
Article

ACross-Sectional Study
Investigating Primary
School Children’s
Coding Practices and
Computational
Thinking Using
ScratchJr

Eleni A. Kyza , Yiannis Georgiou ,
Andria Agesilaou , and
Markos Souropetsis

Abstract

There are increasing calls to introduce computational thinking in schools; the argu-

ments in favor call upon research suggesting that even kindergarten children can

successfully engage in coding. This contribution presents a cross-sectional study

examining the coding practices and computational thinking of fifty-one primary

school children using the ScratchJr software; children were organized in two cohorts

(Cohort 1: 6–9 years old; Cohort 2: 10–12 years old). Each cohort participated in a

six-hour intervention, as part of a four-day summer club. During the intervention

children were introduced to ScratchJr and were asked to collaboratively design a

digital story about environmental waste management actions, thus adopting a disci-

plinary perspective to computational thinking. Data analyses examined children’s final

artifacts, in terms of coding practices and the level of computational thinking dem-

onstrated by each cohort. Furthermore, analysis of selected groups’ storyboard

interviews was used to shed light on differences between the two cohorts.

Media, Cognition and Learning Research Group, Department of Communication and Internet Studies,

Cyprus University of Technology, Limassol, Cyprus

Corresponding Author:

Eleni A. Kyza, Department of Communication and Internet Studies, Cyprus University of Technology,

P.O. Box 50329, Limassol 3603 Cyprus.

Email: Eleni.Kyza@cut.ac.cy

Journal of Educational Computing

Research

0(0) 1–38

! The Author(s) 2021

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/07356331211027387

journals.sagepub.com/home/jec

https://orcid.org/0000-0003-0992-4034
https://orcid.org/0000-0002-2850-8848
https://orcid.org/0000-0002-9943-7223
https://orcid.org/0000-0003-3647-2272
mailto:Eleni.Kyza@cut.ac.cy
http://us.sagepub.com/en-us/journals-permissions
http://dx.doi.org/10.1177/07356331211027387
journals.sagepub.com/home/jec
http://crossmark.crossref.org/dialog/?doi=10.1177%2F07356331211027387&domain=pdf&date_stamp=2021-08-06


Results are presented and contrasted across the two age cohorts via a developmen-

tal perspective. The findings of this study can be useful in considering the instruc-

tional support that is necessary to scaffold the development of primary school

children’s coding practices and computational thinking.

Keywords

coding practices, computational thinking, ScratchJr, primary school children, cross-

sectional design

Computational Thinking (CT) has been recognized as a set of competencies that
can promote analytical thinking, which is often linked to economic growth
(Horizon K-12 report, 2016). The emphasis on CT has been spurred by seminal
calls such as the ones put forth by Seymour Papert and Jeannette Wing, who
highlighted the potential of CT to support analytical thinking, creativity and the
development of critical thinking skills. Recently, there has been an increased
emphasis on CT around the world, including discussions about integrating pro-
gramming and CT in primary education curricula (Kong & Wang, 2021;
Sun et al., 2021). At the same time, numerous technological products (e.g.,
software and robotic kits) have emerged aiming at supporting children to
learn how to code (Jung & Won, 2018; Papadakis, 2020; Sullivan &
Heffernan, 2016; Yu & Roque, 2019), and for developing the CT
competencies needed in an ever-increasing technological world. The introduc-
tion of coding and CT to K-12 education is being supported by “low threshold,
high ceiling” software, such as ScratchJr (Flannery et al., 2013). Research
using this software to-date has provided initial empirical evidence that
coding can be learned by children as young as four years old (Bers, 2012),
and can promote children’s general and higher order thinking skills (Fallon,
2016).

The study described in this paper focuses on primary school children’s coding
practices and understanding of underlying CT concepts using Scratch Jr. It is
motivated by the small number of empirical studies on the topic, as the majority
of empirical research on CT has been conducted at the higher education level
(Heintz et al., 2016). According to Nouri et al. (2020) programming and CT in
K-9 education are relatively new and available research is still very limited.
However, due to the existence of new programming languages that are devel-
opmentally appropriate for young children, there is a need to extend research, as
it is not sufficient to assume that research findings with college students can be

2 Journal of Educational Computing Research 0(0)



transferred to younger populations (Grover & Pea, 2013; Lye & Koh, 2014;
Nouri et al., 2020).

One of the areas that has been flagged as needing more research is the devel-
opmental trajectory of CT. According to Bers (2019) “describing the activity of
coding as a learning progression assumes a developmental approach supported
by instruction that takes into account both cognitive as well as socioemotional
factors” (p. 505). Despite the fact that there is extensive work on defining learn-
ing progressions in various other disciplines, such as childhood literacy or math-
ematics education (Bers, 2019), limited work has been conducted so far
regarding CT with younger children. Such research gaps emphasize the need
for studies reporting on young children’s efforts to code, to inform research and
practice regarding children’s learning progressions on the development of CT.

Toward this end, this study reports on primary school children’s coding
practices and CT, adopting a developmental perspective via a cross-sectional
design (Cummings, 2018). During a six-hour intervention, children were intro-
duced to ScratchJr to collaboratively design a digital story about environmental
waste management. Children’s artifacts were analyzed to examine their coding
practices and their relation to CT, thus providing useful insights about each
cohort. The study methodology is aligned with an increasing corpus of research
which reports that such cross-sectional studies on children’s understanding and
skills at different developmental stages and ages can contribute to the develop-
ment of hypothetical progressions for instructional pathways and curriculum
planning (e.g., Cadorna et al., 2021; Duncan et al., 2009; Duschl, 2019).

Theoretical Framework

The Value of Teaching Coding and CT

The teaching of coding in K-12 education and the promotion of CT practices have
gained ground in recent years (Barcelos et al., 2018; Buitrago Fl�orez et al., 2017;
Govind et al., 2020; Lye & Koh, 2014). This growing trend has been justified from
multiple perspectives. As argued, through coding young programmers can rein-
force various cognitive skills, such as literacy, number sense, critical thinking and
creativity, necessary to succeed in today’s digital world (Clements, 1999; Jako�s &
Verber, 2017; Tran, 2019; Wing, 2006). In addition, via the teaching of coding,
primary school children could obtain a better understanding of concepts ground-
ed not only in the field of computer science, but also across the curriculum
(Baytak & Land, 2011; Brennan et al., 2011; Shodiev, 2015). Researchers have
also supported that, when coding, children could employ a range of new media to
communicate and test their ideas and designs (Portelance et al., 2016; Resnick,
2013). Overall, it seems that coding has emerged as a new form of literacy
(Papadakis et al., 2016). This position indicates that, similar to reading and writ-
ing, CT may facilitate children to develop substantial skills, such as the

Kyza et al. 3



development of algorithmic, problem-solving and computational competencies
(Fessakis et al., 2013; Kafai & Burke, 2014).

Even though there are different definitions of CT (Grover & Pea, 2013), most
agree that CT is centered around solving problems, requires the application of
analytic and logical thinking about data to solve a problem, and that developing
CT is not necessarily or always dependent on using computers. One of the most
cited definitions has been provided by Jeannette Wing (2006), who explained CT
as “the thought processes involved in formulating a problem and expressing its
solution in a way that a computer—human or machine—can effectively carry
out” (p. 7). A definition provided by the United States National Research
Council (NRC) further indicates that CT is “the process of recognising aspects
of computation in the world that surrounds us and applying tools and techni-
ques from Computer Science to understand and reason about both natural and
artificial systems and processes” (National Research Council, 2011, p. 29).

The emerging nature of CT still leaves many open questions on the best ways
to conceptualize it and to assess it, especially when it comes to younger people
(Hsu et al., 2018). Brennan and Resnick (2012) have described a framework for
examining young people’s CT that takes into account CT concepts (such as
sequences, loops, and events), design practices (e.g., being incremental and iter-
ative, testing and debugging, etc.), as well as the learners’ perspectives and how
these perspectives change over time. Moreno-Le�on et al. (2015) offered an oper-
ationalization of assessing students’ CT concepts in Scratch projects, based on a
synthesis of the literature. This operationalization identified seven CT concepts:
(1) abstraction and problem decomposition, (2) logical thinking, (3) synchroni-
zation, (4) parallelism, (5) algorithmic notions of flow control, (6) user interac-
tivity and (7) data representation.

Despite the complex nature of CT, the teaching of coding is nowadays con-
sidered acceptable even for pre-school children. Several countries, such as the
United Kingdom, have reformed their educational curricula to include coding
lessons for children as young as five (Papadakis et al., 2016). An increasing
number of organizations and institutions, such as Code.org and the Code-to-
Learn Foundation, have been offering opportunities for young children to learn
how to code (Portelance et al., 2016). Various visual-based programming tools
have emerged aiming at supporting young children to develop coding practices.
The following section provides more information on the role of visual-based
programming to support children’s coding and the development of CT.

The Role of Visual-Based Programming in Addressing Children’s Difficulties
With Coding and CT

Despite the value of coding and CT, it is reported that children face several
challenges as programming novices. Very young children have not started, or
are just beginning, to read and have fewer linguistic experiences than adults.

4 Journal of Educational Computing Research 0(0)



Children may also have difficulties with typing and may not have the motor
skills required to control a mouse, especially for longer periods of time (Clarke-
Midura et al., 2019; Pila et al., 2019). At the same time, young children lack
logical reasoning, while their still developing critical thinking skills (Robins
et al., 2003) may result in poor understanding of the rules, logic, and syntax
of programming languages (Ala-Mutka, 2004). In general, children may engage
in “magical” thinking rather than engaging in reasoning to understand the
actions of machines or the algorithmic thinking needed to understand how
programs are executed (Flavell et al., 1993; Mioduser et al., 2009; Pea, 1986).

The literature also indicates several difficulties and misconceptions that
young children, as novice programming learners, encounter (Baser, 2013;
Durak, 2016; Fokides, 2018; �Zanko et al., 2019). For instance, beginning pro-
grammers may face challenges in developing simple algorithms (Kraleva et al.,
2019), in understanding and using abstract representations such as variables
(Fields et al., 2015; Hermans & Aivaloglou, 2017; Relkin et al., 2021), in grasp-
ing “if-then” conditionals (Barrouillet & Lecas, 1999; Müller et al., 2001), or in
detecting and handling errors in their programs (Clarke-Midura et al., 2019).

Using simple and age-appropriate programming environments to mitigate the
various difficulties in learning programming is of crucial significance for young
students (Mladenovic et al., 2018). Toward this end, various block-based pro-
gramming tools have been developed to support novice learners in learning how
to code while also contributing to the development of their CT. With these
programming tools the coding process can be performed via drag and drop of
visual objects, known as blocks, using a modular editing interface which allows
learners to develop and execute programs in a more intuitive and user-friendly
way (Chao, 2016; Durak, 2020; Hu et al., 2021; Lye & Koh, 2014). This drag
and drop process keeps young children more focused on the programming pro-
cess itself and decreases their cognitive load (Durak, 2020; Mladenovic et al.,
2018; Moors et al., 2018; Vasilopoulos & Van Schaik, 2019). In contrast to text-
based programming, visual programming does not require children memorizing
complex programming syntax or debugging errors in their codes (Durak, 2020;
Lindberg et al., 2019). Instead, these programming tools are argued to enable
the introduction of children to coding, via facilitating their understanding of
how to use basic algorithmic forms through a smooth and straightforward
visual mode of programming (Portelance & Bers, 2015).

Such visual-based environments enable children to construct meaningful pro-
grams with instant output, which in turn sustains their engagement with the
programming process (Bers, 2018; Kong & Wang, 2019). Active engagement is
significant in learning programming, otherwise, students’ interest, artifacts and
learning can be affected (Durak, 2020). Visual programming tools transform
young children into active creators of games, animations, and interactive stories
in various disciplines (e.g., language, science, or mathematics), which can boost
their interest in CT learning (Mladenovic et al., 2018; Moors et al., 2018). Many

Kyza et al. 5



of these visual-based tools work on touch devices (tablets) whose interactive
interface makes them even more accessible to young learners and children
(Hill et al., 2015).

The literature suggests that visual programming tools are most often used to
foster the acquisition of coding skills and CT in educational contexts (de Araujo
et al., 2016; Resnick et al., 2009; Shute et al., 2017), as they effectively facilitate
the cognitive, motor, and social development of young children (Lee et al.,
2013). This study examines CT using ScratchJr, which was especially designed
for younger children and, at the time of this study, only worked on tablets. We
briefly present ScratchJr in the next section.

The ScratchJr Programming Language

ScratchJr was designed for early childhood students (ages 5–7) and seeks to
support them in understanding basic programming concepts in a developmen-
tally appropriate manner (Flannery et al., 2013). It is an introductory program-
ming environment that was designed for introducing young children to coding
and CT via allowing them to create projects in the form of interactive stories,
collages and games, which cater to children’s cognitive, personal and emotional
development (Flannery et al., 2013; Papadakis et al., 2016; Portelance et al.,
2016). ScratchJr provides a visual environment, consisting of “programming
blocks”; sequences of blocks can be connected to control the sprites (characters
or objects) that appear on the tablet’s screen (Portelance et al., 2016). The pro-
gramming blocks have the form “of jigsaw puzzles pieces with visual properties
that correspond to their syntactic properties” (Portelance et al., 2016, p. 491).
Many of the more advanced features of Scratch (e.g., variables), have been
removed to create a more age-appropriately programming environment for
younger children (Papadakis et al., 2016).

The ScratchJr programming language includes a total of 28 blocks, which are
grouped by color and represent six functions (ScratchJr.org, 2015a, 2015b): (a)
yellow “Trigger” blocks (placed at the start of a script to make that script
execute when a certain action happens), (b) blue “Motion” blocks (to make
characters move), (c) purple “Looks” blocks (to change how characters look),
(d) green “Sound” blocks (to play a sound from ScratchJr’s library), (e) orange
“Control flow” blocks (to change the nature of a character’s program), and (f)
red “End” blocks (placed at the end of the script to define when the program
finishes executing). Children can drag and snap together these blocks for creat-
ing scripts, to control the sprites’ motions, appearance, and interactions.
Projects can be developed by adding up to four pages, which can integrate
sprites (characters and objects) and/or backgrounds. The ScratchJr interface is
composed of four different sections, as follows: (a) The programming area,
where the children drag and connect their blocks to create scripts; (b) The
stage, in which the sprites (characters and objects) appear, move and interact

6 Journal of Educational Computing Research 0(0)



according to the scripts; (c) List of characters, where all characters integrated in
the stage appear; and, (d) Pages, where all the project pages appear. Each page is
associated with a new scene allowing the continuation of the project.

Investigating Children’s Coding and CT via ScratchJr

The affordances of ScratchJr, and the fact that there are limited programming
tools for pre-primary and early primary school children, have made it popular
around the globe; nonetheless, empirical research focusing on children’s coding
practices via ScratchJr as well as its impact on children’s CT is still in its infancy.
Existing studies have largely focused on how ScratchJr has been adopted (e.g.,
Flannery et al., 2013; Strawhacker et al., 2015).

Portelance et al. (2016) investigated K-2 children’s block-based choices when
programming via ScratchJr. While motion-based blocks were embraced by the
children across the three grades studied, there were notable differences in child-
ren’s block usage between the three grades. For instance, second graders used
significantly fewer “End” and “Trigger” blocks than kindergartners. The
researchers attributed this finding to the lack of a direct impact on the sequence,
as the older children may have discovered that their programming sequences
were still functional without the use of these blocks. According to the research-
ers, another plausible explanation was related to the symmetry these blocks
provide in the sequence, which may be more captivating for younger children.
In contrast, second graders used the “Control” and “Sound” blocks more than
children in lower grades, as these blocks may have been more complex for
younger children.

Papadakis et al. (2016) conducted an exploratory case study with 43 pre-
school children using ScratchJr during a 13-hour intervention and found that:
(a) there were no statistically significant differences in performance in compu-
tational and digital skills between boys and girls, (b) the most used blocks were
the “Motion” blocks, and (c) preschoolers had more difficulties when the scene
included the coding of more than one character.

In a more recent study, Strawhacker and Bers (2019) investigated K-2 child-
ren’s performance on a programming assessment after engaging in a 6-week
curricular intervention. Results showed that while the participating children
mastered foundational coding concepts, there were significant differences in
children’s performance and subsequent understanding across the three grade
levels. For instance, the higher a child’s grade in school, the higher his/her
performance on ScratchJr block recognition. They also reported that while
most of the children mastered simple “Motion” commands, children at the
kindergarten level had more difficulties with meta-level “Control flow”
blocks, which do not program characters directly but instead modify how pro-
grams are executed. Likewise, children at the kindergarten level had more trou-
ble in coordinating multiple characters.

Kyza et al. 7



Overall, empirical research investigating children’s programming with
ScratchJr appears to have mainly focused on the coding practices manifested
by the children, rather than on the computational concepts underlying these
practices. We have identified only a very recent study by Chou (2020) which
has investigated the development of young children’s CT. As part of this study,
Chou (2020) provided empirical evidence suggesting that third graders immersed
in weekly programming projects using ScratchJr significantly improved their CT
concepts (sequence, event, and parallelism) and practices (testing and debug-
ging, as well as reusing and remixing). However, according to Chou (2020) a
limitation was that the study investigated children’s programming learning
progress during a CT project and did not analyze children’s CT using their
programming outcomes (artifacts). In addition, the study only adopted a one-
group pretest and posttest design with only third graders as participants. In this
context, Chou has suggested that future studies should employ comparison
groups with children of different ages, as age may influence cognitive develop-
ment during programming training as well as for further exploring CT and
coding patterns based on age.

At the moment, existing studies are limited to K-3 age children, as this is the
official target group of ScratchJr and, and as older children can use the more
advanced Scratch version. However, some researchers have argued that Scratch
may be too advanced for children in grades 4–6 (e.g., Hill et al., 2015). At the
same time, as argued by Papadakis et al. (2016), even though ScratchJr was
designed with younger children (K-3) in mind, this does not limit the potential
complexity of the designs. Based on these remarks it is safe to conclude that
ScratchJr may provide a K-6 programming environment that can successfully
introduce children of 4–12 years-old to coding and CT.

Rationale and Research Questions

In this study, we sought to investigate the coding practices, but also, the under-
lying CT concepts between two cohorts of children in primary school, ages
6–12 years old (Cohort 1: Lower primary education children, Cohort 2: Upper
primary education children) using ScratchJr. According to Sáez-L�opez et al.
(2016) only a few empirical studies have focused on the investigation of com-
puting in primary school settings, while such cross-sectional comparisons with
primary school children have been reported only for K-3 children’s coding
practices (e.g., Chou, 2020; Portelance et al., 2016). At the same time, research-
ers have suggested the need for artifact-based content analysis approach to
investigate children’s CT (Chou, 2020). In this context, we pursued the following
four research questions:

1. What are the main differences in children’s coding practices in terms of the
programming blocks used between the chosen age cohorts? (RQ1)

8 Journal of Educational Computing Research 0(0)



2. What are the main differences regarding the quality and complexity of
coding, between the two cohorts? (RQ2)

3. What are the main differences in the level of CT demonstrated by each
cohort? (RQ3)

4. How do the children in each cohort apply CT concepts to create a digital
story about a waste management issue? (RQ4)

To answer these questions, we examined differences and similarities between
the two cohorts’ coding practices and underlying CT concepts, as these were
exhibited in the ScratchJr projects they co-authored.

Methods

This study employed a mixed-methods design, which can offer depth and
breadth in understanding the data and allows for triangulating the findings
(Creswell & Clark, 2007). As argued by Portelance (2015) “triangulating student
artifacts like programming projects with other data about student learning can
more thoroughly evaluate learning trajectories and outcomes” (p. 8). In the
following sections, we provide an overview of the methodology of the present
study.

Participants

Fifty-one (51) primary school children participated in this study. This was a
convenience sample, as these children were enrolled in a summer school orga-
nized at the premises of a public university in Cyprus. Children’s participation in
the educational intervention was voluntary and all necessary permissions and
informed consents, including those of the children’s guardians, were received
prior to the study. Permission was provided by the university authorities to
conduct this research study during the summer club at the university premises.
None of the children had previously used the ScratchJr software nor had extend-
ed prior experiences in coding, as programming had not yet been integrated in
the national, centralized curriculum of Cyprus. This finding was also corrobo-
rated through the children’s post-activity interviews. While some of the children
reported that they had previously participated in educational activities aiming at
storytelling, none of the children had previously used ScratchJr or any other
programming tool. Three of the four authors were present in all sessions, taking
responsibility for leading the two cohorts. No other teacher was present during
the sessions.

The ScratchJr Curriculum and Learning Activities

Even though ScratchJr is primarily addressed to young children this does not
limit the affordances of the programming environment which allow

Kyza et al. 9



diversification and complexity in the produced projects (Papadakis et al., 2016).

As such, ScratchJr can be also used by older children in primary school, rather

than Scratch which is a more demanding programming environment (Hill et al.,

2015), while also providing ground for investigating children’s computational

practices across the K-6 spectrum.
The children were divided into two cohorts according to their age. These

cohorts were selected because they also represent how primary education is

organized by the national Ministry of Education:

• Cohort 1-Lower Primary Education (6–9 years old): Thirty-three children

attending grades 1–3 (19 girls and 14 boys).
• Cohort 2-Upper Primary Education (10–12 years old): Eighteen children

attending grades 4–6 (9 girls and 9 boys).

Children were subsequently assigned to groups of two or three according to

their preference; as such, they ended up working in primarily same aged and

same sex groups. Fifteen groups (n¼ 15) were formed for Cohort 1, and nine

groups (n¼ 9) in Cohort 2.
Each group was asked to develop its own digital interactive story by coding

in ScratchJr. The ScratchJr curriculum was structured around four 90-minute

sessions for each cohort (one session a day for four consecutive days) and

included the same content and pedagogical activities for the two cohorts.

Children in both cohorts were provided with the same time for all learning

activities (e.g., in session 2, the same time was allocated in both cohorts for

mastering ScratchJr). Table 1 provides an overview of the educational

intervention.
In Session 1, children were introduced to the concept of environmental

waste management (3Rs: Reduce, Reuse, Recycle) via a sequence of experi-

ential activities. In Session 2, children were taught how to use ScratchJr

through a series of activities based on the “Animated Genres” curriculum,

as described by Portelance and Bers (2015), and the activities included in

‘The Official ScratchJr Book’ (Bers & Resnick, 2015). Then, in Sessions 3

and 4 each group was provided with a tablet and children were asked to

collaboratively develop a digital story using ScratchJr which could be shown

to their families to motivate them to take responsible environmental waste

management actions. To help children in their efforts, each group was first

asked to work together to draw a storyboard, which they were then expected

to transfer to ScratchJr. During the sessions, the instructors were rotating

between groups to monitor the groups’ progress and provide additional

scaffolding if needed. To promote ownership of the programming activity

we asked children to switch who was handling the tablet after creating each

project page.

10 Journal of Educational Computing Research 0(0)



Data Collection and Analysis

The data corpus included all group projects (see online appendix for an overview

of the projects) to address RQ1, RQ2 and RQ3, as well as the groups’ story-

boards, and individual interviews with the children regarding their storyboard

design to address RQ4. In particular, to answer our research questions, we used

artifact analysis techniques, which is an embedded assessment method.

Embedded assessment is particularly effective for assessing younger children’s

practices as it has greater ecological validity (Wilson & Sloane, 2000). According

to Brennan and Resnick (2012) artifact-based interviews can provide, for

instance, a more nuanced and personalized way of obtaining valuable insights

regarding students’ coding practices and CT. The analysis of students’ artifacts

(i.e., ScratchJr projects) was combined with story-based interviews, which are

explained later in this paper. Each group’s ScratchJr project (n¼ 24) was col-

lected, analyzed and assessed for (a) the type of programming blocks used, (b)

the complexity and quality of coding (e.g., number of programmed sprites vs

non-programmed sprites, functional scripts vs non-functional scripts), as well as

(c) the level of CT according to six key CT concepts: Abstraction and problem

decomposition; Parallelism; Synchronization; Flow control; User interactivity;

and Data representation. Analyzing the block usage and their functionality, in

relation to identifying the levels of children’s CT, can help to better understand

children’s thought processes and behavioral practices in formulating the prob-

lem and suggesting a solution through programming.
The aforementioned comparisons between cohorts were analyzed descriptive-

ly and through statistical analysis with SPSS v.20.0 for Windows. In addition,

we proceeded with the analysis of selected groups’ storyboard interviews (based

Table 1. An Overview of the Educational Intervention.

Session Learning Goals Learning activities Duration

1 Introduction to:

� Problem-based situation

� Waste management (3Rs)

� ScratchJr

Introductory activity 100

“Reduce” experiential activity 200

“Reuse” experiential activity 200

“Recycle” experiential activity 200

“Scratch Jr” free-exploration activity 200

2 Introduction to:

� Programming

� ScratchJr programming blocks

� Sequencing

Introductory activity 100

Choosing background & sprites 200

ScratchJr programming blocks 300

Sequencing & repeating sequences 300

3 Introduction to:

� Storyboarding

� Digital storytelling

Introductory activity 150

Storyboard activity 450

Digital storytelling activity 300

4 Digital storytelling development Digital storytelling activity 900

Kyza et al. 11



on the scoring of the projects), to shed light on the existence of any quantitative
CT differences between the two cohorts.

Inter-rater reliability was established prior to scoring all projects. As part of
this process, two projects from Cohort 1 (13.3% of the data corpus), as well as
two projects from Cohort 2 (16.6% of the data corpus), were rated by two of the
researchers independently. Cohen’s j was used to determine the agreement
between the raters. There was high agreement for both inter-rater exercises:
Cohort 1 projects (j¼ .907, p< .001) and Cohort 2 projects (j¼ .811,
p< .001). All disagreements were discussed and resolved, with the researchers
then individually assessing the remaining projects. In the next sections, we pre-
sent the data analysis in more detail.

Programming Blocks. To address RQ1 (What are the main differences in children’s
coding practices in terms of the programming blocks used between the two
cohorts?), the projects were first analyzed in terms of the different types of
blocks employed (e.g., “Triggering” blocks, “Motion” blocks, “Looks”
blocks) to identify coding trends within and across cohorts. Next, the program-
ming block categories were compared between the cohorts and the average
block usage by block category was calculated for each cohort. A Mann-
Whitney U test was employed to investigate whether there were any statistical
differences in the average block usage by block category between the two
cohorts.

Quality and Complexity of Coding. To investigate RQ2 (What are the main differ-
ences regarding the quality and complexity of coding between the two cohorts?),
the projects were analyzed to identify the quality and complexity within and
between the two cohorts based on the pages, sprites and scripts that were cre-
ated. Table 2 presents the main indicators per category (pages, sprites and
scripts). For instance, when it came to scripts, we were not only interested in
examining the number of scripts created but also in assessing their complexity. A
Mann-Whitney U test was employed to investigate whether there were any sta-
tistically significant differences between the two cohorts, according to the three
main aspects of ScratchJr (Pages, Sprites, Scripts) and their indicators.

Computational Thinking. We assessed CT at three levels (null, basic, developing).
Table 3 shows a brief definition of each CT concept, which is based on Moreno-
Le�on et al.’s (2015) work, adapted for the age of the participants in this study
and the affordances of the ScratchJr software they used.

To address RQ3 (What are the main differences in the level of CT demon-
strated by each cohort?), projects were examined for evidence of CT, using the
presence of the six key computational concepts (see Table 3) as indicators, and
using three levels of coding practices for each one (Levels 0, 1, 2). Level 0
indicated the absence of the computational concept in children’s coding as

12 Journal of Educational Computing Research 0(0)



represented in their projects, Level 2 indicated a more sophisticated presence of

the computational concept in the project pages, while Level 1 served as an

intermediate stage. Each one of the six CT concepts was scored per project

with 0, 1 or 2 marks respectively; the maximum score for a project was 12

points for all six CT concepts. In this way, for the 15 projects of Cohort 1 the

maximum total score was 30 points per concept (15 projects X 2 points for each

concept), while in the case of Cohort 2, the maximum total score was 18 (9

projects X 2 points for each concept). Inter-rater reliability was established using

two projects from Cohort 1 and two projects from Cohort 2, which were inde-

pendently rated by two researchers. Cohen’s j was used to determine the agree-

ment between the raters. There was high inter-rater agreement (j¼.862,

p< .001). After all disagreements were discussed and resolved, the researchers

scored the remaining projects.
The assessment of the CT concepts in each project was followed by a descrip-

tive analysis of (a) the percentage of projects per cohort exhibiting each level of

CT, and (b) the percentage of the projects’ total scores per CT concept in rela-

tion to the maximum score that the children could reach for each of the two

cohorts. Next, the average overall score and score per computational concept

category were calculated for each cohort and a Mann-Whitney U test was

employed to investigate whether there were any statistical differences between

the two cohorts.

Individual Storyboard Interviews. Each group’s storyboard was collected, and short

individual interviews were held with each member of each group to shed light on

RQ4 (How do the children in each cohort apply CT concepts to create a digital

story on a waste management issue?). In these interviews we sought to

Table 2. Assessing ScratchJr Projects in Terms of Pages, Sprites and Scripts.

Indicators Definition

Pages How many pages?

Backgrounds How many backgrounds in the pages?

Unique backgrounds How many unique backgrounds in the pages?

Sprites How many sprites?

Programmed sprites How many programmed sprites?

Non-programmed sprites How many non-programmed sprites?

Default sprites How many default sprites?

Edited sprites How many edited sprites?

Scripts How many scripts?

Functional scripts How many functional scripts?

Total blocks How many total blocks per script?

Blocks with numbers How many blocks with numbers per script?

Kyza et al. 13



T
a
b
le

3
.
R
at
in
g
Sc
h
e
m
e
fo
r
th
e
C
o
re

C
o
m
p
u
ta
ti
o
n
al
T
h
in
k
in
g
(C

T
)
C
o
n
ce
p
ts
.

C
T
co
n
ce
p
t
an
d
d
e
fin
it
io
n

L
ev
e
ls
o
f
co
d
in
g
p
ra
ct
ic
e
s

L
ev
e
l
0
N
u
ll

L
ev
e
l
1
B
as
ic
(1

p
o
in
t)

L
ev
e
l
2
D
ev
e
lo
p
in
g
(2

p
o
in
ts
)

A
bs
tr
ac
tio
n
an
d
p
ro
bl
em

de
co
m
p
o-

si
tio
n

B
re
ak
in
g
d
o
w
n
a
co
m
p
le
x
p
ro
b
-

le
m

in
to

sm
al
le
r
p
ar
ts
,
re
d
u
c-

in
g
co
m
p
le
x
it
y

O
n
e
sc
ri
p
t,
o
r
o
n
e
sp
ri
te
,

o
r
n
o
n
e

M
o
re

th
an

o
n
e
sc
ri
p
t,
an
d
m
o
re

th
an

o
n
e
sp
ri
te

in
o
n
e
o
f
th
e

p
ro
je
ct
’s
p
ag
e
s

M
o
re

th
an

o
n
e
sc
ri
p
t,
an
d
m
o
re

th
an

o
n
e
sp
ri
te

in
al
l
o
f
th
e

p
ro
je
ct
’s
p
ag
es

Pa
ra
lle
lis
m

M
ak
in
g
th
in
gs

h
ap
p
e
n
at

th
e

sa
m
e
ti
m
e

N
o
sc
ri
p
t
o
r
o
n
ly
o
n
e

sc
ri
p
t
o
n
gr
e
e
n
fla
g.

Tw
o
o
r
m
o
re

sc
ri
p
ts

o
n
G
re
e
n

fla
g,
b
u
t
n
o
t
al
l
o
f
th
e
m

ru
n
-

n
in
g
co
rr
e
ct
ly
.

Tw
o
o
r
m
o
re

sc
ri
p
ts

o
n
G
re
e
n

fla
g,
an
d
al
l
o
f
th
e
m

ru
n
n
in
g

co
rr
e
ct
ly
.

Sy
nc
hr
on
iz
at
io
n

Sy
n
ch
ro
n
iz
e
ev
e
n
ts

b
e
tw

e
e
n

sp
ri
te
s

A
b
se
n
ce

o
f

sy
n
ch
ro
n
iz
at
io
n
.

U
se

o
f
o
n
ly
o
n
e
W
ai
t
“C

o
n
tr
o
l”

b
lo
ck

in
co
m
b
in
at
io
n
w
it
h
an
y

o
f
th
e
“L
o
o
k
s”
,
“M

o
ti
o
n
”,
an
d

“S
o
u
n
d
”
b
lo
ck
s.

U
se

o
f
th
e
W
ai
t
“C

o
n
tr
o
l”

b
lo
ck

in
co
m
b
in
at
io
n
w
it
h
an
y

o
f
th
e
“L
o
o
k
s”
,
“M

o
ti
o
n
”,
an
d

“S
o
u
n
d
”
b
lo
ck
s
o
n
o
n
e
o
r

m
o
re

sp
ri
te
s
o
n
th
e
sa
m
e

p
ag
e
.

Fl
ow

co
nt
ro
l

B
lo
ck
s
ar
e
ar
ra
n
ge
d
in
se
q
u
e
n
ce
s

N
o
se
q
u
e
n
ce
s
o
f
b
lo
ck
s.

Se
q
u
e
n
ce

o
f
b
lo
ck
s.

R
e
p
e
at
s
o
f
se
q
u
e
n
ce
s
(u
se

o
f
th
e

“R
e
p
e
at
”
b
lo
ck
,
th
e
“R

e
p
e
at

fo
re
ve
r”

an
d
th
e
“E
n
d
”
b
lo
ck
).

U
se
r
in
te
ra
ct
iv
ity

T
h
e
u
se
r
cl
ic
k
s
o
n
a
sp
ri
te

an
d

tr
ig
ge
rs

an
ac
ti
o
n

T
h
e
re

is
n
o
in
te
ra
ct
iv
e

ca
p
ab
ili
ty
.

St
ar
t
o
n
G
re
e
n
fla
g.

In
cl
u
d
e
s
“T
ri
gg
e
r”

b
lo
ck
:
st
ar
t
o
n

ta
b
.

D
at
a
re
p
re
se
nt
at
io
n

M
o
d
ifi
e
rs

o
f
sp
ri
te

p
ro
p
e
rt
ie
s

N
o
sp
ri
te

p
ro
p
e
rt
ie
s
h
av
e

b
e
e
n
m
o
d
ifi
e
d
.

U
se

o
f
th
e
“S
h
ri
n
k
”
an
d
“G

ro
w
”

b
lo
ck
s
w
it
h
in

a
sc
ri
p
t
w
it
h
th
e

d
e
fa
u
lt
va
lu
e
(2
).

U
se

o
f
th
e
“S
h
ri
n
k
”
an
d
“G

ro
w
”

b
lo
ck
s
w
it
h
in

a
se
q
u
e
n
ce

o
f

b
lo
ck
s
u
si
n
g
cu
st
o
m
iz
e
d

va
lu
e
s
(n
o
t
th
e
d
e
fa
u
lt
va
lu
e
).

14



understand the narrative that the groups came up with and their efforts for
decomposing and transferring this narrative to their storyboards and then to

ScratchJr. During the storyboard interviews we also asked about children’s
impressions of the digital storytelling activity as well as their prior experiences
with ScratchJr or any other programming tool. The average interview time was

x̅¼2:32 (SD¼ 0:40) for Cohort 1 and x̅¼ 2:30 (SD¼ 0:51) for Cohort 2.
Children’s storyboard interviews were then selectively analyzed based on the

results of the scoring of the CT level of the projects, to shed light on the exis-
tence of any quantitative differences between the two cohorts. As part of this

study, we include two vignettes (one per cohort) to provide a more detailed
picture of a representative group in each cohort.

Results

The 24 group projects produced a rich dataset, comprising of 94 pages, 388

ScratchJr sprites and 216 programming scripts. We present the findings as
they relate to each of the research questions and conclude with a report of the

level of CT exhibited in the children’s projects. We begin with an overview of the
data, which includes descriptive findings. Not all differences and comparisons

were statistically significant; we indicate those cases in each of the sections.
Qualitative data are presented as vignettes, to provide more nuanced answers

to the research questions; they were selected to illustrate what the quantitative
trends might mean. The interpretation of the findings can be found in the
Discussion section.

Students’ Coding Practices

With our first research question we sought to understand the main differences

between the two cohorts’ coding practices. Differences were detected in the
average block usage by type of block for each cohort. The most used blocks

by Cohort 1 (6–9-year-old children) were the “Motion” blocks, and the least
used blocks were the “Control” blocks. On the other hand, the most used blocks
by Cohort 2 (10–12-year-old children) were the “Looks” blocks and the least

used blocks were the “Sound” blocks (see Figure 1).
As shown in Figure 1, children in each cohort mainly used the “Trigger”,

“Motion” and “Looks” blocks. Table 4 shows the average block usage by type

of block per cohort.
As evident in Table 4 there were differences in the average block usage by

type of block for each cohort. Subsequent tests employing the Mann-Whitney U
test and Bonferroni correction indicated that children in Cohort 2 were more

likely to employ “Trigger” blocks (Mann-Whitney, U(22)¼ 12.5, z¼�3.31,
p¼ .001) when compared to children of Cohort 1. This was the only statistically

significant difference identified.

Kyza et al. 15



Quality and Complexity of Children’s ScratchJr Coding

To answer our second research question (RQ2) we identified the quality of

children’s collaborative projects by examining their complexity, based on the

pages, sprites and scripts that were created. The ScratchJr indicators used were

examined, such as for example, differences in unique backgrounds, inclusion of

programmed sprites, or the number of functional scripts. Table 5 shows the

descriptive statistics for each of the indicators per cohort.

Table 4. Average Block Usage by Type of Block per Cohort.

Cohort 1 (n¼ 15 projects) Cohort 2 (n¼ 9 projects)

Mean SD Mean SD

Trigger blocks*** 5.13 1.51 10.78 5.29

Motion blocks 6.33 7.55 9.00 5.92

Looks blocks 5.40 4.15 13.00 11.78

Sound blocks 1.80 1.97 1.33 2.06

Control flow blocks .33 .62 3.56 5.79

End blocks 4.33 1.76 7.33 6.16

Note. *significant at the p<0.05 level, **significant at the p<0.01 level, ***significant at the p<0.001 level.

Figure 1. Percentage of Each Programming Block Employed in Children’s Projects per
Cohort.

16 Journal of Educational Computing Research 0(0)



As shown in Table 5, there were differences in terms of the complexity and

quality of children’s projects between the two cohorts. Subsequent tests employ-

ing the Mann-Whitney U test and Bonferroni correction indicated that children

in Cohort 1 were more likely to employ more unique backgrounds (Mann-

Whitney, U(22)¼ 30, z¼�2.30, p¼ .021), when compared to projects completed

by children of Cohort 2. However, children in Cohort 2 were more likely to have

more sprites (Mann-Whitney, U(22)¼26, z¼�2.48, p¼ .013), programmed

sprites (Mann-Whitney, U(22)¼ 31.50, z¼�2.17, p¼ .030), edited sprites

(Mann-Whitney, U(22)¼ 21.5, z¼�2.77, p¼ .006), scripts (Mann-Whitney,

U(22)¼30, z¼�2.28, p¼ .023), functional scripts (Mann-Whitney, U(22)¼ 17.5,

z¼�3.02, p¼ .003), number of total blocks (Mann-Whitney, U(22)¼ 31.50,

z¼�2.15, p¼ .032), and blocks with numbers (Mann-Whitney, U(22)¼ 22.50,

z¼�2.70, p¼ .007) when compared to children of Cohort 1.

Children’s CT Concepts

With RQ3 we sought to understand the main differences in CT between the

cohorts. Figures 2A to 2C show the percentage of projects in each cohort for

each of the three levels of the six CT concepts, as assessed in this study.
As shown in Figures 2A to 2C, several Cohort 2 projects reached higher levels

of CT than Cohort 1 on four of the six CT concepts. Projects in both cohorts

only reached Level 1 for CT in the categories of flow control and user interac-

tivity; furthermore, the fact that the group projects in both cohorts were scored

at Level 0 for the categories of parallelism, synchronization, and data

Table 5. Pages, Sprites and Scripts per Cohort.

Cohort 1 (n¼ 15 projects) Cohort 2 (n¼ 9 projects)

Mean SD Mean SD

Pages 3.93 .26 3.89 .33

Backgrounds 3.80 .56 3.44 1.33

Unique backgrounds* 2.87 1.13 1.67 1.00

Sprites* 12.60 5.55 22.11 9.28

Programmed sprites* 7.40 4.29 10.33 4.69

Non-programmed sprites 5.20 2.98 11.78 9.15

Default sprites 8.60 4.97 8.78 5.31

Edited sprites** 4 4.32 13.33 7.28

Scripts* 7.60 4.45 11.33 5.39

Functional scripts** 5.07 1.62 10.22 5.33

Total blocks* 23.33 9.80 45 31.14

Blocks with numbers** 2.67 2.85 8.78 7.99

Note. *significant at the p<0.05 level, **significant at the p<0.01 level, ***significant at the p<0.001 level.

Kyza et al. 17



Figure 2. A–C: Percentage of Projects per Cohort Exhibiting Each Level of CT (L0¼ Lowest
Level, L2¼Highest Level).

18 Journal of Educational Computing Research 0(0)



representation indicates that these CT concepts were challenging for these pri-
mary school children, even though they were slightly less challenging for Cohort
2 than for Cohort 1.

In the category of Abstraction and problem decomposition, Cohort 2 fared
better than Cohort 1, by including more than one sprite and more than one
script in their pages and involving more sprites in their stories which were then
coded to act a series of events. Figure 3 provides a screenshot of one of the pages
in the project created by Group A (Cohort 1). This project was evaluated as
belonging to Level 2 of Abstraction and problem decomposition, which was the
highest possible level. The children in Group A created a story that proposed
addressing waste management through the restoration of a polluted city park.
The examination of the group’s coding indicates that the children programmed
more than one sprite. Figure 3 presents the script of the main sprite in this page;
the script is comprised of a sequence of three blocks, indicating a script of low
complexity, which was used to provide the main sprite (the cat) limited motion
(only two steps forward).

Figure 4 shows a screenshot of one of the pages created by Group B, which is
more typical of the remaining projects in Cohort 1, which were evaluated at
Level 1 or Level 0 for the category “Abstraction and problem decomposition”.
This group’s project was scored as belonging to Level 1, as the project did not
exhibit sophisticated problem decomposition through using multiple scripts and
sprites in each of their project’s page.

Figure 3. Group A ScratchJr Project (Cohort 1).

Kyza et al. 19



In the category of Parallelism, none of the projects in Cohort 1 included a

coded sprite with two scripts running in parallel, as children only coded their

sprite-related events to run sequentially. Coding a sprite to respond to two or

more actions at the same time shows higher complexity and sophistication, may

require higher levels of CT, and thus, more advanced capabilities of coding.
Similarly, there is an observed difference between the two cohorts in the

Synchronization category. Synchronizing the actions between two or more

sprites demands a logical sequence of those actions in order for the story to

make sense, but most importantly, it demands excellent synchronization of

those actions. None of Cohort’s 1 projects were evaluated as Level 2 for this

category. The comparison of the Flow control and User interactivity categories

showed no differences between the two cohorts. Both cohorts used a sequence of

blocks to code their sprites for an action and included the green flag to trigger

those actions.
The projects in the two cohorts also differed in the Data representation cat-

egory. Cohort 1 projects barely employed the “Shrink” and “Grow” blocks

within a script, even though children in this cohort often used those blocks to

change the representation of a sprite independently of a sequence of actions. For

example, they drew rubbish and used the “Shrink” block to resize the rubbish in

order to fit in a bin but did not include any other coded action beyond this and

Figure 4. Group B ScratchJr Project (Cohort 1).

20 Journal of Educational Computing Research 0(0)



did not integrate these blocks in their script. On most occasions, the block was

deleted after the action. On the other hand, Cohort 2 projects employed those

two blocks to give the feeling of three-dimensional space as the sprites moved

around the stage. Figure 5 shows one page from Group C’s project (Cohort 2).
Children in Group C programmed more than one sprite in their story. The

script presented in Figure 5 was comprised of a sequence of fourteen blocks,

indicating a script of high complexity that was employed for assigning the main

ScratchJr sprite (the cat) with motion, words (using the “Say” blocks), show and

hide properties, as well as time control of these actions. The analysis of the CT

concepts indicates that this group performed at Level 1 for the “Abstraction and

problem decomposition” category, as the children employed more than one script

and more than one sprite in their page, Level 2 for the “Synchronization” cat-

egory, as the children employed the “Control” blocks for coordinating the

events among their sprites, Level 1 for the “Flow control” category, as the

blocks were placed in a sequence and “Motion” blocks were also numbered

for achieving a better flow, and Level 1 for the “Data representation” category,

as the children employed the “Looks” blocks for modifying the properties of the

sprite. The project of Group C was at the lowest level (L0) for the “Data

representation” category, which concerns dynamic representations of data

which are programmed and indicates sophisticated skills in coding. Figure 6

shows the percentage of the projects’ total scores per CT concept in

relation to the maximum score that the children could reach, for each of the

two cohorts.

Figure 5. A Page From Group C Project (Cohort 2).

Kyza et al. 21



The percentage of the projects’ total scores for Flow control andUser Interactivity

in relation to the maximum score the children could achieve, was the same for both

cohorts. However, the percentage of the projects’ total scores for the remaining CT

concepts (i.e., Abstraction and problem decomposition, Parallelism, Synchronization,

Data representation) in relation to the maximum score the children could obtain, was

larger for Cohort 2.
Finally, the average overall score and score per computational concept cat-

egory, as shown in Table 6, indicate a trend between the two cohorts, with

Cohort 2 outperforming Cohort 1 in Parallelism, Synchronization and Data

representation. However, statistically significant differences were only identified

for the computational concept of Abstraction and problem decomposition. In

particular, a Mann-Whitney U test indicated that Cohort 2 outperformed

Cohort 1 and that this difference was statistically significant (Mann-Whitney,

U(22)¼ 25.5, z¼�2.62, p¼ .009), with Cohort 2 outperforming Cohort 1

(Mann-Whitney, U(22)¼ 39.5, z¼�2.00, p¼ .045) in regard to the category of

Abstraction and problem decomposition.

Students’ Use of CT to Create a Digital Story

Our fourth research question concerned whether the groups were able to apply

CT to create a digital story about an environmental issue through coding in

ScratchJr. Despite the documented shortcomings, all groups were successful in

conveying a basic message about environmental waste management through the

stories they coded. We next present two vignettes, to provide a more detailed

picture of one representative group from each cohort, using the cases of Joanna

Figure 6. Scores per Computational Concept.

22 Journal of Educational Computing Research 0(0)



and Iris (Cohort 1) and Anna and Marie (Cohort 2) [all names are pseudonyms].

We focus on the CT concept of “Abstract and problem decomposition” since that

was the only one for which we found statistical differences between the two

cohorts. In particular, the vignette of Joanna and Iris is more typical of the

projects in Cohort 1, which were mostly evaluated as Level 1 or Level 0 for the

Abstraction and problem decomposition concept, reflecting less advanced CT

practices. Likewise, the vignette of Anna and Marie is more typical of the

projects in Cohort 2, which were mostly evaluated as Level 1 or Level 2 for

the category Abstraction and problem decomposition, thus, reflecting more

advanced CT practices.

Vignette 1: The Case of Joanna and Iris [Cohort 1 – Total Score 2/12]. The story Joanna

and Iris coded was titled “The dirty field land” and had two friends (a young

boy and a young girl) as main characters. According to their narrative, as told

by Joanna (a six-year-old girl) in her interview:

Once upon a time there was a young girl who was heading to school. On her way

she found a young boy, her best friend, cleaning up a dirty field. Along with other

school mates, he helped his friend to clean up the field. Later on, they saw another

young boy throwing garbage in the same field. They cleaned up once again and

explained to the young boy that it is wrong to throw garbage in the field.

The young boy understood his mistake and he never dropped garbage in the

field ever since.

The environmental message that Joanna and Iris tried to communicate through

their story was that “we should not throw our garbage in the field” [Iris, 6 years

Table 6. Average Overall Score and Score per Computational Concept Category.

Cohort 1 (n¼ 15 projects) Cohort 2 (n¼ 9 projects)

Mean SD Mean SD

Total score** 3.13 .743 5.22 2.39

Abstraction and problem

decomposition*

.73 .59 1.22 .44

Parallelism .00 .00 .44 .88

Synchronization .27 .46 .89 1.05

Flow control 1.00 .00 1.00 .00

User interactivity 1.00 .00 1.00 .00

Data representation .13 .35 .67 1.00

Note. *significant at the p<0.05 level, **significant at the p<0.01 level, ***significant at the p<0.001 level.

Kyza et al. 23



old], aimed at increasing awareness about keeping the earth clean by avoiding

garbage disposal in non-appropriate places.
After finalizing their story idea, the two girls proceeded with the first step of

decomposing the environmental story using the storyboard they had created

(Figure 7). According to their storyboard, they divided their story in scenes;

in each scene they added the background (e.g., the field, the school yard), main

characters (the two friends, the third kid, their schoolmates) and the different

objects (e.g., the garbage, the house, the school).
They then transferred and coded their story in ScratchJr. Overall, Joanna and

Iris were successful in transferring the story scenes from the storyboard in

ScratchJr. However, as evident in Figure 8, the girls did not exhibit sophisticated

problem decomposition by using multiple scripts and sprites in each of their

project’s page.
The scripts employed were usually quite short (up to 4 blocks) and as pre-

sented in Figure 9, in some cases the scripts were composed only by one block,

and were not functional, as they were lacking the “Trigger” and the “End”

blocks.

Vignette 2: The Case of Anna and Marie [Cohort 2 –Total Score 10/12]. The story of

Anna and Marie (both 11 years old) was titled “Garbage in our yard” and

included several main characters: the mom, the dad, the daughter, their dog

and their horse. The following narrative was used, as described by the children

in their interviews:

Once upon a time this family discovered tons of garbage in their yard. And they

wondered: who did this to us? But after a while they discovered that they were the

ones who were responsible for this mess. But how could they solve this problem?

Figure 7. Joanna and Iris’ Storyboard.

24 Journal of Educational Computing Research 0(0)



They cleaned up their yard but after two days, the situation was the same. At the

end they decided to start recycling [Marie, 11 years old].

The environmental message that they tried to communicate through their story
was that “People consume a lot, but they do not compost or recycle the garbage they
produce. They should recycle to reduce waste” [Anna, 11 years old], and aimed at
increasing awareness about waste management actions, such as recycling.

Figure 8. Problem Decomposition in ScratchJr by a Cohort 1 Group (Joanna/Iris).

Figure 9. Examples of Non-Functional Scripts.

Kyza et al. 25



After conceptualizing their story idea and finalizing their storyboard, the two

girls proceeded with the first step of decomposing the environmental story

(Figure 10). As in the previous vignette, the two girls divided their story in

scenes; in each scene they added the backgrounds (e.g., the farmhouse, the

yard), the main characters (the mother, the father, the daughter) and different

objects (e.g., the farm animals, the garbage, the recycling bins).
They next transferred and coded their story in ScratchJr, attempting to add

interactivity to the narrative. Overall, Anna and Marie were successful in trans-

ferring the story scenes from the storyboard to ScratchJr (Figure 11).
In addition, the two girls in this vignette exhibited a sophisticated problem

decomposition as they used multiple scripts and spites in each of their project’s

pages. For instance, as shown in Figure 12, all characters (mother, father, daughter

and dog) were scripted. Each script was fully functional, contained at least 4 blocks,

and was comprised of different combinations of blocks (“Trigger”, “Motion”,

“Looks”, “Control flow” and “End” blocks), as well as by blocks with numbers.

Discussion

This study investigated primary school children’s collaborative coding to create

a digital story in response to an environmental problem. We purposefully chose

two age cohorts, in order to characterize students’ practices at two different

points in their development and to begin understanding the developmental tra-

jectory of what it means to engage in CT and how it may be applied to and

manifested in the students’ artifacts. The contrast between the age cohorts can

provide a first glimpse into similarities and differences between these ages and

can guide work on how to support the development of younger children’s CT.

Figure 10. Anna and Marie’s Storyboard.

26 Journal of Educational Computing Research 0(0)



Figure 11. Problem Decomposition by a Cohort 2 Group (Anna/Marie).

Figure 12. Examples of Scripts and Blocks Employed by Anna and Marie.

Kyza et al. 27



Findings indicated that children were successful in using the ScratchJr soft-
ware to convey their own environmental science messages about effective waste
management actions. At the same time, the analysis of the projects from both
cohorts revealed similarities in children’s coding practices and underlying CT
concepts. The findings of this study also point to possible age differences in what
children may be initially able to do with coding environments such as ScratchJr.
These findings suggest that the “low threshold” idea was successful for these
children (Flannery et al., 2013), but that to achieve “high ceiling” one needs to
experience scaffolded activities that focus on coding and CT challenges for the
children in developmentally appropriate ways.

We next discuss these findings as they relate to the children’s coding practi-
ces, and their respective CT.

Children’s Coding Practices

Some of the results reported in our study about children’s coding practices are
similar in nature to prior studies focusing on ScratchJr (e.g., Papadakis et al.,
2016; Portelance et al., 2016). For instance, in alignment with Papadakis et al.
(2016), we also found that the most used blocks by Cohort 1 (6–9-year-old
children) were the “Motion” blocks, and the least used blocks were the
“Control flow” blocks. As in prior studies, these results could be attributed to
the more intuitive nature of the “Motion” blocks and the more complex under-
standing children would need to possess to be able to use the “Control flow”
blocks (Portelance et al., 2016; Strawhacker & Bers, 2019). Such results
strengthen findings that suggest a trajectory of learning that is also influenced
by maturation and development (Flannery & Bers, 2013).

On the other hand, we have found that the most used blocks by Cohort 2 (10-
12 years-old) were the “Looks” blocks which, according to our knowledge, is a
finding not reported in previous studies. This finding was demonstrated by this
cohort’s emphasis on adding dialog boxes in their storytelling, using the “Say”
blocks. At the same time, other findings of this study, such as the greater use of
“Trigger” blocks by older children (Cohort 2), seem to differ from findings
reported by Portelance et al. (2016), who reported that older children used sig-
nificantly fewer “Trigger” blocks than younger ones. Finally, in our study youn-
ger children used the “Sound” blocks to a greater degree. A potential
explanation could be that younger children preferred to add narrative in their
digital stories using the recording feature (due to their limited writing skills), in
contrast to the older children who added narrative using the “Looks” dialogue
blocks. The statistically significant difference observed in the use of “Trigger”
blocks can be linked to the number of scripts developed by the children in each
cohort, as children in Cohort 2 created more scripts than the children in Cohort
1. Nonetheless, these results need to be interpreted with caution due to the small
dataset of the present study and due to the nature of the learning task with

28 Journal of Educational Computing Research 0(0)



ScratchJr. It could be that other problem-solving contexts may lead to different
behaviors.

We also identified several differences in the complexity and quality of child-
ren’s projects between the two cohorts. In particular, children in Cohort 2 were
more likely to have more sprites, programmed sprites, edited sprites, scripts,
functional scripts, number of total blocks and blocks with numbers, when com-
pared to children of Cohort 1. These findings are also aligned with prior studies
which provided empirical substantiation supporting that older children encoun-
tered fewer difficulties, which resulted in more complex and functional scripts.
For instance, Papadakis et al. (2016) reported that younger children encoun-
tered difficulties when the scene included the coding of more than one sprite,
while according to Portelance et al. (2016) older children were more efficient in
coding and coordinating multiple sprites. These findings also point to develop-
mental differences and the possibility of a developmental trajectory in younger
children’s ability to code. These results are not surprising, given what we know
about how learning develops. However, they point to the need to investigate
what develops and how, and the extent to which scaffolding could help children
move within their zone of proximal development (Vygotsky,1980) in regard to
CT.

Children’s CT

Prior programming studies have primarily focused on the investigation of the
children’s coding practices (e.g., Papadakis et al., 2016; Portelance et al., 2016).
Extending these efforts, the present study is also focused on the investigation of
the CT concepts underlying children’s coding practices. According to our find-
ings, the overall projects’ scores indicated trends between the two cohorts, with
Cohort 2 outperforming Cohort 1 in Abstraction & problem decomposition,
Parallelism, Synchronization and Data representation. These findings could be
attributed to the children’s cognitive development. As supported by
Strawhacker and Bers (2019) prior spatial and causal reasoning, and children’s
cognitive development (Goswami & Bryant, 2012), could influence children’s
computational practices in a given task and could provide a potential explana-
tion of the differences observed in children’s CT. Nonetheless, this developmen-
tal perspective seems to be confounded with other challenges that may not be
solely age- and development-dependent: according to our findings significant
differences were only identified for the computational concept of Abstraction &
problem decomposition. Specifically, it appears that younger children appear to
need more support to engage with the CT concept of abstraction & problem
decomposition.

Perhaps what is most interesting to consider in thinking about how to sup-
port students’ development of CT is not the differences between the cohorts but
the similarities. Most notable in this is the similar low performance of student

Kyza et al. 29



groups in terms of the remaining five computational concepts. Very few projects

were assessed at Level 2, whereas projects were assessed poorly at Level 0 for

three of the six computational concepts (Parallelism, Synchronization, and Data

representation). The differences between the assessment of the computational

concepts suggest that various challenges might be at play; it seems promising to

explore each of the computational concepts in more depth in future studies, so

that we can understand the specific challenges as well as how children could be

supported in overcoming them.

Limitations and Future Work

Even though the findings of this study contribute to a better understanding of

primary school children’s coding practices and CT, having adopted a develop-

mental perspective, it is important to note the limitations of this work. First, the

sample participating in the study was relatively small. While this sample is

deemed appropriate, given the exploratory nature of this study, future studies

should aim for a larger sample which would allow systematic comparison

between more age groups. Another limitation of this work might be the heavy

use of the children’s projects for the data analysis; even though the analysis of

children’s projects is an example of embedded assessment, and as such it is

valued for the rich data it can provide and the minimal intrusiveness into the

children’s activity, collecting data on children’s understanding of the specific CT

concepts can provide more insights in reasoning processes and practices.
An additional limitation might be that the data we reported on were the

product of children’s collaboration and as such they were analyzed at the

group level and not at an individual level. In future research, individual assess-

ment of CT, in addition to project artifact analysis, can provide richer access to

individual children’s thinking and analytical reasoning.
Our study was purposefully conducted as a cross-sectional study. However,

the lack of baseline assessments and pre-posttests did not allow for an exami-

nation of within-group development in terms of coding practices, CT skills, and

students’ conceptual understanding of the environmental topic. Other personal

characteristics, such as children’s literacy skills, may also affect their coding

practices and preferences (e.g., younger children preferred to audio-record

their narratives, while older children opted in communicating across their

coded stories using written texts). Such factors can be investigated in future

studies.
Finally, our findings are most relevant to children’s coding practices and CT

as these unfolded in the context of a specific task (i.e., development of a digital

story). Future studies could investigate and even compare whether and how

children’s coding practices and CT may differ in the context of various tasks

in ScratchJr.

30 Journal of Educational Computing Research 0(0)



Conclusions and Implications

This study set out to investigate differences and similarities in the use of compu-
tational elements in ScratchJr between two age cohorts of primary school children
in grades 1-6. Findings contribute to empirical data on how two cohorts of pri-
mary school children of different ages, exhibited coding practices and CT. The
findings of this study confirmed past research but also provided additional insights
regarding the quality of the children’s work and a possible learning trajectory, via
the comparison of lower and upper primary school children’s coding practices and
CT. Based on these findings, it appears that children’s collaborative performance
with coding is aligned with children’s age, as children’s projects increased in sophis-
tication from Cohort 1 (younger children) to Cohort 2 (older children). However,
these findings also have educational and theoretical implications.

At a first glimpse, the findings of the present study may not seem surprising
as they could be attributed to children’s developmental differences. However, as
argued by Strawhacker and Bers (2019), although the “trajectory of improve-
ment over successive grades is a familiar pattern” (p. 563), the domain of pro-
gramming is an emerging one, providing a new study area for developmental
researchers. We cannot take for granted that developmental trajectories in tra-
ditional academic areas will perfectly fit emerging learning areas such as coding
and CT. Instead, we need to delve deeper in the investigation of children’s
learning trajectories in the field of CT, as a unique and differentiated area
that deserves to be studied on its own.

Based on the findings of this research work, it seems that it is worth adopting
a developmental approach and it is worth describing children’s coding practices
and CT as a learning progression. Therefore, our study implies that, from a
developmental point of view, the introduction of coding and CT requires edu-
cational activities which consider children’s cognitive affordances and limita-
tions (see also Bers, 2017, 2019). At the same time, based on the Vygotskian
theory of the zone of proximal development, our findings provide useful insights
especially regarding the youngest children’s learning challenges in coding and
CT, while using ScratchJr. These findings imply that pairing children from the
two age cohorts in coding activities could serve as a scaffolding mechanism to
bridge the distance between what a young learner can do on his/her own and
what s/he can achieve with the guidance and encouragement from a skilled
partner when coding. While previous studies have investigated pairing parents
and children in the context of coding activities (Govind et al., 2020) future
studies could also focus on pairing children of different ages and developmental
stages, and thus, of different coding expertise.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research,

authorship, and/or publication of this article.

Kyza et al. 31



Funding

The authors received no financial support for the research, authorship, and/or publica-
tion of this article.

Ethical Approval

All procedures performed in the study involving human participants were in accordance
with the ethical standards of the institutional research committee and with the 1964

Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all participants included in the study, and their legal
guardians.

ORCID iDs

Eleni A. Kyza https://orcid.org/0000-0003-0992-4034
Yiannis Georgiou https://orcid.org/0000-0002-2850-8848
Andria Agesilaou https://orcid.org/0000-0002-9943-7223
Markos Souropetsis https://orcid.org/0000-0003-3647-2272

Supplemental material

Supplemental material for this article is available online.

References

Ala-Mutka, K. (2004). Problems in learning and teaching programming—A literature
study for developing visualizations in the Codewitz-Minerva project. Codewitz Needs

Analysis, 20.
Barcelos, T. S., Mu~noz-Soto, R., Villarroel, R., Merino, E., & Silveira, I. F. (2018).

Mathematics learning through computational thinking activities: A systematic litera-

ture review. Journal of Universal Computer Science, 24(7), 815–845.
Barrouillet, P., & Lecas, J. F. (1999). Mental models in conditional reasoning and work-

ing memory. Thinking & Reasoning, 5(4), 289–302.
Baser, M. (2013). Attitude, gender and achievement in computer programming. Middle-

East Journal of Scientific Research, 14(2), 248–255.
Baytak, A., & Land, S. M. (2011). An investigation of the artifacts and process of

constructing computers games about environmental science in a fifth-grade classroom.
Educational Technology Research and Development, 59(6), 765–782.

Bers, M. U. (2012). Designing digital experiences for positive youth development: From

playpen to playground. Oxford University Press.
Bers, M. U. (2017). Coding as a playground: Programming and computational thinking in

the early childhood classroom. Routledge.
Bers, M. U. (2018). Coding and computational thinking in early childhood: The impact

of ScratchJr in Europe. European Journal of STEM Education, 3(3), 8.
Bers, M. U. (2019). Coding as another language: A pedagogical approach for

teaching computer science in early childhood. Journal of Computers in Education,

6(4), 499–528.

32 Journal of Educational Computing Research 0(0)

https://orcid.org/0000-0003-0992-4034
https://orcid.org/0000-0003-0992-4034
https://orcid.org/0000-0002-2850-8848
https://orcid.org/0000-0002-2850-8848
https://orcid.org/0000-0002-9943-7223
https://orcid.org/0000-0002-9943-7223
https://orcid.org/0000-0003-3647-2272
https://orcid.org/0000-0003-3647-2272


Bers, M. U., & Resnick, M. (2015). The official ScratchJr book. No Starch Press, Inc.
Brennan, K., Chung, M., & Hawson, J. (2011). Creative computing: A design-based intro-

duction to computational thinking. https://scratched.gse.harvard.edu/sites/default/files/
curriculumguide-v20110923.pdf

Brennan, K., & Resnick, M. (2012, April 13–17). New frameworks for studying and

assessing the development of computational thinking [Paper presentation]. American

Educational Research Association annual meeting (AERA 2012), Vancouver,
Canada.

Buitrago Fl�orez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G.

(2017). Changing a generation’s way of thinking: Teaching computational thinking
through programming. Review of Educational Research, 87(4), 834–860.

Cadorna, E. A., Cadorna, E. F., & Taban, J. G. (2021). A Cross-Sectional study of
students’ learning progression in algebra. Universal Journal of Educational Research,

9(3), 449–460.
Chao, P. Y. (2016). Exploring students’ computational practice, design and performance

of problem-solving through a visual programming environment. Computers &

Education, 95, 202–215.
Chou, P. N. (2020). Using ScratchJr to foster young children’s computational thinking

competence: A case study in a third-grade computer class. Journal of Educational

Computing Research, 58(3), 570–595.
Clarke-Midura, J., Lee, V. R., Shumway, J. F., & Hamilton, M. M. (2019). The building

blocks of coding: A comparison of early childhood coding toys. Information and

Learning Sciences, 120(7/8), 505–518.
Clements, D. H. (1999). The future of educational computing research: The case of

computer programming. Information Technology in Childhood Education Annual, 1,
147–179.

Creswell, J. W., & Clark, V. L. P. (2007). Designing and conducting mixed methods

research. SAGE Publications Inc.
Cummings, C. L. (2018). Cross-sectional design. The SAGE encyclopedia of communica-

tion research methods. SAGE Publications Inc.
de Araujo, A. L. S. O., Andrade, W. L., & Guerrero, D. D. S. (2016, October 12–15). A

systematic mapping study on assessing computational thinking abilities [Paper presen-

tation]. IEEE frontiers in education conference (FIE) 2016 (pp. 1–9). IEEE.
Duncan, R. G., Rogat, A., & Yarden, A. (2009). A learning progression for deepening

students’ understanding of modern genetics across the 5th-12th grades. Journal of

Research in Science Teaching, 46(6), 655–674.
Durak, H. (2016). Design and development of an instructional program for teaching pro-

gramming process to gifted students [Unpublished doctoral dissertation]. Gazi
University.

Durak, H. Y. (2020). The effects of using different tools in programming teaching of
secondary school students on engagement, computational thinking and reflective
thinking skills for problem solving. Technology, Knowledge and Learning, 25(1),

179–195.
Duschl, R. A. (2019). Learning progressions: Framing and designing coherent sequences for

STEM education. Disciplinary and Interdisciplinary Science Education Research, 1(1), 10.
Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5–6 years old kin-

dergarten children in a computer programming environment: A case study. Computers

& Education, 63, 87–97.

Kyza et al. 33

https://scratched.gse.harvard.edu/sites/default/files/curriculumguide-v20110923.pdf
https://scratched.gse.harvard.edu/sites/default/files/curriculumguide-v20110923.pdf


Fields, D., Vasudevan, V., & Kafai, Y. B. (2015). The programmers’ collective: Fostering

participatory culture by making music videos in a high school scratch coding work-

shop. Interactive Learning Environments, 23(5), 613–633.
Flannery, L. P., & Bers, M. U. (2013). Let’s dance the “robot hokey-pokey!”: Children’s

programming approaches and achievement throughout early cognitive development.

Journal of Research on Technology in Education, 46(1), 81–101.
Flannery, L. P., Kazakoff, E. R., Bontá, P., Silverman, B., Bers, M. U., & Resnick, M.

(2013). Designing ScratchJr: Support for early childhood learning through computer

programming [Paper presentation]. ACM International Conference Proceeding

Series (pp. 1–10). ACM.
Flavell, J. H., Miller, P. H., & Miller, S. A. (1993). Cognitive development (3rd ed.).

Prentice Hall.
Fokides, E. (2018). Teaching basic programming concepts to young primary school

students using tablets: Results. International Journal of Mobile and Blended

Learning, 10(1), 34–47.
Goswami, U., & Bryant, P. (2012). Children’s cognitive development and learning. In R.

Alexander, C. Doddington, J. Gray, L. Hargreaves, & R. Kershner (Eds.), The

Cambridge primary review research surveys (pp. 161–189). Routledge.
Govind, M., Relkin, E., & Bers, M. U. (2020). Engaging children and parents to code

together using the ScratchJr app. Visitor Studies, 23(1), 46–65.
Grover, S., & Pea, R. (2013). Computational thinking in K–12. A review of the state of

the field. Educational Researcher, 42(1), 38–43.
Heintz, F., Mannila, L., & F€arnqvist, T. (2016, October 12–15). A review of models for

introducing computational thinking, computer science and computing in K-12 education

[Paper presentation]. Frontiers in Education Conference (FIE) 2016 (pp. 1–9). IEEE.
Hermans, F., & Aivaloglou, E. (2017, November 8–10). To scratch or not to scratch? A

controlled experiment comparing plugged first and unplugged first programming lessons

[Paper presentation]. 12th workshop on primary and secondary computing education,

Nijmegen, Netherlands.
Hill, C., Dwyer, H. A., Martinez, T., Harlow, D., & Franklin, D. (2015, March 4–7).

Floors and flexibility. Designing a programming environment for 4th-6th grade class-

rooms [Paper presentation]. 46th ACM Technical Symposium on Computer Science

Education (pp. 546–551), Kansas City, USA. ACM.
Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to learn and how to teach com-

putational thinking: Suggestions based on a review of the literature. Computers &

Education, 126, 296–310.
Hu, Y., Chen, C. H., & Su, C. Y. (2021). Exploring the effectiveness and moderators of

block-based visual programming on student learning: A meta-analysis. Journal of

Educational Computing Research, 58(8), 1467–1493.

Jako�s, F., & Verber, D. (2017). Learning basic programing skills with educational games:

A case of primary schools in Slovenia. Journal of Educational Computing Research,

55(5), 673–698.
Jung, S., & Won, E. S. (2018). Systematic review of research trends in robotics education

for young children. Sustainability, 10(4), 905.
Kafai, Y. B., & Burke, Q. (2014). Connected code: Why children need to learn program-

ming. MIT Press.

34 Journal of Educational Computing Research 0(0)



Kong, S. C., & Wang, Y. Q. (2019, November 7–8). Assessing programming concepts in the

visual block-based programming course for primary school students [Paper presentation].

18th European Conference on e-Learning, ECEL 2019, Copenhagen, Denmark.

Kong, S. C., & Wang, Y. Q. (2021). Item response analysis of computational thinking

practices: Test characteristics and students’ learning abilities in visual programming

contexts. Computers in Human Behavior, 122, 106836.
Kraleva, R., Kralev, V., & Kostadinova, D. (2019). A methodology for the analysis of

block-based programming languages appropriate for children. Journal of Computing

Science and Engineering, 13(1), 1–10.
Lee, K. T., Sullivan, A., & Bers, M. U. (2013). Collaboration by design: Using

robotics to foster social interaction in kindergarten. Computers in the Schools, 30(3),

271–281.
Lindberg, R. S., Laine, T. H., & Haaranen, L. (2019). Gamifying programming educa-

tion in K-12: A review of programming curricula in seven countries and programming

games. British Journal of Educational Technology, 50(4), 1979–1995.
Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational

thinking through programming: What is next for K-12? Computers in Human

Behavior, 41, 51–61.
Mioduser, D., Levy, S. T., & Talis, V. (2009). Episodes to scripts to rules: Concrete-

abstractions in kindergarten children’s explanations of a robot’s behavior.

International Journal of Technology and Design Education, 19(1), 15–36.
Mladenovi�c, M., Boljat, I., & �Zanko, �Z. (2018). Comparing loops misconceptions in

block-based and text-based programming languages at the K-12 level. Education

and Information Technologies, 23(4), 1483–1500.
Moors, L., Luxton-Reilly, A., & Denny, P. (2018, April 19–22). Transitioning from block-

based to text-based programming languages [Paper presentation]. International

Conference on Learning and Teaching in Computing and Engineering (LaTICE),

Auckland, New Zealand.
Moreno-Le�on, J., Robles, G., & Román-González, M. (2015). Dr. Scratch: Automatic

analysis of scratch projects to assess and foster computational thinking. Revista de

Educaci�on a Distancia, 46, 1–23.
Müller, U., Overton, W. F., & Reene, K. (2001). Development of conditional reasoning:

A longitudinal study. Journal of Cognition and Development, 2(1), 27–49.
National Research Council. (2011). Report of a workshop on the pedagogical aspects of

computational thinking. National Academies Press. https://www.nap.edu/catalog/

13170/report-of-a-workshop-on-the-pedagogical-aspects-of-computational-thinking
Nouri, J., Zhang, L., Mannila, L., & Nor�en, E. (2020). Development of computational

thinking, digital competence and 21st century skills when learning programming in K-

9. Education Inquiry, 11(1), 1–17.
Papadakis, S. (2020). Apps to promote computational thinking concepts and coding

skills in children of preschool and pre-primary school age. Mobile Learning

Applications in Early Childhood Education (pp. 101–121). IGI Global.
Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2016). Developing fundamental pro-

gramming concepts and computational thinking with ScratchJr in preschool educa-

tion: A case study. International Journal of Mobile Learning and Organisation, 10(3),

187–202. https://doi.org/10.1504/ijmlo.2016.077867.

Kyza et al. 35

https://www.nap.edu/catalog/13170/report-of-a-workshop-on-the-pedagogical-aspects-of-computational-thinking
https://www.nap.edu/catalog/13170/report-of-a-workshop-on-the-pedagogical-aspects-of-computational-thinking
https://doi.org/10.1504/ijmlo.2016.077867


Pea, R. D. (1986). Language-independent conceptual “bugs” in novice programming.

Journal of Educational Computing Research, 2(1), 25–36.
Pila, S., Alad�e, F., Sheehan, K. J., Lauricella, A. R., & Wartella, E. A. (2019). Learning

to code via tablet applications: An evaluation of daisy the dinosaur and kodable as

learning tools for young children. Computers & Education, 128, 52–62.
Portelance, D. J. (2015). Code and tell. An exploration of peer interviews and computa-

tional thinking with ScratchJr in the early childhood classroom [Doctoral dissertation,

Tufts University]. ProQuest Dissertations and Theses Global.
Portelance, D. J., & Bers, M. U. (2015, June 21–25). Code and tell. Assessing young

children’s learning of computational thinking using peer video interviews with

ScratchJr [Paper presentation]. The 14th International Conference on Interaction

Design and Children, Medford, OR, USA.
Portelance, D. J., Strawhacker, A. L., & Bers, M. U. (2016). Constructing the ScratchJr

programming language in the early childhood classroom. International Journal of

Technology and Design Education, 26(4), 489–504.
Relkin, E., de Ruiter, L. E., & Bers, M. U. (2021). Learning to code and the

acquisition of computational thinking by young children. Computers & Education,

169, 104222.
Resnick, M. (2013, May 8). Learn to code, code to learn: How programming prepares kids

for more than math. EdSurge. https://www.edsurge.com/news/2013-05-08-learn-to-

code-code-to-learn
Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan,

K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch:

Programming for all. Communications of the ACM, 52(11), 60–67.
Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A

review and discussion. Computer Science Education, 13(2), 137–172.
Sáez-L�opez, J. M., Román-González, M., & Vázquez-Cano, E. (2016). Visual program-

ming languages integrated across the curriculum in elementary school: A two-year

case study using “scratch” in five schools. Computers & Education, 97, 129–141.
ScratchJr.org. (2015a). Interface guide. http://www.scratchjr.org/
ScratchJr.org. (2015b). About ScratchJr. http://www.scratchjr.org/about.html
Shodiev, H. (2015). Computational thinking and simulation in teaching science and

mathematics. In M. G., Cojocaru, I. S., Kotsireas, R. N., Makarov, R. V., Melnik,

& H., Shodiev (Eds.), Interdisciplinary topics in applied mathematics, modeling and

computational science. Springer.
Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking.

Educational Research Review, 22, 142–158.
Strawhacker, A., & Bers, M. U. (2019). What they learn when they learn coding:

Investigating cognitive domains and computer programming knowledge in young

children. Educational Technology Research and Development, 67(3), 541–575.
Strawhacker, A., Lee, M., Caine, C., & Bers, M. (2015, June). ScratchJr Demo: A coding

language for Kindergarten. In Proceedings of the 14th International Conference on

Interaction Design and Children (pp. 414–417).
Sullivan, F. R., & Heffernan, J. (2016). Robotic construction kits as computational

manipulatives for learning in the STEM disciplines. Journal of Research on

Technology in Education, 48(2), 105–128.

36 Journal of Educational Computing Research 0(0)

https://www.edsurge.com/news/2013-05-08-learn-to-code-code-to-learn
https://www.edsurge.com/news/2013-05-08-learn-to-code-code-to-learn
http://www.scratchjr.org/
http://www.scratchjr.org/about.html


Sun, L., Hu, L., & Zhou, D. (2021). Which way of design programming activities is more

effective to promote K-12 students’ computational thinking skills? A meta-analysis.

Journal of Computer Assisted Learning. Advance online publication. https://doi.org/

10.1111/jcal.12545
Tran, Y. (2019). Computational thinking equity in elementary classrooms: What third-

grade students know and can do. Journal of Educational Computing Research, 57(1),

3–31.
Vasilopoulos, I. V., & Van Schaik, P. (2019). Koios: Design, development, and evalua-

tion of an educational visual tool for Greek novice programmers. Journal of

Educational Computing Research, 57(5), 1227–1259.
Vygotsky, L. S. (1980). Mind in society: The development of higher psychological process-

es. Harvard University Press.
Wilson, M., & Sloane, K. (2000). From principles to practice: An embedded assessment

system. Applied Measurement in Education, 13(2), 181–208.
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Yu, J., & Roque, R. (2019). A review of computational toys and kits for young children.

International Journal of Child-Computer Interaction, 21, 17–36.
�Zanko, �Z., Mladenovi�c, M., & Boljat, I. (2019). Misconceptions about variables at the

K-12 level. Education and Information Technologies, 24(2), 1251–1268.

Author Biographies

Eleni A. Kyza is Associate Professor in Information Society at the Department

of Communication and Internet Studies at the Cyprus University of

Technology, where she coordinates the Media, Cognition, and Learning

Research Group. Her research focuses on the investigation of technology-

enhanced learning environments to support motivated, meaningful, and reflec-

tive practices, and the investigation of how new media influence human behav-

ior. Her work has addressed, among others, issues of inquiry-based learning,

teacher professional development, scaffolding student learning, collaborative

learning, and media & information literacy on social media. With her colleagues,

she has developed and empirically investigated learning technologies, such as the

web-based learning and teaching platform STOCHASMOS for promoting

evidence-based reasoning in science education, and TraceReaders, an augmented

reality platform for scaffolding students’ inquiry learning in informal and non-

formal contexts.

Yiannis Georgiou is a research fellow with the Media, Cognition, and Learning

Research Group at the Department of Communication and Internet Studies of

the Cyprus University of Technology. He holds a bachelor’s degree in

Elementary School Teaching from the University of Cyprus, a master’s degree

in Science & Environmental Education from the University of Cyprus, and a

PhD in Communication and Internet Studies from the Cyprus University of

Technology. His research interests are focused on the investigation of emerging

Kyza et al. 37

https://doi.org/10.1111/jcal.12545
https://doi.org/10.1111/jcal.12545


technologies for learning as well as on teachers’ professional development in
relation to novel pedagogies and technologies.

Andria Agesilaou is a PhD candidate and a research associate with the
Department of Communication and Internet Studies at the Cyprus University
of Technology. She has a Master’s degree in “New Technologies for
Communication and Learning” from the same department, and a BA in
Primary Education from the National and Kapodistrian University of Athens,
Greece. Her current research interests focus on the design and development
of technology-enhanced learning experiences for students. Her work
investigates how to empower students to develop critical understanding of
their personal data.

Markos Souropetsis holds an MSc in Cultural Informatics and Communication
and a BSc in Cultural Technology and Communication, both from the
University of the Aegean, Greece. He is a PhD candidate with the
Department of Communication and Internet Studies at the Cyprus University
of Technology. His research focuses on the implementation of new technologies
in non-formal learning settings, like museums and archaeological sites.

38 Journal of Educational Computing Research 0(0)


	table-fn1-07356331211027387
	table-fn2-07356331211027387
	table-fn3-07356331211027387

