are today
widely used in engineering applications for predicting the dynamics and scalar transfer of turbulent flows.
Both approaches have existed for a long time and will remain useful for understanding several industrial
configurations for several decades, playing different roles. In a LES, the larger scales in a flow are computed
explicitly, but the effect of the smaller unresolved scales is modeled. The basic ingredient of LES modeling
is a model for the sub-grid dynamics in terms of the resolved velocity field: a so-called eddy-viscosity
model. An important example of an eddy-viscosity model for LES is the classical Smagorinsky model [1].
The Smagorinsky model gives good results for homogeneous isotropic turbulence, but removes too much
kinetic energy from laminar and transitional flows. Minimum-dissipation eddy-viscosity models are a
class of sub-filter models for large-eddy simulation that give the minimum eddy dissipation required to
dissipate the energy of sub-filter scales. A class of minimum-dissipation that has many desirable properties
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is the QR model [2]. In particular, this model is based on the invariants of the resolved rate-of-strain
tensor, it appropriately switches off for laminar and transitional flows, has low computational complexity,
and is consistent with the exact sub-filter tensor on isotropic grids. A generalization of the QR model
to anisotropic grids, called anisotropic minimum-dissipation (AMD) model, has been also proposed,
which also does not require an approximation of the filter width [3]. Another subgrid-scale stress model
that is economical in adding eddy dissipation is Nicoud’s sigma models [4]. This closure has the elegant
property to automatically vanish as soon as the resolved field is either two-dimensional or two-component,
including the pure shear and solid rotation cases. Further considerations on minimizing eddy viscosity
by means of invariants can be found in [5,6], whereas a good summary of low-dissipation models can be
found in Rozema et al. [7].

An alternative way of modeling turbulence is by means of Reynolds averaging the Navier–Stokes
equations. In contrast to LES, in RANS all turbulent flow scales are being modeled. The present study
focuses on developing a RANS-based model for the turbulent scalar-flux vector. Turbulent scalar-flux
vector appears in the Reynolds-averaged scalar transport equations as a term that needs to be modeled
so that closure is achieved. An elegant choice is the development of engineering models with aim
to provide estimations of this quantity at low computational complexity. Engineering models for the
scalar-flux are classified into two categories: differential and algebraic. Differential transport models
(DTM) are proven to be beneficial tools, being capable of handling rotational and curvature effects.
However, robustness issues and performance inconsistencies, combined with computational overheads
associated with the solution of a differential transport equation for each scalar-flux component, prevent this
class of models from penetrating further into the mainstream of engineering practice. On the other hand,
algebraic approaches are based on assumptions that lead to constitutive equations between turbulent
statistics and mean deformation. The simplest algebraic model is based on the gradient diffusion
hypothesis (GDH), which assumes that turbulent scalar-flux is aligned to the mean scalar gradient.
Despite its implementational and computational elegance, this assumption is an important reason why this
model fails to capture important flow features, such as turbulence anisotropy or the effects of mean and
system rotation. As a result, [8] proposed a generalization of GDH (GGDH) from which several algebraic
closures have emerged. For example, [9] adopted scale functions to express the turbulent scalar-flux
vector as a product between Reynolds stress and mean scalar-gradient, allowing the misalignment of the
scalar-fluxes with the mean scalar deformation. However, this expression is found to perform poorly on
predicting the correct magnitudes of scalar-flux components in the directions normal to the mean scalar
gradient. [10] improved the performance of the GGDH model by adding a nonlinear term that contains
quadratic products of the Reynolds stress tensor, which correctly captures the inclination levels of the
scalar-flux components in the vicinity of wall boundaries. This addition resulted in the construction of
Higher-Order GGDH models (HO-GGDH), which were successfully applied in a wide range of channel
flows. Another interesting approach is to derive algebraic expressions directly from the exact transport
equation of turbulent scalar-flux through equilibrium assumptions. A common choice is to apply the
weak-equilibrium assumption (WEA), proposed in [11], which states that the transient variations of
turbulent anisotropies are negligible compared to the variation of turbulent scales. To some extent,
these models are considered to be a good alternative to DTM, as they have been successfully applied in
different flow configurations while requiring less computational capacity [12–14].

An alternative approach for estimating the turbulent scalar-fluxes was proposed by [15]. Using as
guidance the exact scalar-flux transport equation, Younis and coworkers expressed this quantity as a
function of several tensor quantities. This approach is elegant, as it avoids the reduction of transport
equations through the WEA with all the modeling uncertainties that entails. It also provides a general
framework, from which different algebraic expressions can be obtained. They proposed a multi-linear
closure that exhibited distinct improvements over other algebraic scalar-flux closures for benchmark
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cases, for example two-dimensional free shear flows and configurations involving curvature effects ([16]).
However, the linear nature of this specific closure is the main reason why it fails to capture the proper
near-wall misalignment levels of scalar-flux vector, thus revealing the importance of incorporating
nonlinear information regarding turbulence anisotropy. Therefore, in this study we propose an algebraic
model that stems directly from the Younis formulation and involves products of the Reynolds stress tensor,
a dependence missing from the multi-linear model. Special attention is given so that model complexity is
kept minimal for ease implementation in existing industrial codes, while its performance ability is tested
on several Couette and Poiseuille flows at a wide range of Reynolds numbers and a Prandtl number equal
to 0.7 and 7.0. The former Pr number is encountered in aerodynamic applications, whereas the latter
number typically occurs in marine applications and water-boundary interaction.

A description of the exact transport equations of the turbulent passive-scalar fluxes along with an
extensive summary of the Younis approach are given in Section 2 with the motivation behind the use of
a nonlinear term involving products of Reynolds stress given in Section 3. The proposed formulation is
discussed in Section 4 and the performance of this closure is evaluated in Section 5, yielding encouraging
results. Summary and conclusions are given in Section 6.

2. Younis’ Formulation

The motivation behind the work reported by [15] arose from the need to provide a better alternative to
the existing gradient-transport closures for the turbulent scalar-fluxes. As a starting point, they considered
the exact transport equation of the following fluxes,

∂u′iφ
′

∂t
+ uj

∂u′iφ
′

∂xj
=− u′iu

′
j

∂φ

∂xj
− u′jφ

′ ∂ui
∂xj
− (γ + ν)

∂φ′

∂xj

∂u′i
∂xj

− 1
ρ

p′
∂φ′

∂xi
− ∂

∂xj

(
u′iu
′
jφ
′ +

1
ρ

p′φ′δij − γu′i
∂φ′

∂xj
− νφ′

∂u′i
∂xj

)
,

(1)

where the instantaneous flow variables are decomposed into a mean part, denoted by overbar, and a
fluctuating part, denoted by prime symbol. Hereafter, we are using index notation whereby repeated
indexes imply summation. The coefficient of fluid viscosity and the coefficient of scalar diffusivity
are denoted by ν and γ, respectively, ρ is the density of the fluid and ui, φ are the instantaneous fluid
velocity and passive scalar fields, respectively. The fluctuating pressure is denoted with p′. The first
and second terms on the RHS of Equation (1) represent the generation of scalar-flux as a consequence of
turbulence-mean deformation interactions. The third term refers to the rate at which the scalar-flux is
destructed, while the fourth term refers to the fluctuating pressure-scalar correlations and is responsible
for the redistribution of the flux among the different components. The last term is interpreted as the
turbulent-transport term. [15] used Equation (1) as a guide to provide a rationally assumed relationship
between the scalar-flux vector and various tensor quantities,

u′iφ
′ = fi

(
Rij, Sij, Ωij, Λi, ε, εφ, φ

′2
)

, (2)

where Rij = u′iu
′
j is the Reynolds stress tensor, ε is the energy dissipation rate, εφ is half the scalar

dissipation rate, and φ
′2 is the scalar-variance. Sij, Ωij, and Λi denote the mean strain rate tensor, the mean

vorticity tensor, and the mean scalar gradient vector, respectively, defined as
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)
, Ωij =
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2
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∂ui
∂xj
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∂uj
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)
, Λi =

∂φ

∂xi
. (3)
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With the aid of tensor representation theory, Younis et al. constructed an explicit model for u′iφ
′ in

accordance with Equation (2). Under this approach, u′iφ
′ can be expressed as a series of basis vectors Υi,

u′iφ
′ =

M

∑
n=1

αnΥn
i , (4)

where αn can depend on all the tensor variables appearing in Equation (2). The basis vectors are formed
from the products of the symmetric (Sij, Rij), the skew-symmetric (Ωij) tensor and the vector (Λi), leading to
the following algebraic expression.

u′iφ
′ = α1Λi + α2RijΛj + α3SijΛj + α4RikRkjΛj + α5SikSkjΛj + α6ΩijΛj

+ α7ΩikΩkjΛj + α8

(
SikΩkj + SjkΩki

)
Λj + α9

(
RikSkj + RjkSki

)
Λj

+ α10

(
RikΩkj + RjkΩki

)
Λj .

(5)

To bring the above expression into a more compact form, [15] assumed sufficiently small anisotropies
and turbulent time scales. Further assuming that the effects of Sij and Ωij are in balance, results to the
following multi-linear expression,

u′iφ
′ = C1

κ2

ε
Λi + C2

κ

ε
RijΛj + C3

κ3

ε2 GijΛj + C4
κ2

ε2

(
RikGjk + RjkGik

)
Λj ,

Gij = Sij + Ωij ,
(6)

where κ = Rkk/2 is the turbulent kinetic energy, while the αi coefficients were replaced based on
dimensional arguments. The first term on the RHS of Equation (6) represents the GDH, while the
second term coincides with the production term that appears in Equation (1) and is associated with the
mean scalar deformation, also known as the Generalized Gradient Diffusion Hypothesis (GGDH) model
proposed in [9]. The remaining two terms involve products between the gradients of mean scalar and
mean velocity a dependence proposed by the analyses of the works in [17,18]. The values of Ci coefficients
were determined based on the LES results of [19] for homogeneous flows subjected to a uniform shear
with uniform scalar gradients

C1 = 0.0455 , C2 = −0.373 , C3 = 0.00373 , C4 = 0.0235 . (7)

Regarding inhomogeneous flows, detailed analysis of the model performance in relation to data from
a large number of studies on wall-bounded flows showed a serious error in the normal flux component [16].
For example, the normal component of (6) takes the following form for flat-wall flows

u′2φ′ = (C1κ + C2R22)
κ

ε
Λ2. (8)

Using DNS data [20] for a fully-developed turbulent channel flow, it can be seen that

C1κ + C2R22 > 0 , (9)

near the wall (0 < y+ < 24). Using the above expression into Equation (8) incorrectly predicts that u′2φ′

and Λ2 have the same sign. As a result, the value of C1 coefficient was modified in the near-wall region by
applying the following damping function,
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C1 = 0.0455 fC1 , fC1 = 1− exp(−A β Peα), Pe = Pr Ret , (10)

where α = −0.02 and β = 1.9 are the values proposed in [21], Pr = ν/γ is the Prandtl number, Ret =
κ2

νε is
the turbulence Reynolds number, and A is the stress-flatness parameter, defined as

Aij =
Rij

κ
− 2

3
δij , A2 = Aij Aji , A3 = Aij Ajk Aki ,

A = 1− 9
8
(A2 − A3) ,

(11)

where A2 and A3 are the second and third invariants of the normalized Reynolds-stress anisotropic tensor
Aij. More details regarding the mathematical formulation can be found in [16]. As already mentioned in
the introduction, the linear form of Younis closure is an important reason why this closure exhibits certain
limitations. For example, it fails to capture the near-wall relative magnitudes between the scalar-flux
components. In the following section we discuss the importance of incorporating a term that contains
nonlinear information regarding the turbulent anisotropy, vital to predict the proper near-wall behavior.

3. Quadratic Dependence on Reynolds Stress

It is well known that models involving only the second term of Equation (6) cannot predict the streamwise
scalar-flux component reasonably well [22]. In an attempt to extend their applicability, [23] performed a
series of LES simulations for fully developed turbulent channel flows under different boundary conditions
and for a wide range of Prandtl numbers. They relied on the findings of [24], who pointed out that scalar
fluctuations are correlated more strongly with streamwise than transverse velocity fluctuations in the
near-wall region, to propose an algebraic relation between the turbulent scalar-flux vector and quadratic
products of Reynolds stress tensor:

u′iφ
′ = −Cφτ

(RikRkj

κ

)
Λj , (12)

where τ is a turbulent time scale and Cφ is a model coefficient. In wall-bounded channel flows where
statistical quantities are functions only of the wall-distance, the above expression approaches the following
near-wall limit,

Ru′φ′ ≡
u′2φ′

u′1φ′
=

R2
12 + R2

22
(R11 + R22)R12

→ R12

R11
, (13)

where subscripts 1, 2, and 3 are, respectively, the streamwise, wall-normal, and spanwise directions.
[23] also observed that the correlation between φ′ and u′2 relatively increases with the decrease of Pr,
reaching almost the same level as that between φ′ and u′1 for Pr = 0.025. As a result, they recommended
that an effective algebraic scalar-flux model should depend both on linear and quadratic forms of Reynolds
stress, written as

u′iφ
′ = −κτ

(
Cφ,1

Rij

κ
+ Cφ,2

RikRkj

κ2

)
Λj , (14)

where Cφ,1 and Cφ,2 are model coefficients. These coefficients should be determined so that the
nonlinear term in Equation (14) becomes dominant in regions of high deformation rates, while the
linear term becomes significant in the presence of weak strain rates, as well as in low Prandtl numbers.
Hence, the present study aims to propose an algebraic model based on Younis general form (5) that
involves the nonlinear term, and validate its performance in different channel flows.
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4. Proposed Formulation

In this section, we introduce the proposed model, which is essentially a combination between the
multi-linear model of Younis (6) and the functional form proposed by Abe and Suga (14), thus incorporating
nonlinear information regarding turbulence anisotropy. Special attention is given to keep the model as
simple as possible so that it can be easily implemented in existing industrial codes. This is achieved by
investigating the contribution of each term appearing in the above equations in an attempt to propose a
minimal combination of these terms that is able to provide reasonable predictions. We chose to neglect the
C1-related term by assuming that information regarding this term is partly included in the isotropic part
of the second term of Equation (6). We have also excluded the term associated with C4, even though its
inclusion could provide additional flexibility, for the following reasons. First, this term cannot induce the
proper near-wall anisotropy levels of the scalar-flux vector, as given in Equation (13). Second, this term
involves products between the mean velocity gradients and the Reynolds stress, thus being more complex
than the C3-related term, which also contains gradients of the mean velocity field. Third, its absence
facilitated our effort to apply minimal corrections to the model coefficients, as will be shown in this Section.
Consequently, the proposed closure takes the following compact form,

u′iφ
′ = C2

κ

ε
RijΛj + C3

κ3

ε2 GijΛj +
C5

ε
RikRkjΛj , (15)

where we keep the same indexing for the model coefficients as in Equation (6). The above equation
essentially differs from Equation (14) in involving the C3-related term, which accounts for the products
between mean scalar and mean velocity gradients.

4.1. Redistributive Term

In order to bring closure to the transport equations of the turbulent scalar-fluxes and stresses, it is
required to model correlations that involve the fluctuating pressure p′. As the action of the pressure
interactions is known to redistribute the turbulent kinetic energy among the diagonal components of the
Reynolds stresses, it is a common practice to re-express the pressure term that exist in the stress equations
as the sum of a traceless distributive term, called the pressure–strain correlation, and the divergence of
the correlation between the fluctuating velocity and the pressure field (added to the turbulent diffusion).
As pressure is also present in the scalar equations, an analogous treatment has been employed that splits

the pressure-related term in two parts: a correlation term p′ ∂φ′

∂xi
that redistributes the scalar-flux among its

different components, and its divergence that is absorbed in the turbulent-transport term

1
ρ

φ′
∂p′

∂xi
=

∂

∂xi
(

p′φ′

ρ
)− p′

∂φ′

∂xi
, (16)

which explains the terms appearing at the RHS of (1). Given the level of approximation and empiricism
that, inevitably, is needed in order to derive an algebraic model form, it is not possible to associate one
particular term in the resulting algebraic expression (15) with the pressure-correlation term. Several models
have been developed to model this term [25–27], suggesting that no consensus has been achieved regarding
the modeling of this term. In an attempt to associate the terms appearing in the proposed closure (15) with
the pressure-scalar correlation, we consider the elegant analysis conducted in [17], who represented the
fluctuating parts of scalar and pressure as Fouries series in order to derive the following expression that
relates pressure-correlation term with turbulent variables that appear in the transport equation
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1
ρ

p′
∂φ′

∂xi
= −Cθ,1

ε

κ
u′iφ
′ + Cθ,2(Rij −

2κ

3
δij)Λj

+ Cθ,3u′jφ
′Gij + Cθ,4u′jφ

′Gji + Cθ,5
κ

ε
(Rij −

2κ

3
δij)GjkΛk ,

(17)

where Cθ,i are model coefficients. Comparing the proposed closure with the above equation, we observe
that only the C2 term is explicitly present, while the other two terms are implicitly associated through the
remaining terms.

4.2. Model Calibration

One way to determine model parameters is to use benchmark inhomogeneous cases, such as
channel flows, to assign a set of functional forms to the model coefficients through a fitting procedure.
However, this process might lead to a complex set of functions that do not necessarily perform well for
cases that deviate from the ones used to calibrate the model. Another method is to determine the model
parameters through a two-step process: As a first step, initial values are assigned to the coefficients by
fitting the proposed closure to existing homogeneous data, which are subsequently modified through
the use of correction functions so that they include inhomogeneous effects. It is common to use these
expressions so that they correct the near-wall behavior of the closure, thus called near-wall functions,
while recovering the homogeneous values far away from the wall. Preliminary efforts to adopt the
above approach in this study did not lead to satisfactory improvements regarding the streamwise flux.
Eventually, we have proposed a correction function only for the C3 term, denoted as fC3, that exhibits the
proper analytical behavior very close to the wall boundary (Appendix A.1), provides fair predictions for the
near-wall peak value of the streamwise component for a wide range of Reynolds numbers (see Section 5),
and does not necessarily recover the homogeneous value of the coefficient far away from the wall region.
As in [15], homogeneous coefficients are determined through a linear regression fitting using data derived
from the LES non-buoyant results of the work in [19],

C2 = −0.0848 , C3 = 0.00496 , C5 = −0.2942 , (18)

who considered homogeneous shear flows under different orientations of the mean scalar gradient.
Next, we have considered a fully-developed channel flow at friction Reynolds number Reτ = uτδ

ν = 395,
where uτ is the friction velocity and δ is the half-channel height, to modify the coefficient associated
with the mean velocity gradients (C3). The flow is driven by a uniform mean pressure gradient along the
streamwise direction, with uniform scalar flux applied at both walls. The Prandtl number is set equal
to 0.71, whereas the presented data is expressed in wall units. Figure 1 shows model predictions for
scalar fluxes, obtained by importing DNS results of the works in [28,29] into Equation (15). For this case,
only a streamwise component of the mean velocity field exists that varies along the normal component x2.
Figure 1a shows model predictions for the streamwise component either with (corrected) or without
(uncorrected) the inclusion of a correction function for the homogeneous C3 coefficient, defined in
Equation (19). We observe that the proposed model based on Equation (18) overestimates the near-wall peak
value of the streamwise component, while very good predictions are provided for the normal component
(Figure 1b). As a result, we focus on improving only the streamwise component, without affecting the
normal component. A simple way to do that is by modifying C3, as the corresponding term does not appear
in the algebraic expression for the normal flux. We have concluded to the following expression,

C3 = 0.00496 fC3 , fC3 = 0.3 +
4.32 (1− e−A/0.12)2

1 + (0.00172 Ret
√

S̃)3
, S̃ = S τ , (19)
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where S =
√

SijSji/2 is the magnitude of the mean strain rate and τ = κ/ε is the turbulent time scale.
Details regarding the construction of the correction function are given in Appendix A.2.
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Figure 1. Top: Predictions of the proposed model for the (a) streamwise and (b) normal scalar-flux
components as a function of the distance from the wall y+. Symbols denote the DNS results of [29] for
channel flow at Reτ = 395 and Pr = 0.71. Bottom: Balance between the individual terms appearing in the
model Equation (15) for the (c) streamwise and (d) wall-normal scalar-flux components.

For y+ < 15, the uncorrected C3-related term plays a dominant role (Figure 1c), with its maximum
occurring at about y+ = 10, a location at which mean strain rate is also maximized (not shown here).
The C5-related term contributes the most for y+ > 15, while the impact of C2-related term becomes
non-trivial in regions far away from the wall that are characterized by weak deformations. Applying the
correction function on C3 coefficient yields a reduction of the associated term, which remains important in
the high-shear region, while resulting in the quadratic term being dominant in the entire region outside the
viscous sublayer (y+ > 7). By contrast, the C3-related term does not contribute to the normal component,
which is prevailed by the nonlinear term for y+ > 15. Consequently, the near-wall behavior of the model
is driven by two mechanisms: one that involves products between mean velocity and scalar gradients,
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and a mechanism arising from the turbulence–turbulence interactions. Combining these two terms yields
an alternative form for the proposed model:

u′iφ
′ = C2

κ

ε
RijΛj + C3

κ3

ε2 Ge
ijΛj . (20)

The above equation suggests that the non-linear interactions provide a gradient, in addition to the
actual mean gradient, thus yielding an effective gradient Ge

ij:

Ge
ij = Gij +

4C5

C3τ
rikrkj , rij = Rij/Rkk . (21)

This idea, called the “effective gradients” hypothesis, has been originally proposed by [30] to construct
a Reynolds-stress transport closure, and has been recently extended by the authors of [31–33] for passive
scalar transport. Thus, Equation (20) can be thought as an extension of Abe and Suga proposal (12), as it
contains a linear term that becomes important in regions of weak deformation rate, while replacing the
quadratic term by a term involving the effective mean gradient that dominates the region of high and
moderate deformations rates.

5. Model Assessment

In this section we investigate the estimation ability of the proposed closure for channel flows under
different boundary conditions and Reynolds numbers. For the examined cases considered, the Prandtl
number equals to 0.71 and 7.0 and the flow variables are expressed in wall units. The criterion to choose
those two Pr values for applying the developed algebraic model is to provide results that prove the
efficient applicability of the proposed model in fluid flows related to aerodynamic and hydrodynamic
conditions. In order to reduce uncertainties associated with the numerical solution of model equations,
we import results from DNS into the proposed algebraic expressions for the scalar-fluxes. To facilitate the
discussion during the validation procedure, we have performed additional computations to account
for the performance of Younis’ model, as described in Section 2. For all cases considered, only a
streamwise component of the mean flow exists that varies along the wall-normal direction x2. Under these
conditions, the mean velocity gradient Gij and the expressions for the flux components according to
Equation (15) become

Gij = S δi1 δj2 , S =
√

SijSji/2 , (22)

and

u′1φ′ =

{
C2

κ

ε
R12 + C3

κ3

ε2 G12 +
C5

ε

(
R12(R11 + R22) + R13R23

)}
Λ2 , (23a)

u′2φ′ =

{
C2

κ

ε
R22 +

C5

ε

(
R2

12 + R2
22 + R2

23

)}
Λ2 , (23b)

respectively. The flow geometry and coordinate system are shown in Figure 2.
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2𝜹 x1

x2

x3

Ū

Figure 2. Flow configuration and coordinate system.

5.1. Poiseuille Flows

We evaluate model performance at fully-developed turbulent channel flows for a wide range of friction
Reynolds numbers, particularly Reτ = 150, 395, 640, 995, 2013 and 4088. For all cases, non-slip boundary
condition is adopted in the wall-normal direction (i.e., at the top and bottom walls) while the scalar
boundary condition is uniform scalar-flux on both walls.

5.1.1. Low Reynolds Number Cases

We initially consider three different low Reynolds number cases, namely, Reτ = 150, 395, and 640.
The quality of the predictions is compared with the corresponding DNS results [29,34,35]. Figure 3
compares the turbulent scalar-fluxes as obtained from the present model and the Younis model for
the three cases. Solid line denotes the proposed model and dash-dotted line denotes Younis’ model.
Symbols denote the DNS results. For all cases, both models provide reasonable agreement with DNS
regarding the near-wall peak value of the streamwise component. In addition, both closures underestimate
the value of this component further away from the wall, while the predictions of the proposed closure are
closer to the DNS results. Contrary to algebraic closures, DNS predict non-zero values for the streamwise
component at the channel centerline. This happens because the turbulent scalar field is being transported
by the mean flow or the turbulence. These transport processes constitute a non-local mechanism that
cannot be captured by a rational algebraic closure [15]. Except from the lowest Reτ case, the proposed
model achieves a considerably better agreement than Younis’ model regarding the normal flux at the entire
region. In particular, the current model accurately captures the near-wall behavior of the fluxes, while it
exhibits a mild overestimation of the magnitude beyond y+ ≈ 80 for Reτ = 640, still being able to produce
satisfactory results.



J. Mar. Sci. Eng. 2020, 8, 916 11 of 21

DNS
Proposed Model
Younis Model

u'
1φ

'

0

2

4

6

8

y+
0.1 1 10 100

(a)

DNS
Proposed Model
Younis Model

u'
2φ

'

−1.0

−0.8

−0.6

−0.4

−0.2

0

y+
0.1 1 10 100

(b)

DNS
Proposed Model
Younis Model

u'
1φ

'

0

2

4

6

8

y+
0.1 1 10 100 1000

(c)

DNS
Proposed Model
Younis Model

u'
2φ

'

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0

y+
0.1 1 10 100 1000

(d)

DNS
Proposed Model
Younis Model

u'
1φ

'

0

2

4

6

8

y+
0.1 1 10 100 1000

(e)

DNS
Proposed Model
Younis Model

u'
2φ

'

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0

y+
0.1 1 10 100 1000

(f)

Figure 3. Model predictions for the scalar-flux components for a channel flow at Reτ = 150 (a,b), Reτ = 395
(c,d), and Reτ = 640 (e,f).
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5.1.2. High Reynolds Number Cases

Next (figure 4), we investigate model performance at higher Reynolds numbers than before,
particularly Reτ = 995, 2013 and 4088, against available DNS results [36,37].

Regarding the streamwise flux component, the current model captures well the near-wall peak
magnitude for all cases, being able to properly adjust to the presence of high-shear rates. Furthermore,
it achieves very good agreement with the DNS predictions for the normal component at the near-wall
region (y+ < 40) for all cases, suggesting that the use of the terms involving Reynolds stress is enough to
properly capture the highly anisotropic correlations between u′2 and φ′ that exist at the near-wall region.
As in the Reτ = 640 case, we observe its tendency to overestimate, although much milder than Younis’
model, the magnitude of the normal flux beyond the slope change.
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Figure 4. Cont.
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Figure 4. Model predictions for the scalar-flux components for a channel flow: Reτ = 955 (a,b), Reτ = 2013
(c,d), and Reτ = 4088 (e,f).

5.1.3. Inclination Angle of the Scalar-Flux Vector Near the Wall Boundary

Here, we further investigate the near-wall performance of the proposed closure. A useful parameter
for that purpose is the scalar-flux ratio Ru′φ′ , defined in Equation (13). Figure 5 shows a comparison of the
scalar-flux ratio predictions of both models with the corresponding DNS data at three different Reynolds
number cases, namely, Reτ = 395, 995 and 4088. For comparison purposes, we have also included the
DNS predictions for R12/R11 as this ratio is expected to vary as scalar-flux ratio in the near-wall region,
as already mentioned in Section 3. We observe that the proposed model achieves better agreement with the
DNS results for all cases. Especially for Reτ = 395, it captures accurately the near-wall limit up to y+ ≈ 30,
in accordance with the previous discussion. This is attributed to the dominant role that C5-related term
plays in the buffer layer for both flux-components, as already shown in Figure 1, which exhibits the proper
near-wall physical behavior (see discussion in Section 3). In contrast, Younis’ model fails to capture this
limiting behavior for y+ > 10, partly because no term appearing in its model Equation (6) captures the
correct inclination of the flux vector.
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Figure 5. Model predictions for the scalar ratio Ru′φ′ for a Poiseuille flow at (a) Reτ = 395, (b) Reτ = 995,
and (c) Reτ = 4088. Comparison is made with DNS predictions for the stress ratio R12/R11 (thin lines)
and the scalar ratio (symbols). The thick solid line denotes the proposed model and the dash-dotted line
denotes Younis’ model. Zoomed view refers to the near-wall region.

5.2. Couette Flows

We now ascertain the performance of the models in a fully-developed Couette flow with the top
wall moving at constant speed uw relative to the bottom wall. As a result, the mean flow is driven by
the shear stress due to the relative movement between top and bottom walls, while the scalar difference
between the top and bottom walls is kept constant. We consider two cases at relatively low Reynolds
numbers, particularly Rew = 2 uw δ

ν = 8600 and 12,800, for which detailed DNS data are provided in [28].
Figures 6 and 7 show a comparison between the two models for the scalar-flux components with the
corresponding DNS results. Compared to Younis closure, the proposed model tends to overestimate
the near-wall peak value of the streamwise component, while it provides better estimations beyond
y+ > 20. Regarding the normal component, predictions agree quite well with the DNS data for both
cases, especially for the higher Rew-case, while Younis’ model underestimates the wall-normal component
outside the viscous sublayer (y+ > 10).
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Figure 6. Model predictions for the (a) streamwise and (b) normal scalar-flux components for a Couette
flow at Rew = 8600.
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Figure 7. As in Figure 6 but for Rew = 12,800.

5.3. Higher Pr Case

As mentioned in Section 3, Kim and Moin [24] studied the near-wall behavior of the scalar-flux vector
in turbulent channel flows for a wide range of Prandtl numbers. As a result, they observed mild changes
in scalar ratio Ru′φ′ with increasing Prandtl number in the range of Pr ≥ 0.71. The above observation,
along with the fact that the proposed model does not explicitly depend on this parameter, has motivated us
to evaluate model performance at higher Pr than 0.7. In particular, we consider a Poiseulle flow at Reτ = 395
and Pr = 7, for which detailed DNS data are provided by Kawamura [28]. Boundary conditions are identical
to the ones described in Section 5.1. Comparison is made again with Younis’ model, which directly depends
on Pr through damping function fC1 as indicated in Equation (10). Figure 8 shows a comparison between
both models with the corresponding DNS results for the scalar-flux components. Compared to Younis’
model, the proposed model tends to underpredict the near-wall peak value of the streamwise component,
whereas it provides better predictions for y+ > 15. As in all previous cases, both models exhibit a sharp
reduction of the profile while moving away from the walls. Regarding the normal component, the present
model achieves a much better agreement with the DNS results outside the viscous sublayer (y+ > 10).
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Figure 8. Model predictions for the (a) streamwise and (b) normal scalar-flux component for a Poiseuille
flow at Reτ = 395 and Pr = 7.
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Figure 9 shows the corresponding predictions for the scalar ratio Ru′φ′ . The proposed model agrees
reasonably well with the DNS results for y+ < 15. Compared to Younis’ model, the proposed model
provides much better predictions for this ratio in the entire domain.

R
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−0.5

0

y+
0.1 1 10 100 1000

−0.2

−0.1

5 10 20

Figure 9. Model predictions for the scalar ratio Ru′φ′ for a Poiseuille flow at Reτ = 395 and Pr = 7.
Comparison is made with DNS predictions for the stress ratio R12/R11 (thin line) and the scalar ratio
(symbols). The thick solid line denotes the proposed model and dash-dotted line denotes Younis’ model.
Zoomed view refers to the near-wall region.

6. Summary and Conclusions

In this study, we have proposed an explicit algebraic closure for the turbulent scalar-flux vector based
on the general formulation of Younis, which is essentially an extended version of the model proposed by
Abe and Suga (14) through the inclusion of an extra term involving products between the gradients of the
mean velocity and scalar field. This closure consists of three terms, making it simpler than Younis’ model
and an elegant choice for use in general-purpose computational codes. It is also motivated by the “effective
gradients" hypothesis, which postulates that turbulence–turbulence interactions provide a gradient that
acts supplementary to the mean shear, thus giving an alternative physical interpretation of the proposal
compared to other closures. To minimize model bias to inhomogeneous applications, the values of the
model coefficients are determined based on existing LES predictions of homogeneous shear flows in the
presence of arbitrary mean scalar gradients, while a simple correction function was applied to the C3-term
to properly capture the near-wall behavior. In order to test the quality of the proposed model, we have
considered different types of channel flows, particularly Poiseuille and Couette flows, for a broad range
of Reynolds numbers and Pr = 0.7. The proposed model performs satisfactorily in Couette flows at two
different Reynolds numbers, especially for the normal component, thus showing its sensitivity to the
near-wall inclination of the scalar-flux field. Regarding Poiseuille flows, fair predictions are obtained
for both flux components, with the model being able to well capture the near-wall peak magnitude of
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the streamwise component regardless the Reynolds number choice. Furthermore, the proposed model
accurately captures the near-wall behavior for the scalar ratio Ru′φ′ for distances up to y+ ≈ 30 (Reτ = 395),
significantly further than Younis’ model (y+ ≈ 10). Model performance is further evaluated in a Poiseuille
flow at a higher Prandtl number (Pr = 7) that typically occurs in marine applications and water–boundary
interaction, again providing reasonable predictions. The above cases served as a guidance regarding the
role of the different terms appearing in the algebraic expressions, showing the ability of the proposal
to capture the levels of misalignment between the different flux components. As part of future work,
we intend to propose an extension of the proposed RANS-based model so that it properly accounts for
Prandtl effects under different scenarios. Special attention will be given to Pr numbers that typically occur
in aerated flows. To achieve that, we intend to consider several cases that involve Prandtl numbers in the
range of 1 to 10, and perform computations to examine the sensitivity of the closure to the predicted stress
fields. Furthermore, relevant experimental studies will be performed in the future to provide data for a
comparative study between different turbulence models for the case of water flow around a monopile.
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Nomenclature

α, β model constants of function fC1
δ channel’s half height
ε dissipation rate of kinetic energy
γ molecular diffusivity
κ turbulent kinetic energy

Λi mean scalar gradient vector, ∂φ̄
∂xi

ν kinematic viscosity

Ωij mean vorticity tensor, 1
2 (

∂ūi
∂xj
− ∂ūj

∂xi
)

φ,φ̄, φ′ instantaneous, mean and fluctuating scalar field
ρ fluid density
τ time scale, κ

ε

u′iφ
′ turbulent scalar-flux

S̃ τ
√

SijSij/2

A Lumley’s stress flatness parameter, 1− 9
8 (A2 − A3)

A2 second invariant of Aij, Aij Aij
A3 third invariant of Aij, Aij Ajk Aki

Aij anisotropic stress tensor, Rij
κ −

2
3 δij

Cβ1, Cβ2 optimized constants of function fC3
fα, fβ components of function fC3
fC3 correction function for C3

Ge
ij effective gradient, Gij +

4C5
C3τ rikrkj

Gij mean velocity gradient tensor, ∂ūi
∂xj

p,p′ instantaneous and fluctuating pressure
Pe Peclet number, PrReτ



J. Mar. Sci. Eng. 2020, 8, 916 18 of 21

Pr Prandtl number, ν/γ

Rij Reynolds stress tensor, u′iu
′
j

rij normalized Reynolds stress tensor, Rij
2κ

Ru′φ′ scalar-flux ratio, u′2φ′

u′1φ′

Reτ friction Reynolds number, uτ δ
ν

Ret turbulence Reynolds number, κ2

νε

Rew “slip” Reynolds number, uwδ
ν

Sij mean strain rate tensor, 1
2 (

∂ūi
∂xj

+
∂ūj
∂xi

)

uτ friction velocity
ui, ūi,u′i instantaneous, mean, and fluctuating velocity components
uw wall velocity

Appendix A. Determination of Correction Function fC3

Appendix A.1. Boundary Limiting Behavior

For a fully-developed turbulent channel flow, flow statistics vary only along the wall-normal (x2)
direction. For fixed walls, the analytical limiting behavior of turbulent quantities is

∂ū1

∂x2
∝ O(y0) , R11, R33 ∝ O(y2), R12 ∝ O(y3) , R22 ∝ O(y4) , κ, ε ∝ O(y2) , (A1)

whereas the stress flatness parameter A becomes

A =
27
8

R33

κ3

(
R11R22 − R2

12

)
, (A2)

thus varying as O(y2) near the wall boundary. Regarding the scalar field, assuming constant wall
values yields

∂φ̄

∂x2
∝ O(y0) . (A3)

The above expressions suggest the following near-wall behavior for the scalar-flux components,

u′1φ′ ∝ O(y2) , u′2φ′ ∝ O(y3) . (A4)

Substituting Equations (A1)–(A4) into modeling expressions (23) leads to the following asymptotic
expressions for the model coefficients,

O(y2)

{
(C2 + C5)O(y1) + C3O(y0)

}
∝ O(y2) , O(y4)

{
C2 + C5

}
∝ O(y3) . (A5)

The term involving C3 coefficient is expected to be important close to the wall boundary, due to
the presence of high deformation rates. To meet this requirement, we choose this term to vary as the
streamwise scalar-flux component, which leads to the following condition,

C3 ∝ O(y0) . (A6)
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Appendix A.2. Details Regarding the Functional form of fC3

As discussed in Section 4, we focus on modifying C3 coefficient so that it improves the near-wall
behavior of the streamwise scalar-flux component, without affecting model predictions for the normal
component. This is done by constructing a correction function fC3 that is modeled in terms of physical
parameters that characterize the turbulent field. As proposed in previous works [10,16], we choose
stress-flatness parameter A, turbulent Reynolds number Ret, and shear parameter S̃ = S τ. Parameter A is
chosen because it involves invariants of the anisotropic Reynolds stress tensor, thus containing information
regarding the anisotropic behavior of the fluctuating field. It also possess the useful property becoming
zero at the limit of two-component turbulence very close to the wall. We have considered Ret because it
represents the ratio of the turbulent to the molecular shear stresses, which also becomes zero at the wall.
Lastly, parameter S̃ represents the ratio between the turbulent and mean time scales. We point out that
the maximum of this quantity is located inside the buffer layer, very close to the near-wall peak of u′1φ′.
The resulted correction function fC3 is

fC3 = Co + f (A, Ret, S̃), f (A, Ret, S̃) = fα(A) fβ(Ret, S̃) , (A7)

where Co = 0.3 is a model constant, chosen so that it is dominant near the wall in accordance to the
boundary limiting behavior. We found it convenient to express function f as a product of two other
expressions, namely, fα and fβ. The former depends on the stress flatness parameter and monotonically
increases with wall distance,

fα(A) = (1− e−A/0.12)2 , (A8)

and serves as a weighting coefficient. The latter function ( fβ) intends to mitigate the tendency of the
C3-term to overestimate the near-wall peak magnitude of the streamwise flux component, expressed as

fβ(Ret, S̃) =
Cβ1

1 + (Cβ2 Ret
√

S̃)3
, (A9)

where Cβ1 = 4.32 and Cβ2 = 0.00172 are optimized model constants.
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