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We consider a gauge-invariant, mass-independent prescription for renormalizing composite operators,
regularized on the lattice, in the spirit of the coordinate space (X-space) renormalization scheme. The
prescription involves only Green’s functions of products of gauge-invariant operators, situated at distinct
spacetime points, in a way as to avoid potential contact singularities. Such Green’s functions can be
computed nonperturbatively in numerical simulations, with no need to fix a gauge; thus, renormalization to
this “intermediate” scheme can be carried out in a completely nonperturbative manner. Expressing
renormalized operators in the MS scheme requires the calculation of corresponding conversion factors. The
latter can only be computed in perturbation theory, by the very nature of MS; however, the computations are
greatly simplified by virtue of the following attributes: (i) In the absence of operator mixing, they involve
only massless, two-point functions; such quantities are calculable to very high perturbative order. (ii) They
are gauge invariant; thus, they may be computed in a convenient gauge (or in a general gauge, to verify that
the result is gauge independent). (iii) Where operator mixing may occur, only gauge-invariant operators
will appear in the mixing pattern: unlike other schemes, involving mixing with gauge-variant operators
(which may contain ghost fields), the mixing matrices in the present scheme are greatly reduced; still,
computation of some three-point functions may not be altogether avoidable. We exemplify the procedure
by computing, to lowest order, the conversion factors for fermion bilinear operators of the form ψ̄Γψ in
QCD. We also employ the gauge-invariant scheme in the study of mixing between gluon and quark energy-
momentum tensor operators: we compute to one loop the conversion factors relating the nonperturbative
mixing matrix to the MS scheme.

DOI: 10.1103/PhysRevD.103.094509

I. INTRODUCTION

Renormalization of composite operators is essential
when studying matrix elements and correlation functions

in hadronic physics. It relates bare quantities of the theory
to the physical ones. In order to extract nonperturbative
physical results from numerical simulations on the lattice,
the construction of a proper nonperturbative renormaliza-
tion scheme is needed. A requirement for such a scheme is
to be applicable in both continuum and lattice regulariza-
tions in order to make contact with the continuum schemes.
Nowadays, the most widely used renormalization scheme
in lattice simulations is the modified regularization-inde-
pendent scheme (RI0) [1,2]; it considers gauge-variant
Green’s functions (GFs) of composite operators with
external elementary quantum fields in momentum space.
This is not a unique nonperturbative scheme. In this paper,
we consider an alternative approach, which involves gauge-
invariant correlation functions of composite operators in
coordinate space. This approach, called the “X-space”
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scheme, has been considered in Ref. [3] in the context
of lattice studies some years ago. Older investigations of
coordinate-space methods can also be found in, e.g.,
Ref. [4]. To date, there are only limited lattice appli-
cations of the X-space scheme, mainly regarding the
multiplicative renormalization of fermion bilinear oper-
ators. Other applications regarding more complex oper-
ators, such as the four-fermion operators, have been
studied in, e.g., Ref. [5]. X-space is a promising
nonperturbative scheme for the lattice simulations,
especially when one considers further applications
involving operators which mix under renormalization.
However, some extensions are necessary in order to deal
properly with the error in nonperturbative calculations
and, most importantly, with operator mixing. In this
paper we implement a number of extensions to this
effect; the resulting scheme will be referred to as the
“gauge-invariant renormalization scheme (GIRS)” to
emphasize the property of gauge invariance, which is
essential when one studies the renormalization of gauge-
invariant operators in the presence of mixing.
GIRS involves two-point GFs of the following form:

hO1ðxÞO2ðyÞi; ðx ≠ yÞ; ð1Þ

where O1ðxÞ;O2ðyÞ are gauge-invariant operators at two
different spacetime points. In many cases the renorm-
alization factors of the operators in GIRS can be
extracted by studying only two-point functions; how-
ever, as we conclude in this work, in the presence of
mixing the study of three-point functions is also needed
in numerous cases. This scheme has a number of
advantages which make its implementation easier in
the lattice simulations:
(1) The GFs under consideration are gauge invariant.

The benefits from this property are as follows.
First, when mixing occurs, the set of operators
under mixing is reduced. Gauge-variant operators
[Becchi-Rouet-Stora-Tyutin (BRST) variations
and operators which vanish by the equations of
motion] which mix with gauge-invariant operators
(according to the Joglekar-Lee theorems [6]) do
not contribute in these GFs. This property is very
useful especially when studying the renormaliza-
tion of gauge-invariant operators nonperturba-
tively by lattice simulations; gauge-variant
operators, typically, contain ghost fields and/or
gauge-fixing terms, which are defined in pertur-
bation theory and their study is not obvious in a
nonperturbative context. Second, no gauge fixing
is needed in GIRS. When fixing a covariant
gauge on the lattice, one encounters the problem
of Gribov copies (see, e.g., Refs. [7,8]). Employ-
ing this scheme, we avoid such a problem. Given
that GFs in GIRS are independent of the gauge-

fixing parameter, one can perform perturbative
calculations in the Feynman gauge, where mo-
mentum-loop integrals are simpler.

(2) Contact terms are automatically excluded (x ≠ y) in
contrast to the standard renormalization schemes in
momentum space (e.g., RI0 scheme).

(3) In the absence of operator mixing, perturbative
calculations in GIRS involve diagrams with only
one incoming/outgoing momentum. Given that one
may also adopt a massless renormalization scheme,
one can make use of techniques for evaluating such
diagrams which have been developed to very high
perturbative order (see, e.g., Refs. [9–15]). Analo-
gous techniques can be used even in the presence of
mixing.

(4) The fact that GIRS renormalization functions can be
fully obtained nonperturbatively, without recourse to
lattice perturbation theory, has the consequence that
conversion to the modified minimal subtraction
(MS) scheme entails only continuum perturbative
calculations.

There are also some disadvantages of GIRS:
(1) Computations in GIRS, at a given order in pertur-

bation theory, involve diagrams with one more loop.
(2) The cost for not generating contact terms is the

presence of exponentials in Feynman integrals,
which makes their computation somewhat more
complex.

(3) When mixing occurs, one must also often study
(n > 2)-point GFs; this is of course the case not only
in GIRS, but also in other schemes.

Both RI0 and GIRS are used as intermediate schemes
in which renormalization functions can be directly
obtained via lattice simulations. The ultimate goal is
to obtain renormalized GFs in the MS scheme, which is
the standard scheme used in the analysis of experimental
data. For this purpose, one must compute appropriate
conversion factors, which are finite and regularization
independent.
Our work is divided into two parts. The first part

focuses on the employment of GIRS in the multiplica-
tive renormalization of fermion bilinear operators. This
serves both as an example for describing the renorm-
alization procedure in GIRS and as a necessary ingre-
dient in possible variants of GIRS appearing in the
second part. The fermion bilinear operators have already
been studied in GIRS in both continuum [16,17] and
lattice regularizations [3,18,19]. A novel aspect of our
calculation is that we provide alternative ways of
implementing GIRS, i.e., using specific values of x,
y, or integrating over time slices. Such choices might
help to reduce statistical noise in the nonperturbative
evaluation. Given that the MS renormalization functions
are independent of the spacetime points x, y, the
nonperturbative estimates can be checked by verifying
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this property. Another aspect is that we also provide
results using the ’t Hooft–Veltman d-dimensional def-
inition of γ5.
In the second part of our work, we extend the

application of GIRS in the presence of mixing: we
study the renormalization and mixing of the gluon and
quark parts of the QCD energy-momentum tensor
(EMT); this is a subject of research with an increased
interest in recent years [20–24]. EMT is relevant to
the calculation of the renormalized gluon and quark
average momentum fractions, which are involved in the
study of hadron spin decomposition [25]. In this study,
we consider only nondiagonal elements of EMT, which
give a simpler mixing pattern. However, the pro-
cedure can be similarly extended to the renormali-
zation of the diagonal elements. In order to establish
the required number of renormalization conditions we
must also consider three-point GFs. A number of
candidate GFs can be employed for this purpose, such
as hOμν

i ðxÞO1ðyÞO1ðzÞi, where Oμν
i is the gluon or

quark energy-momentum tensor operator and O1ðxÞ ¼
ψ̄ðxÞψðxÞ is the scalar bilinear operator; we compute the
corresponding conversion factors for some of the most
prominent candidates.
The applicability of both RI0 and GIRS relies on

the existence of a window: ½a;Λ−1
QCD� (where a is the

lattice spacing and ΛQCD is the QCD physical scale),
which must be wide enough in order to keep lattice
artifacts under control and to ensure the reliability of
perturbation theory. Some detailed comparisons of RI0
and coordinate space renormalization was presented
in Refs. [3,18], showing similar estimates of discreti-
zation effects at presently available values of a.
Improvements on the size of the window can be
obtained by subtracting lattice artifacts [18], in leading
orders of perturbation theory. Further improvements are
possible via step-scaling techniques [4,18], or averaging
over operator positions (see, e.g., Ref. [19]). While, for
operators which do not suffer from mixing, intermediate
schemes such as RI0 can have similar errors (or even
smaller, depending on the value of a), the advantage of
GIRS becomes more apparent when mixing is present.
[Note that the Green’s functions examined in GIRS

are similar to those studied in the operator product
expansion (OPE). However, the aim here is not that of
taking the limit z≡ x − y → 0; on the contrary, we are
interested in z strictly different from 0, since we just
want to renormalize each of the operators involved,
rather than study the divergences (contact terms) which
are created as z → 0. Thus also the presence of higher-
twist admixtures in the operator product, which is
expected in this limit, does not affect the coordinate
space renormalization schemes.]
The outline of this paper is as follows. Section II regards

the renormalization of fermion bilinear operators in GIRS,

while Sec. III is devoted to the renormalization and mixing
of the quark and gluon EMToperators. In both sections, we
provide details on the calculational procedure and we
present our tree-level and one-loop results for the bare
GFs of operators under study, as well as for the conversion
factors between GIRS and MS schemes. Finally, we
conclude in Sec. IV with a summary of our calculation
and possible future extensions of our work. We also include
an appendix containing details on technical aspects of the
calculation.

II. RENORMALIZATION OF FERMION
BILINEAR OPERATORS IN GIRS

A. Details of the calculation

Definitions of renormalization factors are related to
specific renormalization schemes. From the perturbative
point of view, these factors depend on properties of the
scheme, such as the renormalization scale, the regulator,
and the imposed renormalization conditions on GFs.
These conditions connect bare and renormalized quan-
tities. There exists a variety of schemes for defining
renormalized quantities. A gauge-invariant renormaliza-
tion scheme, which is not strictly perturbative like MS,
is GIRS. In order to determine renormalization factors
within GIRS, we will examine GFs which contain the
product of two gauge-invariant composite operators,
defined at different spacetime points in the massless
limit. Such GFs, computed in a lattice simulation, will
lead to a nonperturbative determination of the renor-
malized composite operators in this scheme. Having two
different schemes for the same regulator, we can
calculate conversion factors between these two schemes.
The renormalized quantities in one scheme can be
obtained as functions of their values in the other
scheme, with the bare quantities being the same in
both schemes. Perturbatively, we use the dimensional
regularization (DR) and we calculate these conversion
factors, which can take us from GIRS to the MS
scheme. Although we will be presenting results only
up to first order beyond the leading contribution, the
fact that these conversion factors can be calculated in
DR, reinforces the prospect of evaluating higher-order
contributions. To this end, we calculate, in QCD, the
following GF for the case of two local fermion bilinear
operators OX, OY :

Gðx − yÞ≡ hOXðxÞOYðyÞi; x ≠ y; ð2Þ
where OΓðxÞ≡ ψ̄ðxÞΓψðxÞ, and Γ ¼ X, Y denotes prod-
ucts of Dirac matrices given in Eqs. (3)–(7). X can, in
principle, differ from Y. Note that in order to obtain a
nonzero result the flavor of the fermion (antifermion)
field in OX must coincide with the flavor of the
antifermion (fermion) field in OY . Depending on the
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choice of Γ, the operators behave under Lorentz trans-
formations and under parity as

O1 ¼ ψ̄ψ scalar; ð3Þ
Oγ5 ¼ ψ̄γ5ψ pseudoscalar; ð4Þ
Oγμ ¼ ψ̄γμψ vector; ð5Þ

Oγ5γμ ¼ ψ̄γ5γμψ axial vector; ð6Þ
Oσμν ¼ ψ̄σμνψ tensor; ð7Þ

where σμν ≡ ½γμ; γν�=2. The above composite operators,
appear frequently in the study of the eigenstates of the
spectrum of a theory, i.e., hadrons (see, e.g., Ref. [26]),
and therefore it is essential to impose an appropriate
renormalization scheme for them. The GF of these
operators diverges as the fields are brought near each
other. The choice of Eq. (2) ensures that both the GF
and the renormalized operators are independent of the
gauge. On the contrary, the GFs hψðqÞPx OΓðxÞψ̄ðq0Þi,
which are typically used for defining the RI0 scheme, are
gauge dependent, as they involve fundamental fields,
which are not gauge invariant.
One may consider both flavor singlet ( 1

Nf

P
f ψ̄fΓψf)

and nonsinglet operators (ψ̄fΓψf0 , f ≠ f0). Actually, the
one-loop results do not differ between the two cases and
thus we have omitted flavor indices on ψ , ψ̄ . Higher-
loop contributions are expected to be different as shown
in the diagram of Fig. 1. Note that if the operators in
Eq. (2) are both scalar flavor singlet, they develop a
finite vacuum expectation value, which gives a mixing
coefficient with the unit operator. To avoid such issues,
we use normal-ordered operators, i.e., OΓ − hOΓi1.
In our work, we extract the renormalization factors of

OΓ, up to one loop, in both GIRS and MS schemes. We
define the renormalized operators and parameters of the
theory using the following convention:

OR
Γ ≡ ZB;R

Γ OB
Γ ; gR ≡ μðd−4Þ=2ðZB;R

g Þ−1gB; ð8Þ

where g is the coupling constant, and μ is a momentum
scale. The superscript B denotes bare quantities in the B
regularization [e.g., B ¼ DR, LR, where DR (LR) denotes
dimensional (lattice) regularization] and the superscript R
denotes renormalized quantities in the R renormalization

scheme (e.g., R ¼ GIRS, MS). The MS renormalization
scale μ̄ is defined in terms of μ:

μ̄≡ μ

�
4π

eγE

�
1=2

; ð9Þ

where γE is Euler’s gamma.
There exist several prescriptions [27] for defining γ5 in d

dimensions, such as the naive dimensional regularization
(NDR) [28], the ’t Hooft–Veltman (HV) [29], the DRED
[30] and theDREZ prescriptions (see, e.g., Ref. [31]). They
are related among themselves via finite conversion factors
[32]. In our calculation, we apply the NDR and HV
prescriptions. The latter does not violate Ward identities
involving pseudoscalar and axial-vector operators in d≡
4 − 2ε dimensions. The metric tensor, ημν, and the Dirac
matrices, γμ, satisfy the following relations in d dimen-
sions:

ημνημν ¼ d; fγμ; γνg ¼ 2ημν1: ð10Þ

In NDR, the definition of γ5 satisfies

fγ5; γμg ¼ 0; ∀ μ; ð11Þ

whereas in HV it satisfies

fγ5; γμg ¼ 0; μ ¼ 1; 2; 3; 4; ½γ5; γμ� ¼ 0; μ > 4:

ð12Þ

The renormalization factors in GIRS can be obtained by
imposing the following condition:

hOGIRS
X ðxÞOGIRS

Y ðyÞijx−y¼z̄

≡ ZB;GIRS
X ZB;GIRS

Y hOB
XðxÞOB

YðyÞijx−y¼z̄

¼ hOGIRS
X ðxÞOGIRS

Y ðyÞitreejx−y¼z̄; ð13Þ

where z̄ is theGIRS 4-vector position scale (z̄ ≠ ð0; 0; 0; 0Þ).
As we are interested in applying GIRS in lattice simu-
lations, the scale z̄ may be chosen to satisfy the condition
a ≪ jz̄j ≪ Λ−1

QCD; this condition guarantees that discretiza-
tion effects will be under control and simultaneously wewill
be able to make contact with (continuum) perturbation
theory.
There are additional, alternative ways of extracting

renormalization factors in GIRS, using variants of the
GFs of Eq. (2). An option is to take a Fourier transform
of Eq. (2); however, this is not an optimal choice as contact
terms arise. A more promising option is to integrate Eq. (2)
over three of the four components of the position vector
(x − y), while setting the fourth component equal to a
reference scale t̄. For the scalar and pseudoscalar operators,
the direction of the unintegrated component is immaterial;

X
Y

FIG. 1. A two-loop order Feynman diagram contributing to the
expectation value hOXðxÞOYðyÞi for flavor singlet operators OX
and OY . A wavy (solid) line represents gluons (quarks).
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for the other operators, there are two possible options,
depending on whether this direction coincides or not with
one of the indices carried by the operators. Due to the
anisotropic lattice employed in simulations, the temporal
direction is a special one. In this sense, a natural choice for
the component t̄ is to be temporal; we call this variant t-
GIRS. Without loss of generality, we set x ¼ ðx1; x2; x3; 0Þ
and y ¼ ð0; 0; 0; t̄Þ; then the renormalization condition for
t-GIRS takes the following form:Z

d3x⃗hOt−GIRS
X ðx⃗; 0ÞOt−GIRS

Y ð0⃗; t̄Þi

¼
Z

d3x⃗hOXðx⃗; 0ÞOYð0⃗; t̄Þitree: ð14Þ

Although the choice of prescription is not unique, we
benefit from the fact that each choice depends on only one
reference scale. In case the renormalization prescription
involves GFs which are not integrated over any spacetime
direction, as in Eq. (13), the quantity (x − y) can be chosen
to take any 4-vector reference value, e.g., the “democratic”
choice z̄ ¼ aðn1; n2; n3; n4Þ, where n1 ¼ n2 ¼ n3 ¼ n4.
In what follows, we will provide, to one-loop order, the

appropriate conversion factor to the MS scheme for all the
above choices; it is given by

CGIRS;MS
Γ ≡ ZDR;MS

Γ

ZDR;GIRS
Γ

¼ ZLR;MS
Γ

ZLR;GIRS
Γ

: ð15Þ

Any GF computed nonperturbatively and renormalized
(also nonperturbatively) according to any of the above
choices should, upon conversion to the MS scheme, lead to

renormalized GFs which coincide, regardless of the pre-
scription used; this then provides a very strong consistency
check of the nonperturbative results. The ultimate selection
of a prescription will depend on the statistical errors
involved in each case.
For completeness, we note that there is another variant of

GIRS given in Ref. [19]; in this approach, the average of the
position vector (x − y) is taken over the three-dimensional
surface of a hypersphere with radius jx − yj, centered at the
origin.

B. Tree-level order

The first step in our perturbative procedure is to cal-
culate the tree-level value of the GF, Gðx − yÞ≡
hOXðxÞOYðyÞi, using dimensional regularization. This
simple exercise serves to explain the procedure applied
beyond tree level. The Feynman diagrams contributing
to this expectation value are shown in Fig. 2. However,
since we will consider the operators OX and OY to be
normal ordered, we discard the second diagram of
Fig. 2. We are interested in a mass-independent scheme
and thus all quark masses are set to zero. Then the tree-
level contribution takes the following form:

Gtreeðx − yÞ ¼ Nc

Z
ddp
ð2πÞd

Z
ddk
ð2πÞd e

iðk−pÞðx−yÞ

×
1

p2k2
Trð=pY=kXÞ; ð16Þ

where Nc is the number of colors. Integrating over the
momenta p, k, the resulting expression is

Gtreeðx−yÞ¼NcðΓð2− εÞÞ2
4π4−2ε

ðxμ−yμÞðxν−yνÞ
ððx−yÞ2Þ4−2ε TrðγμYγνXÞ:

ð17Þ

where a summation over repeated indices μ, ν is under-
stood. One should observe that when X, Y transform

FIG. 2. Tree-level Feynman diagrams contributing to the
expectation value hOXðxÞOYðyÞi. A solid line represents quarks.

YX

d1

Y

d2

X X Y

d3

FIG. 3. One-loop order Feynman diagrams contributing to the expectation value hOXðxÞOYðyÞi. Awavy (solid) line represents gluons
(quarks).
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differently under rotations and parity, Eq. (17) gives
zero. The results1 for the nonzero cases are listed in
Table I, in terms of an overall factor: N ðx − yÞ≡
NcðΓð2 − εÞÞ2=ð4π4−2εððx − yÞ2Þ4−2εÞ:
In order to apply t-GIRS, i.e., to integrate over

spatial components, we consider all eight possibilities
for X, Y involving both time-like and space-like direc-
tions of Dirac matrices: 1;γ5;γt;γi;γ5γt;γ5γi;γtγi;γiγj,
where i≠ j≠ t≠ i. The only nonvanishing contribution
under integration over the spatial components, stems
from the case X ¼ Y and μ ¼ ν in Eq. (17). The results
for Gtreeðx⃗; tÞ in four dimensions, after integrating over
the spatial components x⃗, are given, in terms of an
overall factor of Nc=ðπ2jtj3Þ, in Table II. We note that
the integrated GFs for γt and γ5γt vanish; the conse-
quence of this fact for the corresponding operators will
be discussed in the following subsection.

C. One-loop order

At one-loop level, the Feynman diagrams which con-
tribute to the GFs Gðx − yÞ are given in Fig. 3.

The corresponding contributions are shown below.
Diagram 1:

d1 ¼
Z

ddk
ð2πÞd

Z
ddp
ð2πÞd

Z
ddq
ð2πÞd

g2B
2
ðN2

c − 1Þeikðx−yÞ

×

�
1

ðp − qÞ2p2ðp − kÞ2q2ðq − kÞ2

× TrðX=pγμ=qYð=q − =kÞγμð=p − =kÞÞ
�
: ð18Þ

Diagram 2:

d2 ¼
Z

ddk
ð2πÞd

Z
ddp
ð2πÞd

Z
ddq
ð2πÞd

g2B
2
ðN2

c −1Þeikðx−yÞ

×

�
1

ðp−qÞ2ðp2Þ2ðp− kÞ2q2TrðX=pγμ=qγμ=pYð=p−=kÞÞ
�
:

ð19Þ

Diagram 3:

d3 ¼
Z

ddk
ð2πÞd

Z
ddp
ð2πÞd

Z
ddq
ð2πÞd

g2B
2
ðN2

c −1Þeikðx−yÞ

×

�
1

ðp−qÞ2ðp2Þ2ðp− kÞ2q2TrðXð=p−=kÞY=pγμ=qγμ=pÞ
�
:

ð20Þ

Note that for one-loop calculations, the bare and renor-
malized coupling constants differ only by the factor μ−ε

[see Eq. (8)], as only the tree-level value of Zg ¼ 1þOðg2Þ
contributes in this case (i.e., Zg → 1).
Our next step is to verify that the one-loop contribution is

indeed gauge invariant, i.e., to verify that terms depending
on the gauge parameter,2 β, cancel out when we sum the
three diagrams. To this end, we may use the following
Ward-like identity:

=k
=pð=pþ =kÞ ¼

1

=p
−

1

=pþ =k
: ð21Þ

TABLE I. Values of the tree-level contributions to the Green’s functions hOXðxÞOYðyÞi in 4 − 2ε dimensions in
terms of an overall factor of N ðzÞ≡ NcðΓð2 − εÞÞ2=ð4π4−2εðz2Þ4−2εÞ, where z≡ x − y.

X Y GtreeðzÞ=N ðzÞ
1 1 4z2

γ5 γ5 −4z2
γν1 γν2 8zν1zν2 − 4δν1ν2z

2

γ5γν1 γ5γν2 8zν1zν2 − 4δν1ν2z
2

σν1ν2 σν3ν4 8ðδν1ν3zν2zν4 − δν1ν4zν2zν3 − δν2ν3zν1zν4 þ δν2ν4zν1zν3Þ − 4ðδν1ν3δν2ν4 − δν1ν4δν2ν3Þz2

TABLE II. Values of the tree-level contributions to the Green’s
functions hOXðx⃗; 0ÞOYð0⃗; tÞi in four dimensions, in terms of an
overall factor of Nc=ðπ2jtj3Þ, after integrating over x⃗.

X ¼ Y
R
d3x⃗Gtreeðx⃗; tÞ=½Nc=ðπ2jtj3Þ�

1 1=4
γ5 −1=4
γt 0
γi −1=6
γ5γt 0
γ5γi −1=6
σti 1=12
σij −1=12

1The different definitions of γ5 give identical results at tree
level, since only the first four components of the vectors x and y
can be nonzero. 2β ¼ 0ð1Þ corresponds to the Feynman (Landau) gauge.
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If we implement this identity on the vertex of a
diagram, the initial diagram gets split into two new
ones that have a fermion propagator removed. The
double application of the above identity on the three
one-loop diagrams is given diagrammatically in Fig. 4.
The tadpole diagrams lead to a scaleless expression,
which therefore vanishes in dimensional regularization.
The remaining contributions (β terms) cancel against
each other when summed. We can thus focus on the
Feynman gauge.
Recall that the massless tree-level GFs were proportional

to a trace of the form Trð=zY=zXÞ. The divergent part of the
one-loop contribution is expected to contain the same
traces. After some Dirac trace algebra, it turns out that
the finite parts of GFs are proportional to the tree level as
well. In order to determine the conversion factors between
GIRS and MS, we must compare one-loop GFs to the
corresponding tree-level ones. However, when integrating
over spatial components, the GFs containing the operators
with γt and γ5γt vanish at tree level and one-loop order;
thus, this type of GF cannot be used to evaluate the
renormalization factors of these particular operators.
Nevertheless, we can adopt the natural definition that these
renormalization factors be the same as those of γi and γ5γi,
respectively.
Higher-loop contributions involve continuum inte-

grands over more than three momenta, including expo-
nentials in the numerator; these make the calculation
process more complicated. Note, however, that the
presence of exponentials in two-point functions amounts
to a simple Fourier transform, once integrals over inner
momenta have been performed; such integrals involve
only one external momentum and massless propagators,
and they have been studied in various contexts in the
literature to higher-loop order. In this study, we limit
ourselves up to one-loop computations. For a four-loop
evaluation, see Ref. [17].
The procedure of formulating a gauge-invariant

renormalization scheme entails performing perturbative
calculations in the continuum, while the necessary
lattice calculations can be performed in a completely
nonperturbative way. Still, calculations in lattice pertur-
bation theory can be used to check the validity of

nonperturbative methods. Also, a perturbative calcula-
tion may be employed in order to reduce cutoff effects
present in the nonperturbative estimates. While pertur-
bative calculations are easier to implement in the
continuum (and also unavoidable by the very nature
of the MS scheme), they become exceedingly com-
plicated on the lattice, and consequently, calculations
beyond two loops are practically unfeasible.3 In addi-
tion, even some two-loop calculations become prohibi-
tive for some “improved” actions, such as the ones used
in many large-scale simulations nowadays. Thus, in
practice, lattice results are typically limited to one loop,
and this can lead to large systematic errors. In GIRS,
even the one-loop calculation is not trivial since, as
mentioned in Sec. I, “n-loop” (i.e., order g2n) calcu-
lations involve (nþ 1)-loop Feynman diagrams. Also,
the presence of exponentials in Feynman integrals
makes their computation more complex. A method
for calculating similar integrals on the lattice can be
found in Ref. [37], where the renormalization of non-
local operators was studied; however, in that work only
one-loop Feynman diagrams were considered.

D. Results

In this subsection, we present our results (up to one
loop) on the bare GFs Gðx − yÞ, as well as the con-
version factors between all the variants of the GIRS and
MS schemes. As mentioned above, we employ both NDR
and HV prescriptions; HV is more useful for comparison
with experimental determinations and phenomenological
estimates, while NDR is applied for comparison with
previous calculations. The one-loop conversion factor
between NDR and HV prescriptions can be extracted
from our results.
Our resulting expressions for the five nonvanishing bare

GFs are (z≡ x − y)

X Y

X Y

X Y

X Y
X Y

d2

X Y

X Y

X Y
X Y

X Y

d3

FIG. 4. Diagrammatic representation of the application of the Ward identity to the three one-loop diagrams.

3The only three-loop calculations on the lattice that exist thus
far regard “vacuum” diagrams, that is diagrams without external
lines and momenta [33–35]. In addition, stochastic perturbation
theory has been carried out to higher loops [36].
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hODR
1 ðxÞODR

1 ðyÞi ¼ NcðΓð2 − εÞÞ2
π4−2εðz2Þ3−2ε

�
1þ

g2
MS

CF

16π2

�
6

ε
þ 2þ 6 lnðμ̄2z2Þ þ 12γE − 12 lnð2Þ

�
þOðε1; g2

MS
Þ þOðg4

MS
Þ
�
;

ð22Þ

hODR
γ5 ðxÞODR

γ5 ðyÞi ¼ −hODR
1 ðxÞODR

1 ðyÞi − 16cHV
NcðΓð2 − εÞÞ2
π4−2εðz2Þ3−2ε

g2
MS

CF

16π2
þOðg4

MS
Þ; ð23Þ

hODR
γν1

ðxÞODR
γν2

ðyÞi ¼ NcðΓð2 − εÞÞ2
π4−2εðz2Þ4−2ε ð2zν1zν2 − δν1ν2z

2Þ
�
1þ 3

g2
MS

CF

16π2
þOðε1; g2

MS
Þ þOðg4

MS
Þ
�
; ð24Þ

hODR
γ5γν1

ðxÞODR
γ5γν2

ðyÞi ¼ hODR
γν1

ðxÞODR
γν2

ðyÞi þ 8cHV
NcðΓð2 − εÞÞ2
π4−2εðz2Þ4−2ε ð2zν1zν2 − δν1ν2z

2Þ
g2
MS

CF

16π2
þOðg4

MS
Þ; ð25Þ

hODR
σν1ν2

ðxÞODR
σν3ν4

ðyÞi ¼ NcðΓð2 − εÞÞ2
π4−2εðz2Þ4−2ε ½2ðδν1ν3zν2zν4 − δν1ν4zν2zν3 − δν2ν3zν1zν4 þ δν2ν4zν1zν3Þ

− ðδν1ν3δν2ν4 − δν1ν4δν2ν3Þz2�
�
1þ

g2
MS

CF

16π2

�
−
2

ε
þ 6 − 2 lnðμ̄2z2Þ − 4γE þ 4 lnð2Þ

�

þOðε1; g2
MS

Þ þOðg4
MS

Þ
�
; ð26Þ

where CF ¼ ðN2
c − 1Þ=ð2NcÞ is the quadratic Casimir

operator in the fundamental representation and cHV ¼
0ð1Þ for the NDR (HV) prescription of γ5. Our results
agree with Ref. [3] (in the limit ε → 0),4 in the case cHV¼0
and Nc ¼ 3. These results can be used to derive the
renormalization factors in MS and in any variant of GIRS.
In particular, the MS-renormalized GFs are the same as the
above, once the 1=ε poles are removed and the naive limit
ε → 0 is taken in the remaining terms. The vector and axial-
vector cases are free of poles, as expected.
For another cross-check of our results, we extract the

multiplicative renormalization factors ZDR;MS
Γ , using the

following relation5:

hOMS
X ðxÞOMS

Y ðyÞi ¼ ZDR;MS
X ZDR;MS

Y hODR
X ðxÞODR

Y ðyÞijε→0:

ð27Þ

The renormalization factors can be read directly from the
bare GFs [Eqs. (22)–(26)]:

ZDR;MS
S ¼ 1 −

g2
MS

CF

16π2
3

ε
þOðg4

MS
Þ; ð28Þ

ZDR;MS
P ¼ 1 −

g2
MS

CF

16π2
3

ε
þOðg4

MS
Þ; ð29Þ

ZDR;MS
V ¼ 1þOðg4

MS
Þ; ð30Þ

ZDR;MS
A ¼ 1þOðg4

MS
Þ; ð31Þ

ZDR;MS
T ¼ 1þ

g2
MS

CF

16π2
1

ε
þOðg4

MS
Þ; ð32Þ

where we use the notation fS; P;V;A;Tg for
fscalar; pseudoscalar; vector; axial − vector; tensorg opera-
tors. These factors are in agreement with well-known
results in the literature (Ref. [38] and references therein).
Applying the condition of Eq. (13) to the resulting

expressions for the bare GFs [Eqs. (22)–(26)], we extract
the conversion factors between the GIRS and MS schemes:

CGIRS;MS
S ¼ 1þ

g2
MS

CF

16π2
½1þ 3 lnðμ̄2z̄2Þ þ 6γE − 6 lnð2Þ�

þOðg4
MS

Þ; ð33Þ

CGIRS;MS
P ¼ 1þ

g2
MS

CF

16π2
½1þ 3 lnðμ̄2z̄2Þ

þ 6γE − 6 lnð2Þ þ 8cHV� þOðg4
MS

Þ; ð34Þ

CGIRS;MS
V ¼ 1þ

g2
MS

CF

16π2

�
3

2

�
þOðg4

MS
Þ; ð35Þ

4Up to possible typos: an overall minus sign is missing
in the pseudoscalar case. Furthermore, a sign must be altered
in the definition of the parameter ε̂, as follows: 1=ε̂≡ 1=εþ
lnð4πÞ − γE.

5As usual, perturbative corrections in ZDR;MS
Γ may only be

proportional to inverse powers of ε, with coefficients chosen in a
way as to give a well-defined limit to the right-hand side of
Eq. (27).
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CGIRS;MS
A ¼ 1þ

g2
MS

CF

16π2

�
3

2
þ 4cHV

�
þOðg4

MS
Þ; ð36Þ

CGIRS;MS
T ¼ 1þ

g2
MS

CF

16π2
½3 − lnðμ̄2z̄2Þ − 2γE þ 2 lnð2Þ�

þOðg4
MS

Þ: ð37Þ

Note that the one-loop results of the bare GFs are propor-
tional to the tree-level ones, and therefore only the length
(not the orientation) of x − y is relevant as a renormaliza-
tion scale. Integrating Eqs. (22)–(26) over spatial compo-
nents and applying the condition of Eq. (14), we also
extract the conversion factors between the t-GIRS and MS
schemes. As previously mentioned, the integration over
spatial components separates these cases further into eight
possibilities (S; P; Vt; Vi; At; Ai; Tti; Tij) which depend on
whether ðxμ − yμÞ is temporal or not, and they correspond
to X ¼ Y ¼ f1; γ5; γt; γi; γ5γt; γ5γi; γtγi; γiγjg. Two of them
(Vt, At) give a vanishing contribution, both at tree level,
and one loop; however, it is natural to impose that
VtðAtÞ has the same renormalization factor as ViðAiÞ.
Thus, below we present results for the remaining six
operators. Note that for extracting the correct one-loop
renormalization factors in GIRS, it is essential to
include Oðε1Þ terms of the tree-level GFs Gtreeðx − yÞ;
we recall that such terms are also necessary in the
evaluation of the MS-renormalized GFs. The conversion
factors are

Ct−GIRS;MS
S ¼ 1þ

g2
MS

CF

16π2

�
−
1

2
þ 6 lnðμ̄ t̄Þ þ 6γE

�
þOðg4

MS
Þ; ð38Þ

Ct−GIRS;MS
P ¼ 1þ

g2
MS

CF

16π2

�
−
1

2
þ 6 lnðμ̄ t̄Þ þ 6γE þ 8cHV

�
þOðg4

MS
Þ; ð39Þ

Ct−GIRS;MS
Vi

¼ 1þ
g2
MS

CF

16π2

�
3

2

�
þOðg4

MS
Þ; ð40Þ

Ct−GIRS;MS
Ai

¼ 1þ
g2
MS

CF

16π2

�
3

2
þ 4cHV

�
þOðg4

MS
Þ; ð41Þ

Ct−GIRS;MS
Tti

¼ 1þ
g2
MS

CF

16π2

�
25

6
−2 lnðt̄ μ̄Þ− 2γE

�
þOðg4

MS
Þ;

ð42Þ

Ct−GIRS;MS
Tij

¼ 1þ
g2
MS

CF

16π2

�
25

6
−2 lnðt̄ μ̄Þ− 2γE

�
þOðg4

MS
Þ:

ð43Þ

III. RENORMALIZATION AND MIXING OF THE
QUARK AND GLUON ENERGY-MOMENTUM

TENSOR OPERATORS IN GIRS

A. Details of the calculation

The gauge-invariant part of the QCD traceless symmetric
EMT [39] contains two flavor-singlet operators, a gluonic
Oμν

1 and a fermionic Oμν
2 :

Oμν
1 ¼ 2Tr½FμρFνρ� − 1

d
δμν2Tr½FρσFρσ�; ð44Þ

Oμν
2 ¼

XNf

f¼1

�
1

2
ðψ̄fγ

μD
↔

νψf þ ψ̄fγ
νD
↔

μψfÞ

−
1

d
δμνðψ̄fγ

ρD
↔

ρψfÞ
�
; ð45Þ

where Fμν≡∂μAν− ∂νAμþ ig½Aμ;Aν�, D↔μ≡ðD⃗μ−D⃖μÞ=2,
D⃗ μ ≡ ∂⃗ μ þ igAμ, and D⃖ μ ≡ ∂⃖ μ − igAμ; a summation
over repeated indices is implied. These two operators are
involved in the structure functions in nucleons [25,40–42]:
the gluon operator appears in the leading-twist approxi-
mation of the gluon parton distribution function, while
the fermion operator is related to the unpolarized quark
parton distribution function. Furthermore, their matrix
elements are directly related to the gluon and quark average
momentum fraction of a nucleon state [25,43]. Also,
these operators are connected to the anomalous magnetic
moment of the muon [44].
A proper renormalization of the above gluon and fermion

operators is required, before one can relate their matrix
elements, as extracted from numerical simulations, to physi-
cal observables. A difficulty in calculating these renormal-
ization factors is that mixing is present; these operators mix
among themselves as they have the same transformations
under Euclidean rotational (or hypercubic, on the lattice)
symmetry. They also mix with other operators, including
gauge-variant operators (BRST variations and operators
which vanish by the equations of motion; see Ref. [45]).
The latter include ghost and gauge-fixing terms, which are
well defined in perturbation theory, while their nonpertur-
bative extensions are not obvious; thus, a nonperturbative
study of such terms by compact lattice simulations is
problematic. However, when implementing a gauge-
invariant renormalization scheme, such as GIRS, which
involves only gauge-invariant GFs, the gauge-variant oper-
ators do not contribute in the renormalization process and
thus, they are excluded. In our study, we consider only the
nondiagonal elements (μ ≠ ν) of the above operators, which
give a reduced set of operators under mixing on the lattice,
containing only Oμν

1 and Oμν
2 . Thus, the renormalization of

the nondiagonal components of EMT operators entails the
construction of a 2 × 2mixingmatrix, which relates the bare
to the renormalized operators:
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�
Oμν

1
R

Oμν
2

R

�
¼
�
ZB;R
11 ZB;R

12

ZB;R
21 ZB;R

22

��
Oμν

1
B

Oμν
2

B

�
: ð46Þ

The calculation of the 2 × 2mixing matrix requires a total
of four conditions involving GFs of Oμν

1 and Oμν
2 . Three

different two-point GFs can be constructed by taking vacuum
expectation values between the two mixing operators:

Gν1ν2;ν3ν4
ij ðx − yÞ≡ hOν1ν2

i ðxÞOν3ν4
j ðyÞi;

ði; jÞ ¼ ð1; 1Þ; ð1; 2Þ; ð2; 2Þ; ð47Þ

where ν1 ≠ ν2 and ν3 ≠ ν4. By rotational (or just hyper-
cubic) invariance, Gν1ν2;ν3ν4

ij ðx − yÞ ¼ Gν1ν2;ν3ν4
ji ðx − yÞ ¼

Gν3ν4;ν1ν2
ji ðx − yÞ. As it turns out, the two-point GFs Gij at

one-loop level are proportional to the tree-level values of the
diagonal elements Gii, with a proportionality factor which is
independent of the values of the Lorentz indices νi; as a

consequence, Eq. (47) can lead to only three independent
renormalization conditions.We calculate the aboveGFs up to
one loop in dimensional regularization. The tree-level con-
tributions come from Feynman diagrams shown in Fig. 5,
while the one-loop contributions stem from the Feynman
diagrams of Fig. 6. Note that Gtree

12 ¼ 0.
From the above GFs we can get three renormalization

conditions by requiring the absence of poles (for MS) or
equality to the corresponding tree-level values in a renorm-
alization position scale (for GIRS). These are not enough to
fully determine the mixing matrix Zij in a univocal way, in
either MS or GIRS. In order to impose a fourth condition,
we need to compute additional GFs; a most natural choice
involves products of operators Oμν

i with lower-dimensional
operators. The procedure, which was also alluded to in
Ref. [16], has the form of a bootstrap: one starts by
renormalizing lowest-dimensional operators (where no
mixing issues are present), and then proceeds to renorm-
alize operators of increasingly higher dimensionality by
requiring finiteness (or some other normalization condi-
tion) in the GFs involving products of operators up to that
dimensionality. In this case, the only available lower-
dimensional gauge-invariant local operators are the fermion
bilinears, studied in the previous section.
The simplest GF that one might consider is a two-point

functionconstructed fromtheproductofanEMToperatorOμν
i

and one fermion bilinearOΓ at two distinct spacetime points:

G11

G22

G12

FIG. 6. Diagrams which contribute to the one-loop Green’s functions Gν1ν2;ν3ν4
11 , Gν1ν2;ν3ν4

22 and Gν1ν2;ν3ν4
12 ¼ Gν1ν2;ν3ν4

21 . Wavy (solid,
dashed) lines represent gluons (quarks, ghosts). A diamond (square) denotes an insertion of Oμν

1 (Oμν
2 ).

FIG. 5. Diagrams which contribute to the tree-level Green’s
functions Gν1ν2;ν3ν4

11 and Gν1ν2;ν3ν4
22 . A diamond (square) denotes an

insertion of Oμν
1 (Oμν

2 ).
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hOμν
i ðxÞOΓðyÞi: ð48Þ

However, such a GF vanishes for any choice of Γ to all
perturbative orders: the corresponding two-point GFs with a
scalar, pseudoscalar or tensor operator give traces of an odd
number of Dirac matrices (for massless fermions), while the
GF with an axial vector gives traces containing one γ5 and
Dirac matrices with symmetrized indices; even the GF with a
vector operator hOν1ν2

i ðxÞOγν3
ðyÞi vanishes, sinceOν1ν2

i is C
even, while Oγν3

is C odd.
The next most “economic” possibility is to consider a

three-point function constructed from the product of Oμν
i

with two fermion bilinear operators (OX, OY) at three
distinct spacetime points:

Gμν
i;XYðx − w; y − wÞ≡ hOμν

i ðwÞOXðxÞOYðyÞi; ð49Þ

where the flavor of the fermion (antifermion) field in OX
must coincide with the flavor of the antifermion (fermion)
field inOY . The above GF depends on two position vectors:
(x − w) and (y − w). This fact increases the complexity of

the perturbative calculation. This also means that the
renormalization factors defined in GIRS may depend on
two renormalization 4-vector scales. A priori, a possible
way of addressing these issues could be to adopt a zero-
momentum insertion for one of the three operators. To do
this one needs to perform a four-dimensional integration
over the position vector x, y, or w depending on which
operator carries zero momentum. Then, the resulting GF
will depend on only one vector. However, such an inte-
gration over the whole spacetime causes additional com-
plications: contact terms arise when any two position
vectors among fx; y; wg, coincide, giving additional UV
divergences. To eliminate such divergences, further addi-
tive renormalizations would be needed.
One possible alternative way of simplifying the calcu-

lation of Gμν
i;XYðx − w; y − wÞ, which does not create any

contact terms is to choose the vector (y − w) to be parallel
(or antiparallel) to (x − w) (but x ≠ y). In this way, Gμν

i;XY

will depend on a single position vector. A particular
example, which we apply in our calculations, is ðy − wÞ ¼
−ðx − wÞ and (without loss of generality) w ¼ 0:

Gμν
i;XYðxÞ≡ hOμν

i ð0ÞOXðxÞOYð−xÞi: ð50Þ

The tree-level and one-loop Feynman diagrams contrib-
uting to Gμν

i;XY , (i ¼ 1, 2), are given in Figs. 7 and 8-9,
respectively. Note that ðGμν

1;XYÞtree ¼ 0. A method for
calculating the d-dimensional integrals stemming from
these Feynman diagrams is described in the Appendix.
A most natural set of four conditions for calculating the

mixing matrix in GIRS, involving the above GFs, is

1. hOν1ν2
1

GIRSðxÞOν3ν4
1

GIRSðyÞijx−y¼z̄ ¼ hOν1ν2
1

GIRSðxÞOν3ν4
1

GIRSðyÞitreejx−y¼z̄; ð51Þ

2. hOν1ν2
2

GIRSðxÞOν3ν4
2

GIRSðyÞijx−y¼z̄ ¼ hOν1ν2
2

GIRSðxÞOν3ν4
2

GIRSðyÞitreejx−y¼z̄; ð52Þ

3. hOν1ν2
1

GIRSðxÞOν3ν4
2

GIRSðyÞijx−y¼z̄ ¼ hOν1ν2
1

GIRSðxÞOν3ν4
2

GIRSðyÞitreejx−y¼z̄ ¼ 0; ð53Þ

4. hOν1ν2
1

GIRSð0ÞOGIRS
X ðxÞOGIRS

Y ð−xÞijx¼z̄ ¼ hOν1ν2
1

GIRSð0ÞOGIRS
X ðxÞOGIRS

Y ð−xÞitreejx¼z̄ ¼ 0; ð54Þ

where ν1 ≠ ν2 and ν3 ≠ ν4. Alternatively, we can replace the second condition [Eq. (52)] with

hOν1ν2
2

GIRSð0ÞOGIRS
X ðxÞOGIRS

Y ð−xÞijx¼z̄ ¼ hOν1ν2
2

GIRSð0ÞOGIRS
X ðxÞOGIRS

Y ð−xÞitreejx¼z̄: ð55Þ

We only need to make one convenient choice for X and Y. All other choices should be related by conversion factors; it is
useful to check that these factors are indeed finite. Note that some choices of X and Y may give vanishing contributions,
depending on the transformation properties of X and Y under rotations, parity and charge conjugation. The conditions (51)–
(54) can be written in the following explicit form6:

FIG. 7. Diagram which contributes to the tree-level Green’s
functions Gμν

2;XY . A square denotes an insertion of Oμν
2 . A cross

denotes an insertion of a fermion bilinear operator. A diagram
with the arrows of the fermion lines in the counterclockwise
direction must also be considered.

6For simplicity, we omit superscripts referring to the regularization and renormalization scheme, as well as Lorentz indices. We also
omit the dependence on spacetime coordinates.
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Z2
11G11 þ 2Z11Z12G12 þ Z2

12G22 ¼ Gtree
11 ; ð56Þ

Z2
21G11 þ 2Z21Z22G12 þ Z2

22G22 ¼ Gtree
22 ; ð57Þ

Z11Z21G11 þ ðZ11Z22 þ Z12Z21ÞG12 þ Z12Z22G22 ¼ Gtree
12 ¼ 0; ð58Þ

ZXZYðZ11G1;XY þ Z12G2;XYÞ ¼ Gtree
1;XY ¼ 0: ð59Þ

The four elements of the mixing matrix Zij can be obtained by solving the above system of four equations, once all GFs on
the left-hand sides have been determined via numerical simulations. Note that the renormalization factors ZX and ZY ,
appearing in Eq. (59), are eliminated and thus they do not contribute to the calculation of Zij.
A proper extension of t-GIRS, analogous to what was defined for the renormalization of fermion bilinears [see Eq. (14)],

can be applied in this case, leading to the following conditions:

1.
Z

d3x⃗hOν1ν2
1

t−GIRSðx⃗; 0ÞOν1ν2
1

t−GIRSð0⃗; t̄Þi ¼
Z

d3x⃗hOν1ν2
1

t−GIRSðx⃗; 0ÞOν1ν2
1

t−GIRSð0⃗; t̄Þitree; ð60Þ

2.
Z

d3x⃗hOν1ν2
2

t−GIRSðx⃗; 0ÞOν1ν2
2

t−GIRSð0⃗; t̄Þi ¼
Z

d3x⃗hOν1ν2
2

t−GIRSðx⃗; 0ÞOν1ν2
2

t−GIRSð0⃗; t̄Þitree; ð61Þ

3.
Z

d3x⃗hOν1ν2
1

t−GIRSðx⃗; 0ÞOν1ν2
2

t−GIRSð0⃗; t̄Þi ¼
Z

d3x⃗hOν1ν2
1

t−GIRSðx⃗; 0ÞOν1ν2
2

t−GIRSð0⃗; t̄Þitree ¼ 0; ð62Þ

4.
Z

d3x⃗hOν1ν2
1

t−GIRSð0⃗; 0ÞOt−GIRS
X ðx⃗; t̄ÞOt−GIRS

Y ð−x⃗;−t̄Þi

¼
Z

d3x⃗hOν1ν2
1

t−GIRSð0⃗; 0ÞOt−GIRS
X ðx⃗; t̄ÞOt−GIRS

Y ð−x⃗;−t̄Þitree ¼ 0: ð63Þ

No summation over ν1, ν2 is implied. Depending on the choice of X and Y, the fourth condition of t-GIRS may involve odd
integrals, which give zero. For example, using X ¼ Y ¼ 1 will lead to two structures: (i) δν1ν2 , which vanishes since we
study the nondiagonal elements (ν1 ≠ ν2) ofO

ν1ν2
i , and (ii) xν1xν2 , which will vanish upon integration over x⃗ for any choices

of ν1, ν2. In such cases, an appropriate variant of the fourth condition can be applied; e.g., for the case X ¼ Y ¼ 1, a possible
alternative condition, in place of Eq. (63), isZ

d3x⃗
xν1xν2
x2

hOν1ν2
1

t−GIRSð0⃗; 0ÞOt−GIRS
1 ðx⃗; t̄ÞOt−GIRS

1 ð−x⃗;−t̄Þi

¼
Z

d3x⃗
xν1xν2
x2

hOν1ν2
1

t−GIRSð0⃗; 0ÞOt−GIRS
1 ðx⃗; t̄ÞOt−GIRS

1 ð−x⃗;−t̄Þitree ¼ 0; ð64Þ

(no summation over ν1, ν2 is implied), orZ
d3x⃗ eip⃗·x⃗ hOν1ν2

1
t−GIRSð0⃗; 0ÞOt−GIRS

1 ðx⃗; t̄ÞOt−GIRS
1 ð−x⃗;−t̄Þi

¼
Z

d3x⃗ eip⃗·x⃗ hOν1ν2
1

t−GIRSð0⃗; 0ÞOt−GIRS
1 ðx⃗; t̄ÞOt−GIRS

1 ð−x⃗;−t̄Þitree ¼ 0; ð65Þ

FIG. 8. Diagrams which contribute to the one-loop level Green’s functions Gμν
1;XY . A diamond denotes an insertion of Oμν

1 . A cross
denotes an insertion of a fermion bilinear operator.

M. COSTA et al. PHYS. REV. D 103, 094509 (2021)

094509-12



for a fixed choice of the 3-vector p⃗. These variant schemes
lead to relations analogous to Eqs. (56)–(59) for the
determination of Zij. In this work, we present one-loop
results for three-point GFs with (X, Y) ¼ (1, 1), (γ5, γ5),
(γν3 , γν4), (γ5γν3 , γ5γν4), before performing integration over
x⃗. It is straightforward to integrate all these results over x⃗;
we do so for some specific cases (see next section), which
are likely the most appropriate for nonperturbative
investigations.
After calculating the mixing matrix, we extract the

conversion factors between the GIRS (or t-GIRS) and
the MS schemes for the EMT operators; they have a 2 × 2
matrix form:

 
Oμν

1
MS

Oμν
2

MS

!
¼
 
CGIRS;MS
11 CGIRS;MS

12

CGIRS;MS
21 CGIRS;MS

22

!
·

 
Oμν

1
GIRS

Oμν
2

GIRS

!
⇒

ð66Þ 
CGIRS;MS
11 CGIRS;MS

12

CGIRS;MS
21 CGIRS;MS

22

!

¼
 
ZB;MS
11 ZB;MS

12

ZB;MS
21 ZB;MS

22

!
·

 
ZB;GIRS
11 ZB;GIRS

12

ZB;GIRS
21 ZB;GIRS

22

!−1

: ð67Þ

The Z factors in Eq. (67) can be computed in any
regularization “B”; given that we are making contact
with MS, the most natural choice for B is dimensional
regularization.

B. Results

In this subsection, we present our results (up to
one loop) for the bare GFs hOν1ν2

i ðxÞOν3ν4
j ðyÞi, and

hOν1ν2
i ð0ÞOXðxÞOYð−xÞi for i, j ¼ 1, 2 and ðX; YÞ ¼

ð1; 1Þ, (γ5, γ5), (γν3 , γν4), (γ5γν3 , γ5γν4), as well as the
conversion factors between all variants of GIRS and MS.
The results are expressed in terms of the following Lorentz
structures:

s½1�ν1ν2ðxÞ≡ xν1xν2
x2

; ð68Þ

s½2�ν1ν2ν3ν4ðxÞ≡ xν1xν2
x2

δν3ν4 ; ð69Þ

s½3�ν1ν2ν3ν4 ≡ δν1ν3δν2ν4 þ δν1ν4δν2ν3 ; ð70Þ

s½4�ν1ν2ν3ν4ðxÞ≡ δν1ν3
xν2xν4
x2

þ δν1ν4
xν2xν3
x2

þ δν2ν3
xν1xν4
x2

þ δν2ν4
xν1xν3
x2

; ð71Þ

s½5�ν1ν2ν3ν4ðxÞ≡ xν1xν2xν3xν4
ðx2Þ2 : ð72Þ

The resulting expressions7 for the bare GFs are (z≡ y − x)

hOν1ν2
1 ðxÞOν3ν4

1 ðyÞi ¼ ðs½3�ν1ν2ν3ν4 − 2s½4�ν1ν2ν3ν4ðzÞ þ 8s½5�ν1ν2ν3ν4ðzÞÞ
4NcCFð1 − 2εÞðΓð2 − εÞÞ2

π4−2εðz2Þ4−2ε

×
�
1 −

g2
MS

16π2

�
4Nf

3

�
1

ε
þ 2γE − 2 lnð2Þ þ lnðμ̄2z2Þ þ 1

6

�
þ 20Nc

9

��
þOðε2; g0

MS
Þ þOðε1; g2

MS
Þ þOðg4

MS
Þ; ð73Þ

FIG. 9. Diagrams which contribute to the one-loop level
Green’s functions Gμν

2;XY . A square denotes an insertion of
Oμν

2 . A cross denotes an insertion of a fermion bilinear operator.
Diagrams with the arrows of the fermion lines in the counter-
clockwise direction must also be considered.

7For brevity, decimal numbers in our results are presented only with six digits after the decimal point; they are known to higher
accuracy.
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hOν1ν2
1 ðxÞOν3ν4

2 ðyÞi ¼ ðs½3�ν1ν2ν3ν4 − 2s½4�ν1ν2ν3ν4ðzÞ þ 8s½5�ν1ν2ν3ν4ðzÞÞ
NcNfð2 − εÞðΓð2 − εÞÞ2ð1 − 3

4
εÞ

2π4−2εðz2Þ4−2ε

×
g2
MS

16π2
16CF

3

�
1

ε
þ 2γE − 2 lnð2Þ þ lnðμ̄2z2Þ − 1

6

�
þOðε1; g2

MS
Þ þOðg4

MS
Þ; ð74Þ

hOν1ν2
2 ðxÞOν3ν4

2 ðyÞi ¼ ðs½3�ν1ν2ν3ν4 − 2s½4�ν1ν2ν3ν4ðzÞ þ 8s½5�ν1ν2ν3ν4ðzÞÞ
NcNfð2 − εÞðΓð2 − εÞÞ2

2π4−2εðz2Þ4−2ε × ð75Þ

�
1 −

g2
MS

16π2

�
16CF

3

��
1

ε
þ 2γE − 2 lnð2Þ þ lnðμ̄2z2Þ − 59

48

��
þOðε2; g0

MS
Þ þOðε1; g2

MS
Þ þOðg4

MS
Þ; ð76Þ

hOν1ν2
1 ð0ÞO1ðxÞO1ð−xÞi ¼ −s½1�ν1ν2ðxÞ

NcNfðΓð2 − εÞÞ2Γð3 − εÞ
22−2επ6−3εðx2Þ5−3ε

g2
MS

16π2
8CF

3

�
1

ε
þ lnðμ̄2x2Þ − 0.701491

�
þOðε1; g2

MS
Þ þOðg4

MS
Þ; ð77Þ

hOν1ν2
1 ð0ÞOγ5ðxÞOγ5ð−xÞi ¼ −hOν1ν2

1 ð0ÞO1ðxÞO1ð−xÞi; ð78Þ

hOν1ν2
1 ð0ÞOγν3

ðxÞOγν4
ð−xÞi ¼ NcNfðΓð2 − εÞÞ2Γð3 − εÞ

23−2επ6−3εðx2Þ5−3ε
g2
MS

16π2
8CF

3

×

�
ðs½4�ν1ν2ν3ν4ðxÞ þ 2s½2�ν1ν2ν3ν4ðxÞ − 8s½5�ν1ν2ν3ν4ðxÞÞ

�
1

ε
þ lnðμ̄2x2Þ − 1.701491

�

þ 1

2
s½2�ν1ν2ν3ν4ðxÞ þ

3

4
s½3�ν1ν2ν3ν4 − s½4�ν1ν2ν3ν4ðxÞ

�
þOðε1; g2

MS
Þ þOðg4

MS
Þ; ð79Þ

hOν1ν2
1 ð0ÞOγ5γν3

ðxÞOγ5γν4
ð−xÞi ¼ hOν1ν2

1 ð0ÞOγν3
ðxÞOγν4

ð−xÞi; ð80Þ

hOν1ν2
2 ð0ÞO1ðxÞO1ð−xÞi ¼ −s½1�ν1ν2ðxÞ

NcNfðΓð2 − εÞÞ2Γð3 − εÞ
22−2επ6−3εðx2Þ5−3ε

×

�
1þ

g2
MS

16π2
10CF

3

�
1

ε
þ lnðμ̄2x2Þ þ 2.639169

��
þOðε1; g2

MS
Þ þOðg4

MS
Þ; ð81Þ

hOν1ν2
2 ð0ÞOγ5ðxÞOγ5ð−xÞi ¼ −hOν1ν2

2 ð0ÞO1ðxÞO1ð−xÞi þ cHVs
½1�
ν1ν2ðxÞ

NcNfðΓð2 − εÞÞ2Γð3 − εÞ
22−2επ6−3εðx2Þ5−3ε

g2
MS

16π2
16CF þOðg4

MS
Þ;

ð82Þ

hOν1ν2
2 ð0ÞOγν3

ðxÞOγν4
ð−xÞi ¼ NcNfðΓð2 − εÞÞ2Γð3 − εÞ

23−2επ6−3εðx2Þ5−3ε
�
ðs½4�ν1ν2ν3ν4ðxÞ þ 2s½2�ν1ν2ν3ν4ðxÞ − 8s½5�ν1ν2ν3ν4ðxÞÞ

×

�
1 −

g2
MS

16π2
8CF

3

�
1

ε
þ lnðμ̄2x2Þ − 3.201491

��

−
g2
MS

16π2
8CF

3

�
11

4
s½2�ν1ν2ν3ν4ðxÞ þ

9

8
s½3�ν1ν2ν3ν4 − s½4�ν1ν2ν3ν4ðxÞ

��
þOðε1; g2

MS
Þ þOðg4

MS
Þ; ð83Þ

hOν1ν2
2 ð0ÞOγ5γν3

ðxÞOγ5γν4
ð−xÞi ¼ hOν1ν2

2 ð0ÞOγν3
ðxÞOγν4

ð−xÞi þ cHV
NcNfðΓð2 − εÞÞ2Γð3 − εÞ

23−2επ6−3εðx2Þ5−3ε

× ðs½4�ν1ν2ν3ν4ðxÞ þ 2s½2�ν1ν2ν3ν4ðxÞ − 8s½5�ν1ν2ν3ν4ðxÞÞ
g2
MS

16π2
8CF þOðg4

MS
Þ: ð84Þ
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The above GFs lead to the following results for ZDR;MS
ij :

ZDR;MS
11 ¼ 1þ g2

16π2
1

ε

�
2

3
Nf

�
þOðg4

MS
Þ; ð85Þ

ZDR;MS
12 ¼ g2

16π2
1

ε

�
−
8

3
CF

�
þOðg4

MS
Þ; ð86Þ

ZDR;MS
21 ¼ g2

16π2
1

ε

�
−
2

3
Nf

�
þOðg4

MS
Þ; ð87Þ

ZDR;MS
22 ¼ 1þ g2

16π2
1

ε

�
8

3
CF

�
þOðg4

MS
Þ: ð88Þ

These are consistent with the results found using GFs with
elementary external fields [46]. The corresponding MS-
renormalized GFs, defined as in Eqs. (48) and (49) with
renormalized operators, can be easily obtained by express-
ing these equations in terms of the bare GFs [Eqs. (73)–
(84)], multiplied by the appropriate renormalization factors
[Eqs. (28)–(31), (85)–(88)], and taking the limit ε → 0.
By solving the system of four equations (56)–(59), we

extract the conversion factors between different variants of
GIRS and MS. Below, we present results for five specific
variants of GIRS. All these variants are expected to lead to
the same MS-renormalized operators, but their respective
numerical signals may favor one variant over the others.
(1) GIRS1: X ¼ Y ¼ 1; no integration over x⃗.

Similarly, by choosing X ¼ Y ¼ γ5, we will arrive
at the same one-loop conversion factors, since
the cHV coefficient, which would have made a
difference, appears only in the one-loop GF
hOν1ν2

2 ð0ÞOγ5ðxÞOγ5ð−xÞi, which does not contrib-
ute in the calculation of the conversion factors to one
loop. Nevertheless, numerical data will be much
different; thus, this provides for an interesting
comparison of the corresponding MS-renormalized
GFs, which are obtained from the lattice.

(2) GIRS2: X ¼ γν3 ; Y ¼ γν4 ; no integration over x⃗;
ν1, ν2, ν3, ν4 are all different. Since the three-point

functions hOν1ν2
i ð0ÞOγν3

ðxÞOγν4
ð−xÞi have more

than one Lorentz structure, it is necessary to isolate
a structure by using projectors or by making specific
choices for the indices ν1–ν4 and/or the components
of x. In this variant, we isolate the structure

s½5�ν1ν2ν3ν4ðxÞ by choosing ν1, ν2, ν3, ν4 to be all
different. In this case all four components of x must
be nonzero. Similarly, the choice of X ¼ γ5γν3 ; Y ¼
γ5γν4 will give the same conversion factors to
one loop.

(3) GIRS3: X ¼ γν3 ; Y ¼ γν4 ; no integration over x⃗;
ν3 ¼ ν4; ν3 ≠ ðν1; ν2Þ; and xν3 ¼ 0.

This variant is similar to GIRS2 with the differ-

ence of isolating the structure s½2�ν1ν2ν3ν4ðxÞ.
(4) t-GIRS1: X ¼ γν3 ; Y ¼ γν4 ; integration over x⃗;

ν1 ¼ ν3; ν2 ¼ ν4; ν1, ν2 are both spatial.
The integration over the spatial components of x

will give zero unless the four indices are paired
(both in the two-point and three-point GFs), e.g.,
ν1 ¼ ν3; ν2 ¼ ν4. In principle, there are two distinct
possibilities: ν1, ν2 are both spatial or ν1 is spatial
and ν2 is temporal. However, the latter case will
be impossible to satisfy, since the combination

ðs½3�ν1ν2ν3ν4 −2s½4�ν1ν2ν3ν4ðzÞþ8s½5�ν1ν2ν3ν4ðzÞÞ=ðz2Þ4 appear-
ing in the two-point functions [see Eqs. (73)–(76)]
vanishes upon integration over spatial components.

(5) t-GIRS2: X ¼ Y ¼ 1; integration over x⃗; ν1 ¼
ν3; ν2 ¼ ν4; ν1, ν2 are both spatial; projector:
xν1xν2=x

2 (see Eq. (64).
The conversion factors for the above variants of GIRS are
given below:

CGIRSi;MS
11 ¼ 1 −

g2
MS

16π2

�
10

9
Nc þ c11Nf þ

2

3
Nf lnðμ̄2z̄2Þ

�
þOðg4

MS
Þ; ð89Þ

CGIRSi;MS
12 ¼ −

g2
MS

16π2
CF

�
c12 −

8

3
lnðμ̄2z̄2Þ

�
þOðg4

MS
Þ; ð90Þ

CGIRSi;MS
21 ¼ −

g2
MS

16π2
Nf

�
c21 −

2

3
lnðμ̄2z̄2Þ

�
þOðg4

MS
Þ; ð91Þ

CGIRSi;MS
22 ¼ 1 −

g2
MS

16π2
CF

�
c22 þ

8

3
lnðμ̄2z̄2Þ

�
þOðg4

MS
Þ;

ð92Þ

C
t−GIRSj;MS
11 ¼ 1 −

g2
MS

16π2

�
10

9
Nc þ c11Nf þ

2

3
Nf lnðμ̄2t̄2Þ

�
þOðg4

MS
Þ; ð93Þ

C
t−GIRSj;MS
12 ¼ −

g2
MS

16π2
CF

�
c12 −

8

3
lnðμ̄2 t̄2Þ

�
þOðg4

MS
Þ;

ð94Þ

C
t−GIRSj;MS
21 ¼ −

g2
MS

16π2
Nf

�
c21 −

2

3
lnðμ̄2t̄2Þ

�
þOðg4

MS
Þ;

ð95Þ

C
t−GIRSj;MS
22 ¼ 1 −

g2
MS

16π2
CF

�
c22 þ

8

3
lnðμ̄2t̄2Þ

�
þOðg4

MS
Þ;

ð96Þ
where i ¼ 1, 2, 3, j ¼ 1, 2 and the coefficients ckl are given
in Table III for each variant of GIRS.
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The use of Eq. (65) as an alternative renormalization
condition requires the integration of various expressions of
the form

eip⃗·x⃗xμ1xμ2…xμjðlnðx2ÞÞi
ðx2Þk ði; j; k∶ nonnegative integersÞ;

ð97Þ

over spatial components of x ¼ ðx⃗; tÞ. All these integrals
can be performed by using the following generating
integral function:

Z
d3x

eip⃗·x⃗

ðx2Þa ¼
25=2−aπ3=2

ΓðaÞ ðjpj=jtjÞ−3=2þaK3=2−aðjpjjtjÞ;

ð98Þ

where KνðzÞ is the modified Bessel function of the second
kind and a may take noninteger values. Then, differ-
entiating with respect to a or to individual components
of p, we can calculate all necessary integrals arising in
t-GIRS.

IV. SUMMARY

In this paper, we study a gauge-invariant, mass-inde-
pendent renormalization scheme (GIRS) for composite
operators, which is applicable in both perturbative and
nonperturbative studies. This is an extended version of
the coordinate space (X-space) renormalization scheme
studied in, e.g., Refs. [3,4]. This scheme involves vacuum
expectation values of products of gauge-invariant operators
located at different spacetime points. The expectation
values are gauge-independent and thus, gauge fixing is
not needed in this scheme. Also, gauge-variant operators,
which may mix with gauge-invariant operators, do not

contribute in such Green’s functions; as a consequence,
they can be safely excluded, leading to a reduced set of
mixing operators. In this work, we applied GIRS in the
renormalization of fermion bilinear operators, as well as in
the renormalization and mixing of the gluon and quark
parts of the QCD energy-momentum tensor. We proposed
different variants of GIRS, e.g., using specific values for the
position vectors of the operators under study, or integrating
over time slices (t-GIRS), which may lead to reduced
statistical noise in the nonperturbative calculations via
lattice simulations. We provided results, up to one loop,
for the conversion factors between the different versions of
GIRS and the MS scheme.
As for future plans, GIRS and our proposed variants (t-

GIRS, etc.) could be immediately implemented on similar
operators, e.g., four-fermi operators and supersymmetric
operators (gluino-glue, Noether supercurrent).
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APPENDIX: TECHNICAL ASPECTS OF THE
CALCULATION

There are three types of scalar Feynman integrals
appearing in our calculation:

I1ðξ1; α1Þ≡
Z

ddp1

ð2πÞd
eip1·ξ1

ðp2Þα1 ; ðA1Þ

I2ðξ1; ξ2; α1; α2; α3Þ≡
Z

ddp1ddp2

ð2πÞ2d
eip1·ξ1eip2·ξ2

ðp2
1Þα1ðp2

2Þα2ðð−p1 þ p2Þ2Þα3
; ðA2Þ

TABLE III. Values of the one-loop coefficients cij in the definition of the conversion factors of EMT operators,
given in Eqs. (89)–(96).

GIRS1 GIRS2 GIRS3 t − GIRS1 t − GIRS2

c11 −0.043464 −0.043464 −0.043464 0.236288 0.236288
c12 1.870642 4.537309 3.870642 −7.848365 −0.181699
c21 0.063712 −0.602954 −0.436288 1.933961 0.017294
c22 −3.896079 −3.896079 −3.896079 −2.777072 −2.777072
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I3ðξ1; ξ2; α1; α2; α3; α4; α5Þ≡
Z

ddp1ddp2ddp3

ð2πÞ3d
eip2·ξ1eip3·ξ2

ðp2
1Þα1ðp2

2Þα2ðð−p1 þ p2Þ2Þα3ðp2
3Þα4ðð−p1 þ p3Þ2Þα5

: ðA3Þ

For simplicity, we write down only scalar integrals for each
type; integrands containing additional factors of p1μ, p2ν

can be handled in a similar way, or by taking derivatives of
the results with respect to ξ1μ, ξ2ν, respectively. Below, we
briefly describe the procedure for calculating each type of
integral.
(1) Integral I1:

We introduce Schwinger parameters:

1

ðp2
1Þα1

¼ 1

Γðα1Þ
Z

∞

0

dλλα1−1e−λp
2
1 : ðA4Þ

After integrating over p1 and λ, we get

I1ðξ1; α1Þ ¼
Γð−α1 þ d=2Þðξ21Þα1−d=2

4α1π
d=2Γðα1Þ

: ðA5Þ

(2) Integral I2:
We introduce Schwinger parameters:

1

ðp2
1Þα1ðp2

2Þα2ðð−p1 þ p2Þ2Þα3
¼ 1

Γðα1ÞΓðα2ÞΓðα3Þ
Z

∞

0

dλ1

Z
∞

0

dλ2

Z
∞

0

dλ3λ
α1−1
1 λα2−12 λα3−13 e−λ1p

2
1
−λ2p2

2
−λ3ð−p1þp2Þ2 :

ðA6Þ
After integrating over p1 and p2, we make a change of variables: x1 ¼ λ3=ðλ2 þ λ3Þ, x2 ¼ 1 − λ2λ3=ðλ1λ2 þ λ1λ3 þ
λ2λ3Þ and x3 ¼ λ1λ2λ3=ðλ1λ2 þ λ1λ3 þ λ2λ3Þ. Integrals over x2 and x3 can be calculated algebraically, while the
remaining integration over x1 cannot be obtained in a closed form (for general values of αi). The resulting expression
takes the following form:

I2ðξ1; ξ2; α1; α2; α3Þ ¼
Γð−α1 þ d=2ÞΓð−α1 − α2 − α3 þ dÞ

4α1þα2þα3πdΓðα2ÞΓðα3ÞΓðd=2Þ
ðξ22Þα1þα2þα3−d

×
Z

1

0

dx1½ð1 − x1Þ−1þα1þα2−d=2x−1þα1þα3−d=2
1

× 2F1

�
−α1 þ d=2;−α1 − α2 − α3 þ d; d=2;−

ðξ1 þ x1ξ2Þ2
ð1 − x1Þx1ξ22Þ

��
; ðA7Þ

where ðα1 þ α2 þ α3 − dÞ < 0, ð−α1 þ d=2Þ > 0, α1 > 0. The next step is to examine whether the integration over
x1 and the limit of vanishing regulator (ε → 0, ε ¼ 2 − d=2) can be safely interchanged without leading to
divergences. For this check, it is useful to express the hypergeometric function appearing in Eq. (A7) as a power
series in x1 and ð1 − x1Þ, by applying an appropriate transformation formula (see Ref. [47]). In case the interchange is
indeed permissible, the integration over x1 can be performed after taking the limit ε → 0; in all other cases, it turns
out that the hypergeometric function can be expressed in terms of simpler functions, allowing a direct integration
over x1. The Laurent expansion of the hypergeometric function 2F1 over ε ¼ 0 has been performed with the help of
the Mathematica package HypExp introduced in Ref. [48].

(3) Integral I3:
We introduce

1 ¼ 1

d

X
ρ

∂p1ρ

∂p1ρ
: ðA8Þ

After integratingby parts,weget the following recursive relation,which can eliminate inverse powers ofp2
1, orp

2
2, orp

2
3:

I3ðξ1; ξ2; α1; α2; α3; α4; α5Þ ¼
1

−2α1 − α3 − α5 þ d

× ½α3ðI3ðξ1; ξ2; α1 − 1; α2; α3 þ 1; α4; α5Þ − I3ðξ1; ξ2; α1; α2 − 1; α3 þ 1; α4; α5ÞÞ
þ α5ðI3ðξ1; ξ2; α1 − 1; α2; α3;α4; α5 þ 1Þ − I3ðξ1; ξ2; α1; α2; α3; α4 − 1; α5 þ 1ÞÞ�:

ðA9Þ
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In the case where α1, α2, α4 are positive inte-
gers, which is true in the computation at hand, an
iterative implementation of Eq. (A9) leads to terms
with one less propagator. One momentum can then

be integrated using a well-known one-loop formula
[see Eqs. (A.1)–(A.2) in Ref. [49]]; the remaining
integrals are of type 1 or 2.
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