
geosciences

Article

Elastic Settlement Analysis of Rigid Rectangular
Footings on Sands and Clays

Lysandros Pantelidis 1,* and Elias Gravanis 1,2

1 Department of Civil Engineering and Geomatics, Cyprus University of Technology, Limassol 3036, Cyprus;
elias.gravanis@cut.ac.cy

2 Eratosthenes Centre of Excellence, Cyprus University of Technology, P.O. Box 50329, Limassol 3603, Cyprus
* Correspondence: lysandros.pantelidis@cut.ac.cy; Tel.: +357-2500-2271

Received: 16 November 2020; Accepted: 30 November 2020; Published: 4 December 2020 ����������
�������

Abstract: In this paper an elastic settlement analysis method for rigid rectangular footings applicable
to both clays and sands is proposed. The proposed method is based on the concept of equivalent shape,
where any rectangular footing is suitably replaced by a footing of elliptical shape; the conditions
of equal area and equal perimeter are satisfied simultaneously. The case of clay is differentiated
from the case of sand using different contact pressure distribution, whilst, additionally, for the sands,
the modulus of elasticity increases linearly with depth. The method can conveniently be calibrated
against any set of settlement data obtained analytically, experimentally, or numerically; in this
respect the authors used values which have been derived analytically from third parties. Among the
most interesting findings is that sands produce “settlement x soil modulus/applied pressure” values
approximately 10% greater than the respective ones corresponding to clays. Moreover, for large
Poisson’s ratio (v) values, the settlement of rigid footings is closer to the settlement corresponding
to the corner of the respective flexible footings. As v decreases, the derived settlement of the rigid
footing approaches the settlement value corresponding to the characteristic point of the respective
flexible footing. Finally, corrections for the net applied pressure, footing rigidity, and non-elastic
response of soil under loading are also proposed.

Keywords: elastic settlement; shallow foundations; rigid footings; contact pressure; equivalent shape

1. Introduction

The problem of settlement of shallow foundations is among the more important ones in classical
soil mechanics. During the last several decades a great number of approaches has been proposed in the
literature for the title problem, an exact solution of which is still not available. In this respect, solutions
have been provided by various authors [1–11]. Numerical results for perfectly smooth, uniformly
loaded rectangular rafts, of any rigidity resting on a homogeneous elastic layer which is underlain
by a rough rigid base, were presented in graphical form by Fraser and Wardle [12]. Semi-empirical
approaches combining the theory of elasticity with experimental and/or numerical results also exist in
the literature [13–17]. Schiffman and Aggarwala [18] and Mayne and Poulos [15] used the concept of
equivalent ellipse and circle respectively (equivalency as for the footprint area).

In this paper an elastic settlement analysis method for rigid rectangular footings applicable to both
clays and sands is proposed. The proposed method is based on the concept of equivalent shape, where
any rectangular B× L footing is suitably replaced by a footing of elliptical shape. The suitability of the
equivalent shape concept is deeply investigated aiming at the production of analytical expressions for
the elastic settlement analysis of rigid rectangular footings on sands and clays. As shown, this concept
is only valid when the equivalent shape satisfies both the condition of equal area and equal perimeter
length at the same time. The case of clay is differentiated from the case of sand using different contact
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pressure distribution, whilst the modulus of elasticity for the case of sands additionally increases
linearly with depth.

2. Settlement of Rigid Elliptical Footing

Boussinesq [19] solved the problem of stresses produced at any point in a homogenous, elastic,
isotropic, and semi-infinite medium as the result of a point load applied on the surface. Following the
notation of Figure 1, the increase in normal stresses caused by the point load P is

∆σx =
P

2π

(
3x2z
L5 −

(1− 2ν)
(

x2
− y2

Lr2(L + z)
+

y2z
L3r2

))
, (1)

∆σy =
P

2π

(
3y2z
L5 −

(1− 2ν)
(

y2
− x2

Lr2(L + z)
+

x2z
L3r2

))
, (2)

∆σz =
3P
2π

z3

L5 , (3)

where L =
√

x2 + y2 + z2, r =
√

x2 + y2 and ν is the Poisson’s ratio (see [20–22]).
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Figure 1. Stresses in an elastic medium caused by a point load acting on the surface of a semi-infinite
mass [23].

The above equations along with the equation effectively representing the contact pressure
distribution leads to the elastic settlement of footing following a standard procedure (see [19,24]).
In this respect, by using the following contact pressure distribution (see [18]):

p =
Pell.
πab

1

2
√

1− x2

a2 −
y2

b2

. (4)

The settlement of a rigid elliptical footing can be obtained in a way similar to the case of
Boussinesq’s [19] rigid circular footing (see also [24]); where Pell. is the total load on the elliptical rigid
footing (the origin of the axes lies on the centroid of the elliptical disc), whilst a and b are the two radii
defining the ellipse.

The infinitesimal point load P at any point (x,y) inside the ellipse is, thus, given by

P = pdxdy =
q

2
√

1− x2

a2 −
y2

b2

dxdy, (5)

where
q =

Pell.
πab

, (6)

is the load per unit area of the footing.
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Hence, the increase in the normal stress in the i-axis due to loading over the elliptical surface area
can be found by integrating the respective stress increase ∆σi (i = x, y or z) (see Equations (1)–(3)) over
this area using Equation (5). That is:

∆σi,Ell. =
x

ellipse

∆σi(x, y, z). (7)

Note that the differentials dx and dy are included in P (see Equation (5)). The integration can
conveniently be done by changing to polar variables r and θ, setting x = ar cosθ and y = br sinθ,
where the ranges of the radial and angular variables, respectively, are 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. For the
area element in the polar variables then it stands that dxdy = abrdrdθ.

The unit vertical strain is, then, calculated from the constitutive relationship of Hooke’s Law:

εz =
1
E

[
∆σz,Ell. − ν

(
∆σx,Ell. + ∆σy,Ell.

)]
(8)

and finally, the footing settlement, ρr, corresponding to a layer of thickness H is

ρr =

H∫
z = 0

εzdz =
qb
E
β, (9)

where

β =
1
b

H∫
z = 0

Izdz =

H/b∫
ζ = 0

(1 + v)(1− 2ν) + 2(1− ν2)(1 + k2)ζ2 + (1 + v)(3− 2ν)k2ζ4

2(1 + ζ2)3/2(1 + k2ζ2)3/2
dζ, (10)

with ζ = z/b and k = b/a; Iz is the strain influence factor. The integration as for z can easily be
implemented numerically in spreadsheet so that the effect of varying soil modulus with depth to be
taken into account in a way similar to Schmertmann’s method [14].

In the case of homogenous semi-infinite mass, the settlement becomes:

ρr =
qb
E

kK(e)
(
1− ν2

)
, (11)

where e =
√

1− k2 is the eccentricity of the ellipse and K(x) is the complete elliptic integral of the
first kind [25]. Due to the fact that in the circular case K(0) = π/2 (because e = 0 and also, k = 1),
Equation (11) goes over to the well-known expression of Boussinesq [19,24]:

ρr =
πqa
2E

(1− ν2). (12)

3. Elastic Settlement of the Equivalent B× L Rectangular Footing

From the theory of elasticity for flexible footings over semi-infinite media, it is well known that
the settlement at the center of a uniformly loaded square footing having edge B is approximately equal
to the respective settlement of a circular footing of equal area (radius of footing equal to B/

√
π) [26];

the percentage difference in settlement between these two special cases is only 0.53%.
The concept of shape equivalency has been used in the past by Mayne and Poulos [15], where any

B × L rectangular footing is reduced to a circular footing of equal area. The radius of Mayne and
Poulos’ [15] equivalent circle is

aeq =
√

BL/π. (13)
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Several years earlier, Schiffman and Aggarwala [18] suggested that the two radii defining the
equivalent elliptical footing of a B× L rectangular footing be

a = L/
√
π

b = B/
√
π

}
with a ≥ b. (14)

Schiffman and Aggarwala [18] considered the problem of an elastic half-space loaded on the
surface by a rigid elliptical footing. They developed general formulae for the stresses and displacements
within and on the surface of the solid. It is noted that Equation (14) derives from the condition of equal
area and from B/L = b/a = k; the condition of equal perimeter is not satisfied.

Sovinc [8] worked analytically on the problem of settlement of smooth, rectangular footing resting
on the surface of a finite layer with ν = 0.5, providing a “calibration platform” for the proposed method.
He expressed the settlement of footing with respect of the long footing dimension, L, as follows:

ρr =
qL
E
β. (15)

Unfortunately, Sovinc published β vs. H/L curves and not a closed-form expression for β;
for readers’ convenience, these curves can be found in the freely available book of Poulos and Davis [27]
(www.usucger.org/PandD/complete_book.pdf). Sovinc’s [8] values were compared by the authors
against the respective values given by Butterfield and Banerjee ([10]; also in Poulos and Davis [27])
providing, in turn, the necessary validation of the “calibration platform” mentioned above. The results
of these studies are in full agreement.

From the β vs. H/L comparison chart of Figure 2 it is clear that Schiffman and Aggarwala’s [18]
equivalent shape (see Equation (14)) is not a reliable choice.
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Figure 2. Comparison chart between Sovinc’s [8] β factor for rigid rectangular footing (ν = 0.5)
and the respective one based on Schiffman and Aggarwala ([18]; denoted as S&A on the figure)
equivalent ellipse.

The authors also considered the case of equivalent ellipse satisfying both the condition of area
and perimeter. The area of the ellipse is exact and given by the expression πab. The perimeter is
exactly given by 2aE(e), where E(x) is the complete elliptic integral of second kind [25]. This is a
transcendental expression which can be calculated explicitly through infinite series. Instead, one may
use Ramanujan’s approximate formula giving values very close to the exact perimeter values:

Π ≈ π
(
3(a + b) −

√
(3a + b)(a + 3b)

)
. (16)

www.usucger.org/PandD/complete_book.pdf
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The two radii of the equivalent ellipse are then:

a = 1
2π

(
B + L + 1

3

(
η−
√

6
√
(B + L)(η+ 2(B + L)) − 5πBL

))
b = BL

aπ

, (17)

with η =

√
3(B + L)2 + 2πBL.

The new equivalent shape gave β vs. H/L curves close to those given by Sovinc indicating the
need for calibration with respect of the footing shape. The new βR factor referring to the equivalent
rectangular footing is a function of the aspect ratio of footing, L/B. The calibration against Sovinc’s [8]
chart gave:

βR = Is · β(ζR), (18)

where
Is = 2

(
1 + log

L
B

)Bo

L
, (19)

and Bo = 1 m (unit width). The notation β(ζR) denotes the use of Equation (10) but replacing ζ with

ζR =
(
0.85λ+

z
b

) λ
0.85

, λ = min
{(

1 + log
L
B

)1/3
− 0.05, 1.1

}
. (20)

The expression for the settlement, thus, becomes

ρr =
qL
E
βR, (21)

or, in the more familiar form,

ρr =
qB
E

IHIs1
(
1− ν2

)
, (22)

with

IH =
Bo

B

H/b∫
ζ = 0

1 + 2(1 + k2)ζ2
R(1− v) − 2v + k2ζ4

R(3− 2ν)

2
(
(1 + ζ2

R)(1 + k2ζ2
R)

)3/2
(1− v)

dζ, (23)

and
Is1 = 2

(
1 + log

L
B

)
. (24)

The integral in Equation (23) requires numerical evaluation, which can be easily done using one
of the numerous proprietary and non-proprietary mathematical programs available.

As shown is Figure 3, the new βR factor compares very well with Sovinc’s β factor. Although,
the proposed method was calibrated manually against Sovinc’s [8] dimensionless values, any set of
relevant data could be used instead, while the procedure could be facilitated by the use of a statistical
analysis program. The use of elastic settlement values derived from 3D finite element analysis is
subject matter of work by the authors.

It is interesting that, Equations (19) and (20) contain the term (1 + log(L/B)), best known from
the influence depth of footings proposed by Terzaghi et al. [28], i.e., zl = 2B(1 + log(L/B))

The effect of footing shape on the modulus of elasticity has not yet been considered in the analysis.
In this respect, Terzaghi et al. [28] suggested that

E
Eaxis.

=
(
1 + 0.4 log

L
B

)
, (25)
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with 1≤ L/B ≤ 10, where, Eaxis. the triaxial modulus of elasticity of soil. For 1≤ L/B ≤ 10, the E/Eaxis.

ratio ranges between 1 and 1.4 for the axisymmetric and plane strain condition, respectively. Very
recently, Pantelidis [29,30] showed that the correct relationship is

E
Eaxis.

=
(
1 + log

L
B

)
. (26)

Thus, including the effect of footing shape on the modulus of soil, the footing settlement will be

ρr =
2qB

Eaxis.
IH

(
1− ν2

)
or

2qBo

Eaxis.
β(ζR). (27)

The triaxial modulus of soil, Eaxis., can be obtained by the triaxial compression test or continuous
probing tests.Geosciences 2020, 10, x FOR PEER REVIEW 6 of 19 
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4. Elastic Settlement Analysis of Rigid Footings on Sands

The above formulations were based on the contact pressure distribution of Equation (4).
This contact pressure of parabolic form, where the minimum and the maximum pressure value
is found at the center and the edges of footing respectively (Figure 4a), is, however, more suitable
for clays. For smooth rigid footings on clean sand, the minimum and maximum contact pressure are
observed at the edges and the center of the footing respectively, as shown in Figure 4b [28,31].

Referring to an elliptical rigid footing over sand, the contact pressure distribution can be
effectively represented by a half spheroid attached under the footing. The infinitesimal point load P in
Equations (1)–(3) can, then, be expressed as follows:

P =
3
2

q

√
1−

x2

a2 −
y2

b2 dxdy. (28)

In addition, as known sands are compacted under their own weight, where their modulus of
elasticity usually appears to increase linearly with depth obeying Gibson’s law [32]:

E(z) = Eo + kEz, (29)

where Eo = the soil modulus directly beneath the foundation base (z = 0), kE = the rate of increase of
modulus with depth (units of E per unit depth) and z = the depth having modulus E(z). This has also
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been proved experimentally by the first author [29] performing a series of Dynamic Probing Light
(DPL) tests on clean quarry sand. Indeed, this phenomenon occurs immediately after deposition and it
is due to the increase of the density caused by the overburden mass in combination with the increased
confinement at greater depths. In a similar manner, any surcharge on the surface of the sand material
will have an analogous impact. In this respect, it was suggested [29] that

E(z) = Eo + kE
σz

γ
= Eo + kE

(
z +

q
γ

Iσ

)
= Eo

[
1 +

kE

Eo

(
z +

q
γ

Iσ

)]
, (30)

where γ is the unit weight of soil, σz = γz + qIσ and Iσ is the well-known stress influence factor; Iσ
values for various footing shapes can be found in any soil mechanics book (e.g., [26]). Therefore,
the settlement is given as follows:

ρr =
qL
Eo
βR =

qL
Eo

Isβ(ζR). (31)

The factor β(ζR) is calculated using the following Equation (recall Equation (10))

β =
1
b

H∫
z = 0

Iz(z)
1 + kE(z + qIσ/γ)/Eo

dz =

H/b∫
ζ = 0

Iz(ζ)

1 + kEb(ζ+ qIσ/(bγ))/Eo
dζ, (32)

with

Iz(ζ) = (ν+ 1)

 3

2
√
(1 + ζ2)(1 + k2ζ2)

− νF4

, (33)

and

F4 = 3−
3k2ζ
2π

∫ 2π

0

cot−1
(

kζ
√

1−(1−k2) sin2 θ

)
(1− (1− k2) sin2 θ)

3/2
dθ, (34)

whilst ζmust again be replaced by ζR (recall Equation (20)) as indicated in Equation (31). It is reminded
that Is is given by Equation (19). The integral of Equation (34) has been transformed to polar variables
with x = ar cosθ and y = br sinθ for the sake of convenience. Unfortunately, the integral in
Equation (34) requires numerical evaluation. For avoiding such a procedure, the F4 term is given in
chart form in Figure 5.Geosciences 2020, 10, x FOR PEER REVIEW 7 of 19 
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Figure 4. Assumed contact pressure distribution of smooth rigid footing on (a) cohesive soil and (b)
cohesionless soil.

It is finally mentioned that, for the special case of H→∞ and kE = 0 the factor β can be obtained
fully analytically (see Appendix A).
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5. Other Factors Affecting Elastic Settlement of Shallow Foundations

The modulus of elasticity and in turn, the elastic settlement of shallow foundations may seriously
be affected by various factors, such as the shape of the footing [29,30,33], the footing load (phenomenon
occurring in sands; [29]), the embedment depth of footing [15,34–38], and a possible water table rise
into the influence depth of footing [39–48]. Creep in sands may also affect the settlement of shallow
foundations (see [13,28]). The rigidity of footing, the net applied pressure and the non-elastic response
of the ground are also factors affecting settlement of shallow foundations for which corrections are
suggested below.

5.1. Correction for Footing Rigidity

According to ACI Committee 336, DIN 4018 and IS 2950-1 [49–51], whether a foundation behaves
as a rigid or a flexible structure depends on the relative stiffness of the structure and the foundation
soil. The relative stiffness factor, Kr, is given as follows:

Kr =
EbI

EL3B
, (35)

where EbI is the flexural rigidity of the superstructure and foundation per unit length at right angles to
B and Eb is the modulus of concrete. An approximate value of EbI per unit width of building can be
determined by summing the rigidity of foundation, EbIF, the rigidity of beams, EbIb, and the rigidity of
shearwalls, Ebtwh3

w/12:
EbI = Eb

(
IF +

∑
Ib + twh3

w/12
)
, (36)

where tw and hw are the thickness and height of the shearwalls respectively (e.g., see [49–52]. Ignoring
the effect of superstructure, the relative stiffness factor simplifies to

Kr =
Eb

12E

(
d
L

)3

, (37)

because I = Bd3/12, where, d is the thickness of foundation.
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Alternatively, the expression including the Poisson’s ratio values can be used (e.g., see [53]):

Kr =
Eb

(
1− ν2

)
12E

(
1− ν2

b

) (d
L

)3

. (38)

Generally, the foundation is considered to be rigid when Kr > 0.5 and flexible when Kr < 0.5
(e.g., [51]). Based on the finite element analysis carried out by Brown [54] (see also [15]), however,
a footing can be regarded as flexible if Kr < 0.05, rigid if Kr > 5 and of intermediate rigidity if
0.05 ≤ Kr ≤ 5. Indeed, between the limits defining the intermediate condition, a linear relationship
exists between Kr and settlement [15]. In this respect, the following linear interpolation for calculating
the settlement of footings (at the center) of intermediate rigidity is suggested:

ρint = ρrIF, (39)

where

IF = 1 +
5−Kr

4.95

(
ρ f ,center

ρr
− 1

)
. (40)

ρ f ,center is calculated using Equation (A7) (see Appendix B).

5.2. Correction for the Net Applied Pressure

When the structure lies at the bottom of excavation of depth D f , as usually this is the case, the
settlement should be better calculated according to the following equation:

ρr =

(
γD f

)
βL

MR1
IE +

(
q− γD f

)
βL

E
IE =

(
q
E
− γD f

(
1
E
−

1
MR1

))
βLIE, (41)

where MR1 the first resilient modulus of soil (it refers to the first reloading). An empirical relationship
connecting E with the overconsolidation ratio (OCR) of soils could be used for the estimation of MR1,
e.g., Duncan and Buchignani’s [55] Eu/cu - PI - OCR chart for undrained clays (where Eu and cu are the
undrained modulus and the undrained cohesion respectively, and PI the plasticity index of soil; see
also [56]) or Bowles’s [42]

√
OCR multiplier. According to Mayne and Kulhawy [57], the square-root

of OCR is applicable for both sands and clays. In addition, for saturated overconsolidated clays
subjected to unloading, Mesri et al. [58] observed that, in every case, the excess negative pore pressures
is dissipated faster than predicted from the Terzaghi’s one dimensional consolidation theory; thus,
Equation (41) could be used in every case.

The overconsolidation, here, is due to γD f , which is excavated for placing the construction at
depth D f . Alternatively, adopting the square root rule of Bowles [42], the first resilient modulus will be

MR1 = E
√
(q + γD f )/q, (42)

and thus, Equation (41) simplifies to

ρr =
∆qβL

E
IE, (43)

with

∆q = q− γD f

1−

√
q

q + γD f

. (44)

By ignoring the term in brackets, that is, if ∆q is equal to q− γD f , the calculated settlement is on
the unfavorable side.
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5.3. Non-Elastic Response of Soil under Loading

In reality, the soil medium response to loading is not elastic, even at low working stresses. Based
on parametric finite element analysis, D’Appolonia et al. [59] proposed a correction factor to the
settlement of perfectly flexible footings on saturated clays (ν = 0.5). An alternative and more general
procedure is proposed below.

First, a load-settlement response is assumed, relying on the initial gradient of this relationship
and the ultimate bearing capacity of the soil medium, qu, which are both known; a third (calibration)
parameter is also necessary (this is discussed later). In a q-ρ diagram, the initial gradient of the curve is
tan δ = E/

(
βLI f

)
(with I f being a factor for taking into account e.g., the influence of the embedment

depth, a possible water table rise etc.), whilst qu is calculated based on a well-established theory (in this
respect, the formulations given in EN 1997-1 [60] could be used). In the case of stratified soil mediums,
the equivalent modulus of soils concept shall be used (see [61]). Mathematically, the load-settlement
response can be approximated by an equation of the form:

q = a1ρ
a2
PL + tan δ · ρPL. (45)

where ρPL is the plastic settlement of footing.
Equation (45) presents maximum at

ρPL,qu =

(
−

tan δ
a1a2

) 1
α2−1

. (46)

Relating the plastic settlement at qu with the respective elastic one, i.e.,

ρPL,qu = nPLρEL,qu = nPLqu/tan δ, (47)

from Equations (46) and (47)

a1 = −
nPLqu

a2

(
tan δ
nPLqu

)a2

, (48)

where nPL is the calibration parameter denoting how many times the plastic settlement at qu is greater
than the respective elastic one (see Figure 6); nPL takes values greater than or equal to 2.Geosciences 2020, 10, x FOR PEER REVIEW 11 of 19 
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At the ultimate loading, from Equations (45), (46), and (48):

qu =
{
a1ρ

a2
PL,qu

+ tan δ · ρPL,qu

}
= qunPL

a2 − 1
a2

, (49)

and solving the latter as for a2:

a2 =
nPL

nPL − 1
. (50)

The parameter nPL can be estimated based on (a) local experience, i.e., known measured settlements
of neighbor structures, (b) plate bearing test data given that the soil and soil conditions are relatively
homogenous with depth, or (c) 2D plastic finite element analysis by interpolating between the
load-settlement response of the respective axisymmetric and plane strain problem (circular and strip
footing both having radius and width respectively equal to B). The calibration should refer to similar
loading conditions, i.e., drained or undrained.

The plastic settlement, ρPL, corresponding to q is, finally, obtained from Equation (45). The latter
has two solutions, from which the smaller one is adopted. Depending on the nPL value used, numerical
approximation may be required.

An example q -ρ chart referring to a 1 m × 2 m rigid footing lying on the surface of a semi-infinite
homogenous clay soil with E = 5000 kPa and ν = 0.1 (drained conditions) is given in Figure 6. In this
respect, four q -ρ relationships were drawn, i.e., for perfectly elastic medium and for plastic medium
with nPL = 2, 3 and 4. The ultimate bearing capacity value (qu) is equal to 100 kPa. Moreover, the
correction regarding the effect of footing shape on the modulus of soil (recall Equation (26)) was
ignored in this example.

6. Comparison Examples

6.1. Comparison with Existing Methods and Approaches

The proposed method is compared with Mayne and Poulos’ [15] method, as well as with the
“characteristic point” approach [62,63]. Third factors affecting settlement, such as the embedment
depth, soil creep, are ignored, whilst the mass is considered to be semi-infinite and homogenous.

Since Mayne and Poulos’ method deals with footings of any rigidity, both the cases of perfectly
flexible and perfectly rigid footing will be presented. The settlement values obtained from the theory
of elasticity for both the center and the corner of footing, considering that the latter is perfectly flexible
are presented as boundary values (the elastic settlement of the respective rigid footing should be an
intermediate value). The average settlement of perfectly flexible footing is also given. All settlement
expressions used are given in the Appendix B.

Regarding the so-called “characteristic point”, at this point the settlement of a flexible loaded
area is considered to be the same as the uniform settlement of a rigid area, both having the same area
and shape and bearing the same total load. In an ideally elastic soil, the characteristic point at a B× L
rectangular footing is located at distance 0.37B and 0.37L from the center [62–65]. What is not widely
known, however, is that the above distances refer to the simple case of ν = 0 [62,63,66].

ρE/q vs. L/B curves are given for ν = 0.1 and 0.5; see Figure 7. These values were selected because,
based on accurate measurements using local strain devices mounted midlevel on soil specimens and
measured internally to the triaxial cell, the appropriate value of ν to use in elastic continuum solutions
for drained loading is 0.1 < ν < 0.2 for all soil types [15,67–69]. For undrained conditions involving
short-term loading of clays, it remains appropriate to use the value from isotropic elastic theory of
ν = 0.5.

From Figure 7 it is inferred that, Mayne and Poulos’ [15] method largely overestimates settlement
(see also [70]); indeed, it gives settlement values for the rigid footing greater than the values
corresponding to the center of the respective flexible footing (upper boundary). On the other
hand, the ρE/q vs. L/B curves derived from the proposed method lie between the two boundary
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curves derived from the theory of elasticity, whilst moreover, they are parallel to these boundaries.
In addition, the proposed ρE/q − L/B curve for ν = 0.1 compares well with the respective curve
corresponding to the characteristic point. The latter can also be considered indicative of the success of
the calibration of the proposed method. Furthermore, as shown in Figure 7, the average settlement
curve overestimates settlement for small ν values and underestimates settlement for great ν values.
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In addition, from Figure 8 it is inferred that for the same ν value, the ρE/q term for the rigid
footing on sand is greater than the respective one for the same footing on clay. The goal of Figure 8
is to compare the effect of the different contact pressure distributions, assuming the same E value,
which is also constant with depth. In reality, E may vary with depth; this is usually observed in
sands, where E increases with depth (Gibson profile [32]), even immediately after deposition [29]. It is
also very interesting that, as shown in Figure 9, when the effect of footing shape on the modulus of
elasticity of soil is considered in the analysis, the L/B ratio of footing has, practically, minor effect
on the derived settlement. In this respect, revisiting existing experimental and theoretical studies,
Pantelidis [29,30] draw the conclusion that the elastic settlement appears to be independent of the
aspect ratio of footing; it seems that the adverse effect of the second dimension of footing, which is
responsible for the iso-stress bulbs to dive deeper into the ground, is compensated by the increase in E
due to the increased confinement induced by the longer (and thus, greater) footprint of the footing.
In this respect, he suggested that, the elastic settlement of a B × L footing be calculated considering a
circular footing with diameter equal to B (or better, 2B/

√
π) and the bearing pressure q of the original

problem. A problem, however, arises when soil medium is stratified. This can be solved by replacing
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the original stratified medium with an equivalent homogenous one having the same elastic constant
values throughout its body. A reliable procedure for that is given by Pantelidis [33,61].
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6.2. Comparison against 3D Finite Element Elastic Settlement Analysis

Fraser and Wardle [12] gave a complete elastic settlement example using 3D numerical analysis.
They considered a square raft foundation with edge 10 m and thickness d = 0.5 m, lying on a soil
medium of thickness 40 m. The raft is subjected to a uniform load of 0.1 MPa. The elastic constants of
raft are Eb = 15,000 MPa and vb = 0.2, whilst the elastic constants of soil are E = 83.2 MPa and v = 0.3.

Following the proposed approach, the settlement of the raft considering that it is perfectly rigid
is ρr = 8.728 mm, whilst following Harr [71], the settlement at the center of the respective flexible
footing is ρ f ,center = 10.796 mm. Based on Equation (38), Kr = 1.78, thus, the footing is of intermediate
rigidity (0.05 ≤ Kr ≤ 5) with IF = 1.154 (Equation (40)). Therefore, the corrected settlement value is
ρint = 10.07 mm (Equation (39)), which compares very well with the 10.7 mm given by Fraser and
Wardle. Applying Mayne and Poulos’ method, the settlement of the same footing is 8.71 mm (Mayne
and Poulos’ factors: IE = 1, IF = 0.792 and IG = 0.89).
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7. Summary and Conclusions

In this paper an elastic settlement analysis method for rigid rectangular footings applicable to
both clays and sands has been proposed. The case of clay is differentiated from the case of sand using
different contact pressure distribution, whilst, moreover, the modulus of elasticity for the case of sands
increases linearly with depth. The proposed method is based on the concept of equivalent shape,
where, any B × L footing is suitably replaced by a footing of elliptical shape. The analysis showed
that an equivalent ellipse returns satisfactory results only if the conditions of equal area and equal
perimeter length are satisfied simultaneously. The equivalent area condition alone, as it has been
shown, gives elastic settlement values that greatly differ from the respective values referring to the
mother rectangular footing.

Herein, the derived equations were calibrated manually against Sovinc’s [8] dimensionless values.
However, any set of relevant data could be used, while the procedure could be facilitated by the use
of a statistical analysis program. The use of elastic settlement values derived from 3D finite element
analysis is subject matter of work by the authors.

Among the most interesting findings is that sands produce “settlement x soil modulus/applied
pressure” values approximately 10% greater compared to the respective ones corresponding to clays.
Moreover, for large Poisson’s ratio (v) values, the settlement of a rigid footing is closer to the settlement
corresponding to the center of the respective flexible footing. On the other hand, as v decreases,
the derived settlement of the rigid footing approaches the settlement value corresponding to the
characteristic point of the respective flexible footing; it is also noted that, the derived settlement value
for small v values is smaller than the average settlement of the footing considering that the latter is
perfectly flexible. Last but not least is that, considering the effect of footing shape on the modulus
of soil, the settlement of rigid footings is rather insensitive to the L/B ratio. In this respect, it seems
that the adverse effect of the second dimension of footing (the length L), which is responsible for the
iso-stress bulbs to dive deeper into the ground, is compensated by the increase in the modulus of soil
due to the increased confinement induced by the longer (and thus, greater) footprint of the footing.
Thus, it is suggested that, the elastic settlement of a B × L footing be calculated considering a circular
footing with diameter equal to 2B/

√
π and the bearing pressure q of the original problem.

Finally, corrections for the net applied pressure, footing rigidity and non-elastic response of soil
under loading are also offered. Regarding the net applied pressure, it has been shown that when the
q− γD f bearing pressure is used, the calculated settlement is on the unfavorable side; instead a new,
yet simple expression is suggested, allowing for the first resilient modulus of the soil to be taken into
account for structure loading equal to γD f .
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Appendix A

In spite of the difficulty to evaluate analytically F4 that would provide the β factor for arbitrary H,
the β factor for H→∞ can be obtained fully analytically by first integrating with respect to ζ and then
with respect to θ:

β =
3
4
(1− ν2)

(
K(e) +

1
k

K(ie/k)
)
, (A1)

where K(x) is the complete elliptic integral of the first kind, and i is the imaginary unit. Hence,

ρr =
3b
4E

(1− ν2)
(
K(e) +

1
k

K(ie/k)
)
. (A2)
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For the case of circular footing (k = 1) over sand, Equation (33) simplifies to

Iz = 3(ν+ 1)
(

1
2(1 + ζ2)

− ν
(
1− ζ cot−1 ζ

))
, (A3)

and by integrating the latter from z = 0 to H, we get the factor β

β =
3
4
(ν+ 1)

(
ν
(
ν

H
b
− 2

)(H
b

)
+ 2

(
1− ν− ν

(H
b

)2)
tan−1

(H
b

))
. (A4)

For H→∞ Equation (A4) gives

β =
3π
4
(1− ν2), (A5)

and, thus, the settlement expression becomes

ρr =
3πqa
4E

(
1− ν2

)
= 1.5

(πqa
2E

(
1− ν2

))
, (A6)

meaning that the term ρrE/q for a circular rigid footing on sands is by 50% greater than the respective
one for clays.

Appendix B

Settlement under the corner and center of a B× L (flexible) rectangular footing [71]

ρ(z) =
accqB′

2Es

(
1− ν2

)(
Acc −

1− 2ν
1− ν

Bcc

)
, (A7)

Acc =
1
π

ln

√
1 + m2 + n2 + m
√

1 + m2 + n2 −m
+ m ln

√
1 + m2 + n2 + 1
√

1 + m2 + n2 − 1

, (A8)

Bcc =
n
π

tan−1 m

n
√

1 + m2 + n2
, (A9)

with acc = 1, B′ = B, m = L/B and n = z/B for the corner of the footing, whilst acc = 4, B′ = B/2,
m = L/B and n = 2z/B for the center; z = 0 (and thus, n = 0) for the settlement on the surface of a
homogenous, semi-infinite mass. For the settlement of footing underlain by a layer of finite thickness
H, the principle of superposition stands, i.e., ρ = ρ(0) − ρ(H).

Average settlement of a B× L (flexible) rectangular footing on semi-infinite homogenous mass [72]

ρ(z) =
q
√

BL
Es

(
1− ν2

)
Aav, (A10)

Aav =
1

π
√

m

ln

√
1 + m2 + m
√

1 + m2 −m
+ m ln

√
1 + m2 + 1
√

1 + m2 − 1
−

2
3

(
1 + m2

) 3
2
−

(
1 + m3

)
m

, (A11)

with m as defined above.
Mayne and Poulos [15] expressed the settlement as follows:

ρ(z) =
q
Es

√
4BL
π

(
1− ν2

)
IGIFIE, (A12)

where IF = π/4 and 1 for perfectly rigid and perfectly flexible footing respectively, IE = 1 for
foundation on the surface and IG = 1 for homogenous, semi-infinite mass. For more about the
I-factors, please see the original publication [15].
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